GLASNIK MATEMATIČKI
Vol. 40(60)(2005), 47 - 49

A NOTE ON GENERALIZED DERIVATIONS OF PRIME RINGS

Ivica Gusić
University of Zagreb, Croatia

Abstract

We show that a generalized derivation on a prime ring, that acts as a homomorphism or an anti-homomorphism on a non-zero ideal in the ring, is the zero map or the identity map.

Let R be an associative ring, let d be a derivation on R (i.e. an additive function on R satisfying $d(x y)=d(x) y+x d(y)$ for all $x, y \in R)$ and let $F: R \rightarrow R$ be a generalized derivation associated to d (i.e. an additive function satisfying $F(x y)=F(x) y+x d(y)$ for all $x, y \in R)$.

We say that R is prime if the relation $a R b=0$ implies that $a=0$ or $b=0$, for all $a, b \in R$. Note that if R is a prime ring and I is a non-zero ideal of R, then the relation $a I b=0$ implies that $a=0$ or $b=0$, for all $a, b \in R$

In [R, Theorem 1.2] the following statement is stated.
Assume that R is 2-torsion free and prime.
(i) If $d \neq 0$ and F acts as a homomorphism on a non-zero ideal I in R then R is commutative.
(ii) If $d \neq 0$ and F acts as an anti-homomorphism on a non-zero ideal I in R then R is commutative.

It seems that the assumptions in this statement are contradictory. Also, despite an ingenious argument the conclusion is incomplete. Using a similar argument we prove the following:

Theorem 1. Let R be an associative prime ring, let d be any function on R (not necessary a derivation nor an additive function), let F be any function on R (not necessarily additive) satisfying $F(x y)=F(x) y+x d(y)$ for all $x, y \in R$, and let I be a non-zero ideal in R.

[^0](a) Assume that $F(x y)=F(x) F(y)$ for all $x, y \in I$. Then $d=0$, and $F=0$ or $F(x)=x$ for all $x \in R$.
(b) Assume that $F(x y)=F(y) F(x)$ for all $x, y \in I$. Then $d=0$, and $F=$ 0 or $F(x)=x$ for all $x \in R$ (in this case R should be commutative).

Proof. (a) Assume that $F \mid I$ is a homomorphism of rings. Then calculating $F(x y z)$ in two different ways (as in $[\mathrm{R}]$) we get $(F(x)-x) y d(z)=0$ for all $x, y, z \in I$. Since R is prime, we conclude that if $d \mid I \neq 0$ then $F(x)=x$, for all $x \in I$. From this we get $x d(y)=0$ for all $x, y \in I$. Since R is prime it implies that $d(y)=0$ for all $y \in I$, a contradiction. Hence, $d \mid I=0$.

Now, from $F(x) y=F(x) F(y)$ for all $x, y \in I$, replacing x by $z t$ we get $F(z) t(y-F(y))=0$ for all $z, t, y \in I$. This implies $F(z)=0$ for all $z \in I$ or $F(y)=y$ for all $y \in I$. If $F(z)=0$ for all $z \in I$, then $0=F(r z)=$ $F(r) z+r d(z)=F(r) z$ for all $r \in R$ and $z \in I$, hence F is zero on R. If $F(y)=y$ for all $y \in I$ then $r y=F(r y)=F(r) y+r d(y)=F(r) y$ for all $r \in R$ and $y \in I$. Therefore $F(r)=r$ for all $r \in R$.

To prove that d is zero on R we first assume that $F=0$ (although it is sufficient to assume $F \mid I=0)$. We get $0=F(z r)=F(z) r+z d(r)=z d(r)$ for all $z \in I$ and $r \in R$. This implies $d(r)=0$ for all $r \in R$. Assume, now, that F is the identity (although it is sufficient to assume that $F \mid I$ is the identity). We get $z r=F(z r)=F(z) r+z d(r)=z r+z d(r)$ for all $z \in I$ and $r \in R$. This implies $d(r)=0$ for all $r \in R$.
(b) Assume that $F \mid I$ is an anti-homomorphism. As in $[\mathrm{R}]$ we get $[F(z), y] x d(z)=0$ for all $x, y, z \in I$. Assume that $d(z) \neq 0$ for some $z \in I$. Then $F(z) y=y F(z)$ for all $y \in I$. This implies $F(z) r=r F(z)$ for all $r \in R$ (namely if $a x=x a$ for some $a \in R$ and all $x \in I$, then $(a r-r a) x=a(r x)-r(a x)=r x a-r x a=0$ for any $r \in R$ and all $x \in I)$. Now we have

$$
\begin{aligned}
F(x y) z+x y d(z) & =F(x y z)=F(z) F(y) F(x)=F(y) F(z) F(x) \\
& =F(y) F(x z)=F(y)(F(x) z+x d(z)) \\
& =F(x y) z+F(y) x d(z)
\end{aligned}
$$

for all $x, y \in I$, and $z \in I$ such that $d(z) \neq 0$, hence

$$
\begin{equation*}
(x y-F(y) x) d(z)=0 \tag{1}
\end{equation*}
$$

for all $x, y \in I$ and $z \in I$ such that $d(z) \neq 0$. Replacing x by $t x, t \in R$ in (1) we get $t x y d(z)=F(y) \operatorname{txd}(z)$, while multiplying (1) by t we get $t x y d(z)=$ $t F(y) x d(z)$, hence $(F(y) t-t F(y)) x d(z)=0$, for all $x, y \in I, z \in I$ such that $d(z) \neq 0$, and $t \in R$. Since R is prime we get $F(y) t=t F(y)$ for all $y \in I$ and $t \in R$. Therefore $F \mid I$ is a homomorphism. Using (a) we get $d=0$. This is a contradiction, so that $d \mid I=0$.

Now we have $F(x) z y=F(x z) y=F(z) F(x) y=F(z) F(x y)=F(x y z)=$ $F(x) y z$, for all $x, y, z \in I$, i.e. $F(x) t(z y-y z)=0$ for all $x, z, t, y \in I$.

Therefore $F(x)=0$ for all $x \in R$ or $z y=y z$ for all $y, z \in I$. The second relation implies that R is commutative and that $F \mid I$ is a homomorphism. Using (a), we get $F(x)=x$ for all $x \in R$ or $F=0$ on R. Finally, we get, as in (a) that $d=0$ on R.

Example 2. Assume that $R=\mathbf{Z}[x] \oplus \mathbf{Z}[x]$. Then R is not prime. Notice that $I:=(0) \oplus \mathbf{Z}[x]$ and $J:=\mathbf{Z}[x] \oplus(0)$ are ideals in R. Let us define a derivation d on R by $d \mid I:=0$ and $(d \mid J)((f(X), 0)):=\left(f^{\prime}(X), 0\right)$. Then F defined by $F|J:=d| J$ and $(F \mid I)(0, g(X)):=(0, g(X))$ is a generalized derivation on R associated to d, that acts as a homomorphism on I.

References

[R] N. Rehman, On generalized derivations as homomorphisms and anti-homomorphisms, Glasnik Mat. 39(59) (2004), 27-30.
I. Gusić

Faculty of Chemical Engineering and Technology
University of Zagreb
Marulićev trg 19, 10000 Zagreb
Croatia
E-mail: igusic@fkit.hr
Received: 2.5.2004.
Revised: 13.7.2004.

[^0]: 2000 Mathematics Subject Classification. 16W25.
 Key words and phrases. Prime rings, homomorphisms, anti-homomorphisms.

