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Fitting affine and orthogonal transformations

between two sets of points

HelmuthSpäth∗

Abstract. Let two point sets P and Q be given in R
n. We deter-

mine a translation and an affine transformation or an isometry such that
the image of Q approximates P as best as possible in the least squares
sense.
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1. Introduction

Let the two sets of points P and Q by given by

pppi = (p1i, . . . , pni)T , qqqi = (a1i, . . . , ani)T (i = 1, . . . ,m) . (1)

We are looking for some matrix

AAA = (ajk)j,k=1,... ,n (2)

and some translation vector
ttt = (t1, . . . , tn)T (3)

such that
pppi ≈ AAAqqqi + ttt (i = 1, . . . ,m) . (4)

As the number of unknowns is n2+n, we require m > n2+n. One possible objective
function to be minimized is the sum of squared Euclidean distances, i. e.

S(AAA,ttt) =
m∑

i=1

‖pppi −AAAqqqi − ttt‖2
2 . (5)

The first solution method will consist of a generalization of the least square fitting
by a straight line (n = 1). The second method is an iteration method that could
also be applied but should not.
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If A is orthogonal, we will have the n(n + 1)/2 side conditions

AAATAAA = III, i. e. aaaT
j aaak = δjk (j ≤ k) (6)

where aaaj (j = 1, . . . , n) are the columns of AAA. It will turn out in Section 3 that it
is easier to manage them implicitly and that the mentioned second method can be
used here. Other methods are discussed in [1, 2, 4, 5].

2. Fitting affine transformations

The necessary and – because of linearity – also sufficient conditions for (5) to be
minimized are

∂S

∂ajk
= −2

m∑
i=1

(EEEjk qqqi)T (pppi −AAAqqqi − ttt) = 0 (j, k = 1, . . . , n) (7)

∂S

∂ttt
= −2

m∑
i=1

(pppi −AAAqqqi − ttt) = 0 (8)

In (7) we set EEEjk = ∂AAA
∂ajk

, i. e. the n×n matrix that contains 1 in the j-th row and
the k-th column and 0 elsewhere. As

(EEEjkqqqi)T = (0, . . . , 0, qki, 0, . . . , 0) , (9)

where qki is in the j-the position, the conditions (7) will read(
m∑

i=1

q1i qki

)
aj1 + . . .+

(
m∑

i=1

qni qki

)
ajn +

(
m∑

i=1

qki

)
tj =

m∑
i=1

qki pji (10)

(j, k = 1, . . . , n) .

Additionally, (8) gives(
m∑

i=1

q1i

)
aj1 + . . .+

(
m∑

i=1

qni

)
ajn + mtj =

m∑
i=1

pji (11)

(j = 1, . . . , n) .

In order to integrate (10) and (11) we introduce

qn+1,i = 1 (i = 1, . . . ,m) (12)

and put

q̃qqi = (q1i, . . . , qni, qn+1,i)T (i = 1, . . . ,m), (13)

Q̃QQ =
m∑

i=1

q̃qqi q̃qq
T
i , (14)

ãaaj = (aj1, . . . , ajn, tj)T , (15)

c̃ccj = (c̃j1, . . . , c̃j,n+1)T with c̃jk =
m∑

i=1

qki pji (k = 1, . . . , n + 1) . (16)
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Then (10) and (11) can be integrated within

Q̃QQãaaj = c̃ccj (j = 1, . . . , n) . (17)

Note that Q̃QQ is common to all n systems of linear equations with n + 1 unknowns,
i. e. you need just one LU-decomposition to solve all systems. Q̃QQ will normally be
positively definite for m > n2 + n and thus nonsingular.

