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Abstract 

Introduction: Custom-made foot orthotics (CFO’s) are a commonly prescribed intervention to 

help individuals that are suffering from foot pain and foot disorders. However, the mechanisms 

of CFO’s are still poorly understood and are not well known. With the plantar intrinsic muscles 

of the foot being in direct contact with the CFO, it puts these structures at risk for disuse muscle 

atrophy as a result of being offloaded. Therefore, the purpose of the current study was to 

determine the effect of a 12-week custom-made foot orthotic intervention on the intrinsic 

muscles of the foot and dynamic stability during unexpected gait termination.    

Methods:  Eighteen healthy young adults participated in the study. Participants were allocated 

by stratified sampling into either the: (a) orthotic group (n= 9) or (b) control group (n= 9). 

Beginning of each testing session, participants’ right foot was assessed by diagnostic ultrasound 

to measure the cross-sectional area (CSA) of the flexor digitorum brevis (FDB), abductor digiti 

minimi (Abd DM), and abductor hallucis (Abd H). Subsequently, participants completed an 

unexpected gait termination protocol and data was collected using force plates, motion capture, 

and electromyography (EMG) to assess dynamic stability. A total of 50 walking trials were 

completed at baseline, 6-weeks and 12-weeks, where 25% of the trials were unexpected gait 

termination. The variables used to measure dynamic stability were M/L COM-BOS and A/P 

COM-COP. Additionally, the amount of muscle activity was determined by average EMG 

magnitude and integrated EMG. The secondary outcome measures of interest were vertical force 

rate of loading (ROL), step width, step length and gait velocity.  

Results: At the end of the 12-week intervention, the participants in the OG had significantly 

smaller CSA of the FDB (9.6%) (p<0.001), Abd DM (17.1%) (p<0.001) and Abd H (17.4%) 

(p<0.001) plantar intrinsic muscles. Despite muscle atrophy, individuals in the orthotic group 
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showed an improvement of 1.1 cm in M/L COM-BOS (p<0.001) at 12-weeks and were as stable 

as the CG during gait termination. Additionally, there were significant differences of ROL 

between the groups during first (p<0.001) and second single stances (p<0.001) at the end of 12-

weeks. Lastly, there was no significant difference in average EMG magnitude of the intrinsic 

muscles between the groups.  

Discussion: The short-term use of CFO’s created a decrease in CSA of the FDB, Abd DM and 

Abd H plantar intrinsic muscles. These findings help understand the adaptations that are 

occurring when you offload specific structures such as the plantar intrinsic muscles. Although 

both groups were similar in creating stability when exposed to the mechanical perturbation, the 

participants in the OG adapted a compensatory strategy to recover their balance. Therefore, these 

findings along with future research can help develop guidelines to enhance the use of CFO’s by 

adding rehabilitative exercises to prevent disuse atrophy from occurring.  

 

  



! iv!

Acknowledgements 

Foremost, I would like to thank my supervisor Dr. Stephen Perry for his mentorship 

through this incredibly humbling experience. Your knowledge, guidance and expertise has added 

a substantial element to my research and without your involvement I would have not been able to 

succeed. I look forward to collaborating with you in the future and working with you for my PhD 

in the next chapter of my academic journey. 

I would like to thank my thesis advisory committee members Dr. Jayne Kalmar, Dr. Tom 

Hazell, and Dr. John Zettel for contributing additional guidance and expertise to strengthen my 

research. Additionally, I would like to thank Dr. Steven Brown and Kim Rau for helping by 

providing me the equipment necessary to perform my data collection, without you both my 

research could have not been possible.   

I would also like to thank my lab mates and the undergraduate students in the 

Neuromechanics Research Laboratory, especially Colin Kirst for helping me during data 

collection and the occasional equipment malfunction. 

To all the friends I made along the way and those especially in the Masters program, 

thank you for all the laughs, the venting sessions and the fun times to help keep me motivated 

during the 2 years. To someone I now call my best friend, Maxine Harvey-Burgess, who was 

also in the trenches completing her own Masters thesis but always found time for “friendship” 

and to help me when I needed it the most, thanks dawg! You’re a day one real OG, a Microsoft 

office and excel queen, and not too bad at Blokus.  

Lastly, I would like to give a big thank you to my parents and “Seeeeeester” for your 

unconditional love and support throughout my time at Laurier. I will never be able to thank you 

enough for your great understanding of what it truly means to sacrifice your own life goals so 



! v!

that I could pursue my life dreams and academic goals. The many accomplishments and 

achievements I have obtained over the years are really because of you and I’m forever grateful. 

