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IDENTITIES WITH DERIVATIONS ON RINGS AND
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Abstract. In this paper we prove the following result. Let m ≥

1, n ≥ 1 be integers and let R be a 2mn(m+n−1)!−torsion free semiprime
ring. Suppose there exist derivations D,G : R → R such that D(xm)xn +
xnG(xm) = 0 holds for all x ∈ R. In this case both derivations D and G
map R into its center and D = −G. We apply this purely algebraic result
to obtain a range inclusion result of continuous derivations on Banach
algebras.

1. Introduction

This research has been motivated by the work of Brešar [11], Lee [20] and
Thaheem [29]. Throughout, R will represent an associative ring with center
Z(R). A ring R is n−torsion free, where n > 1 is an integer, in case nx = 0,
x ∈ R implies x = 0. As usual, the commutator xy − yx will be denoted
by [x, y]. We shall use the commutator identities [xy, z] = [x, z] y + x [y, z]
and [x, yz] = [x, y] z + y [x, z] for all x, y, z ∈ R. Recall that a ring R is
prime if for a, b ∈ R, aRb = (0) implies that either a = 0 or b = 0, and is
semiprime in case aRa = (0) implies that a = 0. An additive mapping D is
called a derivation if D(xy) = D(x)y + xD(y) holds for all pairs x, y ∈ R.
A mapping f of a ring R into itself is called centralizing on R if [f(x), x] ∈
Z(R) holds for all x ∈ R; in the special case when [f(x), x] = 0 holds for
all x ∈ R, the mapping f is said to be commuting on R. The history of
commuting and centralizing mappings goes back to 1955 when Divinsky [15]
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proved that a simple Artinian ring is commutative if it has a commuting
automorphism different from the identity mapping. Two years later Posner
[25] has proved that the existence of a nonzero centralizing derivation on a
prime ring forces the ring to be commutative (Posner’s second theorem). Luh
[21] generalized the Divinsky result, which has been mentioned, to arbitrary
prime ring. Mayne [24] has proved that in case there exists a centralizing
automorphism different from the identity mapping on a prime ring, then the
ring is commutative. A lot of work has been done during the last thirty years
in this field (see [2, 4, 6, 8, 9, 32, 33, 35] where further references can be
found). A result of Brešar [8], which states that every additive commuting
mapping f a prime ring R is of the form f(x) = λx + ζ(x) where λ is an
element of C, the extended centroid of R, and ζ : R → C is an additive
mapping, should be mentioned. For the explanation of the extended centroid
of a semiprime ring and the symmetric Martindale ring of quotients, which
will be denoted by Qs, we refer the reader to [1]. A mapping f : R → R is
called skew-centralizing on R if f(x)x+ xf(x) ∈ Z(R) holds for all x ∈ R; in
particular, if f(x)x+xf(x) = 0 is fulfilled for all x ∈ R, then it is called skew-
commuting on R. Brešar [7] has proved that if R is a 2-torsion free semiprime
ring, and f : R → R is an additive skew-commuting mapping on R, then
f = 0. Thaheem [29] has proved that in case D, G is a pair of derivations
on a semiprime ring R satisfying the equation D(x)x + xG(x) = 0 for all
x ∈ R, then D and G map R into Z(R) and G = −D. Let us point out that
the equation of the type f(x)x + xg(x) = 0 for a pair of operators f and g
on von Neumann algebras and C∗−algebras appears in operator theory; in
particular, in the study of elementary operators and other operator equations
(see [30] and references therein for a detailed account of elementary operators
and other operator equations). Banach algebras in this paper will be over the
complex field. We denote by rad(A) the radical of a Banach algebra A and
by Q(A) the set of all quasinilpotent elements in A. The paper consists of
two sections. Purely algebraic results from the first section are applied in the
second section of the paper to obtain some results concerning derivations in
Banach algebras.

2. Derivations on rings

Let us start with the result below, which has been recently proved by
Thaheem [29].

