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Vol. 40(60)(2005), 261 – 301

S-DIAGONALIZABLE OPERATORS IN QUANTUM
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Abstract. In this paper we study a certain class of endomorphisms
on the space of tempered distributions. More precisely, the core of the
paper deals with endomorphisms, defined on the whole space of tempered
distributions, for which there exists an S-basis of the space (see section
5) formed by their eigenvectors. We call these operators S-diagonalizable
operators. One of the goals of the paper is the realization that this class of
endomorphisms represents in the infinite-dimensional case what in finite-
dimension is represented by the diagonalizable matrices.

We concentrate our examination on two aspects: the study of the
spectrum of these operators and the foundation of a functional calculus
for them. Concerning the first aspect, we do not assume nothing about
the spectrum of these operators. The circumstance that the eigenvalue-
spectrum of these operators will be continuous (more precisely it will be a
connected subset of the complex plane, as it is proved in the present note)
is a consequence of our definition. Moreover, the spectral measures will
be not used in the construction of the functional calculus. In such a way,
the definition of the function of an operator, presented in the paper, differs
deeply from the usual one, in which the spectral measures of the operators
play a fundamental role (as in the spectral decomposition of an operator).
Note that, even in the case in which the eigenvalues-spectrum is a subset
of the real line, we show that it is not necessarily coinciding with the whole
real line.

1. Introduction

The first part of the paper is devoted to the operators acting on a con-
tinuous superposition of vectors as the linear operators act on a finite linear
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combinations of vectors. The continuous superpositions was defined by the au-
thor to give a precise mathematical sense to the principle of superposition of
quantum mechanics, even in the case in which a state-vector must be expanded
as a superposition of a continuous family of state-vectors. Several observables
of the Dirac formulation of quantum mechanics enjoy the property of linearity
with respect to a continuous superposition, but only in a formal sense, be-
cause neither the continuous superpositions nor the continuous-linearity was
defined rigorously by Dirac. This lack was sensed by several mathematicians,
that decided to eliminate it with the help of Lebesgue-Stiljes integral or of the
Bochner integral. Unfortunately, the obtained results do not replicate com-
pletely those of Dirac. We follow another way, not using integrals, not using
measure but using the operation of superposition. Giving a rigorous mathe-
matical model of the formal procedures of Dirac, we show several applications
to the foundations of Quantum Mechanics.

2. Motivations and connections with the Rigged Hilbert spaces

The Rigged Hilbert space formulation of quantum mechanics, the formu-
lation developed by Bohm and Gadella in [3], presents rigorous mathematics
for Dirac formalism. But the theory presented did not justify all the fea-
tures of Dirac’s formulation of Quantum Mechanics. To understand where
the Rigged Hilbert space formulation fails, we relate a brief history.

The Hilbert space formulation of Von Neumann does not cover the fol-
lowing aspects of Dirac calculus:

1) There are states of a physical system that cannot be normalized in the
Hilbert sense;

2) here are states not normalizable in the Hilbert sense that can be nor-
malized in the sense of Dirac;

3) There are some continuous families of vector states for which is rea-
sonable to write: ∫

R

axvxdx;

4) The wave-functions representing the vector-states are always smooth,
i.e., of class C∞;

5) It is possible to calculate a kind of scalar product among the non-
normalizable states;

6) It is possible to decompose a vector in the following way:

u =

∫

R

〈u | vx〉 vxdx;

7) In the space of vector-states of a quantum system, there are continuous
families of vectors that are “bases” of the space, not in the Hamel sense but
in a new sense of Dirac. In the Dirac sense, a continuous family v is a basis if:
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every vector of the space is decomposable in the form

∫

R

axvxdx; moreover,

the relation

∫

R

axvxdx =
−→
0 implies ax = 0, for every x;

1’) The observables are defined in the whole space of vector-states;
2’) The operation among the observables are always possible, in particu-

lar, the commutation relations are identities and not inclusions;
3’) The observables could be treated as continuous operators;
4’) Some observables admit a continuous system of eigenkets which is a

basis in the sense of Dirac;
5’) It is possible to decompose an operator as follows

A(u) =

∫

R

a(x) 〈u | vx〉 vxdx.

6’) The observables are linear with respect to the superpositions of a
continuous family of states:

A(u) = A(

∫

R

〈u | vx〉 vxdx) =

∫

R

〈u | vx〉A(vx)dx.

1”) Finally, it is possible, superposing certain continuous families of so-
lutions of a linear differential equation, to obtain new states, which are yet
solutions of the equation.

The Rigged Hilbert space formulation of quantum mechanics gives a jus-
tification to 1), 4), and, only in some particular cases, to 6), 1’), 2’), 3’), 4’)
and 5’).

The S-linear algebra in the space of tempered distributions of David Carf̀ı
gives a unitary justification to all the aspects, as we shall show in the pa-
per. Actually, the space of tempered distributions is the third component of
the Gelfand’ triple (Sn, L2

n,S ′n), and thus, the S-linear algebra is based on a
Rigged Hilbert Space, but it is characterized by two fundamental extra-tools :
the operations of superposition (see section 1) and the L2-product introduced
in [5]. In this way, we shall use the structure

(S ′n, (
∫

Rm

)m∈N, (· | ·)L2),

that is more rich than (Sn, L2
n,S ′n), and through the new tools we found

rigorously the Dirac’ calculus.

3. Preliminaries and notations on tempered distributions

In this paper we shall use the following notations:

1) n,m, k are natural numbers, N (≤ k) = {i}ki=1;
2) µn is the Lebesgue measure on Rn; I(R,C) is the immersion of R in C

and, if X is a non-empty set, IX is the identity map on X ;
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3) if X and Y are two topological vector spaces on K, Hom(X,Y ) is the
set of all the linear operators from X to Y , L(X,Y ) is the set of all
the linear and continuous operators from X to Y , X ′ = Hom (X,K) is
the algebraic dual of X and X∗ = L (X,K) is the topological dual of
X ;

4) Sn = Sn(K) := S(Rn,K) is the (n,K)-Schwartz space, that is to say
the set of all the smooth functions (i.e., of class C∞) of Rn in K rapidly
decreasing at infinity (the functions and all its derivatives tend to 0 at
∓∞ faster than the reciprocal of any polynomial):

S(Rn,K) =

{
f ∈ C∞(Rn,K) : ∀α, β ∈ Nn0 lim

|x|→∞

∣∣xβDαf(x)
∣∣ = 0

}
.

5) S(n) is the standard Schwartz topology on Sn. It is a topology induced
by a metric. In fact, Sn is closed under differentiation and multiplica-
tion by polynomials, and defining, for each non-negative integer k, the
seminorm pk on Sn by

pk (f) = sup
x∈Rn

max
α,β∈Nn

0

0≤|α|,|β|≤k

∣∣xβDαf(x)
∣∣ ,

the topology S(n) is induced by the family (pk)k∈N0 . Each pk is a norm

on Sn, and pk (f) ≤ pk+1 (f) for all f ∈ Sn. The pair
(
Sn, (pk)k∈N0

)

is a complete countably-normed space and so a Frèchet space (see also
[8] and [1]);

6) S ′n := S ′(Rn,K) is the space of tempered distributions from Rn to K,
that is, the topological dual of the topological vector space (Sn,S(n))
i.e., S ′n=(Sn,S(n))

∗;
7) if x ∈ Rn, δx is the distribution of Dirac on Sn centered at x, i.e., the

functional: δx : Sn → K : φ 7→ φ (x) ;
8) if f ∈ OM (Rn,K) = {g ∈ C∞(Rn,K) : ∀φ ∈ Sn(K), φg ∈ Sn(K)}, then

the functional [f ] = [f ]n : Sn → K : φ 7→
∫

Rn fφdµn is a tempered
distribution, called the regular distribution generated by f (see [1] page
110);

9) Let a, b ∈ R 6= = R\{0}, S
(a,b)

is the (a, b) -Fourier-Schwartz transfor-

mation, i.e., the operator S
(a,b)

: Sn→Sn, such that, for all f ∈ Sn and

ξ ∈ Rn, one has

S
(a,b)

(f)(ξ) =

(
1

a

)n ∫

Rn

fe−ib(·|ξ)dµn =

[(
1

a

)n
e−ib(·|ξ)

]
(f),

where (· | ·) is the standard scalar product on Rn. Moreover, we recall
that S

(a,b)
is a homeomorphism with respect to the standard topology



S-DIAGONALIZABLE OPERATORS IN QUANTUM MECHANICS 265

S(n) and, concerning its inverse, for every x ∈ Rn and g ∈ Sn, one has

S
(a,b)

− (g)(x) =

( |b|a
2π

)n ∫

Rn

geib(x|·)dµn = S
(2π/(|b|a),−b)

(g)(x);

10) Let a, b ∈ R 6= = R\{0}, F
(a,b)

is the (a, b)-Fourier transformation on the

space of tempered distributions, i.e., the operator F
(a,b)

: S ′n→S ′n, such

that, for all u ∈ S ′n and for every φ ∈ Sn, one has

F
(a,b)

(u)(φ) = u

(
S

(a,b)
(φ)

)
,

i.e., the transpose of S
(a,b)

:

F
(a,b)

= t

(
S

(a,b)

)
.

Moreover, we recall that F
(a,b)

is a homeomorphism in the weak* topol-

ogy σ∗n = σ (S ′n,Sn) (even more it is a topological isomorphism). More-
over, one has

F
(a,b)

−= F
(2π/(|b|a),−b)

.

Two fundamental properties that we shall use are the following ones:
for all α ∈ Nn0 ,

F
(a,b)

(u(α)) = (bi)α (IRn)
α F

(a,b)
(u);

and

F
(a,b)

((IRn)
α
u) =

(
i

b

)α(
F

(a,b)
(u)

)(α)

,

where, IRn is (as we said) the identity operator on Rn, and (IRn)
α

the
α-th power of the identity in multi-indexed notation.

4. Some concepts from S-linear algebra

Let I be a non-empty set. We denote by s (I,S ′n) the space of all the
families in S ′n indexed by I , i.e., the set of all the surjective maps from I onto
a subset of S ′n. Moreover, if v is one of these families, for each p ∈ I , the
distribution v(p) is denoted by vp, and v also by (vp)p∈I . The set s (I,S ′n) is a

vector space with respect to the following standard operations: the addition

+ : s (I,S ′n)
2 → s (I,S ′n) : (v, w) 7→ v + w,

where v + w = (vp + wp)p∈I , i.e., (v + w)p = vp + wp; the multiplication by

scalars

· : K × s (I,S ′n) → s (I,S ′n) : (λ, v) 7→ λv



266 D. CARFÌ

where λv = (λvp)p∈I , i.e., (λv) (p) = (λv)p = λvp. Moreover, we shall use the

following definitions of David Carf̀ı:

Definition 4.1 (family of tempered distributions of class S). Let v ∈
s(Rm,S ′n) be a family of distributions. The family v is called family of class
S or S-family if, for each φ ∈ Sn, the function v(φ) : Rm → K, defined by
v(φ)(p) = vp(φ), for each p ∈ Rm, belongs to the space Sm. The set of all
these families is denoted by S(Rm,S ′n).