Thank you for always believing in me, when sometimes I didn’t believe in myself, and for also 

supporting my long academic journey when others would discourage me and think I was crazy 

for pursing my 4th degree.   

Research reported in this document was supported by the MS2Discovery Institute 

Research & Travel Grant.   



! vi!

Table of Contents!

List of Tables .................................................................................................................. viii!
List of Figures ................................................................................................................... ix!
List of Abbreviations ....................................................................................................... xi!
1. Introduction ................................................................................................................... 1!

1.1 Theories of Mechanisms of Orthotics ................................................................................. 2!
1.1.1 Subtalar Joint Axis Neutral (Rootian) Theory ............................................................... 2!
1.1.2 Tissue Stress Theory ...................................................................................................... 4!

1.2 Benefits and Risks of Orthotics ........................................................................................... 8!
1.3 Intrinsic Muscles of the Foot ............................................................................................ 10!
1.4 Disuse Muscle Atrophy ...................................................................................................... 13!
1.5 Purpose, Objectives and Hypotheses ................................................................................. 16!

2. Methodology ................................................................................................................ 18!
2.1 Participants ........................................................................................................................ 18!
2.2 Custom-made Orthotic Casting, Fitting and Materials .................................................... 19!
2.3 Instrumentation and Data Processing .............................................................................. 20!

2.3.1 Kinetics ........................................................................................................................ 20!
2.3.2 Kinematics .................................................................................................................... 21!
2.3.3 Electromyography ........................................................................................................ 23!
2.3.4 Ultrasound ................................................................................................................... 25!

2.4 Experimental Protocol ....................................................................................................... 27!
2.5 Data Analysis ..................................................................................................................... 29!

2.5.2 Kinematic Analysis ....................................................................................................... 31!
2.5.3 Kinetic Analysis ........................................................................................................... 32!
2.5.4 Electromyography Analysis ......................................................................................... 33!

2.6 Statistical Analysis ............................................................................................................. 33!

3. Results .......................................................................................................................... 35!
3.1 Participant’s General Characteristics ............................................................................... 35!
3.2 Effect of CFO’s on Cross-sectional Area of the Plantar Intrinsic Muscles .................... 35!
3.3 Effect of CFO’s on Balance Measurements ..................................................................... 39!

3.3.1 Minimum COM—BOS (Lateral Stability Margin) ....................................................... 39!
3.3.2 Maximum A/P COM—COP ......................................................................................... 40!

3.4 Effect of CFO’s on Rate of Loading ................................................................................. 41!
3.5 Effect of CFO’s on Intrinsic Foot Muscles EMG ............................................................ 44!

3.5.1 Normalized average EMG magnitude ......................................................................... 44!
3.5.3 Normalized EMG Muscle Duration ............................................................................. 46!

3.6 Effect of CFO’s on Secondary Outcome Measures .......................................................... 49!
3.6.1 Step Width .................................................................................................................... 49!
3.6.2 Step Length ................................................................................................................... 50!
3.6.3 Gait Velocity ................................................................................................................ 50!

3.7 Adherence of CFO’s .......................................................................................................... 51!

4. Discussion .................................................................................................................... 54!
4.1 Purpose and Hypotheses Revisited .................................................................................... 54!



! vii!

4.2 Effect of CFO’s on the CSA of the Plantar Intrinsic Muscles of the Foot ..................... 55!
4.3 Effect of CFO’s on Dynamic Balance Stability ................................................................ 56!
4.4 Effect of CFO’s on the Average EMG Magnitude of the Plantar Intrinsic Muscles ..... 60!
4.5 Limitations .......................................................................................................................... 61!
4.6 Future Research Considerations ....................................................................................... 63!

5. Conclusion ................................................................................................................... 64!
References ........................................................................................................................ 65!
Appendix A ...................................................................................................................... 79!
Appendix B ...................................................................................................................... 81!
Appendix C ...................................................................................................................... 82!
Appendix D ...................................................................................................................... 83!
Appendix E ...................................................................................................................... 84!
!
  



! viii!

