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Variational inequality and complementarity
problem in locally convex Hausdorff topological
vector space

SUDARSAN NANDA™

Abstract. The purpose of this paper is to study variational inequal-
ity and complementarity problem in a locally convexr Hausdorff topolog-
ical vector space.
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Let X be a real locally convex Hausdorff topological vector space (Ic Htvs) with
a continuous seminorm p and let X™* be its dual. Let K be a closed convex subset
of X and T : X — X* a mapping. Let n: K x K — X.

Definition 1. T is said to be

(i) n-monotone if (Tx — Ty,n(z,y)) >0, Vo,y € K,
(i) strictly n-monotone if (Tx — Ty, n(xz,y)) >0, Va,y € K,z # vy,

(#1) strongly n-monotone if there exists a constant C > 0 such that
(T.’IJ - Ty7 77(957 y)) > C[p(n(x7 y))]za

(iv) n-coercive if (Tx, Ty)/p(n(z,z)) — oo as p(n(z,z)) — oo.

We consider the nonlinear variational inequality (NVI) which is defined as fol-

lows:
ze K: (Tx,n(y,z)) > 0Vy € K. (1)

Another NVI can be stated as follows:
v € K: (Ty,n(y,r)) > 0Vy € K. (2)

Let S; and S denote the solutions of (1) and (2) respectively. These can be
generalized as follows:
ze€K:(Tx— Sz,n(y,x)) >0y € K (3)
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re K :(Ty— Sy,n(y,x)) >0y € K. (4)
We have
Theorem 1. Ifn is antisymetric and T is strictly n-monotone, then Sy is empty
or singleton.
Proof. Assume that z1,z2 € S;. Then

(Txvn(‘r?vxl)) >0, (5)

and (Tx2,n(x1,2z2)) > 0. From (1), n is antisymmetric. We have (Tx1,n(z1,z2)) <
0. Hence (Txy — Txo,n(x1,22)) < 0. Because T is strictly n-monotone, this is
impossible unless x1; = x2 and this completes the proof. O
Theorem 2. Let T be n-monotone and semicontinuous, n(x,z) = 0,n positive
homogeneous. Then S1 = Ss.
Proof. Let « € Sy. Since T is n-monotone, (Ty,n(y,x)) > (Tx,n(y,x)) >0 =
x € Sy. Let € So.Let y € K. Since K is convex, for 0 <t < 1, y = (1-t)x + ty
=x-t(y - x)€ K. Hence (Ty:,n(Yz,z)) > 0. But n(ys, x) = —tn(y, ). Now letting
t — 0 we get (Tz, —tn(y,z)) > 0. Thus = € Sy and this completes the proof. O
We introduce the concept of the complementarity problem(CP) in real lcHtvs.
Let K be a closed convex cone in X. Let K™ be the subset of X* defined by
K*={ye X*:(y,n(y,x)) >0Vx € K}. Then z € K,Tx € K*,(Tx,n(z,z)) =0
will be called the generalised complementarity problem (GCP). Let C denote the set
of all solutions of GCP.
Theorem 3. Let K be a closed convex cone, i is antisymmetric, then S; = C.
Proof. Let x € S;. Take y = z. Then (Tx,n(x,x)) > 0. Since 7 is antisymmet-
ric (Tz,n(x,z)) < 0= (Tz,n(x,z)) =0. Thus x € C and hence S; C C. Clearly
C C S1 and this completes the proof. O
We shall now prove the existence theorem for variational inequality in lcHtvs.
For this purpose we need the following results which are due to Tarafdar[2].
Lemma 1. Let K be a nonempty compact and convex subset of a Hausdorff tvs
X and S: K—P(K) be a multivalued mapping such that

(i) for each x € K, Sz is a nonemptly convex subset of K,

(i) for each y € K, S;' = {x € K :y € Sz} contains an open subset U, of K
where Uy may be empty.

(i1i) J{Uy:ye K} = K.
Then there exists an element xg € K such that xy belongs to Sxg.

Theorem 4. Let K be a nonempty compact conver subset of lcHtvs X and
let T : K — X* be strongly n-monotone. Let 1 be continuous. Suppose 1 satisfies
n(y,x) =n(y,z) + n(z,z). Then NVI(1) has a solution in K.