Example 4.1 (a family of class S). The Dirac family in S ′(Rn,K), i.e.,
the family δ = (δy)y∈Rn , is of class S. In fact, for each φ ∈ S(Rn,K) and for

each p in Rn, one has δ(φ)(p) = δp(φ) = φ(p), thus one has δ(φ) = φ, so the
image of φ under the family δ is φ itself which lies in Sn.

Example 4.2 (a family that is not of class S). The constant fam-
ily defined by vy = v(y) = δ0, for each y ∈ R, is not of class S. In
fact, let φ ∈ S(R,R) be such that φ(0) 6= 0, for every y ∈ R, one has
v(φ)(y) = vy(φ) = δ0(φ) = φ(0), i.e., v(φ) is a non-null constant real func-
tional on R. So, φ doesn’t decrease and then doesn’t lie in S(R,K).

Definition 4.2 (operator generated by an S-family). Let v ∈ S(Rm,S ′n)
be a family of class S. The operator generated by the family v (or associated
with v is the operator

v̂ : Sn → Sm : φ 7→ v(φ).

Example 4.3 (on the Dirac family). The operator on Sn generated by
the Dirac family, i.e., by the family δ = (δy)y∈Rn , is the identity operator on

Sn. In fact, for each y ∈ Rn, one has δ̂(φ)(y) = δy(φ) = φ(y) = ISn
(φ)(y).

The set S (Rm,S ′n) is a subspace of the vector space (s(Rm,S ′n),+, ·) and
for each v ∈ S(Rm,S ′n) the operator v̂ is linear and the map

(·)∧ : S (Rm,S ′n) → Hom (Sn,Sm) : v 7→ v̂

is an injective linear operator.

Theorem 4.1 (basic lemma for the superpositions of an S-family). Let
a ∈ S ′m and v ∈ S (Rm,S ′n) be an S-family. Then, the composition u = a ◦ v̂,
i.e., the functional u : Sn → K : φ 7→ a (v̂(φ)) , is a tempered distribution.

Proof. Let a ∈ S ′m. Because the subspace span({δy}y∈Rm) is sequen-

tially dense in S ′m (see [2] page 205), there is a sequence of distributions
(αk)k∈N

in span({δy}y∈Rm) such that

σ∗
m lim
k→+∞

αk = a.
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Now, since αk ∈ span({δy}y∈Rm) there exist a finite set {yi}hi=1 in Rm and a

finite set {λi}hi=1 in K such that

αk =

h∑

i=1

λiδyi
,

and consequently

αk ◦ v̂ =
h∑

i=1

λivyi
.

Hence, for every k ∈ N, the composition αk ◦ v̂ belongs to S ′n.
Let τ be the topology of the pointwise convergence in Hom (Sn,K), one

has
τ lim
k→+∞

αk ◦ v̂ = a ◦ v̂.
In fact, for every φ in Sn, we obtain

lim
k→+∞

(αk ◦ v̂) (φ) = lim
k→+∞

αk (v̂ (φ)) = a (v̂ (φ)) ,

so we have that
(αk ◦ v̂)k∈N

τ→ a ◦ v̂.
At this point, being {αk ◦ v̂}k∈N

⊂ S ′n, then, by the completeness theorem
of S ′n (see [7] page 602), one has a ◦ v̂ ∈ S ′n.

Definition 4.3 (linear superpositions of an S-family). Let v ∈S (Rm,S ′n)
and a ∈ S ′m. The distribution

a ◦ v̂ = t(v̂)(a)

is called the S-linear superposition of v with respect to (the system of coeffi-
cients) a and we denote it by ∫

Rm

av.

Moreover, if u ∈ S ′n and there exists an a ∈ S ′m such that u =
∫

Rm av, u is
said an S-linear superposition of v.

As a particular case, we can consider the linear superposition of v with
respect to the distribution 1S′

m
:=
[
1(Rm,K)

]
. We denote it simply by

∫
Rm v,

and then ∫

Rm

v :=

∫

Rm

1S′
m
v,

recall that
[
1(Rm,K)

]
is the distribution generated by the K -constant func-

tional on Rm of value 1.

Example 4.4 (the Dirac family). Let δ be the Dirac family. Then, for

each tempered distribution u ∈ S ′n, one has
∫

Rn uδ = u ◦ δ̂ = u ◦ ISn
= u, thus

each tempered distribution is an S -superposition of the Dirac family.
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We propose now a property of the superpositions analogous to the follow-

ing fundamental property of a complex vector space:
∑
δ(i,·)v =

∑k
j=1 δijvj =

vi, where δ : N × N → R is the Kronecker’s delta and v is a finite family of
vectors.

Theorem 4.2 (selection property of the delta distributions). Let v ∈
S (Rm,S ′n). Then, for each p ∈ Rm, one has

∫
Rm δpv = vp.

Proof. For every φ ∈ Sn, one has δp (v̂ (φ)) = δp (v (φ)) = v (φ) (p) =
vp (φ), and consequently

∫
Rm δpv = δp ◦ v̂ = vp.

In the sense of the above theorem, the Dirac family is a continuous version
of the Kronecker delta.

Definition 4.4 (the (a, b)-Fourier family). Let a, b ∈ R 6=. The (a, b)-
Fourier family in S ′(Rn,C) is the following family of regular tempered distri-
butions ([

(1/a)ne−ib(p|·)
])

p∈Rn
.

Proposition 4.1 (on the operator associated with the Fourier families).
Let a, b ∈ R 6= and ϕ be the (a, b)-Fourier family. Then ϕ is of class S, and
more precisely, one has v(φ) = S

(a,b)
(φ), for each test function φ ∈ S(Rn,C),

and thus ϕ generates the (a, b)-Fourier Schwartz transformation, i.e., v̂ = S
(a,b)

.

Proof. For each test function φ ∈ S(Rn,C) and for each p in Rn, one
has that

ϕ(φ)(p) = ϕp(φ) =
[
(1/a)ne−ib(p|·)

]
(φ) =

∫

Rn

(1/a)ne−ib(p|·)φdµn

= S
(a,b)

(φ)(p),

and thus ϕ(φ) = S
(a,b)

(φ). Now, because the (a, b) -Fourier-Schwartz transform

is into S(Rn,C), the map ϕ(φ) lies in S(Rn,C).

Example 4.5. We have, for all α ∈ Nn0 ,

F
(a,b)

(u(α)) = (bi)α (IRn)α F
(a,b)

(u);

and

F
(a,b)

((IRn)
α
u) =

(
i

b

)α(
F

(a,b)
(u)

)(α)

,

where, IRn is the identity operator on Rn, and (IRn)α the α-th power of the
identity in multi-indexed notation. These two properties can be immediately



S-DIAGONALIZABLE OPERATORS IN QUANTUM MECHANICS 269

translate in terms of superposition. Let ϕ be the (a, b)-Fourier family. We
have, for all α ∈ Nn0 ,

∫

Rn

u(α)ϕ = (bi)α (IRn)α
∫

Rn

uϕ;

and ∫

Rn

(IRn)
α
uϕ =

(
i

b

)α(∫

Rn

uϕ

)(α)

.

The next theorem affirms that each tempered distribution is an S -
superposition of the (a, b)-Fourier family, and this without technical assump-
tions.

Theorem 4.3 (Fourier expansion theorem). Let u ∈ S ′ (Rn,C) be a tem-
pered distribution and ϕ be the family

([
(1/a)ne−ib(p|·)

])
p∈Rn . Then, one has

u =

∫

Rn

F
(a,b)

− (u)ϕ,

in other words, u is the superposition of ϕ under F
(a,b)

− (u).

Proof. For every function φ ∈ S(Rn,C), we have

u(φ) = u( S
(a,b)

− ( S
(a,b)

(φ)) = F
(a,b)

− (u)(ϕ̂(φ))

=

(∫

Rn

F
(a,b)

− (u)ϕ

)
(φ).

5. S-bases and applications

Definition 5.1 (of S-linear independence). Let v ∈ S(Rm,S ′n). v is said

S-linearly independent, if a ∈ S ′m and

∫

Rm

av = 0S′
n

implies a = 0S′
m
.

Example 5.1. The Dirac family in S ′n is S-linearly independent. In fact,

one has

∫

Rn

uδ = u, for all u ∈ S ′n, and then

∫

Rn

uδ = 0S′
n

implies u = 0S′
n
.

Example 5.2 (the Fourier families). The Fourier families are S-linearly

independent. In fact, let ϕ be the (a, b)-Fourier family, and let

∫

Rn

uϕ =

0S′
n(C). For every φ ∈ Sn(C), one has

0 =



∫

Rn

uϕ


 (φ) = u (ϕ̂ (φ)) = u

(
S

(a,b)
(φ)

)
= F

(a,b)
(u) (φ) ,

i.e., F
(a,b)

(u) = 0S′
n(C), and thus u = 0S′

n(C), being F
(a,b)

injective.
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Definition 5.2 (of S-linear hull). Let v ∈ S (Rm,S ′n). The S-linear hull
of v is the set

S span (v) =

{
u ∈ S ′n : ∃a ∈ S ′m : u =

∫

Rm

av

}
.

Example 5.3 (on the Dirac and Fourier families). Let δ be the Dirac
family, one has S span (δ) = S ′n. In fact, for all u ∈ S ′n, one has u = u ◦
ISn

= u ◦ δ̂ =
∫

Rn uδ. Let ϕ be the family
([

(1/a)ne−ib(p|·)
])
p∈Rn , one has

S span (ϕ) = S ′n, it’s an immediate consequence of the Fourier expansion
theorem.

Definition 5.3 (system of S-generators). Let v ∈ S (Rm,S ′n). v is called
system of S-generators for V ⊆ S ′n if and only if

S span(v) = V.

Example 5.4. The Dirac family and the Fourier families are systems of
S-generators for S ′(Rn,C).

Definition 5.4 (of S-basis). Let v ∈ S(Rm,S ′n) and let V ⊆ S ′n. v is an
S-basis of V if it is S-linearly independent, and S span(v) = V.

Now we can give a more complete version of the Fourier theorem.

Theorem 5.1 (Fourier expansion theorem in geometric form). The
Fourier families in S ′(Rn,C) are S-bases of S ′(Rn,C).

The Dirac family δ in S ′n is an S-basis of S ′n. We call δ the canonical
S-basis of S ′n or the Dirac basis of S ′n, and we call the Fourier families the
Fourier bases of S ′(Rn,C).