Example 1. For Q we used m = 20 points qqqi ∈ R
3 given by

Q =

0 1 0 1 1 0 −1 −1 −1 −1 −1 −1 −1 −1 0 1 −1 1 0 0
0 0 1 −1 0 −1 1 0 0 0 1 −1 0 −1 0 1 −1 0 1 1
1 0 0 0 −1 1 1 0 −1 1 0 1 −1 0 −1 1 −1 1 1 −1


Then we used

AAA =

 1 0 −1
0 1 1
1 −1 0

 , ttt =

 −1
0
1


to produce pppi = AAAqqqi + ttt (i = 1, . . . , 20). In this case the minimal solution of (5)
must give S(AAA,ttt) = 0. Of course, this was done, and AAA and ttt were retrieved.

Example 2. We disturbed a lot of coefficients of pppi and qqqi randomly by ±1 to
receive

Q =

0 1 0 0 1 1 −1 −1 −1 −1 −1 0 0 −1 0 1 0 1 −1 0
1 1 1 −1 0 −1 0 −1 −1 1 1 −1 1 −1 1 1 −1 1 1 1
1 0 1 1 −1 1 1 0 −1 1 0 1 −1 0 −1 1 0 0 1 −1



P =

−1 0 −1 0 1 −2 −2 −3 −1 −3 −1 −3 −1 −2 −1 −1 −1 −1 −2 0
1 1 2 −1 −1 0 2 0 −2 1 1 −1 −1 −1 −1 3 −1 0 1 −1
0 1 1 2 2 3 −1 1 1 1 −1 1 0 0 2 0 1 2 1 1


We received

AAA =

 .6564 .1728 −.5658
−.0028 .7831 1.0776
.7316 −.3747 −.1107

 , ttt =

 −1.1058
−.2724
1.0702


and S(AAA,ttt) = 32.25425.

Now we will mention an iterative descent method that, it is true, does not exceed
the straightforward and direct solution of (13) but will also be able to be applied
in the next section. We can write (8) as

ttt =
1
m

m∑
i=1

(pppi −AAAqqqi) (18)

and (7) as
m∑

i=1

(EEEjkqqqi)TAAAqqqi =
m∑

i=1

(EEEjkqqqi)T (pppi − ttt) (19)

We consider the following algorithm:
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Step 0: Give some starting value AAA(0) for AAA, e. g. AAA(0) = III. Set w = 0.

Step 1: Use (18) to calculate

ttt(w+1) =
1
m

m∑
i=1

(pppi −AAA(w)qqqi) . (20)

Step 2: Use (19) to calculate AAA(w+1), i. e. to solve

m∑
i=1

(EEEjk qqqi)TAAA(w+1)qqqi =
m∑

i=1

(EEEjk qqqi)T (pppi − ttt(w+1)) . (21)

Step 3: STOP, if some convergence criterion is fulfilled, otherwise set w := w + 1
and go back to Step 1.

This alternating method gives a descent within every iteration. For the above two
examples it converged to 6 correct digits within 6 and 9 iterations, respectively, and
gave the same solution as (17).

3. Fitting orthogonal transformations

Orthogonal transformations are affine transformations with the property (6). Thus
to the objective function (5) one could add the side conditions (6). Instead of
trying to solve a nonlinear system after introducing the Lagrangian function we
will describe a more effective way. It is well-known [3] that every orthogonal matrix
AAA of size n× n can be written as a product

AAA = RRR1 · · ·RRRNBBB , (22)

where

RRR� = RRR(ϕjk) (� = 1, . . . , N =
(n− 1)n

2
) (23)

and where RRR(ϕjk) = (ris)i,s=1,... ,n has the elements

rjj = rkk = cos(ϕjk)

rjk = −rkj = − sin(ϕjk) (24)

rii = 1 (i 	= j, k), ris = 0 else.

