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CONVEXIFIABLE FUNCTIONS IN INTEGRAL CALCULUS

Sanjo Zlobec

McGill University, Canada

Abstract. A function is said to be convexifiable if it becomes
convex after adding to it a strictly convex quadratic term. In this paper
we extend some of the basic integral properties of convex functions to
Lipschitz continuously differentiable functions on real line. In particular,
we give estimates of the mean value, a ”nonstandard” form of Jensen’s
inequality, and an explicit representation of analytic functions. It is also
outlined how one can use convexification to study ordinary differential
equations.

1. Introduction

For a given continuous f : R → R, defined on a bounded convex set I
of the real line R, consider the function ϕ : R × R → R defined by ϕ(t, α) =
f(t) 1

2αt
2. If ϕ(t, α) is convex on I for some α = α∗, then ϕ(t, α) is said

to be a convexification of f and α∗ is its convexifier on I . Function f is
convexifiable if it has a convexification. If α∗ is a convexifier of f , then so
is every α ≤ α∗. Indeed, ϕ(t, β) = ϕ(t, α∗) + 1

2βt
2 is convex for any β ≥ 0,

being the sum of two convex functions. Convexifiable functions have been
studied on Rn in [6, 7, 8] and characterized using the fact that for continuous
functions convexity and midpoint convexity are equivalent notions [3, 4]. The
class of convexifiable functions is large: Besides convex and twice continuously
differentiable functions [6], it has recently been shown that this class also
includes all continuously differentiable functions with Lipschitz derivative [8],
i.e., loosely speaking, almost all smooth functions of practical interest.
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In this paper we study only convexifiable functions of a single scalar vari-
able. This framework enables us to use integral calculus. Two new charac-
terizations of convexifiable functions are given in Section 2. The estimates
for the integral mean-value are extended from convex function [4, 5] to con-
vexifiable functions in Section 3. An integral form of Jensen’s inequality for
generally non-convex functions is derived in Section 4. A non-integral for-
mulation of this inequality in Rn has been recently given in [7]. Since every
analytic function is convexifiable, we obtain properties of analytic functions
as special cases, in Section 5. Finally it is outlined how one can ”convexify”
initial-value problems in ordinary differential equation in Section 6.

2. Scalar convexifiable functions

We study continuous functions f : R → R on a compact interval I =
[a, b], a < b. Convexity of f is defined by the behavior of f at three points in
I , say, s ≤ t ≤ ξ where t = λs + (1 − λ)ξ for some 0 ≤ λ ≤ 1. Function f is
said to be convex on I if at all these points

f(λs+ (1 − λ)ξ) ≤ λf(s) + (1 − λ)f(ξ).

One can characterize convexifiable functions by the sign of a particular deter-
minant. First, for s < t < ξ denote

X =




ξ − t
s− ξ
t− s


 , B =




s2

t2

ξ2


 , Φ =




f(s)
f(t)
f(ξ)


 , V =




1 s s2

1 t t2

1 ξ ξ2


 .

Note that detV = (st)(t− ξ)(ξ − s) > 0.

Theorem 2.1 (Determinant Characterization of Convexifiable Function).
Function f : I → R is convexifiable if, and only if, there exists a number α
such that

(1) det




1 1 1
s t ξ

f(s) f(t) f(ξ)


 ≥ 1

2
α detV

for every three points s < t < ξ in I.

Proof. This result with α = 0 is a characterization of convex function;
e.g., [2, 4, 5]. When applied to the convexification, it yields (1).

For three important classes of functions, a convexifier α can be given
explicitly. If f is convex then one can specify α = 0. If f is twice continuously
differentiable on I , then a convexifier is α = λ∗ = mint∈I f

′′(t), e.g., [6]. If
f is Lipschitz continuously differentiable, i.e., |f ′(s) − f ′(t)| ≤ L|s − t| for
every s, t ∈ I and some constant L, then α = −L is a convexifier, e.g., [8].
Convexifiable functions can be represented explicitly:
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Theorem 2.2 (Explicit Representation of Convexifiable Function). Func-
tion f : I → R is convexifiable if, and only if, there exists a number α such
that

(2) f(t) = f(c) +
1

2
α(t2c2) +

∫ t

c

g(ξ)dξ

where c, t ∈ I, c < t, and g = g(·, α) : I → R is a non-decreasing right-
continuous function.

