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Abstract 

Bekenstein has obtained is an upper limit on the entropy S, and from that, an information number bound 

N is deduced.  In other words, this is the information contained within a given finite region of space that 

includes a finite amount of energy.  Similarly, this can be thought as the maximum amount of information 

required to perfectly describe a given physical system down to its quantum level.  If the energy and the 

region of space are finite then the number of information N required in describing the physical system is 

also finite.  In this short letter two information number bounds are derived and compared for two types of 

universe.  First, a universe without a cosmological constant lamda and second a universe with a 

cosmological constant lamda  are investigated.  This is achieved with the derivation of two different 

relations that connect the Hubble constant and cosmological constants to the number of information N.  

We find that the number of information N involved in a the two universes are identical or 
22

NN  , and 

that the total mass of the universe scales as the square root of the information number N, containing. an 

information number N of the order of 10
122

.  Finally, we expressed Calogero’s quantization action as a 

function of the number of information N.  We also have found that in self-gravitating systems the number 

of information N in nats is the ratio of the total kinetic to total thermal energy of the system. 

 

Key words: Bekenstein bound, cosmological constant, information, nats, entropy, mass of the universe, 

self-gravitating systems, Calogero's conjecture. 

 

1. Introduction 

There is an upper bound for the ratio of the entropy S, to the energy E of a mass M, for any bounded 

system with an effective radius R.  This is known as the Bekenstein (1981) upper bound given by the 

relation: 
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Where   is Planck’s constant, and c the speed of light.  Using Eq.(1) and the equation given in Haranas 

and Gkigkitzis (2013), for the entropy S to be (Lloyd, 2001): 
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where kB is the Boltzmann constant Eqs. (1) and (2) we obtain that the number of information N in nats 

contained in the quantum states in the sphere is given by the equation: 
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Where the number of information N is given in nats.  Taking, 
0

/ HcR  to be the Hubble radius and 

assuming that the universe self gravitational energy 
0

HE
gr

  (Johri, 1996), we find that the number of 

information in nats N is equal to: 
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Similarly Eq. (4) can be written as the ratio of the angular frequency of oscillation of the universe over its 

Hubble constant H, or the ratio of gravitational radius of the universe over the universe’s Compton 

wavelength.  Next we find the entropy at the Hubble horizon to be: 
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With reference to Haranas and Gkigkitzis (2013) and equating Eq. (2) to (5) we obtain Hubble’s 

parameter as a function of the number of information N to be: 
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Substituting Eq. (6) in (4) and given that N is positive we obtain that: 
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Solving Eq. (7) for N we obtain that: 
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where, and 
G

c
E

P

5


 is the Planck energy, 
G

c
m

P


 is the Planck mass, and 

3
c

G
P


  is the Planck 

length.  Therefore we find that the number of information N at the horizon of the Friedman universe is 

just the square of ratio of the total energy of the universe that is attributed to the universe’s total mass to 

that of the Planck energy, or equivalently to the square of the total mass of the universe to that of the 

Planck mass.  Similarly, in a universe with zero curvature and cosmological constant  and with 



reference to Haranas and Gkigkitzis (2013) we have that the cosmological constant can be written as a 

function of the information number bit N in the following way: 
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where  Gcpmax //1
32

  (Haranas, 2002) the maximum cosmological constant, N the number of 

information in nats, 
p

 is the Planck length.  Therefore writing the cosmological de-Sitter horizon as 

function the information N we obtain: 
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Substituting Eq. (10) into first part of Eq. (4) after simplifying in a way similar to Eq. (6) we obtain that: 
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from which we obtain that: 
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and therefore we obtain that: 

 
22

NN  ,          (13) 

in other words the number of information contained in a Friedmann universe without cosmological 

constant results to a Bekenstein information bit bound that is identical to the universe involving a 

cosmological constant , or symbolically 
22

NNN
F
 .  This is the number of information in nats with 

the help of which information can be decompressed through matter and energy, for the two types of 

universe.  We find that for both types of universe the number of information N depends on the same 

fundamental parameters i.e. the energy due to mass M over the Planck energy EP or equivalently the mass 

of the universe M over the Planck mass mP.  From Eq. (4) we see that the number of information N 

constitutes the “connecting entity” of various fundamental cosmological parameters.  As a result from Eq. 

(4) we obtain the gravitational radius of the universe can be expressed in the following way: 
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Next, substituting for the universe’s Compton wavelength cM
UcU

/ , and 
2

/2 cGMR
Ugr
 and 

2
cME

U
 we obtain that the mass of the universe is given by: 
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This is an equation similar to that predicted by Hoyle (1958), Narlikar (1993), Carvalho (1995), Haranas 

and Harney (2009) as well as (Valev, 2010).  For example Valev (2010) obtains the same equation via a 

dimensional analysis.  Having expressed H0 as a function of the number of information N in nats, we can 

use Eq. (6) to express the mass of the universe as a function of the number of information N in the 

universe without cosmological constant to be:  
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Finally, using that the Planck momentum can be written as 
PP

cm  / from the last expression of Eq. 

