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Variational inequality and complementarity

problem in locally convex Hausdorff topological
vector space

Sudarsan Nanda∗

Abstract. The purpose of this paper is to study variational inequal-
ity and complementarity problem in a locally convex Hausdorff topolog-
ical vector space.
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Let X be a real locally convex Hausdorff topological vector space (lc Htvs) with
a continuous seminorm p and let X∗ be its dual. Let K be a closed convex subset
of X and T : X → X∗ a mapping. Let η : K × K → X .

Definition 1. T is said to be

(i) η-monotone if (Tx − Ty, η(x, y)) ≥ 0, ∀x, y ∈ K,

(ii) strictly η-monotone if (Tx − Ty, η(x, y)) > 0, ∀x, y ∈ K, x �= y,

(iii) strongly η-monotone if there exists a constant C > 0 such that

(Tx − Ty, η(x, y)) ≥ C[p(η(x, y))]2,

(iv) η-coercive if (Tx, T y)/p(η(x, x)) → ∞ as p(η(x, x)) → ∞.

We consider the nonlinear variational inequality (NVI) which is defined as fol-
lows:

x ∈ K : (Tx, η(y, x)) ≥ 0∀y ∈ K. (1)

Another NVI can be stated as follows:

x ∈ K : (Ty, η(y, x)) ≥ 0∀y ∈ K. (2)

Let S1 and S2 denote the solutions of (1) and (2) respectively. These can be
generalized as follows:

x ∈ K : (Tx − Sx, η(y, x)) ≥ 0∀y ∈ K (3)
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x ∈ K : (Ty − Sy, η(y, x)) ≥ 0∀y ∈ K. (4)

We have
Theorem 1. If η is antisymetric and T is strictly η-monotone, then S1 is empty

or singleton.
Proof. Assume that x1, x2 ∈ S1. Then

(Tx, η(x2, x1)) ≥ 0, (5)

and (Tx2, η(x1, x2)) ≥ 0. From (1), η is antisymmetric. We have (Tx1, η(x1, x2)) ≤
0. Hence (Tx1 − Tx2, η(x1, x2)) ≤ 0 . Because T is strictly η-monotone, this is
impossible unless x1 = x2 and this completes the proof. ✷

Theorem 2. Let T be η-monotone and semicontinuous, η(x, x) = 0, η positive
homogeneous. Then S1 = S2.

Proof. Let x ∈ S1. Since T is η-monotone, (Ty, η(y, x)) ≥ (Tx, η(y, x)) ≥ 0 ⇒
x ∈ S2. Let x ∈ S2.Let y ∈ K. Since K is convex, for 0 < t < 1, yt = (1-t)x + ty
= x - t(y - x)∈ K. Hence (Tyt, η(Yt, x)) ≥ 0. But η(yt, x) = −tη(y, x). Now letting
t → 0 we get (Tx,−tη(y, x)) ≥ 0. Thus x ∈ S1 and this completes the proof. ✷

We introduce the concept of the complementarity problem(CP) in real lcHtvs.
Let K be a closed convex cone in X . Let K∗ be the subset of X∗ defined by
K∗ = {y ∈ X∗ : (y, η(y, x)) ≥ 0∀x ∈ K}. Then x ∈ K, Tx ∈ K∗, (Tx, η(x, x)) = 0
will be called the generalised complementarity problem (GCP). Let C denote the set
of all solutions of GCP.

Theorem 3. Let K be a closed convex cone, η is antisymmetric, then S1 = C.
Proof. Let x ∈ S1. Take y = x. Then (Tx, η(x, x)) ≥ 0. Since η is antisymmet-

ric (Tx, η(x, x)) ≤ 0 ⇒ (Tx, η(x, x)) = 0. Thus x ∈ C and hence S1 ⊂ C. Clearly
C ⊂ S1 and this completes the proof. ✷

We shall now prove the existence theorem for variational inequality in lcHtvs.
For this purpose we need the following results which are due to Tarafdar[2].

Lemma 1. Let K be a nonempty compact and convex subset of a Hausdorff tvs
X and S: K→P(K) be a multivalued mapping such that

(i) for each x ∈ K, Sx is a nonempty convex subset of K,

(ii) for each y ∈ K, S−1
y = {x ∈ K : y ∈ Sx} contains an open subset Uy of K

where Uy may be empty.

(iii)
⋃ {Uy : y ∈ K} = K.

Then there exists an element x0 ∈ K such that x0 belongs to Sx0.
Theorem 4. Let K be a nonempty compact convex subset of lcHtvs X and

let T : K → X∗ be strongly η-monotone. Let η be continuous. Suppose η satisfies
η(y, x) = η(y, z) + η(z, x). Then NVI(1) has a solution in K.