The indices � uniquely correspond to pairs (j, k) with j < k as indicated in the
following table:

� 1 2 · · · n− 1 n n + 1 · · · 2n− 3 2n− 2 · · · N

(j, k) (1, 2) (1, 3) · · · (1, n) (2, 3) (2, 4) · · · (2, n) (3, 4) · · · (n− 1, n)
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Finally, BBB = III (identity) for detAAA = +1 [3, 6] and BBB = diag(1, 1, . . . , 1,−1) for
detAAA = −1 [3]. The angles ϕik are called the Euler rotation angles. We will also
write

ϕϕϕ = (ϕ1, . . . , ϕN )T

With this notation the objective function (5) to be minimized here reads

S(ϕϕϕ,ttt) =
m∑

i=1

‖pppi −RRR1RRR2 · · ·RRRNBBBqqqi − ttt‖2
2 . (25)

The necessary conditions for a minimum are

∂S

∂ttt
= −2

m∑
i?1

(pppi −RRR1 · · ·RRRNBBBqqqi − ttt) = 0 , (26)

∂S

∂ϕ�
= −2

m∑
i=1

(pppi −RRR1 · · ·RRRNBBBqqqi − ttt)TRRR1 · · ·RRR�−1RRR
′
�RRR�+1 · · ·RRRNBBBqqqi = 0 (27)

(� = 1, . . . , N) ,

where the matrix
RRR′

� =
∂R�

∂ϕjk
(28)

has the coefficients

r′jj = r′kk = − sin(ϕjk) ,

r′jk = −r′kj = − cos(ϕjk) , (29)

r′is = 0 else.

Note that the matrix
CCC� = RRRT

� RRR
′
� = (cis)i,s=1,... ,n (30)

has the elements
cjk = −ckj = −1 , cis = 0 else. (31)

Now (26) can be written as

ttt = ttt(ϕϕϕ) =
1
m

m∑
i=1

(pppi −RRR1 · · ·RRRNBBBqqqi) (32)

and (27) as

−
m∑

i=1

(pppi − ttt)TRRR1 · · ·RRR′
� · · ·RRRNqqqi = −

m∑
i=1

qqqT
i RRR

T
N · · ·RRRT

1 RRR1 · · ·RRR′
� · · ·RRRNqqqi

= −
m∑

i=1

sssT
i RRR

T
� RRR

′
�sssi (33)

= −
m∑

i=2

sssT
i CCC�sssi
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where sssi = RRR�+1 · · ·RRRNBBBqqqi. But because of (31) the right-hand side of (33) is zero.
Thus (27) reduces to

−
m∑

i=1

(pppi − ttt)TRRR1 · · ·RRR�−1RRR
′
�RRR�+1 · · ·RRRNBBBqqqi = 0 . (34)

Putting

uuu
(�)T

i = (pppi − ttt)TRRR1 · · ·RRR�−1 ,
(i = 1, . . . , n; � = 1, . . . , N)

vvv
(�)
i = RRR�+1 · · ·RRRnBBBqqqi ,

(35)

(34) reads

−
m∑

i=1

uuu
(�)T

i RRR′
�vvv

(�)
i = 0 (36)

Using (29) this results in

gjk sin(ϕjk)− fjk cos(ϕjk) = 0 , (37)

where

fjk =
m∑

i=1

v
(�)
ij u

(�)
ik − v

(�)
ik u

(�)
ij ,

(38)

gjk =
m∑

i=1

v
(�)
ij u

(�)
ij + v

(�)
ik u

(�)
ik .

Thus ϕik = ϕ� is given by

ϕik = atan
(
fjk

gjk

)
. (39)

A minimum of S w.r.t. ϕjk is given by (39) if

1
2

∂2S

∂ϕ2
ik

= gjk cos(ϕjk) + fjk sin(ϕjk) > 0 . (40)

Otherwise ϕjk has to be replaced by ϕjk+π. Additionally, in order to avoid negative
angles, we replace ϕjk by ϕjk + 2π. Altogether we can now design the following
descent algorithm:

Step 1: Give starting values ϕ
(0)
� (� = 1, . . . , N), e.g. ϕ(0)

� = 0. Decide whether
to use BBB = III or BBB = diag(1, . . . , 1,−1). Set w = 0.

