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Jensen’s inequality for nonconvex functions∗
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Abstract. Jensen’s inequality is formulated for convexifiable (gen-
erally nonconvex) functions.
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1. Introduction

Jensen’s inequality is 100 years old, e.g., [1, 2, 3] . It says that the value of a convex
function at a point, which is a convex combination of finitely many points, is less
than or equal to the convex combination of values of the function at these points.
Using symbols: If : R

n → R is convex then

f
( p∑

i=1

λixi
)
≤

p∑
i=1

λif(xi) (1)

for every set of p points xi, i = 1, . . . , p, in the Euclidean space R
n and for all real

scalars λi ≥ 0, i = 1, . . . , p, such that
∑p

i=1 λi = 1.
In this note the inequality (1) is extended from convex to convexifiable func-

tions, e.g., [4, 5]. These include all twice continuously differentiable functions, all
once continuously differentiable functions with Lipschitz derivative and all analytic
functions. As a special case we obtain a new form of the arithmetic mean theorem.

2. Convexifiable functions

If f : R
n → R is a continuous function in n variables defined on a convex set C of

R
n, then the function is said to be convex on C if

f
(
λx + (1 − λ)y

) ≤ λf(x) + (1 − λ)f(y) (2)
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for every x,y ∈ C and scalar 0 ≤ λ ≤ 1. Note that this is (1) for p = 2. Let us
recall several recent results.

Definition 1 [[5]]. Given a continuous f : R
n → R defined on a convex set C,

consider the function ϕ : R
n+1 → R defined by ϕ(x, α) = f(x) − 1

2αxTx , where
xT is the transposed of x. If ϕ(x, α) is a convex function on C for some α = α�,
then ϕ(x, α) is a convexification of f and α� is its convexifier on C. Function f is
convexifiable if it has a convexification.

Observation 1. If α� is a convexifier of f , then so is every α ≤ α�.
In order to characterize a convexifiable function, the mid-point acceleration func-

tion

Ψ(x,y) =
4

‖x− y‖2

(
f(x) + f(y) − 2f

(
x + y

2

))
, x,y ∈ C,x �= y

was introduced in [5]. There it was shown that a continuous f : R
n → R, defined

on a nontrivial convex set C (i.e., a convex set with at least two distinct points)
in R

n is convexifiable on C if, and only if, its mid-point acceleration function Ψ is
bounded from below on C.

For two important classes of functions a convexifier α can be given explicitly. If
f is twice continuously differentiable then its second derivative at x is represented
by the Hessian matrix H(x) =

(
∂2f(x)/∂xi∂xj

)
. This is a symmetric matrix with

real eigenvalues. Denote its smallest eigenvalue by λ(x) and its “globally” smallest
eigenvalue over a compact convex set C by

λ� = min
x∈C

λ(x).

Lemma 1 [[4, 5]]. Given a twice continuously differentiable function f : R
n →

R on a nontrivial compact convex set C in R
n. Then α = λ� is a convexifier.

We say that a continuously differentiable function f has Lipschitz derivative if
| [∇f(x) −∇f(y)] (x − y) |≤ L‖x − y‖ for every x,y ∈ C and some constant
L. Here ∇f(u) is the (Fréchet) derivative of f at u and ‖u‖ = (uTu)1/2 is the
Euclidean norm. We represent the derivative at x as a row n-tuple gradient ∇f(x) =(
∂f(x)/∂xi

)
.

Lemma 2 [[5]]. Given a continuously differentiable function f : R
n → R with

Lipschitz derivative and a constant L on a nontrivial compact convex set C in R
n.

Then α = −L is a convexifier.
One can show that every convexifiable scalar function f : R → R is Lipschitz, i.e,

|f(s) − f(t)| ≤ K|s − t| for every s and t and some constant K . This means that
a scalar non-Lipschitz function is not convexifiable. However, almost all smooth
functions of practical interest are convexifiable; e.g., [5].

3. Jensen’s inequality for convexifiable functions

In this section we formulate (1) for convexifiable functions.
Theorem 1 [Jensen’s inequality for convexifiable functions]. Consider

a convexifiable function f : R
n → R on a bounded nontrivial convex set C of R

n

and its convexifier α. Then
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f
( p∑

i=1

λixi
) ≤

p∑
i=1

λif(xi) − α

2

( p∑
i,j=1
i<j

λiλj‖xi − xj‖2

)
(3)

for every set of p points xi, i = 1, . . . , p, in C and all real scalars λi ≥ 0, i =
1, . . . , p, with

∑p
i=1 λi = 1.

Proof. Since f is convexifiable, ϕ(x, α) = f(x)− 1
2αxTx is a convex function for

every convexifier α. Hence Jensen’s inequality works for ϕ(x, α). After substitution
one obtains

f
( p∑

i=1

λixi
) ≤

p∑
i=1

λif(xi) − α

2

( p∑
i,j=1

λiλj(xi)T (xi − xj)
)

.

After more rearranging the more pleasing form (3) follows. ✷

Using the fact that for a convex function f one can choose the convexifier α = 0,
one recovers (1). For a twice continuously differentiable function one can specify
α = λ� (by Lemma1) and for a continuously differentiable function with Lipschitz
derivative and its constant L, one can specify α = −L (by Lemma2). Hence we
have, respectively, the following special cases:

Corollary 1 [Jensen’s inequality for twice continuously differentiable
functions]. Given a twice continuously differentiable function f : R

n → R on a
nontrivial compact convex set C in R

n. Then

f
( p∑

i=1

λixi
) ≤

p∑
i=1

λif(xi) − λ�

2

( p∑
i,j=1
i<j

λiλj‖xi − xj‖2

)
(4)

for every set of p points xi, i = 1, . . . , p, in C and all real scalars λi ≥ 0, i =
1, . . . , p, with

∑p
i=1 λi = 1.

