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A NOTE ON CLASS NUMBER ONE CRITERIA OF ŠIROLA

FOR REAL QUADRATIC FIELDS

P.G. Walsh

University of Ottawa, Canada

Abstract. In [6], Širola gives two necessary and sufficient conditions
for the class number of a real quadratic field to be equal to one. The
purpose of this note is to remark that the equivalence of these conditions
can be proved by using an elementary result of Nagell, which itself is a
simple consequence of the fact that the Pell equation X2−dY 2 = 1 always
has solutions in positive integers when d > 1 is squarefree.

1. Introduction

For a positive squarefree integer d > 1, let Q(
√
d) denote the real qua-

dratic field associated to d, and let h(d) denote the class number of the ring of

integers of Q(
√
d). In [6], Širola provides necessary and sufficient conditions

for h(d) = 1 in terms of the existence of solutions of certain Pell equations of
the type x2−dy2 = ±4δp and x2−dy2 = 4δp2, where p ranges over the primes
in Π, where Π is defined as the set of primes in Z for which the Legendre sym-
bol (d/p) = 1. The proof of this result is somewhat involved, appealing to
class group and ideal theoretic results from the theory of quadratic fields.

Our objective here is twofold. First, we point out that the equivalence
of h(d) to the solvability of Pell equations of the type x2 − dy2 = ±4δp is
well known, and that in fact, one can simply take Π to be the finite set of
primes p which satisfy (d/p) = 1 and p <

√
d. The second, and main point

of this note, is to show that the equivalence between the condition h(d) = 1
and the solvability to Pell equations of the type x2− dy2 = 4δp2 can easily be
obtained using a simple result of Nagell concerning the form of

√
εd, where

εd = T + U
√
d is the minimal unit greater than 1, of norm 1, in the order
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Z(
√

d), i.e. (x, y) = (T, U) is the minimal solution in positive integers to the
Pell equation x2 − dy2 = 1.

In what follows d > 1 will represent a squarefree positive integer, and
Bd =

√
d/2 if d ≡ 2, 3 (mod 4), while Bd =

√
d if d ≡ 1 (mod 4). We

let Π1(d) denote the set of primes for which 2 < p < Bd and (d/p) = 1.
Also, we define Π∗(d) = Π1(d) if either d is a prime with d 6= 1 (mod 8),
d = 2q with q prime and q ≡ 3 (mod 4), or d = qr with q, r primes satisfying
q ≡ 3 (mod 8), r ≡ 7 (mod 8), and we define Π∗(d) = Π1(d) ∪ {2} if either
d is a prime with d ≡ 1 (mod 8), or d = qr with q, r primes satisfying
q ≡ r ≡ 3 or 7 (mod 8).

In the statement of our theorem, we make reference to the following two
Pell-type equations. Here, δ represents an integer in {0, 1}.

(1) X2 − dY 2 = ±4δp,

(2) X2 − dY 2 = 4δp2.

For δ ∈ {0, 1}, a solution (X,Y ) to equation (2) is referred to as 2δ-proper
provided that gcd(X,Y ) divides 2δ.

Our main goal then is to prove the following refinement of the main the-
orem of [6], noting that our primary purpose is not just to refine the result,
but to exhibit a proof which is considerably more straightforward.

Theorem 1.1. The following conditions are equivalent

1. h(d) = 1.
2. For each prime p ∈ Π∗(d), equation (1) has a positive integer solution

(X,Y ).
3. For each prime p ∈ Π∗(d), equation (2) has a 2-proper solution (X,Y ).

