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On some properties of the Lyapunov equation for
damped systems”

NINosLAV TRUHAR' AND KRESIMIR VESELIGH

Abstract. We consider a damped linear vibrational system whose
dampers depend linearly on the viscosity parameter v. We show that
the trace of the corresponding Lyapunov solution can be represented as
a rational function of v whose poles are the eigenvalues of a certain
skew symmetric matriz. This makes it possible to derive an asymptotic
expansion of the solution in the neighborhood of zero (small damping).
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1. Introduction

We consider a damped linear vibrational system
Mi+Ct+Kx=0 (1)

where the matrices M,C, K (mass, damping, stiffness) are symmetric, M, K are
positive definite and C' is positive semidefinite. If internal damping is neglected, C'
has often a small rank as it describes a few dampers built in to calm down dangerous
vibrations. Often C has the form

CZ’UCQ

where v is variable viscosity and Cy describes the geometry of a damper. Cy will
have rank 1,2 or 3 according to whether the damper can exhibit linear, planar or
spatial displacements.

An example is the so-called n-mass oscillator or oscillator ladder (Figure 1)
where
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M = diag(ml, mao, ... ,mn) (2)
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Figurel. The n-mass oscillator with two dampers

Here m; > 0 are the masses, k; > 0 the spring constants or stiffnesses, e; is the
i-th canonical basis vector, and v is the viscosity of the damper applied on the i-th
mass.

After the substitution

N =00 "'z, y=0"%, (5)

where
Ko=M30%, oTMd=1 (6)
Q =diag(wy,... ,wn), w1 <...<w, (7)

is the eigenreduction of the symmetric positive definite matrix pair K, M, the system
(1) goes over into

y=Ay, y= [yl] , (8)
Y2
0 0
A= ., D=oTCo. 9)
~Q -D
Then
1 oo oo oo
fop 5/(x'TM5c+xTKx) dt:/Hy||2dt=/||eAty0||2dt, (10)
0 0 0

where yq is the initial data. Thus,

E = E(yo) = y3 Xyo,
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where -
X = /eATt eAtdt (11)
0
solves the Lyapunov equation
ATX + XA = 1. (12)

Our penalty function is obtained by averaging E over all initial data with the
equal energy, that is, we form
E= / o Xyodo (13)
Iyoll=1
where do is a probability measure on the unit sphere in R?". Since by the map
X T
— Yo Xyo do
yoll=1
is given a linear functional on the space of the symmetric matrices, by the Riesz

theorem there exists a symmetric matrix Z such that

X = / vy Xyo do = Tr(ZX), for all symmetric matrices X .
lyoll=1

Let y € R?" be arbitrary. Set X = yy”?. Then
T — _ Ty _ T
0< [ ¥EXyo do = Tr(2X) = Tr(Zyy") = Tr(y"Zy).
llyoll=1

hence Z is always positive semi-definite.
For any given measure there is a unique positive semidefinite matrix Z such that

E = Tr(ZX). (14)

For the measure o generated by the Lebesgue measure (i.e. the usual surface
measure) on R?”, we obtain Z = %I. For the convenience of the reader, we give a
sketch of the proof:

Recall,

Z;j = /Yin o(dy).
S

Using Minkowski formula (see [2]) one can easily see that

2€ e—0
S d(y,S) <e

1 .
Z;; = /Yi}’j o(dy) = = lim / yiyjo(dy),

here S denotes the unit sphere in R?" and d(y, S) is a corresponding distance.
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Obviously, Z;; = 0 for i # j and Z;; = Zj;, for i,j € {1,2,...,2n}. Since
1
Z11+ 7211+ ... Zopo, = lim — vol (yERQ":d(y,S) Sa) =1,
e—0 2¢

it follows Z = %I. More details about the structure of the matrix Z one can be
found in [4].
‘We have shown that
y&Xyo do = min (15)
llyoll=1
is equivalent to
Tr(ZX) = min . (16)

where Z is a symmetric positive semidefinite matrix which may be normalized to
have a unit trace.

If one is interested in damping a certain part of the spectrum of the matrix A
(which is very important in applications), then the matrix Z will have a special
structure. For example, let ¢ = 07 X 02 X 01 X 02, where o1 is a measure on
the frequency subspace determined by w < wpax = ws generated by the Lebesgue
measure, that is, o; is a measure on the frequency subspace which corresponds
to eigenfrequencies (defined by (7)) wi,...ws and oy is a Dirac measure on the
complement. Then we obtain that the corresponding matrix Z has the form

1,000
110000

Zs=Z=5-100L0|" (17)
0000

where I is the identity matrix of the dimension s which is defined by wmax = ws.
Here wpax = ws is a critical frequency with the property that the eigenfrequencies
from (7) greater than w, are not dangerous. Hence, we damp first s eigenfrequencies.
The construction of Z from (17) is a generalization of the simplest case Z = 5-1.