List of Tables 
!
Table 1. Mean (SD) of participant’s general characteristics of the orthotic and control groups 
with p-values indicated. No significant differences between the groups (p>0.05).!......................!35!
!
Table 2. Mean (SD) of the second single stance lateral stability margin (min COM-BOS distance 
in cm) during gait termination. No significant interaction between group, test date and task 
(p>0.05).!.......................................................................................................................................!40!
!
Table 3. Mean (SD) of maximum AP COM-COP distance (cm) during gait termination. No 
significant interaction between group, test date and task (p>0.05).!..............................................!41!
!
Table 4. Mean (SD) of average EMG magnitude (% MVC) and muscle burst duration (% of the 
gait cycle) during gait termination. No significant interaction between group, test date and task 
(p>0.05).!.......................................................................................................................................!48!
!
Table 6. Mean (SD) of first single stance step width (cm) during gait termination. No significant 
interaction between group, test date and task (p>0.05).!...............................................................!50!
!
Table 7. Mean (SD) of first and second single stance step length (cm) and first and second single 
stance average gait velocity (m/s) during gait termination. No significant interaction between 
group, test date and task (p>0.05).!...............................................................................................!53!
! !



! ix!

List of Figures 
 
Figure 1. The load-deformation curve of soft tissue structures. The graph is a generalization of 
deformation that occurs as load is increasingly applied to soft tissue structures. The curve is 
represented by (1) Toe region, (2) elastic region, (3) plastic region, and (4) failure point.!............!5!
!
Figure 2. Plantar view of the superficial, 2nd and 3rd layer of the plantar intrinsic muscles. 
(Gilroy, MacPhearson, & Ross, 2008).!........................................................................................!10!
!
Figure 3. Custom-made foot orthotics (CFO’s) worn by participants in the orthotic group. (A) 
Overhead view (B) Medial view.!.................................................................................................!20!
!
Figure 4. Setup of the three force plates embedded into the floor: (A) force plate one (FP1), (B) 
force plate two (FP2), and (C) force plate three (FP3). The kinetic and kinematic reference 
systems were aligned with an origin of (0,0) as indicated above.!................................................!21!
!
Figure 6. The kinematic 12 frontal smart marker setup (anterior placement).!.............................!23!
!
Figure 7. Electrode placement to the intrinsic muscles of the foot. (A) Abductor Hallucis (Abd 
H), (B) Abductor Digiti Minimi (Abd DM), (C) Extensor Digitorum Brevis (EDB), and (D) 
Extensor Hallucis Brevis (EHB).!.................................................................................................!25!
!
Figure 8. Scanning lines of plantar intrinsic muscles for obtaining the ultrasound images (A) 
FDB, (B) Abd DM, and (C) Abd H. The solid blue square represents the probe rotated to 90° to 
obtain a cross-section and the clear square is the probe placed longitudinally.!............................!26!
!
Figure 9. Overhead view of the 8m walkway with the experimental instrumentation 
configuration and pre-determined area where gait termination occurred.!....................................!28!
!
Figure 10. Longitudinal view (left) and cross-sectional area (right) ultrasound images of the 
plantar intrinsic muscles. (A) Flexor digitorum brevis (FDB), (B) Abductor digiti minimi (Abd 
DM) and (C) Abductor hallucis (Abd H).!....................................................................................!30!
!
Figure 14. Effect of orthotics on cross-sectional area of the right FDB after a 12-week 
intervention. Standard deviation bars shown. Note: **= significance between groups, †= 
significance within orthotic group between test dates and ¥= significance within the control 
group between test dates. (p<0.05).!..............................................................................................!37!
!
Figure 15. Effect of orthotics on cross-sectional area of the right Abd DM during a 12-week 
intervention. Standard deviation bars shown. Note: **= significance between groups, †= 
significance within orthotic group between test dates and ¥= significance within the control 
group between test dates. (p<0.05).!..............................................................................................!37!
!
Figure 16. Effect of orthotics on cross-sectional area of the right Abd H during a 12-week 
intervention. Significant interaction between group, test date and task (p<0.001). Standard 



! x!