Proof. Inequality (2) with α = 0 is a characterization of convex func-
tion, e.g., [5, Theorem 1.13]. If f is convexifiable then there is an α such that
ϕ(t, α) is convex in t. Hence (2) holds for this α. On the other hand, if (2)
holds then, after back substitution, ϕ(t, α) is a convexification.

Example 2.3. Let us check whether, e.g., f(t) = −|t| is convexifiable on
I = [−1, 1]. Inequality (1), at s = −ε, t = 0, ξ = ε, ε > 0 yields α ≤ −2/ε,
which is unbounded from below as ε → 0. Hence f is not convexifiable.
This shows that convexification by quadratic is not suitable for non-smooth
functions. On the other hand, take, e.g., f(t) = cos kt. This f is locally
strictly concave around t = 0. But it is convexifiable on t ∈ I = [−π, π] with
convexifier α = −k2.

Example 2.4 (Bound on Fourier Coefficients). If f : [0, 2π] → R is con-
tinuous and convexifiable with a convexifier α, then for k ∈ {1, 2, . . .} we
estimate the Fourier coefficient:

ak =
1

π

∫ 2π

0

f(t) cos ktdt ≥ 2
α

k2
.

Indeed, if f were convex, then one could set α = 0 and hence it follows that
ak ≥ 0 by, e.g., [4, p.8; Problem G]. We obtain the new inequality after
substituting f by its convexification ϕ(t, α) and integration.

3. Integral mean value

One of the fundamental results of integral calculus is the mean value
theorem. It says that for a continuous function f on I = [a, b], a < b, there
exists ξ ∈ [a, b] such that

f(ξ) =
1

b− a

∫ b

a

f(t)dt.

The number f(ξ) is interpreted as the mean (average) value of f on the interval
[a, b]. If f : (a, b) → R is a convex function then it is well known that the
mid-point value of f can not be higher than its mean value, i.e.

(3) f((a+ b)/2) ≤ 1

b− a

∫ b

a

f(t)dt.

An extension from convex to convexifiable function follows:
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Theorem 3.1 (Mean-Value Bound for Convexifiable Function; [8]). Con-
sider a continuous convexifiable function f : R → R with a convexifier α on
an open interval (a, b) ∈ R. Then

∫ t

s

f(ξ)

t− s
dξ ≤ 1

2
[f(s) + f(t)]

1

12
α(ts)2

for every a < s < t < b.

A composite version of this result follows. First we recall it for a convex
function:

Theorem 3.2 (Integral Mean-Value Bound for Convex Composite Func-
tion [5]). Let f : (a, b) → R be a convex function and let g : [c, d] → (a, b) be
continuous. Then

(4) f

(
1

d− c

∫ d

c

g(t)dt

)
≤ 1

d− c

∫ d

c

f(g(t))dt.

If g(t) = t, then (4) recovers (3). One may replace g by a function which
is only integrable in the Lebesque sense over [c, d]. This estimate is important
in probability theory: If X is a probability space, with probability measure µ
(so that µ(X) = 1) and if f : (a, b) → R is µ-integrable, then

f

(∫

X

gdµ

)
≤
∫

X

(f ◦ g) dµ.

In probabilistic terms: if x is a random variable on X , then f(Ex) ≤ E[(f(x)],
where Ex is the expectation of x. The above results can be extended to
composite convexifiable functions:

Theorem 3.3 (Integral Mean-Value Bound for Composite Convexifiable
Function). Let f : (a, b) → R be convexifiable with a convexifier α and let
g : [c, d] → (a, b) be continuous. Then

(5) f

(
1

d− c

∫ d

c

g(t)dt

)
≤ 1

dc

∫ d

c

f(g(t))dt+
1

2
αR(c, d; g)

where

R(c, d; g) =

[
1

d− c

∫ d

c

g(t)dt

]2

− 1

d− c

∫ d

c

[g(t)]2dt.