Proof. Suppose NVI has no solution in K. Then for each x ∈K, there exists a
y ∈ K such that (Tx, η(y, x)) < 0. Define a multivalued map F : K → P (K) by
F (x) = {y ∈ K : (Tx, η(y, x)) < 0}. Clearly F (x) is nonempty and convex for each
x ∈ K. It follows that F−1(y) = x ∈ K : (Tx, η(y, x)) < 0. Since T is strongly
η-monotone, for each y ∈ K, the complement of F−1(y) is in K, i.e.

(
F−1(y)

)c
= K − F−1(y) = {x ∈ K : (Tx, η(y, x)) ≥ 0}
⊆ {x ∈ K : (Ty, η(y, x)) ≥ C[(p(η)(y, x))2]} = H(y).
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It is easy to show that H(y) is convex. We now show that H(y) is relatively
closed in K. For this purpose, let {xα} be a Moore-Smith sequence in H(y). Then
(Ty, η(y, xα)) ≥ C[p(η(y, xα))]2. Let xα → x ∈ K. We claim that x ∈ H(y). Since
η is continuous, η(X × X) is dense in X , p is a continuous seminorm. We have

(Ty, η(y, x)) = (Ty, η(y, xα)) + (Ty, η(xα, x))
≥ C[p(η(y, xα))]2 + (Ty, η(xα, x))
≥ C[p(η(y, xα))]2

=⇒ x ∈ H(y).
Now

K − H(y) = {x ∈ K : (Ty, η(y, x)) < C(p(η(y, x)))2}
⊆ {x ∈ K : (Tx, η(y, x)) < 0}
= F−1(y).

This implies for each y ∈ K there is an element x ∈ K such that
⋃
(K-H(y))=K.

But by Lemma 1, there exists an element x ∈ K such that x ∈ F (x), which means
0 > (Tx, η(x, x)) = 0. This contradiction completes the proof. ✷

Let D be a nonempty compact, convex subset of X and F : D → Y = X∗. The
following existence theorem on variational inequality was established by Karamar-
dian [1].

Proposition 1. Let the mapping (u, v) → (u, F (v)) be continuous on D × D.
Then there exists a point x̄εD such that for all x ∈ D, (x − x̄, F (x̄)) ≥ 0.

We now obtain the following theorem on the complementarity problem, by using
the results of Karamardian stated above.

Theorem 5. Let K be a closed and convex cone in X and let F : K → Y = X∗

be such that

(i) the mapping (u, v) → (u, F (v)) is continuous on K × K,

(ii) there exists x̄ ∈ K such that F (x) ∈ intK∗.

Then there exists x ∈ X such that x̄ ∈ K, F (x̄) ∈ K∗ and (x̄, F (x̄)) = 0.
Proof. For any u ∈ K define

Du = {x ∈ D :< x, Fx >≤< u, Fx >}
Du

0 = {x ∈ D :< x, Fx > < < u, Fx >}
Su = {x ∈ D :< x, Fx >=< u, Fx >}.

For each u ∈ K, Du is convex. From the continuity assumption it follows that Du is
a closed subset of the compact convex set D for each u ∈ K and hence is compact.
Thus for each u ∈ K, DU is a nonempty, compact, convex set in X , therefore by
Proposition 1 it follows that for each u ∈ K, there is xu ∈ Du such that

< y − xu, Fxu >≥ 0, for all y ∈ Du. (6)
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Since 0 ∈ Du, < xu, Fxu >≤0.
Case1: Let xu ∈ Du

0. Then there is a λ > 1 such that λxu ∈ Su ⊂ Du. Then we
have < xu, Fxu >≤< λxu, Fxu >= λ < xu, Fxu >. Since < xu, Fxu >≤0, it is
impossible unless < xu, Fxu >=0. Thus (6) holds.
Case2. Let xu ∈ Su for all u ∈ K. Let u ∈ K be such that Fxu ∈ intK∗. Then
< u, Fxu >> 0. By the hypothesis there is x ∈ K such that Fx ∈ intK∗. Thus for
this x we have < x, Fx >> 0. Choose u such that < u, Fx >>< x, Fx >> 0. Thus
x ∈ Du

0. Now xu ∈ Su. Hence < xu, Fxu >>=< u, Fxu >> 0. This contradicts
< xu, Fxu >≤ 0 and thus case 2 cannot occur and this completes the proof. ✷

Remark 1. Observe that in the above theorem Du is convex and (compact)
if D is convex and (compact): Du need not be convex if D is any compact (non
-convex)set. For example, take F : R+ → R, F (x) = sinx, D = [π4 , 2π]. Then

Du = {x ∈ D : (x, Fx) ≤ (u, Fx)} = {x : x sinx ≤ u sinx}.

For u = π/2, Du = [π/4, π/2]
⋃
[π, 2π] which is not convex.
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