deviation bars shown. Note: **= significance between groups, †= significance within orthotic 
group between test dates and ¥= significance within the control group between test dates. 
(p<0.05).!.......................................................................................................................................!38!
!
Figure 17. Effect of orthotics on first single stance minimum COM-BOS during gait 
termination. Significant interaction between group, test date and task (p=0.03). Standard 
deviation bars shown. Note: **= significance between groups, †= significance within orthotic 
group between test dates and ¥= significance within the control group between test dates.!........!40!
!
Figure 19. Effect of orthotics on second stance ROL (BW/s) during gait termination across the 
three test dates. Significant interaction between group, test date and task (p<0.001). Standard 
deviation bars shown. Note: **= significance between groups, †= significance within orthotic 
group between test dates and ¥= significance within the control group between test dates. 
(p<0.05).!.......................................................................................................................................!43!
!
Figure 20. Effect of orthotics on the average right Abd H magnitude during gait termination. 
Significant interaction between group, test date and task (p=0.018). Standard deviation bars 
shown. Note: **= significance between groups, †= significance within orthotic group between 
test dates and ¥= significance within the control group between test dates. (p<0.05).!.................!45!
!
Figure 21. Effect of orthotics on integrated EDB EMG (% MVC) during gait termination. 
Significant interaction between group, test date and task (p=0.008). Standard deviation bars 
shown. Note: **= significance between groups, †= significance within orthotic group between 
test dates and ¥= significance within the control group between test dates. (p<0.05).!.................!47!
  



! xi!

List of Abbreviations 
 
Abd DM Abductor digiti minimi      
Abd H Abductor hallucis  
ANOVA Analysis of variance 
A/P Anterior posterior 
BOS Base of support 
CFO Custom-made foot orthotic 
CG Control Group 
COM Centre of mass 
COM-BOS Centre of mass—Base of support 
COM-COP Centre of mass—Centre of pressure 
CSA Cross-sectional area 
EDB Extensor digitorum brevis 
EHB Extensor hallucis brevis 
EMG Electromyography 
FDB Flexor digitorum brevis 
Fz Vertical force 
M/L Medial lateral 
MOS Margin of stability 
MVC Maximum voluntary contraction 
Mx Moment of x-axis 
My Moment of y-axis 
OG Orthotic group 
ROL Rate of loading 
 
 



! 1!

1. Introduction 

The foot orthotic insole industry has generated $2.5 billion globally in 2014, and 

has projections of reaching $3.5 billion by 2020 (IndustryARC, 2015). North America is 

the leading contributor with 45% of the market (IndustryARC, 2015), suggesting North 

Americans are utilizing foot orthotic insoles more compared to the rest of the world. It is 

important for research to keep up to date with the latest technology put out by the foot 

orthotic companies in order to understand their implications on specific populations 

utilizing them. Custom-made foot orthotics (CFO’s) are a commonly prescribed 

intervention for individuals suffering from foot disorders and pain. However, the 

mechanisms of CFO’s are still poorly understood and the implications of their use are not 

well known. 

Foot pain has become an increasingly large problem throughout the world, with 

varying reports affecting many different geographical regions. The prevalence of foot 

pain ranges from 10-34% in countries such as the United Kingdom, United States, 

Denmark, and Australia (Hill, Gill, Menz, & Taylor, 2008; MØlgaard, Lundbye-

Christensen, & Simonsen, 2010; Roddy et al., 2011; Thomas et al., 2011). Thomas et al. 

(2011) identified that two thirds of the individuals with foot pain reported an associated 

disability in activities of daily living. It is well documented that foot disorders and foot 

pain lead to poor foot function that result in changes in biomechanics that contribute to an 

increased risk of falls in the elderly population (Menz, Morris, & Lord, 2006). Although 

the prevalence of foot pain remains high, many researchers attribute this to 

anthropometric characteristics of the foot and footwear worn (Paiva de Castro, Rebelatto, 

& Aurichio, 2010). Previous research has established that poor fitting footwear can lead 
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to these disorders (Barnish & Barnish, 2016; Burns, Leese, & McMurdo, 2002; Menz & 

Morris, 2005; Rossi, 2001) and effect gait (Doi et al., 2010; Menant et al., 2008). Despite 

great technological advances to footwear and footwear devices added into the shoe, foot 

disorders and foot pain remain at staggering high numbers. 

 

1.1 Theories of Mechanisms of Orthotics 

 Currently, there are two theories that are commonly used in the clinical setting 

when prescribing orthotics that involve either correcting biomechanical alignment of 

specific foot structures and/or off loading soft tissue structures: (a) subtalar joint axis 

neutral (Rootian) theory and (b) tissue stress theory. 

 
! 1.1.1 Subtalar Joint Axis Neutral (Rootian) Theory 

 The subtalar joint axis neutral (Rootian) theory was first proposed in the early 

1970’s by Merton L. Root and has since continued to be used by many clinicians. The 

premise of this theory is to identify whether excessive motion occurring at the subtalar 

joint will produce abnormal foot function to potentially increase the risk of foot disorders. 