(18) we can obtain that: 
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Similarly, in the universe with cosmological constant  we obtain that: 
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The first tem in the RHS of Eq. (18) agrees with the Eq. (8) given in Capozziello and Funkhouser (2009) 

and Eq. (3.8) in Funkhouser (2008).  We express this equation as a function of information N, from which 

the number of information N in nats related to the universe’s total mass can be calculated.  Therefore 

taking 53
101

U
M  kg, (Immerman, 2001) and 8

10176.2

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P

m kg obtain that: 
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The number 10
122

 appears in an ensemble of pure numbers naturally produced from fundamental 

cosmological parameters that might constitute a new-large number coincidence similar to that postulated 

by Dirac (1973).  These numbers constitute a compelling, new large number coincidence problem 

(Funkhouser, 2008) and (Haranas and Gkigkitzis, 2013).  This is possible after the derivation of two 

relations which connect the cosmological constant   and the Hubble constant H0 to the information 

number N.  We find that the total mass of the universe has a N  dependence on the information number 

bit N.  Furthermore, we note that the mass of the universe expressed in terms of fundamental parameters 

that basically become coefficients of N  term and carry units of mass.  We see that for N =1 the 

universe achieves a mass 
PU

mM 470.0 , for which Eq. (22) gives N = 0.999  1.0.  Inflationary 

cosmological scenarios tell us that at time 
P

tt   then 
P

mm  , (Linde, 1990) and therefore we can say 



that a universe with 
PU

mM 470.0  will imply that the first nat of information is decompressed through 

matter and energy at a time t earlier that the Planck time.  In Capozziello et al., (2001) the authors 

examine self-gravitating systems, where they consider virialized systems, giving the equation for the total 

energy of the system to be: 

 02  UE
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,          (20) 

where Ekin is the kinetic energy, and U the gravitational energy.  Therefore, the total energy E given by 

Capozziello, (2001) is given by: 
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Using Capozziello’s equation for the total energy, we write the entropy of the self-gravitating system to 

be: 
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and using Eq. (2) and (22) we obtain the number of information in nats related to the self-gravitating 

system in the following way: 
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where N0 is the total numbers of bodies of mass m contained within the self-gravitating system, and Eth is 

the total thermal energy of the system, and 2lnΔ
B

kS   is the change in entropy.  Similarly, using Eq. 

(23) we obtain an expression for the characteristic (minimal) unit of action  = τ (Capozziello, et al., 

2001) per granular component to be: 
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Finally, with reference to Calogero’s work on cosmic quantization (Calogero, 1997) the author predicts a 

quantum of action h as a function of basic parameters of physics, namely: 

 2/12/32/1
RmGh   ,        (25) 

where G is the gravitational constant, m mass of the nucleon or hydrogen atom, and R is the radius of the 

universe (Calogero, 1997).  We can show the relation of Calogero’s quantum of action h, to number of 

information N in nats by taking the radius of the universe at the Hubble horizon in two kinds of different 

universes.  First, at Hubble horizon of a Friedmann universe we have that 
0

/ HcR   and therefore we 

obtain that: 
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Upon substituting Eq. (6) into Eq. (26) and eliminating the Planck length we obtain that: 
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solving for h we obtain the following real solutions 
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Finally, in a de-Sitter universe with cosmological constant we have that Calogero’s equation becomes: 
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thus eliminating the Planck length 
P

 and solving for h we obtain the following real values for the 

quantum of action: 
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Using Eq. (29) and solving for N we obtain that: 
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Therefore, the number of information N in Calogero’s scheme of cosmic quantization depends upon the 

ratio of two fundamental masses i.e. the Planck mass and mass of the nucleon raised to the sixth power.  

Similarly, we can say that Calogero’s quantum of action h as related to the universe’s radius calculated at 

the Hubble radius, involves an 3/1
N  dependence on the number of information in nats.  Using 

8
10176.2


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P
m kg and 27

10670.1


m kg (Calogero, 1997) we obtain that the number of information 

in nats is: 

 118
10457.3 N ,         (34) 

10
118

 is a large number that appears in an ensemble of pure numbers that they are naturally produced from 

fundamental cosmological parameters, that they are probably part of a new-large number hypothesis, 

similar to the one postulated by Dirac.  In the case where 
P

mm   we obtain that: 
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Similarly, in the case of a self-gravitating system, let us consider the typical open star cluster Pleiades for 

which M = 300Msolar R= 3.5 pc, 300
0
N stars and RmNv /1063.4

0

22 
 km/s (Chandrasekhar, 

1960), we obtain that 43.0v km/s, with temperatures in the range 4000 K 15000 T K.  Using an 

average temperature T  = 10000 K, we obtain that the number of information N, is: 

 57
10154.1 N .         (36) 

 

2. Conclusions 

In this letter we have used Bekenstein’s upper bound of entropy, to calculate an upper bound for the 

number of information bits N in two different types of universe.  We find that the number of information 

N in a universe without a cosmological constant is identical to the number of information N in a universe 

with a cosmological constant lamda.  Furthermore, we find that the mass of the universe can be expressed 

in terms of many various cosmological parameters that basically become the coefficients of the N  term 

and have units of mass, thus the mass of the universe NmM
PU

  and that the universe achieves a mass 

PU
mM 470.0  if N =1. Finally, we have expressed Calogero’s quantization action as a function of the 

number of information N.  We have found that the action h as related to the radius of the universe, when 

taken at the universe’s horizon, involves a large number of information in nats, that is the same in a 

universe with or without a cosmological constant.  In relation to Capozziello’s results for self-gravitating 

systems, we have found that the number of information N in nats is the ratio of the total kinetic to total 

thermal energy of the system. 
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