Variational inequality and complementarity problem in locally convex Hausdorff topological vector space

Sudarsan Nanda*

Abstract

The purpose of this paper is to study variational inequality and complementarity problem in a locally convex Hausdorff topological vector space.

Key words: variational inequality, Hausdorff topological vector space
AMS subject classifications: 47J20
Received January 20, 2004 Accepted February 19, 2005
Let X be a real locally convex Hausdorff topological vector space (lc Htvs) with a continuous seminorm p and let X^{*} be its dual. Let K be a closed convex subset of X and $T: X \rightarrow X^{*}$ a mapping. Let $\eta: K \times K \rightarrow X$.

Definition 1. T is said to be
(i) η-monotone if $(T x-T y, \eta(x, y)) \geq 0, \forall x, y \in K$,
(ii) strictly η-monotone if $(T x-T y, \eta(x, y))>0, \forall x, y \in K, x \neq y$,
(iii) strongly η-monotone if there exists a constant $C>0$ such that

$$
(T x-T y, \eta(x, y)) \geq C[p(\eta(x, y))]^{2}
$$

(iv) η-coercive if $(T x, T y) / p(\eta(x, x)) \rightarrow \infty$ as $p(\eta(x, x)) \rightarrow \infty$.

We consider the nonlinear variational inequality (NVI) which is defined as follows:

$$
\begin{equation*}
x \in K:(T x, \eta(y, x)) \geq 0 \forall y \in K \tag{1}
\end{equation*}
$$

Another NVI can be stated as follows:

$$
\begin{equation*}
x \in K:(T y, \eta(y, x)) \geq 0 \forall y \in K \tag{2}
\end{equation*}
$$

Let S_{1} and S_{2} denote the solutions of (1) and (2) respectively. These can be generalized as follows:

$$
\begin{equation*}
x \in K:(T x-S x, \eta(y, x)) \geq 0 \forall y \in K \tag{3}
\end{equation*}
$$

*Department of Mathematics, IIT Kharagpur, Kharagpur-721302, India, e-mail: snanda@maths.iitkgp.ernet.in

$$
\begin{equation*}
x \in K:(T y-S y, \eta(y, x)) \geq 0 \forall y \in K \tag{4}
\end{equation*}
$$

We have
Theorem 1. If η is antisymetric and T is strictly η-monotone, then S_{1} is empty or singleton.

Proof. Assume that $x_{1}, x_{2} \in S_{1}$. Then

$$
\begin{equation*}
\left(T x, \eta\left(x_{2}, x_{1}\right)\right) \geq 0 \tag{5}
\end{equation*}
$$

and $\left(T x_{2}, \eta\left(x_{1}, x_{2}\right)\right) \geq 0$. From (1), η is antisymmetric. We have $\left(T x_{1}, \eta\left(x_{1}, x_{2}\right)\right) \leq$ 0 . Hence $\left(T x_{1}-T x_{2}, \eta\left(x_{1}, x_{2}\right)\right) \leq 0$. Because T is strictly η-monotone, this is impossible unless $x_{1}=x_{2}$ and this completes the proof.

Theorem 2. Let T be η-monotone and semicontinuous, $\eta(x, x)=0, \eta$ positive homogeneous. Then $S_{1}=S_{2}$.

Proof. Let $x \in S_{1}$. Since T is η-monotone, $(T y, \eta(y, x)) \geq(T x, \eta(y, x)) \geq 0 \Rightarrow$ $x \in S_{2}$. Let $x \in S_{2}$. Let $y \in K$. Since K is convex, for $0<t<1, y_{t}=(1-\mathrm{t}) \mathrm{x}+\mathrm{ty}$ $=\mathrm{x}-\mathrm{t}(\mathrm{y}-\mathrm{x}) \in K$. Hence $\left(T y_{t}, \eta\left(Y_{t}, x\right)\right) \geq 0$. But $\eta\left(y_{t}, x\right)=-t \eta(y, x)$. Now letting $t \rightarrow 0$ we get $(T x,-t \eta(y, x)) \geq 0$. Thus $x \in S_{1}$ and this completes the proof.