Excessive motion includes any deviation from neutral in either pronation or supination 

(Daniel & Colda, 2012; Harradine & Bevan, 2009; McPoil & Hunt, 1995). The 

practitioner first measures the degree of the deformity with a goniometer and casts an 

impression, using plaster material, of both feet by positioning each foot in a non weight-

bearing subtalar neutral position. A “functional” foot orthotic is created by positioning 

wedges or posts based on the specific foot deformity present (Harradine & Bevan, 2009). 

 Contrary to the high utility of this paradigm, there is minimal evidence in the 

scientific literature that supports the notion of the theory. Previous kinematic studies have 
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shown that foot orthotics have reduced rearfoot eversion during walking and running, 

however, it only contributed a small reduction of 1º to 4.1º (Bates, Osternig, Mason, & 

James, 1979; Branthwaite, Payton, & Chockalingam, 2004; Eslami et al., 2009; Mills, 

Blanch, Champman, McPoil, Vicenzino, Cornwall, & Collins, 2009; Stacoff et al., 2007; 

Zifchock & Davis, 2008). The minimal change in rearfoot range of motion makes it 

unlikely that correcting biomechanical alignment of the rearfoot is a possible explanation 

of the mechanism. To coincide with the rest of the literature many kinematic studies were 

unable to show that custom-made foot orthotics (CFO’s) had any effect on controlling 

rearfoot motion (Garbalos et al., 2015, Mündermann et al., 2003; Nigg, Khan, Fisher, & 

Stefanyshyn, 1998; Stacoff et al., 2000). More recently the theory has been questioned 

with many criticizing the lack of reliability of measurements, controversial definition of 

normal, and whether correcting biomechanical alignment into subtalar neutral actually 

prevents foot disorders from manifesting.  

 Additionally, using the biomechanical alignment approach has been applied to 

other areas of the foot and another commonly targeted structure is the forefoot. A 

metatarsal pad is placed proximal to the five metatarsal heads to try and increase the 

space between the metatarsals as a result of a dropped transverse arch. A biomechanical 

study was done to determine if an increase structural space occurred to the forefoot 

during gait with a metatarsal pad, however the study resulted in only a small (0.64 mm) 

increase in forefoot width in static stance and a small increase (0.74 mm) in forefoot 

width during mid-stance of gait (Koenraadt, Stolwijk, van den Wildenberg, Dusysens, & 

Keijers, 2012).  Again, these minimal changes in structural suggest that other possible 

mechanisms exist to explain the effectiveness of CFO’s. 
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! 1.1.2 Tissue Stress Theory 

 The second theory that is also eminently practiced is the tissue stress theory. This 

theory was applied to describe the mechanism of orthotics in 1995 by Tom McPoil and 

Gary Hunt (Daniel et al., 2012; Harradine et al., 2009; McPoil et al., 1995). The basis of 

the theory focuses on the forces or pressures (kinetics) placed on the lower limb during 

gait rather than analyzing joint position or motion (kinematics). Theoretically, the 

purpose of the foot orthotic intervention is to reduce or redistribute forces to eliminate the 

stress on the painful structure. This can be explained by the load deformation curve 

(Figure 1). As a force is applied, for example to a specific muscle, and that force exceeds 

the capacity of the muscle to withhold the force, the integrity of the muscle will go from 

the elastic region and approach the plastic region. In between the elastic and plastic 

regions is the microfailure zone where the muscle is suspect to injury. Therefore, if the 

load is maintained for a prolonged period, the increased amount of deformation to the 

muscle will be irreversible. The purpose of a custom-made foot (CFO) is to unload the 

structures experiencing increased forces and redistribute the force in order to remain in 

the elastic region.  
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Figure 1. The load-deformation curve of soft tissue structures. The graph is a 
generalization of deformation that occurs as load is increasingly applied to soft tissue 
structures. The curve is represented by (1) Toe region, (2) elastic region, (3) plastic 
region, and (4) failure point.!(Adapted with permission from JOSPT, 1995. 
Doi:10.2519/jospt.1995.21.6.381. Copyright ©Journal of Orthopaedic & Sports Physical 
Therapy®). 
 