Application 5.1. The decomposition
∫

Rn uδ = u, justifies completely
the following formal expression of the physicists (see [6, page 78])

∫

Rn

δ(x− p)δ(y − x)dx = δ(y − p).

In fact, one has
∫

Rn δpδ = δp, so the correct interpretation of the above formal
equality, when it derives from the superposition principle of quantum mechan-
ics, is not properly the convolution of two distributions but it’s the following
one: the vector state δp is the linear superposition of the infinite continuous
family of vector states (δy)y∈Rn with respect to the system of coefficients δp.

Hence, for instance, we can rigorously affirm that: the most general state
of a quantum-particle in one dimension (i.e. a complex tempered distribu-
tion on R) is a linear superposition of “eigenstates” of the position operator
Q : S ′(R,C) → S ′(R,C) : u 7→ IRu.

Moreover, the Fourier expansion theorem justifies completely another for-
mal expression used by physicists (see [6, page 38 formula (10)])

δ(x− p) =

∫

R

1

2π
epiye−iyxdy. (1)
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In fact, a classic result gives

F
(a,1)

− (δp) =
a

2π

[
epi(·)

]
,

and thus, from the Fourier expansion theorem, set a = 1, one has

δp =

∫

R

1

2π

[
epi(·)

] ([
e−i(x|·)

])
x∈R

.

So the correct interpretation of the formal expression (1), when it derives
from the superposition principle of quantum mechanics, is the following one:
the vector state δp is the linear superposition of the infinite continuous fam-

ily of vector states
([
e−i(p|·)

])
p∈R

with respect to the system of coefficients

(1/2π)
[
epi(·)

]
. Once more, we can affirm rigorously that the most general

state of a quantum-particle in one dimension (i.e. a complex tempered dis-
tribution on R) is a linear superposition of “eigenstates” of the momentum
operator

P : S ′(R,C) → S ′(R,C) : u 7→ −i~u′

(see [6]). Another interpretation of the expansion theorem is the following
one: at every time t ∈ R a wave u : R → S ′(Rn,C) is an S -superposition of
the family of the harmonic waves

([
(1/a)ne−ib(p|·)

])
p∈Rn

with respect to the system of coefficients F
(a,b)

− (ut).

Theorem 5.2 (on the structure of S span). Let u ∈ S (Rm,S ′n) . Then,
S span (u) is a subspace of S ′n, it contains all the elements of u and conse-
quently

span (u) ⊆ S span (u) .

Proof. Let λ ∈ K and v, w ∈ S span (u), then, there exist a, b ∈ S ′m
such that v =

∫

Rm

au and w =

∫

Rm

bu. Now, one has λv+w = λ

∫

Rm

au+
∫

Rm

bu =

∫

Rm

(λa+ b)u, and then λv + w ∈ S span (u). Moreover, let δ be

the Dirac basis of S ′m, we have
∫

Rm δpu = up and then up ∈ S span (u).

Theorem 5.3 (about the finite linear combinations). Let k ∈ N, v ∈
S (Rm,S ′n) and u =

k∑
i=1

λivαi
, with λ ∈ Ck, and α ∈ (Rm)k. Then, there

exists a Λ ∈ S ′m such that u =
∫

Rm Λv. So, each linear combination of a finite
subfamily of v is an S-superposition of v.
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Proof. Let Λ =
k∑
i=1

λiδαi
, then, one has

∫

Rm

Λv =

∫

Rm

(
k∑

i=1

λiδαi

)
v =

k∑

i=1

∫

Rm

λiδαi
v

=
k∑

i=1

λi

∫

Rm

δαi
v =

k∑

i=1

λivαi
= u.

Theorem 5.4. Let v ∈ S (Rm,S ′n) be a family S-linearly independent.
Then, v is linearly independent. Consequently S span (v) is an infinite-
dimensional subspace of S ′n.

Proof. Let k ∈ N, α ∈ (Rm)
k
, and let vα = (vαi

)
k
i=1 . By contradiction,

let vα be a linearly dependent system of S ′n, then there exists a λ ∈
(
Ck
) 6=

=

Ck\{0k} such that
∑k
i=1 λivαi

= 0S′
n
. Thus, put Λ =

∑k
i=1 λiδαi

, one has

∫

Rm

Λv =

∫

Rm

k∑

i=1

λiδαi
v =

k∑

i=1

λi

∫

Rm

δαi
v =

k∑

i=1

λivαi
= 0S′

n
.

Now, because it is Λ 6= 0S′
m
, one has that v is a family S-linearly dependent,

against the assumption.

The following is a meaningful generalization of the Fourier expansion
theorem.

Theorem 5.5 (characterization of an S-basis). Let v ∈ S (Rm,S ′n).
Then, v is an S-basis of S ′n if and only if t (v̂) is bijective.

Proof. First of all t (v̂) is well defined because v is an S-family. More-
over, it is obvious that v S-generates S ′n if and only if t (v̂) is surjective, and
that v is S-linearly independent if and only if t (v̂) is injective.

Actually, it is possible to prove the following

Theorem 5.6 (characterization of an S-basis). Let v ∈ S (Rm,S ′n).
Then, v is an S-basis of S ′n if and only if t (v̂) is a topological isomorphism.

6. Systems of coordinates in an S-linearly independent family

It is simple to prove that, if v is an S-linearly independent family and if

u ∈ S span (v), then there exists a unique a ∈ S ′m such that u =

∫

Rm

av. So,

we can give the following
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Definition 6.1 (system of coordinates). Let v ∈ S(Rm,S ′n) be an S-
linearly independent family and u ∈ S span(v). The only tempered distribution

a ∈ S ′m such that u =

∫

Rm

av is denoted by [u|v] and is called the system of

coordinates of u in v.

Definition 6.2 (of coordinate operator in an S-linearly independent fam-
ily). Let w ∈ S(Rm,S ′n) be an S-linearly independent family. The coordinate
operator in w is the following operator

[· | w] : S span(w) → S ′m : u 7→ [u | w] .

Example 6.1 (on the Dirac family). Let δ be the Dirac family in S ′n. For
all u ∈ S ′n, we have [u | δ] = u, and hence [· | δ] = (·)S′

n
.

Example 6.2 (on the (a, b)-Fourier family). Let f be the (a, b)-Fourier
family in S ′n. For each u ∈ S ′n we have [u | f ] =F−

(h,ω)
(u), and hence [· |

f ] =F−
(h,ω)

.

Theorem 6.1. Let w ∈ S(Rm,S ′n) be an S-linearly independent family.
Then,

[· | w] ∈ Hom(S span(w),S ′m).

Proof. Let λ ∈ C and u, v ∈ S span(w), then we have

u+ λv =

∫

Rm

[u | w]w + λ

∫

Rm

[v | w]w =

∫

Rm

([u | w] + λ [v | w])w,

and thus, we deduce

[u+ λv | w] = [u | w] + λ [v | w] .

Theorem 6.2. Let w ∈ S(Rm,S ′n) and λ ∈ C 6=. Then, the following
assertions hold true

1) if w is S-linearly independent then the family λw is S-linearly inde-
pendent;

2) S span(w) = S span(λw);
3) if w is S-linearly independent, for each u ∈ S span(w), we have

[u | λw] = (1/λ) [u | w] = [(1/λ)u | w].

Proof. 1) Let a ∈ S ′m be such that
∫

Rm a(λw) = 0S′
n
, one has

0S′
n

=

∫

Rm

a(λw) = λ

∫

Rm

aw,

thus
∫

Rm aw = 0S′
n
/λ = 0S′

n
, now because w is S-linearly independent we

desume a = 0S′
n
.
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2) Let u ∈ S span(w). Then, there exists an a ∈ S ′m such that u =
∫

Rm aw.
Then, we have

u =

∫

Rm

(a
λ

)
(λw) ,

so u ∈ S span(λw), and hence S span(w) ⊆ S span(λw). Viceversa, let u ∈
S span(λw). Then, there exists an a ∈ S ′m such that u =

∫
Rm a(λw). Now, one

has

u =

∫

Rm

(λa)w,

and hence u ∈ S span(w), hence S span(λw) ⊆ S span(w). Concluding
S span(w) = S span(λw).

3) For any u ∈ S ′n, one has u =
∫

Rm [u | w]w, hence

u =

∫

Rm

(
1

λ
[u | w]

)
(λw) =

∫

Rm

[(1/λ)u | w] (λw) .

Definition 6.3 (product of two S-families). Let k ∈ N, v ∈ S
(
Rk,S ′m

)

and w ∈ S (Rm,S ′n) be two families of distributions. The product of v by w

is the family (in S ′n) defined by v · w =

(∫

Rm

vpw

)

p∈Rk

. It is also denoted

by

∫

Rm

vw. Hence, for each p ∈ Rk, we have (v · w)p =

(∫

Rm

vw

)

p

=
∫

Rm

vpw.

It can be proved that the product of two S-families is an S-family and
that

(a · b)∧ = â ◦ b̂.
Definition 6.4 (of invertible S-family). Let a ∈ S (Rn,S ′n). a is called

invertible if there exists a b ∈ S (Rn,S ′n) such that a · b = b · a = δ.

Remark 6.1. It’s easy to prove that, for each invertible family a ∈
S(Rn,S ′n), there exists only a b ∈ S(Rn,S ′n) such that a · b = b · a = δ.
This family is denoted by a−. Moreover, it can be proved that the operator
generated by a is invertible and (a−)

∧
= (â)−. In fact, for each φ ∈ Sn, one

has[(
a−
)∧ ◦ â

]
(φ) (p) =

(
a−
)∧

(â(φ)) (p) =
(
a−
)
p

(â(φ))

=

(∫

Rn

(
a−
)
p
a

)
(φ) =

(
a− · a

)
p

(φ) = δp (φ) = φ (p) ;

so (a−)
∧ ◦ â = (·)Sn

. Analogously we have â ◦ (a−)
∧

= (·)Sn
, and hence â is

invertible and (a−)
∧

= (â)−.
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Theorem 6.3. Let v, w ∈ S(Rn,S ′n) be two S-linearly independent family.
Then, v · w is S-linearly independent. Moreover, if w is invertible one has

[u | w · v] =

∫

Rn

[u | v]w−.

Proof. Let a ∈ S ′n be such that
∫

Rn a(v · w) = 0S′
n
, one has

0S′
n

=

∫

Rn

a(v · w) = a ◦ (v · w)∧ = a ◦ (v̂ ◦ ŵ) = (a ◦ v̂) ◦ ŵ =

∫

Rn

(

∫

Rn

av)w.

Since w is S-linearly independent, we have
∫

Rn av = 0S′
n

. And since v is S
-linearly independent, one has a = 0S′

n
. So v · w is S-linearly independent.