We introduce the concept of the complementarity problem(CP) in real lcHtvs. Let K be a closed convex cone in X. Let K^{*} be the subset of X^{*} defined by $K^{*}=\left\{y \in X^{*}:(y, \eta(y, x)) \geq 0 \forall x \in K\right\}$. Then $x \in K, T x \in K^{*},(T x, \eta(x, x))=0$ will be called the generalised complementarity problem (GCP). Let C denote the set of all solutions of GCP.

Theorem 3. Let K be a closed convex cone, η is antisymmetric, then $S_{1}=C$.
Proof. Let $x \in S_{1}$. Take $y=x$. Then $(T x, \eta(x, x)) \geq 0$. Since η is antisymmetric $(T x, \eta(x, x)) \leq 0 \Rightarrow(T x, \eta(x, x))=0$. Thus $x \in C$ and hence $S_{1} \subset C$. Clearly $C \subset S_{1}$ and this completes the proof.

We shall now prove the existence theorem for variational inequality in lcHtvs . For this purpose we need the following results which are due to Tarafdar[2].

Lemma 1. Let K be a nonempty compact and convex subset of a Hausdorff tvs X and $S: K \rightarrow P(K)$ be a multivalued mapping such that
(i) for each $x \in K, S x$ is a nonempty convex subset of K,
(ii) for each $y \in K, S_{y}^{-1}=\{x \in K: y \in S x\}$ contains an open subset U_{y} of K where U_{y} may be empty.
(iii) $\bigcup\left\{U_{y}: y \in K\right\}=K$.

Then there exists an element $x_{0} \in K$ such that x_{0} belongs to $S x_{0}$.
Theorem 4. Let K be a nonempty compact convex subset of lcHtvs X and let $T: K \rightarrow X^{*}$ be strongly η-monotone. Let η be continuous. Suppose η satisfies $\eta(y, x)=\eta(y, z)+\eta(z, x)$. Then NVI(1) has a solution in K.

Proof. Suppose NVI has no solution in K. Then for each $x \in K$, there exists a $y \in K$ such that $(T x, \eta(y, x))<0$. Define a multivalued map $F: K \rightarrow P(K)$ by $F(x)=\{y \in K:(T x, \eta(y, x))<0\}$. Clearly $F(x)$ is nonempty and convex for each $x \in K$. It follows that $F^{-1}(y)=x \in K:(T x, \eta(y, x))<0$. Since T is strongly η-monotone, for each $y \in K$, the complement of $F^{-1}(y)$ is in K, i.e.

$$
\begin{aligned}
\left(F^{-1}(y)\right)^{c} & =K-F^{-1}(y)=\{x \in K:(T x, \eta(y, x)) \geq 0\} \\
& \subseteq\left\{x \in K:(T y, \eta(y, x)) \geq C\left[(p(\eta)(y, x))^{2}\right]\right\}=H(y)
\end{aligned}
$$

It is easy to show that $H(y)$ is convex. We now show that $H(y)$ is relatively closed in K. For this purpose, let $\left\{x_{\alpha}\right\}$ be a Moore-Smith sequence in $H(y)$. Then $\left(T y, \eta\left(y, x_{\alpha}\right)\right) \geq C\left[p\left(\eta\left(y, x_{\alpha}\right)\right)\right]^{2}$. Let $x_{\alpha} \rightarrow x \in K$. We claim that $x \in H(y)$. Since η is continuous, $\eta(X \times X)$ is dense in X, p is a continuous seminorm. We have

$$
\begin{aligned}
(T y, \eta(y, x)) & =\left(T y, \eta\left(y, x_{\alpha}\right)\right)+\left(T y, \eta\left(x_{\alpha}, x\right)\right) \\
& \geq C\left[p\left(\eta\left(y, x_{\alpha}\right)\right)\right]^{2}+\left(T y, \eta\left(x_{\alpha}, x\right)\right) \\
& \geq C\left[p\left(\eta\left(y, x_{\alpha}\right)\right)\right]^{2}
\end{aligned}
$$

$\Longrightarrow x \in \mathrm{H}(\mathrm{y})$.
Now

$$
\begin{aligned}
K-H(y) & =\left\{x \in K:(T y, \eta(y, x))<C(p(\eta(y, x)))^{2}\right\} \\
& \subseteq\{x \in K:(T x, \eta(y, x))<0\} \\
& =F^{-1}(y) .
\end{aligned}
$$

This implies for each $y \in K$ there is an element $x \in K$ such that $\bigcup(K-H(y))=K$. But by Lemma 1, there exists an element $x \in K$ such that $x \in F(x)$, which means $0>(T x, \eta(x, x))=0$. This contradiction completes the proof.