2. Some Preliminary Results

It is well known that for a given squarefree positive integer d > 1, the
Pell equation x2− dy2 = 1 is solvable in positive integers x, y, and that every
such solution can be generated from a minimal solution (T, U) by simply

identifying this minimal solution with the unit εd = T + U
√
d, and taking

powers of this unit. In so doing, one sees that every positive integer solution
(x, y) of x2 − dy2 = 1 is of the form (x, y) = (Tk, Uk), where εkd = Tk +Uk

√
d

for some positive integer k.
We state the following consequence of this fact, possibly due to Nagell [4],

which seems not to be as well known as it should. The formulation we provide
appears in [7], and differs somewhat from that of Nagell, but is equivalent to
Nagell’s theorem.
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Lemma 2.1. There exists a unique (possibly trivial) factorization d = rs
with the property that

√
εd =

u
√
r + v

√
s√

c
,

where c ∈ {1, 2}, (r, s) 6= (1, d) if c = 1, and u and v are coprime positive
integers for which

(3) u2r − v2s = c.

Consequently, among all quadratic equations of the form (3) (with rs = d and
c ∈ {1, 2}), only the equations X2− dY 2 = 1 and rX2− sY 2 = c are solvable
in positive integers.

Proof. As defined above, let (T, U) denote the minimal solution in
positive integers to the Pell equation X2 − dY 2 = 1, so that T 2 − 1 =
(T+1)(T−1) = dU2. Assume first that T is even, then T+1 = ru2, T−1 = sv2

for integers r, s, u, v satisfying d = rs, u2r − v2s = c, with c = 2. If T is odd,
then (T + 1)/2 = ru2, (T − 1)/2 = sv2 for integers r, s, u, v satisfying d = rs,

u2r−v2s = c, with c = 1. In either case it is trivial to see that
√
εd = u

√
r+v

√
s√

c
,

and the fact that (r, s) 6= (1, d) if c = 1 follows from the minimality of the
solution (T, U) to X2−dY 2 = 1. The last part of the lemma is a consequence

of the relation
√
εd = u

√
r+v

√
s√

c
.

The last part of Lemma 2.1 was proved by K. Petr [5]. We use Lemma 2.1
to deduce the following three results.

Lemma 2.2. If d ≡ 3 (mod 4) is prime, then the equation

x2 − dy2 = (−1)(d+1)/4 · 2
is solvable in odd positive integers x, y.

Proof. Since d ≡ 3 (mod 4), the equation x2 − dy2 = −1 cannot be
solvable, which implies that the value of c from Lemma 2.1 is equal to 2.
Lemma 2.1 shows that the equation x2 − dy2 = ±2 is solvable, and since x
and y are clearly odd, the sign of −1 is determined by the congruence class
of d modulo 8.

Lemma 2.3. If q ≡ 3 (mod 4) is prime, then the equation

2x2 − qy2 = (−1)(q+1)/4

is solvable in positive integers x, y.

Proof. Applying Lemma 2.1 to d = 2q, we see first of all that c = 1, and
so there is a factorization d = rs, (r, s) 6= (1, d), for which rx2 − sy2 = 1 is
solvable in positive integers. Since q ≡ 3 ( mod 4), we have that (r, s) 6= (d, 1),
and so either (r, s) = (2, q) or (r, s) = (q, 2). If q ≡ 3 (mod 8), then it is easy
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to see that (r, s) = (q, 2) by considering the equation rx2 − sy2 = 1 modulo
8. Similarly, if q ≡ 7 (mod 8), then (r, s) = (2, q), and the result follows.

We remark that this lemma appears as Corollary 1.7 in [6]. We have
therefore provided a proof of this result which does not appeal to the structure
of class groups and related ideal-theoretic considerations.

Lemma 2.4. If q and r are primes satisfying q ≡ r ≡ 3 (mod 4), then
the equation

qX2 − rY 2 = ±1

is solvable in positive integers X,Y .

Proof. Since q ≡ r ≡ 3 (mod 4), it is evident that c = 1, and fur-
thermore, since these primes are 3 modulo 4, the equation X2 − qrY 2 = −1
is not solvable. Therefore, the only remaining possibilities are those in the
statement of the lemma.

The reader should be aware that the results above have been known for
quite some time, even to Legendre and Dirichlet. For more on the history of
the Pell equation, the reader is referred to the wonderful survey of Lemmer-
meyer [1], and also to a recent paper of Mollin [3].