In [7] a simple solution of problem (14) has been presented for A from (9) and
rank(C) = 1. In particular,

Tr(ZX(v)) = const + 24 bv, a,b>0, (18)
v

which made it possible to find the minimum by a simple formula explicitly. The
case rank(C') > 1 seems to be essentially more difficult to handle.
The main result of this paper is the explicit formula:

i )\1(13z — UTi)

U_ ~ "\
X(v):Tl—\Ilo—v\Ifl—l—vE ()\24_@2 (19)
=1 4

where W_q, Ug, \/I\ll, ®, and Y; are m x m matrices and \; are eigenvalues of the
pencil (Ag, D) where Ay and I are matrices which correspond to the linear operators

X > —AX + XAy,
X — DX + XD,
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respectively. Thus, technically, we have turned viscosity into the spectral parameter.
Further, we have obtained a simple formula for ¥_; in (19). This matrix is
responsible for the behavior of the solution X (v) in the neighborhood of zero (small

damping):
_|Da 0
\I/—l - |: 0 DA:| ) (20)
where
D, = (diag (D))" (21)

We will use the following notation: matrices written in simple Roman fonts, M,
D or K for example will have n? entries. Matrices written in mathematical bold
fonts, A, B will have m? entries, where m = 2n (that is, A, B are matrices defined
on the 2n-dimensional phase space). Finally, matrices written in Blackboard bold
fonts A, or D will have more than m? entries.

2. The main result

As we have said in the Introduction, our aim is to obtain the solution X of the
Lyapunov equation
A()'X +XA(v) = -1, (1)

where Z is defined by (17) and I is an m x m identity matrix.
From (9) it follows that A(v) can be written as

O
92 0 w;
A(v) = Ay —vD,where Ay = ) , Q= i 0 (2)
Qn
and D = DoD{’, where
0 0 ... 0 ]
dyy dig ... diy
0 0 ... 0
Dy = |do1 da2 - dar | (3)
0 0 ... 0
_dnl dn2 dnr |
d;; are entries of the matrix
Do=P| Co = LcLL
0 — LC ) 0 — Lclgo,

and P is the “perfect shuffling” permutation.
Now, we proceed with solving equation (1). As it is well known, Lyapunov
equation (1) is equivalent to ([3, Theorem 12.3.1])

(I®(Ag—vD)" +(Ag—vD)" ®I) - vec(X) = —vec(I), (4)
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where L @ T denotes the Kronecker product of L and T, and vec(I) is the vector
formed by ”stacking” the columns of I into one long vector.
Further, we will need the following two m? x m? matrices defined by

Ao=TI0 Al + Al ®1, D=12DyD] +DD} ®1. (5)
It is easy to show that D = D DL, where
Dp =[I®Dg Do ®I]. (6)

Now, using (6) and (5) it follows that solution vec(X) of equation (4) can be written
as
vee(X) = — (Ag — vDpDE) ™ vec(T). (7)

Obviously, there exists a unitary matrix U such that
UTaoU = |° - (8)
0 AO )

where A is the skew-symmetric matrix, corresponds with the linear operator de-
fined in (5) and Ay is a non-singular block diagonal matrix defined by

Ao = diag(Z1,... ,Em,) where Z;= {O _’“} (9)
pi 0
where +ip;, i@ = 1,...,mg are non-zero eigenvalues of matrix Ay, that is, 0 #

pi = (fw;) — (fw;) for i,j =1,... ,n (see [3, Corollary 12.2.2]). Note that mg =
(m? —m)/2. Set

Dy| _ o1
[DJ =U"Dp, (10)
where Dy is defined in (6).
Now,
0 D, DT D, DT
_ T _ | 107 DDy T
(R -
Taking
I 0
&= [—DQDIT(DJ)){)* 1} (12)
we obtain .
—vD D
Ag —vDpD} =UG™! [ v A’} G¢TU, (13)
where N
A=Ay —vDy(I - Df (D:D])~'D1)D3 . (14)

