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benzenoid graph, the size of a maximum matching equals the number of positive eigenvalues.
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gujevac). Here we present a proof of this conjecture and of a related theorem. The results are of

some relevance in the theory of (unsaturated) polycyclic hydrocarbons.
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INTRODUCTION

The Results

All graphs G considered in this paper are undirected and

finite, loops and multiple edges do not occur. The num-

ber of vertices of G is denoted by n.

Two vertices are adjacent iff they are connected by

an edge; two edges are adjacent iff they have an end ver-

tex in common.

A set of vertices, or edges, is called independent (or

stable) iff its elements are pairwise nonadjacent.

� is the maximum number of pairwise nonadjacent

vertices of G, often called the vertex independence (or

vertex stability) number of G.

� is the maximum number of pairwise nonadjacent

edges of G, often called the edge independence (or edge

stability) number of G.

� and � are the numbers of positive and negative

eigenvalues of G, respectively (eigenvalues are counted

regarding their multiplicities; for precise definitions see

next section: Some More Definitions).

� is the multiplicity of the eigenvalue zero of G. In a

chemical context, this number is often denoted by �, and

it is considered an indicator of instability of benzenoid

molecules.

In general, there are no relations between � and �: �

may be larger than, equal to, or smaller than � (see Some

Simple Examples, Table I and Figure 4). However, the

situation changes if G is restricted to the class of bipar-

tite graphs, and even more so if G belongs to the sub-

class of hexagonal systems (benzenoid graphs). The aim

of this paper is to prove the following propositions.

Theorem 1. – (i) The number of positive (negative) ei-

genvalues of a bipartite graph B is not greater than the
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maximum number of pairwise nonadjacent edges contai-

ned in B, briefly:

�(B) = �(B) � �(B)

(ii) For a hexagonal system H, �(H) = �(H) = �(H).

For bipartite graphs, the number � of negative eigen-

values equals the number � of positive eigenvalues, see

Preparation of the Proofs, Theorem A, Observation 2.

Theorem 2. – (i’) The minimum of the numbers of non-

negative eigenvalues and of nonpositive eigenvalues of

any graph G is not smaller than the maximum number of

pairwise nonadjacent vertices contained in G; briefly:

min ��(G), �(G)� + �(G) � �(G).

(ii’) For a hexagonal system H, �(H) + �(H) = �(H) +

�(H) = �(H).

Part (i’) of Theorem 2 is Cvetkovi}’s theorem1 (see

also Inequalities obtained on the basis of the spectrum of

the graph2 and the monograph Spectra of graphs,3 Theo-

rem 3.14) who proved it in 1971 using Cauchy’s inter-

lacing theorem.

Corollary to Theorems 1 and 2. – (i’’) For a bipartite

graph B, �(B) � �(B) – �(B).

(ii’’) For a hexagonal system H, �(H) = �(H) – �(H).

Part (ii) of Theorem 1 is of some significance for the

chemistry of polycyclic hydrocarbons: � is a (structural)

parameter of Kekulé’s model (resonance theory) count-

ing double bonds whereas � is an (analytical) parameter

of Hückel’s model (simple molecular orbital theory)

counting bonding energy levels of delocalized electrons.

Thus the equation � = � once more confirms the close

relationship between these two models.

For the discussion of some of I. Gutman’s work that

is closely related to our investigations see Remark on a

paper of I. Gutman.

Some More Definitions

Let G be a graph with vertex set �v1, v2,..., vn� and let

a
v v

ij

i j�
�
�
�

1

0

if and are adjacent

otherwise

The matrix A = A(G) = (aij) is the adjacency matrix of G.

If every vertex of graph G' is also a vertex of G, and

if two vertices of G' are adjacent in G' if and only if they

are adjacent in G, then G' is an induced subgraph of G.

Note that the adjacency matrix A' of G' is a principal mi-

nor of the adjacency matrix A of G; conversely, every

principal minor A* of A determines an induced subgraph

G* of G.

The characteristic polynomial fG(x) of G is the char-

acteristic polynomial of the adjacency matrix of G: fG(x)=

det(xI – A) (Figure1). Analogously we define the eigen-

values and the spectrum of G.

A dumbbell consists of two distinct vertices and an edge

joining them. A matching is a set of pairwise disjoint

dumbbells, its size is the number of dumbbells (or

edges) it contains. A vertex v is covered by matching M

iff v belongs to some dumbbell of M (Figure 2). A match-

ing of G is perfect iff it covers all vertices of G.