Proof. Suppose NVI has no solution in K. Then for each x €K, there exists a
y € K such that (Tz,n(y,x)) < 0. Define a multivalued map F : K — P(K) by
F(z)={ye€ K : (Tz,n(y,z)) < 0}. Clearly F(z) is nonempty and convex for each
x € K. It follows that F~1(y) = 2 € K : (Tx,n(y,z)) < 0. Since T is strongly
n-monotone, for each y € K, the complement of F~1(y) is in K, i.e.

(F'y) =K-F'(y)={x € K:(Tz,n(y,x)) > 0}
C{z e K: (Ty,ny x) > Cllpn)(y,x)*]} = H(y).
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It is easy to show that H(y) is convex. We now show that H(y) is relatively
closed in K. For this purpose, let {z,} be a Moore-Smith sequence in H(y). Then
(Ty,n(y,74)) > Clp(n(y, x4))]?. Let o — x € K. We claim that = € H(y). Since
7 is continuous, (X x X) is dense in X, p is a continuous seminorm. We have

(Ty,n(y,x)) = (Ty,n(y, xa)) + (Ty,N(xa,))
> Clp(n(y, xa))* + (Ty,n(xa, )
> Clp(n(y, za))]

=z € H(y).
Now

K—H(y) ={z € K : (Ty,n(y,z)) < C(p(n(y,x)))*}
Cl{reK: (Tx,n(y,x)) <0}
= Fl(y).

This implies for each y € K there is an element = € K such that [J(K-H(y))=K.
But by Lemma 1, there exists an element « € K such that z € F(x), which means
0> (Tx,n(x,x)) = 0. This contradiction completes the proof. O

Let D be a nonempty compact, convex subset of X and F': D — Y = X*. The
following existence theorem on variational inequality was established by Karamar-
dian [1].

Proposition 1. Let the mapping (u,v) — (u, F'(v)) be continuous on D x D.
Then there exists a point TeD such that for all x € D, (x — z, F(Z)) > 0.

We now obtain the following theorem on the complementarity problem, by using
the results of Karamardian stated above.

Theorem 5. Let K be a closed and convex cone in X andlet F: K - Y = X*
be such that

(i) the mapping (u,v) — (u, F(v)) is continuous on K x K,
(i) there exists T € K such that F(x) € intK*.

Then there exists ¢ € X such that T € K, F(Z) € K* and (z,F(z)) = 0.
Proof. For any u € K define

D,={x€D: <z Fx><<u,Fx>}

D,)={xeD:<x Fr><<u,Fr>}

Su={reD: <z, Fx>=<u,Fz>}
For each v € K, D,, is convex. From the continuity assumption it follows that D,, is
a closed subset of the compact convex set D for each u € K and hence is compact.

Thus for each u € K, Dy is a nonempty, compact, convex set in X, therefore by
Proposition 1 it follows that for each u € K, there is x,, € D, such that

<Y — Xy, Fry >> 0, for all y € D,. (6)
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Since 0 € D,,, < xy, Fx, ><0.
Casel: Let z, € Duo. Then there is a A > 1 such that Az, € S, C D,. Then we
have < x,, Fx, ><< Axy,Fz, >= X < 2, Fx, >. Since < z,, Fx, ><0, it is
impossible unless < z,,, F'z,, >=0. Thus (6) holds.
Case2. Let z, € S, for all u € K. Let u € K be such that Fz, € intK*. Then
< u, Fx, >> 0. By the hypothesis there is x € K such that Fx € intK*. Thus for
this z we have < x, Fx >> 0. Choose u such that < u, Fx >>< z, Fx >> 0. Thus
T € Duo. Now z, € S,. Hence < z,, Fx, >>=< u, Fx,, >> 0. This contradicts
< Xy, Fz,, >< 0 and thus case 2 cannot occur and this completes the proof. O
Remark 1. Observe that in the above theorem Du is convex and (compact)
if D is conver and (compact): Du need not be convex if D is any compact (non
-convex)set. For example, take F : Rt — R, F(x) =sinz, D = [%,2n]. Then

Du={zeD:(x,Fx) < (u,Fz)} ={z:zsinz <usinzx}.

For w=mw/2, Du = [r/4,7/2)J[r, 27| which is not convex.
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