If w is invertible then ŵ is invertible and one has

u =

∫

Rn

[u | v] v = [u | v] ◦ v̂ = [u | v] ◦ ŵ− ◦ ŵ ◦ v̂ =

=
(
[u | v] ◦ ŵ−

)
◦ (ŵ ◦ v̂) = ([u | v] ◦ ŵ−) ◦ (w · v)∧ =

=

∫

Rn

(
[u | v] ◦ ŵ−

)
(w · v) ,

and hence

[u | w · v] = [u | v] ◦ ŵ− = [u | v] ◦
(
w−
)∧

=

∫

Rn

[u | v]w−.

Definition 6.5 (superposition of a family with respect to a family). Let
v ∈ s(Rk,S ′m) and w ∈ S(Rm,S ′n). The family

∫

Rm

vw :=

(∫

Rm

vpw

)

p∈Rk

,

is called the superposition of w with respect to v.

Example 6.3. Let w ∈ S(Rm,S ′n) be an S-linearly independent family
and let v ∈ s(Rk,S ′n) be such that vp ∈ S span (w), for each p ∈ Rk. Then,
for each p ∈ Rk, we have vp =

∫
Rm [vp | w]w, i.e., v =

∫
Rm [v | w]w, where

[v | w] is the family in S ′m defined by

[v | w] := ([vp | w])p∈Rk .

In fact (∫

Rm

[v | w]w

)
(p) =

∫

Rm

[v | w]p w =

∫

Rm

[vp | w]w = vp.

Remark 6.2. Obviously, in the conditions of the above definition, if v ∈
S(Rk ,S ′m), we have ∫

Rm

vw = v · w,

and thus
∫

Rm vw ∈ S(Rk,S ′n).
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Theorem 6.4 (S-linearity of the S-linear combinations). Let a ∈ S ′k,
v ∈ S

(
Rk,S ′m

)
and w ∈ S (Rm,S ′n) be two families of distributions. Then,

one has ∫

Rm

(∫

Rk

av

)
w =

∫

Rk

a

(∫

Rm

vw

)
=

∫

Rk

a(v · w).

Proof. For every φ ∈ Sn, we have
(∫

Rm

(∫

Rk

av

)
w

)
(φ) =

(∫

Rm

av

)
(ŵ (φ)) = a(v̂ (ŵ(φ)))

= a ((v̂ ◦ ŵ) (φ)) = a
(
(v · w)

∧
(φ)
)

=

=

∫

Rk

a (v · w) (φ) =

∫

Rk

a

(∫

Rm

vw

)
(φ) ;

note that

(v · w)
∧

(φ)(p) = (v · w)p (φ) =

(∫

Rm

vpw

)
(φ) = vp (ŵ(φ)) =

= v̂ (ŵ(φ)) (p) = (v̂ ◦ ŵ)(φ)(p).

Notation (the set of the S-bases of a subspace). Let X ⊆ S ′n be a
subspace. In the following we shall use the notation

SB(Rm, X) = {v ∈ S(Rm,S ′n) : Im(v) ⊆ X and v is an S-basis for X}.
Definition 6.6 (the family of change for two S -bases). Let v ∈

SB(Rn,S ′n) and w ∈ SB(Rn,S ′n). We say family of change from v to w
the following family

[w | v] := ([wp | v])p∈Rn .

Theorem 6.5 (on the change of basis). Let v, w ∈ SB(Rn,S ′n) be such
that

[v | w] ∈ SB(Rn,S ′n),

and u ∈ S ′n. Then,

[u | w] =

∫

Rn

[u | v] [v | w] .

Proof. From v =

∫

Rn

[v | w]w, applying the S-linearity of the S-linear

combinations, we have

u =

∫

Rn

[u | v] v =

∫

Rn

[u | v]

(∫

Rn

[v | w]w

)
=

=

∫

Rn

(∫

Rn

[u | v] [v | w]

)
w,
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and thus by definition of system of coordinates in an S-basis

[u | w] =

∫

Rn

[u | v] [v | w] .

Definition 6.7 (superposition of a family with respect to an operator).
Let X ⊆ S ′n be a subspace of S ′n, A ∈ Hom(X,S ′m) and v ∈ S (Rm,S ′n) be a
family of distributions. We define superposition of v with respect to A, the
operator ∫

Rm

Av : X → S ′n : u 7→
∫

Rm

A(u)v.

Theorem 6.6 (the resolution of the identity). Let v ∈ S(Rn,S ′n) be an
S-linearly independent family. Then, v ∈ SB(Rn,S ′n) if and only if one has

(·)S′
n

=

∫

Rn

[· | v]v.

Proof. (⇒) If v ∈ SB(Rn,S ′n), then S span(v) = S ′n. Thus, for all u ∈ S ′n
we have u =

∫
Rn [u | v]v, i.e., by definition, (·)S′

n
=
∫

Rn [· | v]v.

(⇐) If (·)S′
n

=
∫

Rn [· | v]v, then, for all u ∈ S ′n one has u =
∫

Rn [u | v]v,

and hence S ′n = S span(v), and so v ∈ SB(n,S ′n).

Theorem 6.7 (the general resolution of the identity). Let v ∈ S(Rm,S ′n)
be an S-linearly independent family in a subspace X of S ′n. Then, v ∈
SB(Rm, X) if and only if

(·)X =

∫

Rm

[· | v]v.

Proof. Note that the identity operator on X and the operator
∫

Rm [· | v]v
coincide on the subspace X ∩ S span(v), in fact, if u is a point of this inter-
section,

u =

∫

Rm

[u | v]v =

(∫

Rm

[· | v]v

)
(u) .

Consequently, the equality (·)X =
∫

Rm [· | v]v holds if and only if the two
operators have the same domain, that is to say, if and only if X = S span(v).

7. S-linear operators and the existence of the S-bases

Definition 7.1 (image of a family of distributions). Let W ⊆ S ′n, A :
W → S ′m be an operator and v = (vp)p∈Rk be a family of tempered distributions

in W , i.e., such that {vp}p∈Rk ⊆W. The image of v under A is the family in

S ′m
A(v) = (A(vp))p∈Rk ,

i.e., the family such that, for all p ∈ Rk, one has A(v)p = A(vp).
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We can read the above definition saying that “the image of a family of
vectors is the family of the images of vectors”.

Definition 7.2 (operator of class S). Let W ⊆ S ′n and L : W → S ′m
be an operator. L is an S-operator or operator of class S if, for each natural
k and for each v ∈ S(Rk,S ′n), such that {vp}p∈Rk ⊆ W, one has L(v) ∈
S(Rk ,S ′m).

We can read the above definition as follows: “L is of class S if the image
of an S-family is an S-family”. In the following we put σn = σ (Sn,S ′n).

Example 7.1 (the transpose). Let A : Sn → Sm be a (σn, σm)-continuous
operator. A is transposable (i.e., for every a ∈ S ′m, a ◦ A is in S ′n) and its
transpose is

tA : S ′m → S ′n : a 7→ a ◦A.
Let v ∈ S

(
Rk,S ′n

)
, one has, by definition,

tA (v)p = tA (vp) ,

and hence one deduces

tA (v) (φ) (p) = tA (v)p (φ) = tA (vp) (φ) = vp (A (φ)) = v (A (φ)) (p),

so, taking into account that v is an S-family, one has tA (v) (φ) = v̂ (A (φ)) ∈
Sk. Concluding one has tA (v) ∈ S

(
Rk,S ′n

)
, and thus the operator tA,

sending S-family in S-family, is an S-operator.

Application 7.1. Let L : S ′n → S ′n be a differential operator with
constant coefficients and v be an S-family in S ′n. Then L(v) is an S-family, in
fact L is the transpose of a certain differential operator on Sn. For instance,
the family (δx)x∈Rn is obviously an S-family, and so the families of derivatives(
δ
(i)
x

)
x∈Rn

are S -families for every multi-index i.

Definition 7.3 (S-linear operator). Let L : S ′n → S ′m be an S-operator.
L is called S-linear operator if, for each natural k, for each v ∈ S(Rk ,S ′n)
and for every a ∈ S ′k, one has

L

(∫

Rk

av

)
=

∫

Rk

aL(v).

The set of all the S-linear operators from S ′n to S ′m is denoted by

S Hom(S ′n,S ′m).

In the following we denote by L(Sn,Sm) the set of all the linear and
continuous operator among the two topological vector spaces (Sn,S(n)) and
(Sm,S(m)). Since these two spaces are complete and metrizable, the space
L(Sn,Sm) coincides with the space L (σn, σm), the space of all the linear and
(σn, σm)-continuous operators from Sn to Sm (see [8] page 258, Corollary).
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On the other hand, L (σn, σm) is also the set of all the transposable linear
operators from Sn to Sm (see [8] page 254, §12, Proposition 1).

It’s, at this point, obvious that the two vector spaces S (Rm,S ′n) and
L(Sn,Sm) are isomorphic, being the map

(·)∧ : S (Rm,S ′n) → L (Sn,Sm) : v 7→ v̂

an isomorphism, moreover, its inverse is the map

(·)∨ : L (Sn,Sm) → S (Rm,S ′n) : A 7→ A∨ := (δx ◦A)x∈Rm .

Now, we can show the intimate essence of the S -linear operators defined
on S ′n.

Definition 7.4 (superposition of a family with respect to a family). Let
v ∈ s

(
Rk,S ′m

)
and w ∈ S (Rm,S ′n). The family in S ′n

∫

Rm

vw :=



∫

Rm

vpw




p∈Rk

,

is called the superposition of w with respect to v.

If v ∈ S
(
Rk,S ′m

)
then

∫

Rm

vw ∈ S
(
Rk,S ′n

)
and

(∫

Rm

vw

)∧
= v̂ ◦ ŵ.

In this case,

∫

Rm

vw is denoted by vw and it is called the S-product of v by

w.

Lemma 7.1 (the image under a transpose operator). Let B ∈ L (Sn,Sm)
and v ∈ S(Rk ,S ′m). Then,

tB(v) =

∫

Rk

vB∨,

so in particular, tB is an S-operator.

Proof. For each p ∈ Rk, one has
(∫

Rk

vB∨
)

p

=

∫

R

vpB
∨ = vp ◦ (B∨)∧ = vp ◦B = tB (vp) = tB(v)(p),

and hence ∫

Rk

vB∨ = tB(v).
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Theorem 7.1 (S-linearity of a transpose operator). Let B ∈ L(Sn,Sm)
and v ∈ S(Rk ,S ′m). Then, for each a ∈ S ′k one has

tB

(∫

Rk

av

)
=

∫

Rk

a tB(v).

Proof. One has

tB

(∫

Rk

av

)
=

(∫

Rk

av

)
◦B = (a ◦ v̂) ◦B = a ◦ (v̂ ◦B) =

=

∫

Rk

a(v̂ ◦B)∨ =

∫

Rk

a(

∫

Rk

vB∨) =

∫

Rk

a tB(v).