3. Proof of Theorem reft1

The equivalence of conditions 1. and 2. is well known, and can be found
for instance as Theorem 5.2.1 on p.158 of [2]. The essential ingredient in
proving this equivalence is the fact that the class group of the ring of inte-
gers in Q(

√
d) is generated by all noninert primitive ideals whose norm does

not exceed the so-called Minkowski bound, which is no larger than (4/π)
√
d.

Clearly condition 2. implies condition 3., as a solution (x, y) to equation (1)

corresponds to an element τ = x+ y
√
d, and so squaring τ yields an element

whose coefficients give rise to a solution of equation (2). Thus, we need only
prove that condition 3. implies condition 2. For each odd prime p under
consideration, we will deal only with the case that δ = 0. That is to say, for
a given odd prime p ∈ Π∗(d), we will assume that the equation

(4) X2 − dY 2 = p2

is solvable in coprime integers, and show that this assumption either leads to
a contradiction, or to a solution of the equation X2 − dY 2 = ±p. The case
δ = 1 can be dealt with using precisely the same arguments.

In what follows, (x, y) will denote a positive integer solution to (4) with
gcd(x, y) = 1. Furthermore, if y is odd, then the factorization (x − p)(x +
p) = dy2 implies the existence of integers m,n, u, v, with u, v odd, such that
x− p = mu2, x+ p = nv2, d = mn, y = uv, and so

(5) nv2 −mu2 = 2p.
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In the case that y is even, then there exist integers m,n, u, v such that x−p =
2mu2, x+ p = 2nv2, d = mn, y = 2uv, and hence in this case

(6) nv2 −mu2 = p.

Case 1a: d 6≡ 1 (mod 8) prime, and y odd.
In this case, the integers u, v, n,m in equation (5) are all odd. Note

that since d is prime, either (m,n) = (1, d) or (d, 1). This implies that
n ≡ m ± 2 (mod 8), from which we deduce that d = nm ≡ 3 or 7 (mod 8).
By Lemma 2.2, the equation X2 − dY 2 = ±2 is solvable, and so we let
(x1, y1) denote a solution of this equation. If we define x2 + y2

√
d = (x1 +

y1
√
d)(u
√
m+ v

√
n), then it follows that x2 and y2 are even, and (x2/2)2 −

d(y2/2)2 = ±p.

Case 1b: d 6≡ 1 (mod 8) prime, and y even.
In this case, since d is prime, (m,n) = (1, d) or (d, 1), and so equation (6)

gives the desired result.

Case 2a: d ≡ 1 (mod 8) prime, and y odd.
Assume first that p is odd. As argued in case 1a, the assumption that y

is odd leads to the conclusion that d = nm ≡ 3 (mod 8).
Now assume that p = 2. If (x, y) is a 2-proper solution to X2 − dY 2 =

4p2 = 16 with y odd, then there are odd integers u, v, with y = uv, such that
x± 4 = du2, x∓ 4 = v2, and so v2 − du2 = ±4p as desired.

If X2−dY 2 = p2 = 4 has a solution in coprime integers (x, y), then again
we contradict the fact that d ≡ 1 (mod 8).

Case 2b: d ≡ 1 (mod 8) prime, and y even.
Assume first that p is odd. As in case 1b, since d is prime, equation (6)

gives the desired result.
Now assume that p = 2. If (x, y) is a 2-proper solution to X2 − dY 2 =

4p2 = 16 with y even, then x/2 and y/2 are odd integers satisfying (x/2)2 −
d(y/2)2 = 4, showing that d 6= 1 (mod 8), and so X2 − dY 2 = 4p2 = 16
cannot be solvable with y even.

Case 3a: d = 2q, q ≡ 3 (mod 4) prime, and y odd.
In this case, since one of m or n is even, equation (5) shows that not both

u and v can be odd, hence y cannot be odd.