The size of a maximum matching of G is often

called the matching number and denoted by m = m(G);

note that m(G) = �(G). For a comprehensive monograph

on matching theory the reader is referred to the work of

L. Lovász and M. D. Plummer.4

A hexagonal system (also called polyhex, honeycomb,

benzenoid graph, …) is a finite connected plane graph H

that can be drawn such that

�all of its finite faces are regular hexagons of equal

size,

�its boundary (that is the boundary of the infinite

face) is a topological circuit (Figure 2).
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Figure 1. Graph G with adjacency matrix A and characteristic po-
lynomial fG(x).

Figure 2. A hexagonal system.



Note that a hexagonal system is 2-connected, every

vertex on its boundary has valency 2 or 3, every interior

vertex has valency 3.

In addition, we shall assume that some of the edges

are perpendicular to a given straight line which is con-

sidered horizontal: with respect to this picture, we will

freely use the concepts »up«, »down«; »high«, »low«;

»top«, »bottom«; etc.. A monotone path is always con-

sidered decreasing, i.e. running down, from top to bot-

tom (Figure 2). As each hexagonal system is bipartite,

we will assume its vertices to be coloured black and

white such that every edge connects a black vertex with

a white one and, in addition, that the highest vertices of

all finite faces are white (and the lowest are black). The

locally highest 	lowest
 vertices of the graph H are cal-

led its peaks 	valleys
; the peaks and valleys are the ex-

tremal vertices of H (Figure 2).

A slightly more general concept is that of a topological

hexagonal system: this is a finite two-connected plane

graph whose finite faces are (topological) hexagons, whose

vertices on the boundary circuit C of the infinite face have

valencies 2 or 3, and whose vertices in the interior of C

have valency 3. Such a graph can always be drawn on a

suitably chosen Riemann surface such that the finite faces

are realized by regular plane (schlicht) hexagons of equal

size. A topological hexagonal system that cannot be real-

ized this way in the plane (without overlapping) has some-

times been called a helicene graph (Figure 3).

A Remark on Possible Extensions

Part (ii) of Theorem 1 can easily be extended to a larger

class of bipartite plane graphs including, in particular,

the class of helicene graphs. However, for the sake of

simplicity, we shall here restrict our considerations to

the class of hexagonal systems as defined above.

Some Simple Examples

1) The spectrum of a circuit on n vertices consists of the

numbers 2 2cos �i

n
, i = 1, 2,..., n, (Spectra of Graphs,3 p.

72). For circuits the numbers m = � and � can be taken

from Table I.

2) The graphs of Figure 4 both have � = 3, � = m = 4.

PREPARATION OF THE PROOFS

We recall some known results and formulate a Lemma.

Theorem A lists some well-known general proper-

ties of bipartite graphs (see, e.g., Spectra of Graphs,3 p.

87).

Theorem A. – Let B denote a bipartite graph on n verti-

ces.

Observation 1. –

fB(x) = xn + a1x
n–1 + ... + an

= xn – b2x
n–2 + b4x

n–4 – + ...

where a1 = a3 = a5 = ... = 0 and b2i = (–1)ia2i � 0 (i = 1,

2, ..., � n

2
).

Observation 2. – The collection of eigenvalues of B,

which are all real, is symmetric with respect to the zero

point of the real axis.

Observation 3. – If n = 2k then

an = (–1)kbn = fB(0)

= det A(B) = (–1)k(��)2

where the product is taken over all non-negative eigen-

values of B.

The following theorem is a special case of a result

obtained by D. M. Cvetkovi}, I. Gutman, and N.

Trinajsti} in 1974 (Graph Theory and Molecular Or-

bitals, VII. The Role of Resonance Structures;5 see Spec-

tra of Graphs,3 Theorem 8.13 on page 243; see also H.
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Figure 3. The graph of a helicene and two of its (topologically
equivalent) plane representations.

TABLE I.

n � = � = m �

4k 2k 2k – 1

4k + 1 2k 2k + 1

4k + 2 2k + 1 2k + 1

4k + 3 2k + 1 2k + 1

Figure 4.



Sachs6); it also follows from a general theorem due to P.

W. Kasteleyn (Dimer Statistics and Phase Transition)7;

see also Kasteleyn’s survey article.8 Orginally formu-

lated for connected graphs, the theorem immediately ex-

tends to non-connected graphs, too.

Theorem B. – Let G be a plane graph on n vertices all of

whose finite faces are hexagons. Then G is bipartite and

the number of perfect matchings of G is equal to the

product of all non-negative eigenvalues of G.

Corollary. – If G has a perfect matching then

m(G) = �(G) =
n

2
.

For the next theorem (the »coefficients theorem«, H.

Sachs9 and L. Spialter;10 see Spectra of Graphs,3 Theo-

rem 1.3 on page 32) we need another concept.