Proof. Since f is convexifiable, ϕ(t, α) = f(t) 1
2αt

2 is convex in t for
any convexifier α. Hence (4) applies. After manipulation with integrals one
obtains (5).

Remark 3.4 (Special Cases). Let f : (a, b) → R and g : [c, d] → (a, b)
be continuous on (a, b). Then in Theorem 3.3 one can specify α = 0, if
f is convex on (a, b) (This is (4)). Also α = λ∗ = mint∈I f

′′(t), if f is
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twice continuously differentiable or analytic on (a, b), and α = −L, if f is
continuously differentiable with Lipschitz derivative and some constant L on
(a, b).

4. Integral Jensen’s inequality

Jensen’s inequality has been formulated and studied in the literature for
convex functions. Recently a vector-space version has been given for non-
convex functions in [7]. Here we give an integral formulation of this ”non-
convex result”.

Theorem 4.1 (Integral Jensen’s Inequality for Convexifiable Function).
Let f : (a, b) → R be convexifiable with a convexifier α and let g : [c, d] → R

be integrable with a < g(t) < b. If λ : [c, d] → R is non-negative, if both
∫ d

c

λ(t)dt = 1, and λg is integrable on [c, d]

then

f

(∫ d

c

λ(t)g(t))dt

)
≤
∫ d

c

λ(t)f(g(t))dt +
1

2
αJ(c, d; g),

where

J(c, d; g) =

[∫ d

c

λ(t)g(t)dt

]2

−
∫ d

c

λ(t)[g(t)]2dt.

Proof. The inequality for convex functions (case: α = 0) is given in, e.g.,
[4, p. 193]. We apply this result to the convexification ϕ(t, α) = f(t) 1

2αt
2.

Remark 4.2. ”Correctifiers” R(c, d; g) and J(c, d; g) do not depend on
the function f .

5. Analytic functions

Since every analytic function is twice continuously differentiable, it is
convexifiable and one can specify, e.g., λ∗ = mint∈I f

′′(t) as a convexifier,
e.g., [8]. The above results are readily applicable. Some of the implications
are listed below.

Corollary 5.1. If f : I → R is analytic, then for every α ≤ λ∗, (1)
holds at every three points s < t < ξ in I.

Corollary 5.2 (Explicit Representation of Analytic Function). If f :
I → R is analytic, then, for every α ≤ λ∗, f is of the form (2), where c, t ∈ I
and g = g(·, α) : I → R is a non- decreasing right-continuous function.

Being convexifiable, an arbitrary analytic function, when considered on a
compact interval, is the difference of an analytic convex function and a strictly
convex quadratic.
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6. Convexification of differential equations

Using the idea of convexification one can study ordinary differential equa-
tions. Assuming that solution is a convexifiable function one can look for it
in the form y(t) = ϕ(t, α) + 1

2αt
2 where α is a convexifier. After substitution

for y, the differential equation in y becomes a differential equation in ϕ. The
novelty here is that the new transformed differential equation has a convex
solution. Since the theory of convex functions is well studied, this approach
may have theoretical and numerical advantages over the usual approaches.
The convexification applies also to the initial conditions.

Example 6.1 (Convexification of ODE). Consider the initial value prob-
lem

dy

dt
+ y = 0, y(0) = −2.

The solution is a concave function y = −2et. It is also obtained after convex-
ification: substitution for y = ϕ+ 1

2αt
2 yields the ”convexified” problem

dϕ

dt
+ ϕ = −α(t+

1

2
t2), ϕ(0) = −2.

Its solution , with some convexifier α, is ϕ = −2e−t− 1
2αt

2. Back substitution
yields the answer to the original problem.

Since all Lipschitz continuously differentiable functions are convexifiable,
this approach is applicable, loosely speaking, to almost all initial value prob-
lems describing real-life situations. In contrast, related results in the literature
typically deal with the behavior of the entire set of solutions under the actions
of various transformation groups, not with individual solutions.
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