Theorem A ([29] Theorem 2.2). Let R be a semiprime ring and let
D,G : R → R be derivations. Suppose that D(x)x + xG(x) = 0 holds for all
x ∈ R. In this case D and G map R into Z(R). Besides G = −D.
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Let R be a 2−torsion free semiprime ring. Suppose there exist additive
mappings f, g : R→ R, such that

(1) f(x)x+ xg(x) = 0, x ∈ R

holds for all x ∈ R. Thaheem [29] raised a question for a solution of the
equation above.

In case we have a prime ring, the answer to Thaheem’s question gives the
following result proved by Brešar [11].

Theorem B ([11] Corollary 4.9.). Let R be a prime ring and let f, g :
R → R be additive mappings satisfying the relation (1) for all x ∈ R. In this
case there exist a ∈ Qs and an additive mapping ς : R→ C such that

f(x) = xa+ ς(x), g(x) = −ax− ς(x)

is fulfilled for all x ∈ R.

Let us point out that the identity (1) generalizes both concepts, the con-
cept of commuting and the concept of skew-commuting mappings. We shall
use Theorem B in the sequel. It is our aim in this paper to prove the result
below which, obviously, generalizes Theorem A.

Theorem 2.1. Let m ≥ 1, n ≥ 1 be integers and let R be a 2mn(m+n−
1)!−torsion free semiprime ring. Suppose there exist derivations D,G : R →
R, such that

D(xm)xn + xnG(xm) = 0

is fulfilled for all x ∈ R. In this case D and G map R into Z(R) and D = −G.
In case m = 1, G = −D the above theorem reduces to a result which can

be compared with Theorem 2 in [14] (see also [20]).
In the proof of Theorem 2.1 we shall use the fact that any semiprime ring

R and its maximal right ring of quotients Q satisfy the same differential iden-
tities which is very useful since Q contains the identity element (see Theorem
3 in [19]). For the explanation of differential identities we refer to [13].

Proof of Theorem 2.1. Using full linearization of the relation

(2) D(xm)xn + xnG(xm) = 0, x ∈ R

one obtains ∑

π∈Sm+n

D(xπ(1)...xπ(m))xπ(m+1)...xπ(m+n)

+xπ(1)...xπ(n)G(xπ(n+1)...xπ(n+m)) = 0(3)

for all x1, x2, ..., xm+n ∈ R. According to Theorem 3 in [19] the above relation
holds for all x1, x2, ..., xm+n ∈ Q as well. Substituting x1 = x, x2 = ... =
xm+n = 1, where 1 denotes the identity element, and applying the fact that
D(1) = G(1) = 0 we obtain α(D(x) + G(x)) = 0, for all x ∈ Q, where α
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stands for m(m+ n− 1)!. We have therefore D = −G which proves a part of
the proof and makes it possible to rewrite the relation (3) in the form

∑

π∈Sm+n

D(xπ(1)...xπ(m))xπ(m+1)...xπ(m+n)

−xπ(1)...xπ(n)D(xπ(n+1)...xπ(n+m)) = 0,

for all x1, x2, ..., xm+n ∈ Q. Substituting x1 = x2 = x, x3 = ... = xm+n = 1
we obtain β [D(x), x] = 0, for all x ∈ Q, where β denotes 2mn(m + n − 2)!.
We have therefore

(4) [D(x), x] = 0,

for all x ∈ R. In other words R is commuting on R. It is well known that
any commuting derivation of a semiprime ring maps the ring into its center.
Besides, one can apply Theorem A, but we will proceed the proof for the sake
of completeness. The linearization of the relation (4) gives

(5) [D(x), y] + [D(y), x] = 0, x, y ∈ R.

Putting in the above relation xy for y and applying (4) and (5), we obtain

0 = [D(x), xy] + [D(xy), x] = [D(x), xy] + [D(x)y + xD(y), x]

= [D(x), x] y + x [D(x), y] + [D(x), x] y +D(x) [y, x] + x [D(y), x]

= D(x) [y, x] , x, y ∈ R.

We have therefore
D(x) [y, x] = 0, x, y ∈ R.

The linearization of the above relation gives D(x) [y, z] +D(z) [y, x] = 0 and
in particular for y = D(x)

D(x) [D(x), y] = 0, x, y ∈ R.