A basic figure U of a graph is a (not necessarily in-

duced) subgraph that has only circuits and dumbbells as

its components (Figure 5). Let q(U) and c(U) denote the

number of components of U, and the number of circuits

among these components, respectively.

Theorem C. – Let G be an arbitrary graph with charac-

teristic polynomial

fG(x) = xn + c1x
n–1 + ... + cn.

Then

ci

q c� � (– ) ,
( ) ( )1 2
U U i = 1, 2, ..., n

where the sum is taken over all basic figures U of G on

precisely i vertices.

A set R of vertices of a graph G represents the edges

of G iff, for every edge of G, at least one of its end verti-

ces is contained in R.

In 1931 in his paper11 Graphs and Matrices (Hun-

garian) D. König proved the following famous theorem

(Theorem 14 in chapter XIV of the first monograph on

graph theory (D. König)12).

Theorem D. – In any bipartite graph B, the maximum

number of pairwise nonadjacent edges, � (i.e. the size of

a maximum matching, m) equals the minimum number

of vertices representing the edges of B.

We use Theorem D to prove the following well-

known proposition.

Theorem E. – For any bipartite graph B, �(B) + �(B) =

n(B).

Proof. – Claim I: � + � � n.

Proof of Claim I. Let S be a maximum independent ver-

tex set. Then �S� = �, and the n – � vertices not in S rep-

resent all edges of B, for an edge not so represented

would have to have both of its end vertices in S – a con-

tradiction. By Theorem D, n – � � �, thus � + � � n.

Claim II: � + � � n.

Proof of Claim II. By theorem D, there is a vertex set R

with �R� = � representing all edges of B. The n – � verti-

ces not in R are pairwise nonadjacent for otherwise there

were an edge not represented by some vertex of R.

Therefore, n – � � �, thus � + � � n. �

Remark. – The ideas of the above proof may also be

used to derive Theorem D from Theorem E. Thus

König’s theorem and Theorem E are equivalent.

The proof of the following lemma (which is crucial)

is left to the reader (see Figure 6).

Lemma. – Let H be a hexagonal system and let M denote

a maximum matching of H. Colour all edges of H that

belong to M red and the remaining edges blue; accentu-

ate the red oblique edges and the blue perpendicular

edges. Then the accentuated edges display a system P

of disjoint monotone paths with the colours red and blue

alternating on each path. The top vertex of a path P � P

is either a (white) peak covered by M and followed by a

red edge or a non-extremal black vertex not covered by

M and followed by a blue edge, its bottom vertex is ei-

ther a (black) valley covered by M and preceded by a

red edge or a non-extremal white vertex not covered by

M and preceded by a blue edge.

In P there is no path connecting two non-extremal

non-covered vertices. (For otherwise an interchange of

colours on such a path would result in a matching that

has one edge more than M.)

Thus we distinguish between two types of paths P in P:

Type 1. Both end vertices of P are extremal (P con-

nects a peak with a valley).

Type 2. Exactly only one end vertex of P is extremal

(Figure 6a).

In each non-extremal black vertex that is not covered by

M there originates, and in each non-extremal white ver-

tex that is not covered by M there terminates, a path of

type 2.
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Figure 5. A graph G with one of its basic figures U where q(U) =
4, c(U) = 2.



PROOF OF THEOREM 1

Recall Theorem A, Observations 1 and 2. By Vieta’s

theorem, a2� is the product of all nonzero eigenvalues of

B, and a2i = 0 for i > �. Thus

b2� > 0, (1a)

b2i = 0 for i > � (1b)

Proof of Part (i)

Let � = �(B), m = m(B); we have to show that � � m.

B being bipartite, each component of any basic fig-

ure of B is a circuit of even length or a dumbbell, thus

any basic figure on 2i vertices contains as a subgraph

some matching of size i. Consequently, for i > m there is

no basic figure on 2i vertices in B and therefore, by The-

orem C (in connection with Theorem A, Observation 1),

b2i = 0. Assuming � > m we obtain b2� = 0 contradicting

(1a).

Proof of Part (ii)

Let � = �(H), m = m(H). It remains to show that � � m.

Recall Observation 1 of Theorem A. We shall prove that

a2m � 0, thus b2m � 0 which, by (1b), implies m � �.

By a well-known theorem of matrix theory, a2m is

the sum of the determinants of all principal minors of

A(H) of size 2m; equivalently, in terms of subgraphs,

a m2 � � det ( ' )A H (2)

where the sum is taken over all induced subgraphs H' of

H on 2m vertices.

Recall that det A(H') is the product of the

eigenvalues of H'. Graph H being bipartite, so are the H'.

By Theorem A, Observation 2, the nonzero eigenvalues

of H' can be arranged in pairs (	, – 	) (	 > 0), thus the

nonzero among the det A(H') (the terms of the sum in

equation (2)) all have the same sign (namely, (–1)m).