Application 6.2. As a simple application, we prove the formula: u′ =∫

R

uδ′, where δ′ is the S-family in S ′1 defined by δ′ =
(
δ′p
)
p∈R

. Let δ be the

Dirac family of S ′1, then for each u ∈ S ′1, one has u =

∫

R

uδ, and thus

u′ = D

(∫

R

uδ

)
=

∫

R

uD(δ) =

∫

R

uδ′.

Theorem 7.2 (characterization of S-linearity). Let L : S ′n → S ′m. Then,
L is S-linear if and only if there exists a B ∈ L (Sm,Sn) such that L = t (B).

Proof. Sufficiency. Follows from the above theorem.
Necessity. Let δ be the Dirac’s family in S ′n, one has

L (u) = L

(∫

Rn

uδ

)
=

∫

Rn

uL (δ) = t
(
L (δ)

∧)
(u) ,

so

L = t
(
L (δ)

∧)
.

The preceding theorem allow us to state and prove some definitive results
on the existence of S-bases for a subspace of S ′n.

Theorem 7.3. Let V be a subspace of S ′n. Then

1) V has a system of S-generators if and only if there is an S-linear
operator A : S ′m → S ′n, for some m, such that A(S ′m) = V ;

2) V has an S-basis if and only if there is an injective S-linear operator
A : S ′m → S ′n, for some m, such that A(S ′m) = V .

Proof. 1) It’s obvious, because every S-family univocally determines a
transposable operator v̂ : Sn → Sm that is univocally determined by the S-
linear operator tv̂ : S ′m → S ′n, and viceversa. Moreover, for every S-family
one has S span (v) = tv̂(S ′m).
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2) Remember that

tv̂(a) =

∫

Rm

av.

Then the conclusion follows immediately from the definition of S-linear inde-
pendence.

The preceding can be reread in the following way

Theorem 7.4. Let V be a subspace of S ′n. Then

1) V has a system of S-generators if and only if there is a continuous
linear operator A : Sn → Sm, for some m, such that tA(S ′m) = V ;

2) V has an S-basis if and only if there is a continuous linear operator A :
Sn → Sm, for some m, such that imA is dense in Sm and tA(S ′m) = V .

By the preceding and by the Dieudonnè-Schwartz theorem (see later), it
follows

Theorem 7.5. Let V be a weakly∗ closed subspace of S ′n. Then

1) V has a system of S-generators if and only if there is a strict morphism
A : S ′m → S ′n, for some m, such that A(S ′m) = V ;

2) V has an S-basis if and only if there is an injective strict morphism
A : S ′m → S ′n, for some m, such that A(S ′m) = V .

For the reader, we recall the two classic results used above.

Theorem 7.6 (Dieudonné-Schwartz). Let E and F be two Frèchet spaces
with topologies TE and TF respectively, E ′ and F ′ their topological duals, and
let u : E → F be a linear map. Then the following conditions are equivalent:

(α) u is a strict morphism for TE and TF ;
(β) u is a strict morphism for σ (E,E ′) and σ (F, F ′);
(γ) u (E) is closed in F ;
(δ) tu is a strict morphism for σ (F ′, F ) and σ (E′, E);
(ε) tu (F ′)is closed in E′ for σ (E′, E).

Corollary 7.1. Let E and F be two Frèchet spaces, E ′ and F ′ their
topological duals, and u : E → F be a linear map.

(i) u is an injective strict morphism if and only if tu (F ′) = E′.
(ii) u is a surjective strict morphism if and only if tu (F ′) is closed in E′

for σ (E′, E) and tu is injective.
(iii) u is an isomorphism if and only if tu is an isomorphism for the topolo-

gies σ (F ′, F ) and σ (E′, E).

8. Representations in quantum theory: continuous case

In the present section we give a rigorous and greatly enriched version of
the representation theory introduced by Dirac in [6] (page 66). A pure state
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σ of a quantum system is a mono-dimensional subspace of the space S ′n, each
ψ ∈ σ is a vector-state representing σ.

Let ψ = (ψp)p∈Rn be an S -basis of S ′n and A ∈ S End (S ′n). For every

p ∈ Rnwe have

A (ψp) =

∫

Rn

[A (ψp) | ψ]ψ,

we call the family
(A)ψ = ([A (ψp) | ψ])p∈Rn ,

the representation of A in ψ.
Let, now, A,B be two S-linear operators, one has

A (B (ψp)) = A

∫

Rn

[B (ψp) | ψ]ψ =

∫

Rn

(B)
p
ψ A (ψ) =

=

∫

Rn

(B)
p
ψ

∫

Rn

(A)ψ ψ =

∫

Rn

(∫

Rn

(B)
p
ψ (A)ψ

)
ψ,

so it follows
(AB)ψ = (A)ψ (B)ψ ,

the family representing the product of two operators is the product of the
families representing the two operators.

The family representing an A ∈ S End (S ′n) takes the place of the matrix
representing a linear operator among two finite dimensional vector spaces.
For this reason we shall call the S-families also with the name “S-matrices”.

We have, moreover, u =

∫

Rn

[u | ψ]ψ. We call the non-locally defined

family
(u)ψ = [u | ψ] ,

the representation of A in ψ.
We have

A (u) =

∫

Rn

(u)ψ A (ψ) =

∫

Rn

(u)ψ

∫

Rn

(A)ψ ψ =

∫

Rn

(∫

Rn

(u)ψ (A)ψ

)
ψ,

thus we proved that

(A (u))ψ =

∫

Rn

(u)ψ (A)ψ .

If we regard the multiplication by a number c as an operator: Mc (u) = cu,
we have

Mc (u) = cu = c

∫

Rn

(u)ψ ψ =

∫

Rn

(u)ψ (cψ) =

∫

Rn

c (u)ψ ψ.

Then we have

Mc (ψp) =

∫

Rn

c (ψp)ψ ψ =

∫

Rn

cδpψ,

so the S-family representing the operator Mc in the basis ψ is the “diagonal”
family (cδp)p∈Rn , i.e., the family cδ.
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The correspondence that sends every S-endomorphism to its correspond-
ing S-matrix, say

(·)ψ : S End (S ′n) → S (Rn,S ′n) ,

is bijective.
In fact, (A)ψ = (B)ψ implies

(A (u))ψ =

∫

Rn

(u)ψ (A)ψ =

∫

Rn

(u)ψ (B)ψ = (B (u))ψ ,

and thus Au = Bu, i.e., A = B, so it is injective.
The mapping (·)ψ is also surjective. In fact, if v = (vp)p∈Rn is an S

-family, putting

A (u) =

∫

Rn

(u)ψ

(∫

Rn

vψ

)
,

one has

A (ψp) =

∫

Rn

(ψp)ψ

(∫

Rn

vψ

)
=

∫

Rn

δp

(∫

Rn

vψ

)

=

(∫

Rn

vψ

)

p

=

∫

Rn

vpψ,

and thus (A)ψ = v.

Let (·)−ψ the inverse of (·)ψ. In the above proof we deduced that

(v)
−
ψ (u) =

∫

Rn

(u)ψ

(∫

Rn

vψ

)
.

If we choose the canonical basis δ, we have

(v)−δ (u) =

∫

Rn

(u)δ

(∫

Rn

vδ

)
=

∫

Rn

uv.

If we put (as in the finite-dimensional case)

vu := (v)
−
δ (u) =

∫

Rn

uv,

(vu is called the image of the vector u under the matrix v) we obtain

(A (u))ψ =

∫

Rn

(u)ψ (A)ψ = (A)ψ (u)ψ .

The generalization to the case A ∈ S Hom(S ′n,S ′m) is, at this point, very
natural:

Let ψ an S-basis of S ′n and ϕ be an S-basis of S ′m. We define S-matrix
associated with A in the pair of basis (ψ, ϕ) the S-family (A)(ψ,ϕ) defined by

(A (u))ϕ =

∫

Rn

(u)ψ (A)(ψ,ϕ) .



284 D. CARFÌ

Or, with arguments similar to the preceding ones, the S-matrix such that

(A (u))ϕ = (A)(ψ,ϕ) (u)ψ .

It’s simple to prove that ψ is an S-basis of the entire space if and only if
tψ̂ is bijective. In this case one has

uψ =
(
tψ̂
)−

(u) = t
(
ψ̂−
)

(u).

And moreover, denoted by ψ− the family associated with the operator ψ̂−,
the following decomposition holds

(A) p
ψ =

∫

Rn

Aψpψ
−.

This relations will be used in the following examples.

Example 8.1 (the representation of the position operator in the momen-
tum basis). Let

X : S ′1 → S ′1 : u 7→ (·)u

be the position operator and let ϕ be the (1,−1/~)-Fourier family, then one
has

(X)
p
ϕ =

∫

R

Xϕpϕ
− =

∫

R

IRϕpϕ
− =

(
i

1/~

)1(∫

R

ϕpϕ
−

)′
= i~ (ϕp)

′
ϕ = i~δ′p.

Example 8.2 (the representation of the momentum operator in the mo-
mentum basis). Let

P : S ′1 → S ′1 : u 7→ −i~u′

be the momentum operator of a particle. One has

(P ) p
ϕ =

∫

R

Pϕpϕ
− =

∫

R

pϕpϕ
− = p (ϕp)ϕ = pδp.

and hence (P )ϕ = IRδ.

Example 8.3 (the representation of the kinetic energy operator in the
momentum basis). Let

T : S ′1 → S ′1 : u 7→ ~2

2m
u′′ =

1

2m
P 2(u)
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be the kinetic energy operator of a nonrelativistic particle, one has

(T ) p
ϕ =

∫

R

Tϕpϕ
− =

=

∫

R

1

2m
P 2ϕpϕ

− =

=
1

2m

∫

R

p2ϕpϕ
− =

=
1

2m
p2

∫

R

ϕpϕ =

=
1

2m
p2 (ϕp)ϕ =

=
1

2m
p2δp.

9. The space OM (Rn,K) and the S-families

First of all we recall, for convenience of the reader, some basic notions
from theory of distributions.

Definition 9.1. We denote by OM (Rn,K) the space of all f ∈ C∞(Rn,K)
such that for every φ ∈ Sn one has φf ∈ Sn. The set OM (Rn,K) is said to be
the space of C∞ functions from Rn to K slowly increasing at infinity.

Proposition 9.1. Let f ∈ C∞(Rn,K). The following are equivalent
conditions:

1. For all p ∈ Nn0 there is a polynomial Pp such that ∀x ∈ Rn, |∂pf(x)| ≤
|Pp(x)| .

2. For all φ ∈ Sn one has φf ∈ Sn.
3. For every p ∈ Nn0 and for every φ ∈ Sn the function (∂pf)φ is bounded

in Rn.