Observation 2. If f in Corollary1 is strictly convex, then the lowest eigenvalue
of the Hessian is λ� ≥ 0 (often λ� > 0) and (4) may provide a better bound than
(1). Since every analytic function f : R → R is twice continuously differentiable,
Corollary1 holds, in particular, for analytic functions with λ� = mint∈C f ′′(t).

Corollary 2 [Jensen’s inequality for once continuously differentiable
functions with Lipschitz derivative]. Given a continuously differentiable func-
tion f : R

n → R with Lipschitz derivative and a constant L on a nontrivial compact
convex set C in R

n. Then

f
( p∑

i=1

λixi
) ≤

p∑
i=1

λif(xi) +
L

2

( p∑
i,j=1
i<j

λiλj‖xi − xj‖2

)
(5)

for every set of p points xi, i = 1, . . . , p, in C and all real scalars λi ≥ 0, i =
1, . . . , p, with

∑p
i=1 λi = 1.

Special Case: For a scalar function f : R → R and two scalar points a and b
Jensen’s inequality is

f
(
λa + (1 − λ)b

) ≤ λf(a) + (1 − λ)f(b), for every 0 ≤ λ ≤ 1
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while for a convexifiable f , it is

f
(
λa + (1 − λ)b

) ≤ λf(a) + (1 − λ)f(b) − α

2
λ(1 − λ)(a − b)2

for every convexifier α and for every 0 ≤ λ ≤ 1. We will use this special case to
illustrate the basic difference between the two inequalities.

Illustration 1. Consider f(t) = sin t on 0 ≤ t ≤ 2π. Take a = 0 and b = 2π.
Then (1) and its extension yield, respectively

sin(2π(1 − λ)) ≤ 0, 0 ≤ λ ≤ 1 (6)

and

sin(2π(1 − λ)) ≤ 2π2λ(1 − λ), 0 ≤ λ ≤ 1. (7)

Inequality (6) is not satisfied on the region where f(t) is not convex, i.e., 1/2 ≤
λ ≤ 1. On the other hand the new upper bound in (7) holds (see Figure 1).

Figure 1. Jensen’s inequality for a convexifiable function

A situation where the new bound is sharper than the one provided by Jensen’s
inequality for a convex function is illustrated in the following example.

Illustration 2. Consider f(t) = t4 between a = 1 and b = 2. Then (1) and
its extension yield (2 − λ)4 ≤ 16 − 15λ and (2 − λ)4 ≤ 16 − 9λ − 6λ2, 0 ≤ λ ≤
1, respectively. The upper bounds are compared against the original function in
Figure 2.
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Figure 2. Improvement for a strictly convex function

Jensen’s inequality is closely related to the arithmetic mean theorem for real
numbers. The following theorem says that the value of a convex function at the
arithmetic mean of p numbers is less than or equal to the arithmetic mean of the
values of the function at these numbers.

Theorem 2 [Classic arithmetic mean theorem for convex functions,
e.g., [3]]. Consider a convex scalar function f : R → R on a nontrivial compact
interval [a, b]. Then

f

(
1
p

p∑
i=1

ti

)
≤ 1

p

p∑
i=1

f(ti) (8)

for every set of p points ti ∈ [a, b], i = 1, . . . , p.
Specifying xi = ti, λi = 1/p, i = 1, . . . , p, in (3) one obtains, after rearrange-

ment, the following extension:
Theorem 3 [Arithmetic mean theorem for convexifiable functions].

Consider a convexifiable scalar function f : R → R on a nontrivial compact interval
[a, b] and its convexifier α. Then

f

(
1
p

p∑
i=1

ti

)
≤ 1

p

p∑
i=1

f(ti) − α

2

(
1
p

p∑
i=1

t2i −
(1
p

p∑
i=1

ti
)2

)
(9)

for every set of p points ti ∈ [a, b], i = 1, . . . , p.
Observation 3. In (9) one can set α = 0 if f is convex, α = λ� = mint∈[a,b] f

′′(t)
if f is twice continuously differentiable or α = −L if f is Lipschitz continuously
differentiable with a constant L. The first special case recovers the classic result.
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Observation 4. The term corresponding to the convexifier is positive, provided
that at least one ti is non-zero. Indeed, denote A = (ti) ∈ R

p, E = (1, . . . , 1)T ∈
R

p. Then this term is [(1/p)(A,A)−(1/p)2(A,E)2]. Since (A,E)2 ≤ ‖A‖2‖E‖2 =
(A,A) · p and p < p2, the term is positive. Since for a twice continuously differen-
tiable strictly convex f , we know that λ� = mint∈[a,b] f

′′(t) ≥ 0, it follows that (9)
typically provides in this case a better estimate than (8).

Special Case: For a scalar function f : R → R and only two points t1 and t2,
(3) (and after some rearrangement (9)) yields

f

(
t1 + t2

2

)
≤ 1

2
(
f(t1) + f(t2)

) − α

8
· (t1 − t2)2
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