The substitution zy for y in the above relation gives

(6) D(x)z [D(x), y] = 0, x, y, z ∈ R.

Putting in the above relation first yz for z, then multiplying the relation
(6) from the left side by y and then subtracting the relations so obtained
one from another we arrive at [D(x), y] z [D(x), y] = 0, x, y, z ∈ R whence
it follows [D(x), y] = 0, x, y ∈ R. We have therefore proved that D maps R
into Z(R). Since G = −D the same holds for G. The proof of the theorem is
complete.

Corollary 2.2. Let m ≥ 1, n ≥ 1 be integers and let R be a noncommu-
tative 2mn(m+n−1)!−torsion free prime ring. Suppose there exist derivations
D,G : R → R, such that

D(xm)xn + xnG(xm) = 0

is fulfilled for all x ∈ R. In this case D = G = 0.
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Proof. An immediate consequence of Theorem 2.1 and Posner’s second
theorem.

A classical result of Posner [25] (Posner’s first theorem), states that in
case we have nonzero derivations D,G : R → R, where R is a 2−torsion free
prime ring, then the mapping x 7→ D(G(x)) cannot be a derivation. This
result in general cannot be proved for semiprime rings (see [3] for the details).
However, in case we have a semiprime ring, one can prove the following result.

Theorem C ([16] Lemma 1.1.9.). Let R be a 2−torsion free semiprime
ring and let D,G : R → R be derivations. Suppose that the relation D2(x) =
G(x) holds for all x ∈ R. In this case D = G = 0.

Theorem C was the motivation for the following result proved by Vukman
[35]. Let R be a 2−torsion free semiprime ring and let D,G : R → R be
derivations, such that the mapping x 7→ D2(x) + G(x) is centralizing on R.
In this case both derivations Dand G are commuting on R.

Our next result is in the spirit of Vukman’s result we have just mentioned.

Theorem 2.3. Let R be a 2-torsion prime ring and Di, Gi : R → R,
i = 1, 2 be derivations. Suppose that

(7) (D2
1(x) +G1(x))x + x(D2

2(x) +G2(x)) = 0

is fulfilled for all x ∈ R. In this case D1 = D2 = 0, G1 = −G2. Derivations
G1 and G2 map R into Z(R).

For the proof of Theorem 2.3 we shall need Theorem B, Theorem C and
the following lemma.

Lemma 2.4 ([36, Lemma 1]). Let R be a semiprime ring. Suppose the
relation axb + cxa = 0 is fulfilled for all x ∈ R and some a, b, c ∈ R. In this
case ax(b+ c) = 0 holds for all x ∈ R.

Proof of Theorem 2.3. Denoting D2
1(x) +G1(x) and D2

2(x) +G2(x)
by F1(x) and F2(x), respectively the assumption of the theorem can be written
in the form

(8) F1(x)x + xF2(x) = 0, x ∈ R.

An easy calculation shows that

(9) F1(xy) = F1(x)y + xF1(y) + 2D1(x)D1(y),

holds for all pairs x, y ∈ R. Of course, we have also

(10) F2(xy) = F2(x)y + xF2(y) + 2D2(x)D2(y), x, y ∈ R.

The linearization of (8) gives

(11) F1(x)y + F1(y)x+ xF2(y) + yF2(x) = 0, x, y ∈ R.
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By substituting yx for y in (11) and applying (9) and (10) we obtain

F1(x)yx + F1(y)x2 + yF1(x)x + 2D1(y)D1(x)x + xF2(y)x

+xyF2(x) + yxF2(x) + 2xD2(y)D2(x) = 0, x, y ∈ R.

The above relation reduces because of (8) and (11) to

(12) xyF2(x) − yF2(x)x + 2D1(y)D1(x)x + 2xD2(y)D2(x) = 0, x, y ∈ R.