The standard topology of OM (Rn,K) is the locally convex topology de-
fined by the family of seminorms

γφ,p(φ) = sup
x∈Rn

|φ(x)∂pf(x)|

where φ ∈ S(Rn,K) and p ∈ Nn0 . This topology does not have a countable
basis. Also, it can be shown that OM (Rn,K) is a complete space. A sequence
(or filter) (fj)j∈N converges to zero in OM (Rn,K) if and only if for every
φ ∈ Sn and for every p ∈ Nn0 , the sequence (φ∂pfj)j∈N converges to zero
uniformly on Rn. Or, equivalently, for every φ ∈ Sn, (φfj)j∈N converges to
zero in Sn. A set B is bounded in OM (Rn,K) if and only if for all p ∈ Nn0 there
is a polynomial Pp such that ∀x ∈ Rn, ∀f ∈ B, |∂pf(x)| ≤ Pp(x). Moreover,
the bilinear map

Φ : OM (Rn,K) × Sn → Sn : (φ, f) 7→ φf
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is separately continuous.

Proposition 9.2. Let A ∈ L(Sn,Sm) and f ∈ OM (Rm,K). Then, the
mapping

fA : Sn → Sm : φ 7→ fA(φ)

is a linear and continuous operator.

Proof. First of all we note that fA is well defined in fact (fA)(φ) =
fA(φ) ∈ Sm because f ∈ OM (Rm,K) and A(φ) ∈ Sm. Moreover, the bilinear
application

Φ : OM (Rm,K)×Sm → Sm : (f, ψ) 7→ fψ

is separately continuous and since

(fA)(φ) = fA(φ) = Φ(f,A(φ))

i.e.,

fA = Φ(f,A) := Φ(f, ·) ◦A
the operator fA is the composition of two linear continuous maps and then
is a linear and continuous operator.

Let A ∈ L(Sn,Sm) and f ∈ OM (Rm,K). The operator fA : Sn → Sm :
φ 7→ fA(φ) is called the product of A by f .

Proposition 9.3. Let A,B ∈ L(Sn,Sm) and f, g ∈ OM (Rm,K). Then,

1) (f + g)A = fA+ gA; f(A+B) = fA+ fB; 1OM
A = A;

2) the map Φ : OM (Rm,K)×L(Sn,Sm) → L(Sn,Sm) : (f,A) 7→ fA is a
bilinear map.

Proof. It’s a straightforward computation.

The above bilinear application is called multiplication of operators by OM

functions.

Remark 9.1. It’s easy to see that the algebraic structure (OM (Rn,K),+, ·)
is a commutative ring with identity, where:

· : OM (Rn,K)×OM (Rn,K) →OM (Rn,K) : (f, g) 7→ fg

(obviously if f, g ∈ OM (Rn,K) one has fg ∈ OM (Rn,K)) and 1(OM ,+,·) =
1(Rn,K)). Moreover, one has that Sn is an ideal of OM (Rn,K).

Proposition 9.4. Let · the operation defined in the above theorem.
Then, the algebraic structure (L(Sn,Sm),+, ·) is a left module over the ring
(OM (Rm,K),+, ·).
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Proof. Recall the preceding theorem, we have to prove only the pseudo-
associative law, i.e. we have to prove that for every f, g ∈ OM (Rm,K), for
every A ∈ L(Sn,Sm), one has (fg)A = f(gA). In fact, for each φ ∈ Sn, one
has

[(fg)A](φ) = (fg)A(φ) = f(gA(φ)) = f(gA)(φ)) = [f(gA)](φ).

Definition 9.2 (product of a family by an OM function). Let v ∈
S(Rm,S ′n) and f ∈ C∞(Rm,K). The product of v by f is the family fv =
(f(p)vp)p∈Rm .

Theorem 9.1. Let v ∈ S(Rm,S ′n) and f ∈ OM (Rm,K). Then, the family
fv lies in S(Rm,S ′n). Moreover, one has (fv)∧ = fv̂.

Proof. Let φ ∈ Sn, one has

(fv)(φ)(p) = (fv)p(φ) = (f(p)vp)(φ) = f(p)vp(φ) = f(p)v̂(φ)(p)

and hence (fv)(φ) = fv̂(φ) ∈ Sm. Thus, one has fv ∈ S(Rm,S ′n), ∀φ ∈ Sn,
(fv)∧(φ) = fv̂(φ), i.e. (fv)∧ = fv̂, where fv̂, is the product of v̂ by f and
fv̂ ∈ L(Sm,Sn).

Theorem 9.2. Let f, g ∈ OM (Rm,K), v, w ∈ S(Rm,S ′n). Then,

1) (f + g)v = fv + gv; f(v + w) = fv + fw; 1OM
v = v.

2) The map Φ : OM (Rm,K) ×S(Rm,S ′n) → S(Rm,S ′n) : (f, v) 7→ fv is a
bilinear map.

Proof. 1) For all p ∈ Rm, one has

[(f + g) v] (p) = (f + g)(p)vp = (f(p) + g(p))vp = f(p)vp + g(p)vp

= (fv)p + (gv)p,

i.e. (f + g)v = fv + gv; For all p ∈ Rm, one has

[f (v + w)] (p) = f(p)(v + w)p = f(p)(vp + wp) = f(p)vp + f(p)wp

= (fv)p + (fw)p,

i.e. f(v + w) = fv + fw. For all p ∈ Rm, one has (1(Rm ,K) v)(p) =
1(Rm ,K) (p)vp = vp; i.e. 1OM

v = v. 2) To the reader.

The bilinear application of the point 2) of the preceding theorem is called
multiplication of families by OM functions.

Theorem 9.3. Let · the operation defined above. Then, the algebraic
structure (S(Rm,S ′n),+, ·) is a left module over the ring (OM (Rm,K),+, ·).

Proof. It’s analogous to the proof of the Proposition 9.4.

Theorem 9.4 (of isomorphism). The application (·)∧ : S(Rm,S ′n) →
L(Sn,Sm) is a module isomorphism.
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Proof. It follows easily from Theorem 9.1.

Now we can improve the Theorem 6.2.

Theorem 9.5. Let w ∈ S(Rm,S ′n) and λ ∈ OM (Rm,K) a function dif-
ferent form 0 at every point. Then, the following assertions hold true

1) if w is S-linearly independent the family λw is S-linearly independent;
2) S span(w) = S span(λw);
3) if w is S-linearly independent, for each u ∈ S span(w), one has

[u | λw] = (1/λ) [u | w].

Proof. 1) Let a ∈ S ′m be such that
∫

Rm a(λw) = 0S′
n
, one has

0S′
n

=

∫

Rm

a(λw) =

∫

Rm

(λa)w,

thus, because w is S-linearly independent one has λa = 0S′
n
. Since λ is

different form 0 at every point we can conclude a = 0S′
n
.

2) Let u ∈ S span(w). Then, there exists an a ∈ S ′m such that

u =

∫

Rm

aw.

Now, one has

u =

∫

Rm

(a
λ

)
(λw) ,

so u ∈ S span(λw), and hence S span(w) ⊆ S span(λw). Viceversa, let u ∈
S span(λw). Then, there exists an a ∈ S ′m such that u =

∫
Rm a(λw). Now, one

has

u =

∫

Rm

(λa)w,

and hence u ∈ S span(w), hence S span(λw) ⊆ S span(w). Concluding
S span(w) = S span(λw).

3) For any u ∈ S ′n, one has u =
∫

Rm [u | w]w, hence

u =

∫

Rm

(
1

λ
[u | w]) (λw) .

10. Spectral S-expansion and S-diagonalizable operators

In the following we shall use the notation

S End(S ′n) = S Hom(S ′n,S ′n).

Let D,C be two vector spaces and A ∈ Hom(D,C). The set of all the eigen-
vectors of the operator A is denoted by EV(A) and is called the family of the
eigenvectors of A. The set of all the eigenvalues of the operator A is denoted
by eσ(A); moreover the eigenspace relative to an eigenvalue a ∈ K is denoted
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by |a〉A . Moreover Sind (Rm,S ′n) is the set of the S-linearly independent fam-
ilies in S ′n indexed by Rm.

Theorem 10.1 (of continuous spectral expansion). Let A ∈ S End(S ′n),
f ∈ OM (Rm,K) and v ∈ Sind (Rm,S ′n) such that, for each p ∈ Rm, one has
A(vp) = f(p)vp, i.e. A(v) = fv. Then, for each u ∈ S span (v), one has

A(u) =

∫

Rm

f [u | v] v.

Proof. For each u ∈ S span(v), one has

A(u) = A

(∫

Rm

[u | v] v

)
=

∫

Rm

[u | v]A (v) =

∫

Rm

[u | v] (fv)

=

∫

Rm

(f [u | v]) v.

In fact, the third equality holds because,

A(v)p = A(vp) = f(p)vp = (fv)(p),

and the fourth because∫

Rm

[u|v] (fv) (φ) = [u|v] ((fv)∧ (φ)) = [u|v] (fv̂ (φ)) = (f [u|v])(v̂ (φ))

=

∫

Rm

(f [u|v])v.

This concludes the proof.

Let X ⊆ S ′n be a subspace of S ′n, A ∈ Hom(X,S ′m) and v ∈ S (Rm,S ′n)
be a family of distributions. The superposition of v with respect to A, is the
operator ∫

Rm

Av : X → S ′n : u 7→
∫

Rm

A(u)v.

In the condition of the above theorem one has: A|X =

∫

Rn

f [· | v] v, where

X = S span(v).
The above theorem holds in the particular case in which there exists an

S-basis of the space S ′n constituted by eigenvectors of the operator A. In this
case we give the following

Definition 10.1 (of S-diagonalizable operator). Let A ∈ S End(S ′n). The
operator A is said S-diagonalizable if there exist a function a ∈ OM (Rn,K)
and an S-basis α ∈ SB (Rn,S ′n) such that, for every p ∈ Rn, one has A(vp) =
a(p)αp, i.e., A(v) = aα.

The origin of the preceding definition is natural: concerning the represen-
tation of A in the basis of the definition, one has

(A)α = aδ.
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In other words:
an S-linear operator is S-diagonalizable if and only if there exists a S-basis

of the space S ′n in which its representation is S-diagonal.
We recall that an S-matrix is said diagonal iff it is of the form aδ for some

OM -function a.
Concerning the topological structure of the eigenvalues-spectrum of an

S-diagonalizable operator we have the following definitive results (I thank
very much an anonymous referee, since, to answer his questions, I found and
proved them):

Theorem 10.2 (on the topological structure of the eigenvalues-spec-
trum of an S-diagonalizable operator). Let A be an S-diagonalizable operator.
Then, if a is the ordered system of eigenvalues of A associated to an eigenbasis
of A for S ′n, we have

im a = eσ(A).