Note that we can write

Dy (I — DT(D, D7) 'D,)DI = FFT . 15
1 1 2
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Further, we have to find the inverse of A = Ay — vFFZ. This is obtained by
using the Sherman-Morrison- Woodbury formula ([1, (2.1.4), p.51]), that is,

~ ~ ~ ~ -1 ~
(o —vFF")~! = A5 +vAg'F (1 - oFTA'F)  FTAG (16)

The inverse of I — vFTAj'F remains to be found. Let

o 0 A\ 0 A 0 A
nmaoe ([ 8310 %] [ 3]) -
where i)\, £i)s ..., +i)s are non-vanishing finite eigenvalues of the problem
(Ag — AD) vec(Y) = 0. (18)

Since FT&(] IF is skew-symmetric, then there exists an orthogonal matrix Ug of
order 2(r — 1)m such that

USFTA;'FUg = [8 19] , (19)
where I' = A~ L.
Using (13), (16), (19) and (7) it follows
vee(X) = —UGT [Al A, } GUY vec(I), (20)
where
A = —M, As = As' 4 vASIFUS {I . Sr)—l} UTFTAS. (21)

Since T is block diagonal we have

1 22— 1 A2 —u)
_ —1: . 1 1 s s
oyt (s [ ] X ) e

Using (21) and (20) it follows

V- (AW, —vZ;
vec(X) = ( . L _Vo—oV; + vz W) vec(I) (23)
where matrices V_y, Vo, V1, W, and Z; are constructed using (12), (21) and (20).
By "reshaping” vectors in (23) back into m x m matrices we obtain the solution
of equation (1)
L=t (Ai®; —vYy)

X =
)\?—i-vz

— Wy — ol +o Z (24)
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If one is interested in deriving an optimal damping, then according to (14) one
has to minimize the function f(v) = tr(ZX(v)), where

tr(ZX(v)) = vec(Z)"vec(X) = —vec(Z)" (Ao — UDFDE)’lvec(I). (25)

This gives
X1 (NX; —vY5)
T’I"(ZX) X() - ’UX]_ + o Z W ; (26)
where
X 1 =vec(Z)'V_;vec(T),
Xo = vec(Z)TVq vec(I), (27)
X, = Vec(Z)TA 1 vec(I),
and
X; = vec(Z)"W;vec(I), Y; = vec(Z)TZ; vec(I) . (28)

Note that the function Tr(ZX) from (26) is a generalization of the function
Tr(X) defined in (18).

Remark 1. In the case when Z is a diagonal matriz, the function Tr(ZX)
from (26) has the following simpler form:

S

X_ - A2 X,
Tr(ZX) === —vX; +v ) 3
v c -

Finally, we derive an explicit formula for the matrix W_;. Let Uy be that part
of U corresponding to the null-space of Ag. From (23) it follows that

vec(U_1) =V_; vec(I) = —Up(D; D) 71UT vec(T). (29)

It is easily seen that the i-th column of the matrix Uy can be written as vec(O;),
where O; is a block-diagonal matrix and

021'71 = diag(07 e ,0, Oii707 e ,0)
021‘ = diag(07 e ,0,6”‘,07 e ,0)

where O;; and 5”~ are ”orthogonal” solutions of

—QiOij+Oiij =0 1,] = 1,...,n, (30)
that is
1 R 1
On‘ = \65 1 s and O” = 1 \6§‘| . (31)
V2 V2

Let (A, B) = Tr(AT B) be the usual Frobenius scalar product. Then, we can write
the (p, q)-th element of U DDLU, as

(UO)( P)DFD;(UO)@Q) = <qu Op + O, Dy, Oq> pg=1,...,m, (32)
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where D, = (Dpq) and

0 0
D,, = . 33
pa [0 D(p7:)D%’:17:J (33)

The orthonormality property

<Op7 Oq> = 5pq )

implies

(UIDFDEUo) ' = ding(1/(D)22,1/(D)2z, -, 1/(D)inm, 1/ (D)) - (34)

Using the fact that UgUZ vec(I) = vec(I), from (29) it follows that

where

1 1 1 1
U =di —_— e, —— | . 35
' 8 <D22 ’ D22 ’ ’ Dmm ’ Dmm) ( )
After applying a perfect shuffle permutation we have
_|Da 0
AL (36)
Dy = (diag (D))~ (37)

The explicitness of the obtained formulas is attractive for possible numerical

computation. Our first attempts to perform this task did not succeed due to unex-
pected complexity problems. We will come back to this issue in our future research.
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