Putting xy for y in the above relation we obtain

x2yF2(x) − xyF2(x)x + 2D1(x)yD1(x)x + 2xD1(y)D1(x)x

+2xD2(x)yD2(x) + 2x2D2(y)D2(x) = 0, y ∈ R.(13)

Left multiplication of the relation (12) by x gives

(14) x2yF2(x) − xyF2(x)x + 2xD1(y)D1(x)x + 2x2D2(y)D2(x) = 0,

for all x, y ∈ R.
Subtracting the relation (14) from the relation (13) we arrive at

(15) D1(x)yD1(x)x + xD2(x)yD2(x) = 0, x, y ∈ R.

From the relation (7) and Theorem B it follows that there exists a ∈ Qs
and an additive mapping ς : R → C, such that

(16) D2
1(x) +G1(x) = xa+ ς(x),

and

(17) D2
2(x) +G2(x) = −ax− ς(x)

holds for all x ∈ R. Combining the relation (16) with the relation (17) we
obtain

(18) D2(x) + F (x) = 0, x ∈ R.

where D(x) and F (x) stand for D1(x) + D2(x) and G1(x) + G2(x) + [a, x] ,
respectively. The mapping D is a derivation being the sum of two derivations.
Note that the mapping x 7→ [a, x] is a derivation, which means that F is a
derivation as well being the sum of three derivations. From the relation (18) we
obtain, applying Theorem C, that D = 0. In other words we have D2 = −D1,
which makes it possible to rewrite the relation (15) in the form

D1(x)yD1(x)x + xD1(x)yD1(x) = 0, x, y ∈ R.

According to Lemma 2.4 the above relation gives

D1(x)y(D1(x)x + xD1(x)) = 0.

From the above relation it follows that either D1(x) = 0 orD1(x)x+xD1(x) =
0. In any case

D1(x)x + xD1(x) = 0

holds for all x ∈ R. From the relation above it follows according to Theorem
A or Theorem 2.1 that D1 = 0, which means that D2 = 0 as well. Now the
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relation (7) reduces to G1(x)x + xG2(x) = 0, whence it follows using again
Theorem A or Theorem 2.1 that G1 = −G2 and that both derivations G1 and
G2 map R into Z(R). The proof of the theorem is complete.

3. Derivations on Banach algebras

We start this section with the following theorem.

Theorem 3.1. Let A be a Banach algebra and let D,G : A → A be
continuous linear derivations. Suppose that

D(xm)xn + xnG(xm) ∈ rad(A),

holds for all x ∈ A and some integers m ≥ 1, n ≥ 1. In this case both D and
G map A into rad(A).

Let us explain in somewhat more details the background of the theo-
rem above. In 1955 Singer and Wermer [28] proved that a continuous linear
derivation on a commutative Banach algebra maps the algebra into its rad-
ical. Johnson and Sinclair [17] have proved that any linear derivation on a
semisimple Banach algebra is continuous. According to these two results, one
can conclude that there are no nonzero linear derivations on a commutative
semisimple Banach algebras. Singer and Wermer conjectured in [28] that the
continuity assumption in their result is superfluous. It took more than thirty
years until this conjecture was finally proved by Thomas [31]. Obviously, from
Thomas’s result it follows directly that there are no nonzero linear derivations
on a commutative semisimple Banach algebra. By our knowledge the first non-
commutative extension of Singer-Wermer theorem has been proved by Yood
[37] by showing that if for all pairs x, y ∈ A, where A is a noncommutative
Banach algebra, the element [D(x), y] lies in rad(A), then D maps A into
rad(A). Brešar and Vukman [5] have generalized Yood’s result by proving
that in case [D(x), x] ∈ rad(A) for all x ∈ A, then D maps A into rad(A).
The work of Mathieu and Murphy [22] and Runde [26] should be mentioned.
Recently, Kim [18] has proved that in case [D(x), x]D(x) [D(x), x] ∈ rad(A)
for any x ∈ A, then a continuous derivation D maps A into rad(A). Kim’s
result generalizes a result proved by Vukman [34]. For references concerning
range inclusion results of continuous derivations on noncommutative Banach
algebras we refer the reader to [10, 12] and [23].