Let D be a nonempty compact, convex subset of X and $F: D \rightarrow Y=X^{*}$. The following existence theorem on variational inequality was established by Karamardian [1].

Proposition 1. Let the mapping $(u, v) \rightarrow(u, F(v))$ be continuous on $D \times D$. Then there exists a point $\bar{x} \varepsilon D$ such that for all $x \in D,(x-\bar{x}, F(\bar{x})) \geq 0$.

We now obtain the following theorem on the complementarity problem, by using the results of Karamardian stated above.

Theorem 5. Let K be a closed and convex cone in X and let $F: K \rightarrow Y=X^{*}$ be such that
(i) the mapping $(u, v) \rightarrow(u, F(v))$ is continuous on $K \times K$,
(ii) there exists $\bar{x} \in K$ such that $F(x) \in$ int K^{*}.

Then there exists $x \in X$ such that $\bar{x} \in K, F(\bar{x}) \in K^{*}$ and $(\bar{x}, F(\bar{x}))=0$.
Proof. For any $u \in K$ define

$$
\begin{aligned}
D_{u} & =\{x \in D:<x, F x>\leq<u, F x>\} \\
D_{u}{ }^{0} & =\{x \in D:<x, F x>\ll u, F x>\} \\
S_{u} & =\{x \in D:<x, F x>=<u, F x>\} .
\end{aligned}
$$

For each $u \in \mathrm{~K}, D_{u}$ is convex. From the continuity assumption it follows that D_{u} is a closed subset of the compact convex set D for each $u \in K$ and hence is compact. Thus for each $u \in K, D_{U}$ is a nonempty, compact, convex set in X, therefore by Proposition 1 it follows that for each $u \in K$, there is $x_{u} \in D_{u}$ such that

$$
\begin{equation*}
<y-x_{u}, F x_{u}>\geq 0, \quad \text { for all } y \in D_{u} \tag{6}
\end{equation*}
$$

Since $0 \in D_{u},<x_{u}, F x_{u}>\leq 0$.
Case1: Let $x_{u} \in D_{u}{ }^{0}$. Then there is a $\lambda>1$ such that $\lambda x_{u} \in S_{u} \subset D_{u}$. Then we have $<x_{u}, F x_{u}>\leq<\lambda x_{u}, F x_{u}>=\lambda<x_{u}, F x_{u}>$. Since $<x_{u}, F x_{u}>\leq 0$, it is impossible unless $<x_{u}, F x_{u}>=0$. Thus (6) holds.
Case2. Let $x_{u} \in S_{u}$ for all $u \in K$. Let $u \in K$ be such that $\mathrm{F} x_{u} \in \operatorname{int} K^{*}$. Then $<u, F x_{u} \gg 0$. By the hypothesis there is $x \in K$ such that $F x \in \operatorname{int} K^{*}$. Thus for this x we have $<x, F x \gg 0$. Choose u such that $<u, F x \gg<x, F x \gg 0$. Thus $x \in D_{u}{ }^{0}$. Now $x_{u} \in S_{u}$. Hence $<x_{u}, F x_{u} \gg=<u, F x_{u} \gg 0$. This contradicts $<x_{u}, F x_{u}>\leq 0$ and thus case 2 cannot occur and this completes the proof.

Remark 1. Observe that in the above theorem $D u$ is convex and (compact) if D is convex and (compact): Du need not be convex if D is any compact (non -convex)set. For example, take $F: R^{+} \rightarrow R, F(x)=\sin x, D=\left[\frac{\pi}{4}, 2 \pi\right]$. Then

$$
D u=\{x \in D:(x, F x) \leq(u, F x)\}=\{x: x \sin x \leq u \sin x\} .
$$

For $u=\pi / 2, D u=[\pi / 4, \pi / 2] \bigcup[\pi, 2 \pi]$ which is not convex.

References

[1] S. Karamardian, Generalised complementarity problem, J. Optm Theory Appl. 8(1971),161-168.
[2] E. Tarafdar, On nonlinear variational inequalities, Proc. Amer. Math. Soc 67(1977), 95-98.