In particular the eigenvalues-spectrum of A is a connected subset of C.

We need a lemma:

Lemma 10.1. Let u ∈ S ′n be a distribution and f be a smooth function.
Assume that

fu = 0S′
n
.

Then u vanishes on the complement of the zero-level set of f .

Proof. Consider the set

Ω = {p ∈ Rn : f(p) 6= 0} = Rn \ f←(0),

we have to prove that for every test function φ ∈ D(Ω) is u (φ) = 0. Let
φ ∈ D(Ω), the restriction f|Ω does not vanish, so the quotient φ/f|Ω is defined
on Ω, it is smooth and it belongs to D(Ω). Now

u (φ) = u
(
fφ/f|Ω

)
= fu

(
φ/f|Ω

)
= 0,

as desired. So the distribution u must be vanish in the open set
{p ∈ Rn : f(p) 6= 0}.

Proof of the theorem 10.2. Since A is an S-diagonalizable operator
then there exist a function a ∈ OM (Rn,K) and an S-basis α ∈ SB (Rn,S ′n)
such that, for every p ∈ Rn, one has A(αp) = a(p)αp, i.e., A(α) = aα.

We shall prove that the eigenvalues-spectrum of A is im a.
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Assume that e is an eigenvalue of A then there exists a non zero vector η
such that A(η) = eη. We then have

Aη = A

∫

Rn

[η | α]α =

=

∫

Rn

[η | α]Aα =

=

∫

Rn

[η | α] aα =

=

∫

Rn

a [η | α]α,

but on the other hand

Aη = eη =

= e

∫

Rn

[η | α]α =

=

∫

Rn

e [η | α]α.

from the S-independence of α we have

a [η | α] = e [η | α] ,

then

(a− e) [η | α] = 0.

so the distribution [η | α] must be vanish in the open set

Ωη = {p ∈ Rn : a(p) 6= e} = Rn \ a←(e).

Assume by contradiction that e /∈ im a, then there are no p such that a(p) = e,
and then

Ωη = Rn,

this implies

[η | α] = 0S′
n
,

so we deduce that η is null, and this is an absurd. We then saw that eσ(A) ⊆
im a, the converse is true by definition of eigenbasis.

Concluding the eigenvalues-spectrum of A is the image of a:

eσ(A) = im a = a(Rn),

that is a connected set because a is continuous and Rn is connected.

Corollary 10.1. If the eigenvalues-spectrum of an S-diagonalizable op-
erator is real then it is an interval of the real line (eventually degenerate).
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Only a question remains open:
What about the so called residual spectrum and continuous spectrum of

an S-diagonalizable operator ?
Recall that

1) the eigenvalues-spectrum is the set of all the complex numbers z such
that the z-characteristic operator of a, that is the operatorCz = A−zI ,
is not injective;

2) the continuous spectrum is the set of all z such that Cz is invertible
(injective and surjective) but with inverse not continuous;

3) the residual spectrum is the set of all z such that Cz is injective and
its image is not dense in the space of tempered distribution.

Since A is an S-diagonalizable operator then there exist a function a ∈
OM (Rn,K) and an S -basis α ∈ SB (Rn,S ′n) such that, for every p ∈ Rn, one
has A(αp) = a(p)αp, i.e., A(α) = aα. Assume that z is not an eigenvalue of
A, then Cz = A− zI is injective. Moreover

Cz(αp) = A(αp) − zI(αp) = a(p)αp − zαp = (a(p) − z)αp.

Because z is not an eigenvalue of A, the function a − z never vanishes, and
then the family (a− z)α is yet an S -basis of the space.

Moreover, it’s simple to prove that Cz is surjective. In fact, let β =
(a − z)α, and let u be a tempered distribution, since β is an S-basis of the
space S ′n, u is an S-linear superposition of β, moreover

u =

∫

Rn

[u | β]β =

∫

Rn

[u | β]Cz(α) = Cz

(∫

Rn

[u | β]α

)
,

and so u ∈ Cz(S ′n). Consequently Cz is even surjective, and hence the residual
spectrum is empty.

Even more, Cz is S-linear and then it is the transpose of a certain weakly
continuous (i.e., strongly continuous) endomorphisms on the Frèchet space Sn.
This operator is bijective as Cz , so by the Banach inverse operator theorem
it is a topological isomorphism. And even more, by the Dieudonnè-Schwartz
theorem Cz is a topological isomorphism too. So the continuous spectrum of
an S-diagonalizable operator is always empty.

This concludes completely the study of the spectrum of an S-diagonali-
zable operator.

11. The building of some basic observables of quantum
mechanics

Example 11.1 (The position operator in one dimension). A particle mov-
ing on the real line can be in a state in which its position is x ∈ R. It’s natural
to assume that this state can be represented by the distribution δx, so, if we
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denote by Q the observable “position”, we have Qδx = xδx, i.e., Qδ = IRδ,
applying the above theorem one has

Q (u) =

∫

R

IR [u | δ] δ =

∫

R

(IRu) δ = IRu.

This justifies the definition of the position operator, which is now possible to
define, more naturally, as the only observable that in the state δx assume the
value x, for every real x.

Example 11.2 (The position operator in three dimensions). A particle
moving in the space can be in a state in which its position is the vector x ∈ R3.
It’s natural to assume that this state can be represented by the distribution
δx. In this state the position has the three components x1, x2, x3. Then,
if we denote by Q = (Q1, Q2, Q3) the triple of operators representing the
observable “position” in three dimensions, we have Qδx = (x1δx, x2δx, x3δx),
i.e., Qδ = (I1δ, I2δ, I3δ). Let us apply the decomposition theorem to the i-th
component, one has

Qi (u) =

∫

R3

Ii [u | δ] δ =

∫

R3

(Iiu) δ = Iiu.

This justifies the definition of the position operator, which is now possible to
define, more naturally, the only observable that in the state δx assume the
vector-value x.

Example 11.3 (The momentum operator). Following De Broglie, we as-
sume that the state of a particle moving on the real line with momentum

p ∈ R be represented by the regular distribution
[
e

i(p|·)
~

]
. If we denote by P

the observable “momentum”, we have

P
[
e

i(p|·)
~

]
= p

[
e

i(p|·)
~

]
.

Putting f =
([
e

i(p|·)
~

])
p∈R

, we have thus

Pf = IRf.

Applying the above theorem, one has

P (u) =

∫

R

IR [u | f ] f =

(
i

−1/~

)1(∫

R

[u | f ] f

)′
= −i~u′,

Example 11.4 (of observable with a continuous degenerate spectrum
not coinciding with the whole real line). Following De Broglie, we assume
that the state of a particle moving on the real line with momentum p ∈ R

be represented by the regular distribution
[
e

i(p|·)
~

]
. If we denote by T the

observable “Hamiltonian of a classic free particle in R”, we have

T
[
e

i(p|·)
~

]
=

p2

2m

[
e

i(p|·)
~

]
.



294 D. CARFÌ

Putting f =
([
e

i(p|·)
~

])
p∈R

, we have

Tf =
p2

2m
f.

Then, applying the above theorem, one has

T (u) =

∫

R

(IR)
2

2m
[u | f ] f =

1

2m

∫

R

(IR)
2

[u | f ] f =

=
1

2m

(
i

−1/~

)2(∫

R

[u | f ] f

)′′
= − ~2

2m
u′′.

Note that the spectrum of T is the set of non-negative real numbers and that
the dimension of every eigenspace is 2.

Actually, the spectral theory treated on the paper requires only the con-
cept of S-diagonalizable operator, because the spectral decomposition con-
cerns the S-diagonalizable operators.

Nevertheless, for completeness, we give the definition of S-observable,
that is a particular S-diagonalizable operator.

Definition 11.1 (of observable with a continuous range of fundamental
eigenstates). Let A ∈ S End(S ′n). The operator A is said to be an observable
with a continuous range of fundamental eigenstates (or an observable with an
Seigenbasis or more simply an Sobservable) if it is S diagonalizable and it is
the extension of an adjointable operator on Sn.

For adjointable operator on Sn, we give the following definition.

Definition 11.2. A strongly continuous endomorphism A : Sn → Sn is
said to be adjointable if there is another strongly continuous endomorphism
B : Sn → Sn such that

〈Ax|y〉 = 〈x|By〉 ,
for every x and y in Sn, where 〈· | ·〉 is the standard Dirac’s scalar product on
Sn.

In the above conditions the operator B is uniquely determined and it is
denoted by A†. Moreover, it is possible to prove that an adjointable operator
A is extendible to an S-linear operator on S ′n.

The most important kind of Sobservable is the following one. An ad-
jointable operator A : Sn → Sn is said to be symmetric or Hermitian if
A† = A.

If an S-observableA ∈ S End(S ′n) is the extension of a symmetric operator
it is said a real S -observable.

Example 11.5 (of observable with a singular spectrum). If we regard
the constant function of value c as an observable: Mc (u) = cu, we have
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that Mc has c as unique eigenvalue. On the other hand, every S -basis is
an S -eigenbasis of Mc. So Mc is an observable with a continuous range of
fundamental eigenstates but with a pointwise spectrum.

Now, let v an arbitrary S-basis of the space, we have

Mc(u) = cu = c

∫

Rn

[u | v] v =

∫

Rn

c [u | v] v,

for every tempered distribution u. The spectral decomposition then holds,
note that the superposition is performed on the set indexing the S-basis and
not on the spectrum of the operator, moreover it is not an integral decompo-
sition but an expansion via superposition.

Example 11.6 (other observables with a continuous degenerate spectrum
not coinciding with the whole real line). Let us consider the energy of a
relativistic particle moving on the real line with rest mass m0 and momentum
p:

E(x, p) = m0c
2 + pc.

Consider its square

E2(x, p) = m2
0c

4 + p2c2,

and the corresponding operator on S ′1
H2 = Mm2

0c
4 + c2~2 (·)′′ .

It’s simple to prove that the distribution

fp =
[
e

i(p|·)
~

]

is an eigenvector of H2 with corresponding eigenvalue m2
0c

4 + p2c2. Conse-
quently, being

f =
([
e

i(p|·)
~

])
p∈R

an S-basis, H2 is an S-observable. Concerning its spectrum we have

eσ(H2) =
[
m2

0c
4,+∞

[
.

If we consider the operators on S ′1, defined by

H− (fp) =

(
−
√
m2

0c
4 + p2c2

)
fp,

and

H+ (fp) =

(√
m2

0c
4 + p2c2

)
fp,

we deduce simply that

eσ(H−) =
]
−∞,−m0c

2
]

and
eσ(H+) =

[
m0c

2,+∞
[
.
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The operators H− and H+ are the Hamiltonian of a relativistic antiparticle
and particle respectively.