Proof of Theorem 3.1. We have therefore

D(xm)xn + xnG(xm) ∈ rad(A),

for any x ∈ A. By Lemma 3.2 in Sinclair’s paper [27], every continuous linear
derivation of a Banach algebra A leaves the primitive ideals invariant, which
means that one can introduce for any primitive ideal P ⊂ A derivations
DP : A/P → A/P, GP : A/P → A/P, where A/P is the factor algebra, by
DP (x∗) = D(x), GP (x∗) = G(x), x∗ = x + P. Let us first assume that A/P
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is noncommutative. In this case one can conclude from the assumptions of
the theorem that DP (x∗m)x∗n + x∗nGP (x∗m) = 0 holds for all x∗ ∈ A/P,
which gives DP = GP = 0 by Corollary 2.2 since A/P is prime. In case A/P
is commutative we have DP = GP = 0 as well, since A/P is semisimple and
since we know that there is no nonzero linear derivations on a commutative
semisimple Banach algebra. Thus for any x ∈ A we have D(x) ∈ P and
G(x) ∈ P, where P is any primitive ideal of A. Since D(x) and G(x), where
x is any element from A, are in the intersection of all primitive ideals of A
and since the intersection of all primitive ideals of A is the radical, one can
conclude that D(A) ⊂ rad(A) and G(A) ⊂ rad(A) which was our intension to
prove. The proof of the theorem is complete.

Most results in the field of range inclusion theory deal with one derivation,
while in the theorem above we have a pair of derivation. The first result in this
field with two derivations is, by our knowledge, the following result proved by
Brešar and Vukman [5]. Let D and G be such continuous linear derivations
on a noncommutative Banach algebra A, that

[
D2(x) +G(x), x

]
∈ rad(A)

holds for all x ∈ A. In this case both derivations D and G map A into rad(A).
In our next theorem, which generalize the result we have just mentioned, we
have four derivations.

Theorem 3.2. Let A be a Banach algebra and let Di, Gi : A→ A, i = 1, 2
be continuous linear derivations. Suppose that

(D2
1(x) +G1(x))x + x(D2

2(x) +G2(x)) ∈ rad(A)

holds for all x ∈ A. In this case all derivations Di, Gi, i = 1, 2 map A into
rad(A).

Proof. One can apply Theorem 2.3 and the same arguments as in the
proof of Theorem 3.1.

Brešar and Vukman [5] have proved that in case [D(x), x]
2 ∈ rad(A) for

all x ∈ A, where D is a continuous linear derivation of a Banach algebra A,
we have D(A) ⊂ rad(A). Brešar [10] fairly generalized this result by proving
that in case [D(x), x] ∈ Q(A) for all x ∈ A, then D(A) ⊂ rad(A).

This result leads to the following conjecture.

Conjecture. Let A be a Banach algebra and let D,G : A → A be
continuous linear derivations. Suppose that D(xm)xn + xnG(xm) ∈ Q(A) for
all x ∈ A and some integers m ≥ 1, n ≥ 1. In this case D and G map A into
rad(A).

The question arises whether the results above can be proved without the
continuity assumption. This question leads to the problem whether Sinclair’s
result [27], which states that continuous linear derivation on a Banach algebra
leaves any primitive ideal of the algebra invariant, can be proved without the
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continuity assumption. By our knowledge this problem is still open. However,
in a special case, when a Banach algebra is semisimple, one can prove some
results without the continuity assumptions.

Theorem 3.3. Let A be a semisimple Banach algebra and let D,G : A→
A be linear derivations. Suppose that

D(xm)xn + xnG(xm) = 0

holds for all x ∈ A and some integers m ≥ 1, n ≥ 1. In this case we have
D = G = 0.

Proof. The proof goes through in the same way as the proof of Theo-
rem 3.1 with the only exception that at the beginning of the proof one has
to use the fact that any linear derivation on a semisimple Banach algebra is
continuous (see [17]).

Theorem 3.4. Let A be a semisimple Banach algebra and let Di, Gi :
A→ A i = 1, 2 be linear derivations. Suppose that

(D2
1(x) +G1(x))x + x(D2

2(x) +G2(x)) = 0

holds for all x ∈ A. In this case we have Di = Gi = 0, i = 1, 2.

Proof. See the proof of Theorem 3.3.
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