Case 3b: d = 2q, q ≡ 3 (mod 3) prime, and y even.
In this case, equation (6) implies that one of the equations X2 − 2qY 2 =

±p, 2X2 − qY 2 = ±p is solvable in positive integers. If the first of these two
equations is solvable, we have the desired result. Therefore, assume rather
that 2X2 − qY 2 = ±p is solvable, and let (u, v) be a solution in positive
integers. By Lemma 2.3, the equation 2X2− qY 2 = ±1 is solvable in positive
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integers, and so if we let (x1, y1) denote a solution of this equation, and put

(x2+y2
√

2q) = (x1

√
2+y1

√
q)(u
√

2+v
√
q), then x2

2−(2q)y2
2 = ±p, as desired.

Case 4a: d = qr, q ≡ 3 (mod 8), r ≡ 7 (mod 8) primes, and y odd.
In this case, d ≡ 1 ( mod 8), and hence y cannot be odd, as argued earlier.

Case 4b: d = qr, q ≡ 3 (mod 8), r ≡ 7 (mod 8) primes, and y even.
Assume first that p is odd. Since y is even, the factorization (x− p)(x +

p) = dy2 implies that x− p = 2mu2 and x+ p = 2nv2, with d = mn, y = 2uv,
and so nv2 − mu2 = p. If (m,n) = (1, d) or (d, 1), the result is proved.
Therefore assume that (m,n) = (q, r), so that qv2− ru2 = p. By Lemma 2.4,

we let (x1, y1) denote a solution to qX2 − rY 2 = 1, and put x2 + y2
√
d =

(v
√
q + u

√
r)(x1

√
q + y1

√
r). It is clear that X2

2 − dy2
2 = p as desired.

Case 5a: d = qr, q ≡ r ≡ 3 or 7 (mod 8) primes, and y odd.
Assume first that p is odd. In this case, d ≡ 1 (mod 8), and hence y

cannot be odd, as argued earlier.
Now assume that p = 2. Consider first the case δ = 1. If (x, y) are

odd integers satisfying x2 − dy2 = 4p2 = 16, then there are odd integers
m,n, u, v satisfying d = mn, y = uv for which x− 4 = mu2, x+ 4 = nv2, and
so nv2 − mu2 = 8. If (n,m) = (1, d) or (d, 1), we have the desired result.
If (n,m) = (q, r) say, then we appeal to Lemma 2.4 by letting (x1, y1) be a

positive integer solution to qX2−rY 2 = ±1, and putting x2+y2
√
d = (x1

√
q+

y1
√
r)(v
√
q+u

√
r), as it is easily verified that by doing so, x2

2− dy2
2 = ±8, as

desired.
For the case δ = 0, suppose that there are odd positive integers (x, y)

satisfying x2 − dy2 = p2 = 4, then we contradict the fact that d = qr ≡
1 (mod 8).

Case 5b: d = qr, q ≡ r ≡ 3 or 7 (mod 8) primes, and y even.
In the case that p is odd the argument is identical to that of case 4b.

Now assume that p = 2. For the case δ = 1, suppose that (x, y) is a 2-proper
solution of x2 − dy2 = 4p2 = 16 with y even. It follows that (x/2, y/2) are
odd integers satisfying (x/2)2−d(y/2)2 = 4, again contradicting the fact that
d = qr ≡ 1 (mod 8). For the case δ = 0, if (x, y) is a solution in coprime
integers to x2 − dy2 = p2 = 4, then once again we contradict the fact that
d = qr ≡ 1 (mod 8).
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[6] B. Širola, Class number one quadratic fields and solvability of some Pellian equations,
Acta. Math. Hungarica 104 (2004), 127-142.

[7] P.G. Walsh, The Pell Equation and Powerful Numbers, Master’s Thesis, University of
Calgary, 1988.

P.G. Walsh
Department of Mathematics
University of Ottawa
585 King Edward St.
Ottawa, Ontario
Canada K1N 6N5
E-mail : gwalsh@mathstat.uottawa.ca

Received : 8.10.2004.

Revised : 12.11.2004.