Recall that to define an S-linear operator is enough to give its values on
an S-basis.

12. The image of an S-diagonalizable operator under a
numerical function

The purpose of this section is to introduce a functional calculus for the S-
diagonalizable operators. Our goal is to state and prove a theorem that allow
us to give a precise meaning for the action of a numerical function, defined
on the spectrum of a certain operator A, on A itself.

We recall that if A is an S-diagonalizable operator, by EV (A) we denote
the set of all the eigenvectors of A, σ(A) the set of all the eigenvalues of A,
vA : EV (A) → C the mapping that sends every eigenvector u of A to its
unique eigenvalue. In other words, vA(u) is the unique c such that Au = cu.

First of all we need a lemma.

Lemma 12.1. Let M ∈ N, O be an open subset of K, e ∈ O, r : O → K be
a CM -function such that r(i)(e) = 0 for every integer i ∈ N0(≤M). Then, for
every CM -function a : Rn → K such that a (Rn) ⊆ O we have ∂p(r◦a)(x) = 0,
for every x ∈ a−(e) and for every multi-index p ∈ Nn0 such that lenght p ≤M .

Proof. We see the proof in the case n = 1, the general case is wholly
similar. Moreover, we shall prove a more general equality, exactly we shall

prove that
(
r(j) ◦ a

)(i)
(x) = 0, for every i, j ∈ N0(≤M) such that i+ j ≤M ,

and for every x such that a(x) = e (in the case j = 0 we obtain the statement).
We proceed by induction on s = i + j. If i + j = 0 then i = j = 0, and

we have to prove that r(a(x)) = 0 for every x ∈ a−(e), i.e., r(e) = 0, and
this is true by assumption. If i + j = 1, we have to prove that r′(a(x)) = 0
and (r ◦ a)′(x) = 0. The first is r′(e) = 0, true by assumption; the second is
r′(a(x))a′(x) = r′(e)a′(x) = 0, still by assumption.

Now we assume (by induction) that, fixed a positive integer k < M ,(
r(j) ◦ a

)(i)
(x) = 0 hold true, for every i, j ∈ N0(≤ M) such that i + j ≤

k < M , and for every x such that a(x) = e. We have to prove that(
r(j) ◦ a

)(i)
(x) = 0 hold true, for every i, j ∈ N0(≤ M) such that i + j =

k + 1 ≤ M , and for every x such that a(x) = e. In fact, if i+ j = k + 1, we
have two possibilities: i = 0, and we have nothing to prove; i > 0, in this case
we have

(
r(j) ◦ a

)(i)

(x) =

((
r(j) ◦ a

)′)(i−1)

(x) =
((
r(j+1) ◦ a

)
a′
)(i−1)

(x) =
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=

i−1∑

w=0

(
i− 1
w

)(
r(j+1) ◦ a

)(w)

(x) (a′)
(i−1−w)

(x) =

(by Leibnitz formula)

=

(
i− 1
i− 1

)(
r(j+1) ◦ a

)(i−1)

(x)a(i−i+1)(x) =

(by inductive assumption)

=
(
r(j+1) ◦ a

)(i−1)

(x)a′(x),

note that j + 1 + w = k + 1 = i+ j if and only if w = i− 1. At this point, if
i = 1 we can conclude, if i > 1, applying yet the previous result, we have

(
r(j) ◦ a

)(i)

(x) =
(
r(j+2) ◦ a

)(i−2)

(x) (a′(x))
2
.

In general, if i ≥ q, for some positive integer q, applying q times the previous
result, we have

(
r(j) ◦ a

)(i)

(x) =
(
r(j+q) ◦ a

)(i−q)

(x) (a′(x))
q
.

In particular,

(
r(j) ◦ a

)(i)

(x) =
(
r(j+i) ◦ a

)
(x) (a′(x))

i
= r(k+1)(e) (a′(x))

i
= 0,

as desired.

Theorem 12.1 (basic lemma on the functions of an S-diagonalizable op-
erator). Let A be an S -diagonalizable operator with an infinite spectrum, let
fbe a real or complex smooth function defined on an open set of K containing
the spectrum σ(A), such that f ◦ vA ◦ α is of class OM for some eigenbasis α
of A.

Then, there is a unique S-diagonalizable operator B such that, for every
eigenvector η of A, the following relation holds

B(η) = f(vA(η))η.

In other words, B is such that vB = f ◦ vA.
Moreover, if α is an eigenbasis of A and a = vA ◦ α is the ordered family

of the eigenvalues associated with α, for every tempered distribution uwe have

B(u) =

∫

Rn

(f ◦ a) [u | α]α.

Proof. Because A has an infinite spectrum, vA is not a constant func-
tion.
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Existence. Let α be an S-eigenbasis of A. Setting a = vA ◦ α, consider
the operator defined by

Bu =

∫

Rn

(f ◦ a) [u | α]α,

for every distribution u. It is obviously S-linear.
Concerning the S-diagonalizability, we have

Bαp =

∫

Rn

(f ◦ a) [αp | α]α =

=

∫

Rn

[αp | α] (f ◦ a)α =

=

∫

Rn

δp (f ◦ a)α =

= (f ◦ a) (p)αp =

= f(a(p))αp =

= f(vA(αp))αp.

So α is an eigenbasis for B too, and then B is S -diagonalizable. More,
the defined operator verifies the required property for the basis α.

We shall see that the property holds for every eigenvector.
If η is an eigenvector of A one has

Aη = A

∫

Rn

[η | α]α =

=

∫

Rn

[η | α]Aα =

=

∫

Rn

[η | α] aα =

=

∫

Rn

a [η | α]α,

but on the other hand

Aη = vA(η)η = vA(η)

∫

Rn

[η | α]α =

∫

Rn

vA(η) [η | α]α.

from the S-independence of α we have

a [η | α] = vA(η) [η | α] ,

then, putting e = vA(η), we have

(a− e) [η | α] = 0S′
n
.

Because [η | α] is a tempered distribution, then it is of finite order, say of
order ≤M . By the Taylor’s formula, there is a function r such that

r(i)(e) = 0,
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for every 0 ≤ i ≤M , and such that

f(y) =

M∑

k=0

f (k)(e)

k!
(y − e)k + r(y),

for every y in the spectrum of A. Then, for every x, one has

f(a(x)) =

M∑

k=0

f (k)(e)

k!
(a(x) − e)k + r(a(x)),

That is,

f ◦ a =
M∑

k=0

f (k)(e)

k!
(a− e)k + r ◦ a = f(e) +

M∑

k=1

f (k)(e)

k!
(a− e)k + r ◦ a.

Hence, multiplying by [η | α], and taking into account that,for k ≥ 1,

(a− e)k [η | α] = (a− e)k−1(a− e) [η | α] = 0S′
n
,

we deduce

(f ◦ a) [η | α] = f(e) [η | α] +

M∑

k=1

f (k)(e)

k!
(a− e)k [η | α] + (r ◦ a) [η | α] =

= f(e) [η | α] + (r ◦ a) [η | α] .

Note that (by the previous lemma) r◦a must be vanish with all its derivatives
of order ≤M , in the closed set a−(e). Moreover, since [η | α] must vanish in
the complement of this set, we have

supp [η | α] ⊆ a−(e).

Thus r ◦ a vanishes on the support of [η | α] with all its derivatives of order
≤ M , and then, by a classic theorem on the distributions with finite order,
we have

(r ◦ a) [η | α] = 0S′
n
,

and consequently,
(f ◦ a) [η | α] = f(e) [η | α] .

Finally, we can conclude

Bη = B

∫

Rn

[η | α]α =

∫

Rn

[η | α]Bα =

=

∫

Rn

[η | α] (f ◦ a)α =

∫

Rn

(f ◦ a) [η | α]α =

=

∫

Rn

f(e) [η | α]α = f(e)

∫

Rn

[η | α]α =

= f(e)η.

Uniqueness. Two linear operators coinciding on a same S -basis are
equals.
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The preceding theorem allow us to give the following definition

Definition 12.1 (the functions of an S -diagonalizable operator). Let A
be an S-diagonalizable operator. Let EV (A) be the set of the eigenvectors of
A, eσ(A) the set of all the eigenvalues of A, vA : EV (A) → C the mapping
that sends every eigenvector u of A to its unique eigenvalue (vA(u) is the
unique c such that Au = c).

Let f be a complex function defined on the eigenvalues-spectrum eσ(A)
such that f ◦ vA ◦ α is smooth for some eigenbasis α of A.

The unique S-diagonalizable operator B such that, for every eigenvector
u of A is

Bu = f(vA(u))u,

that is such that vB = f ◦vA is called the image of A under f and it is denoted
by f(A).

Example 12.1. Let t be a real number. Consider the function ft : R → C

defined by

ft(x) = e−
it
~
x.

Let H be an S-diagonalizable operator, and let η be a basis such that

Hη = Eη,

for some smooth real function E. Let ψ0 ∈ S ′1 and let ψ (t) be the vector state
defined by

ψ (t) =

∫

R

e−
it
~
E [ψ0 | η] η.

Then one has
ψ (t) = e−

it
~
H(ψ0),

where with e−
it
~
H we denoted the operator ft(H).

Acknowledgements.
I desire to thank an anonymous referee whose sharp remarks, questions

and requests allow me to enrich greatly the final version of the paper.

References

[1] J. Barros-Neto, An Introduction to the theory of distributions, Marcel Dekker, Inc.
NewYork, 1973.

[2] N. Boccara, Functional analysis, an introduction for physicists, Academic press, Inc.
1990.

[3] A. Bohm and M. Gadella, Dirac kets, Gamow vectors and Gel’fand triplets. The
rigged Hilbert space formulation of quantuum mechanics, Lecture Notes in Physics
348, Springer-Verlag, Berlin, 1989.

[4] D. Carf̀ı, S-linear operators in quantum mechanics and in economy, Appl. Sci. 6
(2004) 7-20.

[5] D. Carf̀ı, Dirac-orthogonality in the space of tempered distributions, J. Comput. Appl.
Math. 153 (2003), 99-107.



S-DIAGONALIZABLE OPERATORS IN QUANTUM MECHANICS 301

[6] P.A.M. Dirac, The principles of Quantum Mechanics, Oxford Claredon press, 1930.
[7] G. Gilardi, Analisi 3, McGraw-Hill, 1994.
[8] J. Horvath, Topological Vector Spaces and Distributions (Vol.I), Addison-Wesley Pub-

lishing Company, 1966.
[9] R. Shankar, Principles of Quantum Mechanics, Plenum Press, 1994.

D. Carf̀ı
Faculty of Economics
University of Bergamo
Via dei Caniana 2, 24127 Bergamo
Italy
E-mail : davidcarfi@eniware.it

Received : 17.10.2003.

Revised : 26.7.2004. & 19.12.2004.