Therefore, in order to show that a2m � 0, it suffices to

show that det A(H') � 0 for at least one of the H'.

Consider any maximum matching M of H and col-

our the edges of H as described in the Lemma (for an

example see Figure 6). Interchange the colours red and

blue on all paths of type 2: this results in a new colour-

ing of H where

(i) the red edges again determine a maximum

matching – M*, say – of H;

(ii) all nonextremal vertices are covered by M* (all

paths in the corresponding set P* are of type 1).

Deleting the vertices that are not covered by M*

(these are certain peaks and/or valleys, all lying on the

boundary of H) we obtain an induced subgraph H* of H

on 2m vertices all of whose finite faces are hexagons;

note that M* is a perfect matching of H*. By the Corol-

lary to Theorem B, graph H* has m positive eigenvalues;

by Theorem A, Observation 2, zero is not an eigenvalue
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Figure 6. a) Hexagonal system H with one of its maximum matchings M (��). Vertices x, y, z not covered by M. n = 55, m = 26.

b) Induced subgraph H* of H with perfect matching M*. n* = 52, m* = m = 26.

a) b)



of H*. Observation 3 of Theorem A now yields the de-

sired result that det A(H*) � 0. �

Remark. – Once having established the existence of H*,

we immediately obtain that not only a2m but all coeffi-

cients a2i (i = 1, 2,..., m) are different from zero, or,

equivalently:

Theorem 3. – For a hexagonal system H,

fH(x) = xn – b2x
n–2 + b4x

n–4 – + ��� + (–1)mb2mxn–2m

where b2, b4,..., b2m are positive.

This in particular implies Theorem 1, Part (ii).

PROOF OF THEOREM 2

As remarked above, Part (i’) is identical with Cvetkovi}’s

theorem.

Part (ii’) is an immediate consequence of Part (ii) of

Theorem 1 and König’s theorem in the form of Theorem

E: from � = � = � and n = � + � + � = � + � we obtain

� + � = � + � = n – � = � + � – � = �. �

REMARK ON A PAPER OF I. GUTMAN

Already in 1982, in his paper Characteristic and Match-

ing Polynomials of Benzenoid Hydrocarbons, I. Gutman13

formulated a statement (Theorem 4 on page 341) that is

equivalent to the following interesting assertion.

(G1) – Let H be a hexagonal system with characteristic

polynomial (see Theorem A in Section 2 above)

fH(x) = xn – b2x
n–2 + b4x

n – 4– + ���

and let p(H, k) denote the number of matchings of size k

contained in H. Then

p(H, 1) = b2, p(H, 2) = b4,

p(H, k) < b2k for k = 3, 4, ..., m,

p(H, k) = b2k = 0 for k > m.

Using (i) of Theorem 1, (G1) immediately implies

(G2). – b2k = 0 if and only if p(H, k) = 0.

This is Theorem 3 in Gutman’s paper.

Obviously, the last statement is equivalent to our

Theorem 3.

Unfortunately, Gutman’s proof of his Theorem 4 –

and thus of (G1) and (G2) – is incomplete.

MISCELLANEOUS REMARKS

For hexagonal systems, � = n – � – � = n – 2� = n – 2m

which means that for a hexagonal system, the multiplic-

ity of the eigenvalue zero equals the number of vertices

left uncovered by a maximum matching.

Graphs for which equality holds in Cvetkovi}’s in-

equalities (Theorem 2, Part (i’)) are called plants (there

are two kinds, helio- and geo-tropic plants, see Spectra

of Graphs3 3rd edition, p. 416) and surprisingly, there are

many examples of these objects. They include, for exam-

ple, all trees, and as we know now, all hexagonal systems.

CONCLUDING REMARK

The main result of this paper may be summarized as fol-

lows.

In any hexagonal system, the edge independence

number equals the number of positive eigenvalues, and

the vertex independence number equals the number of

nonnegative eigenvalues.
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SA@ETAK

O maksimalnom sparivanju i svojstvenim vrijednostima benzenoidnih grafova

Siemion Fajtlowicz, Peter E. John i Horst Sachs

U kolovozu 2003. uporabom kompjutorskoga programa GRAFFITI naslu}eno je da je za bilo koji ben-

zenoidni graf maksimalno sparivanje jednako broju pozitivnih svojstvenih vrijednosti. Kasnije su autori saznali

da je taj rezultat bio poznat ve} 1982. Ivanu Gutmanu (Kragujevac). U ~lanku je dan rigorozan dokaz toga

rezultata i odgovaraju}i teorem. Taj je rezultat od odre|ene va`nosti u teoriji policikli~kih ugljikovodika.
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