Step 2: Calculate RRR
(w)
� = RRR(ϕ(w)

� ) (� = 1, . . . , N) corresponding to (23) and (24).

Step 3: Set FFF := RRR
(w)
2 · · ·RRR(w)

N and GGG := III.
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Step 4: Corresponding to (32) calculate

ttt(w) =
1
m

m∑
i=1

(pppi −RRR
(w)
1 FFFqqqi)

Step 5: do � = 1, N

g := 0; f := 0; if � = N then FFF := III

do i = 1,m
uuuT := (pppi − ttt(w))TGGG
vvv := FFFqqqi

g := g + vjuk − vkuj

f := f + vjuj + vkuk

end i

ϕ = atan(g/f)
if (g cos(ϕ) + f sin(ϕ)) ≤ 0 then ϕ := ϕ+ π

if (ϕ < 0) then ϕ := ϕ + 2π

ϕ
(w+1)
� := ϕ; RRR(w+1)

� := RRR(ϕϕϕ)
if (� < n) then

GGG := GGGRRR
(w+1)
� ; FFF := RRR

(w)T
�+1 FFF

end if

end �

Step 6: Set w := w+1. If some convergence criterion is not fulfilled, then go back
to Step 3; otherwise set ttt := ttt(w) and AAA := RRR

(w)
1 · · ·RRR(w)

N BBB and stop.

Convergence of this algorithm to a global minimum cannot be proved. However,
empirically, the global minimum was always attained independently of the starting
values for ϕϕϕ(0). We will give some examples where we always used ϕ

(0)
� = 0 (� =

1, . . . , N).
Starting with a set Q of m = 20 points aaai ∈ R

4, namely

Q =


1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 2 2
0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 2 2 2 2
0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 2 0 2 2 2
0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 2 0


and angles ϕ� = � (� = 1, . . . , 6) and a translation ttt = (−1, 0, 1, 2)T we produced
pppi = RRR1 · · ·RRR6qqqi + ttt (i = 1, . . . ,m = 20).

Example 3. Using those data after 206 iterations we got S = 0.00000 (as ex-
pected) and ttt = (−1.0000, 0.0000, 1.0000, 2.0000)T; instead of ϕ� = � (� = 1, . . . , 6)
we ended up with ϕ1 = 1.0000, ϕ2 = 5.1416, ϕ3 = .1416, ϕ4 = 5.4248, ϕ5 =
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1.8584, ϕ6 = 6.0000. This result is right because with (ϕ1, . . . , ϕ6)T (among oth-
ers) (ϕ1, ϕ2 + π, π − ϕ3, 3π − ϕ4, ϕ5 − π, ϕ6)T is also a global minimum.

Example 4. We used the same data as before but dropped all components
of pi from d1.d2d3d4d5d6 to d1.d2 thus introducing small errors. After 202 iter-
ations we received S = 0.07328, ttt = (−.9644, −.0459, .9469, 1.9441)T and ϕϕϕ =
(.9614, 5.1497, .1431, 5.3838, 1.8640, 5.9972)T . As expected, these results do not
differ very much from those of Example 3.

Example 5. We further dropped the components of pi from d1.d2 to integer
values d1 getting

P =


0 0 −1 0 0 0 0 0 0 −1 0 −1 0 0 −1 −2 0 −1 0 −1
0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 3 2
0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0
2 3 3 2 2 1 1 2 2 3 2 2 1 1 2 2 3 4 3 4


After 258 iterations we got S = 5.66304, ttt = (−.5893, −.5366, .6593, 1.6014)T

and ϕϕϕ = (1.3334, 5.0294, .1224, 5.5977, 2.0565, 6.0189)T . Of course, these results
differ more than before. Varying the starting values ϕϕϕ(0) we always received the
same results, i.e. hopefully a global minimum.
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