 
 Common areas where the CFO is manipulated to alter plantar pressures is in the 

rearfoot and forefoot regions. Metatarsal pads and bars are commonly prescribed and 

customized to foot orthotics when individuals exhibit pain in the forefoot. Individuals 

with foot pain have associated higher plantar pressures (Burns, Crosbie, Hunt, & Ouvrier, 

2005; Hodge, Bach, & Carter, 1999; Mickle, Munro, Lord, Menz, & Steele, 2011; van 

der Leeden, Steultjens, Dekker, Prins, & Dekker, 2006; Waldecker, 2002). The theory of 

the metatarsal apparatus is to reduce and redistribute plantar pressures of the foot and has 

been shown to reduce pressures by 11.8% to 60% in various studies (Hähni, 
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Hirschmüller, & Baur, 2016; Hayda, Tremaine, Tremaine, Banco, & Teed, 1994; Hodge 

et al., 1999; Holmes & Timmerman, 1990; Jackson, Binning, & Potter, 2004; Hackney, 

Hunt, Lerche, Voi, & Smith, 2010; Kang, Chen, Chen, & His, 2006; Lee, Landorf, 

Bonanno, & Menz, 2014; Postema, Burm, Zande, & Limbeek, 1998). Although many 

studies have shown decreased plantar pressures in the forefoot, there is conflicting 

evidence demonstrating that changes in peak plantar pressures are correlated with 

changes in pain scores (Kang et al., 2006; Postema et al., 1998). Secondly, the midfoot 

region is another common targeted location to alter plantar pressures. A medial arch 

support is placed along the medial longitudinal arch to alter the forces and peak plantar 

pressures on the midfoot structures. A study by Farzadi et al. (2014) suggests that when 

adding a prefabricated orthotic with a medial arch support to the medial longitudinal arch 

of the foot, it increased both the peak force (N) and peak plantar pressures (kPa) by 2.2 

times in the midfoot compared to when wearing shoes only. This was apparent at both the 

initial assessment and 1-month follow-up after enduring the 4-week foot orthotic 

intervention. Additionally, another study by McCormick et al. (2013) found similar 

results of increased peak plantar pressures by 15% and 12% in the medial midfoot as a 

result of wearing CFO’s compared to wearing shoes only at week 0 and 4 respectively. It 

is apparent from the literature that wearing CFO’s creates changes in plantar pressures 

compared to wearing normal shoes. However, those differences (increased or decreased) 

in plantar pressures are dependent on the specific region of the CFO being manipulated. 

 Lastly, numerous muscle electromyography (EMG) studies have been conducted 

to evaluate the effectiveness of the tissue stress paradigm. Within the literature there is 

conflicting evidence demonstrating whether the effects of wearing CFO’s induce changes 
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of EMG magnitude in the various leg muscles. Some studies have shown decreases in 

specific shank muscle EMG activity (Garbalosa, Elliott, Feinn, & Wedge, 2015; Murley, 

Landorf, & Menz, 2010), while others have shown increases in shank (gastrocnemius 

medialis, peroneus longus, tibialis anterior) muscle EMG activity (Barn et al., 2014; 

Mündermann, Wakeling, Nigg, Humble, & Stefanyshyn, 2006; Murley & Bird, 2006; 

Nawoczenski & Ludewig, 1999; Tomaro & Burdett, 1993). Moreover, there is additional 

evidence that exhibits change in onset and duration of the muscular activity of the tibialis 

anterior, soleus, gastrocnemii (medialis and lateralis) and peroneus longus as a result of 

wearing CFO’s (Dedieu, Drigeard, Gjini, Dal Maso, & Zanone, 2013). The variability of 

maximal EMG muscle activity and timing across studies may imply that individuals 

motor control systems adapt differently. Although findings from these studies partly 

support the tissue stress theory, the evidence does not conclusively validate the theory. A 

new paradigm called the preferred movement pathway has been proposed as an alternate 

explanation to the mechanism of CFO’s. This paradigm may help to explain the wide 

variability in the previous experimental findings of the kinematic, kinetic and muscle 

EMG activity data in the literature and it may also suggest there is a more complex 

interaction with multiple systems of the human body. The preferred movement pathway 

attributes the locomotor system as choosing a path of least resistance by recruiting 

specific muscles that will maintain the movement in the most efficient path (Nigg, 2001). 

For example, when a CFO is added into an individual’s shoe, Nigg et al. (1999) assert 

that if the CFO maintains the preferred movement path then muscle activity will be 

reduced, and the opposite affect is seen if the intervention counteracts the preferred 
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pathway. Despite this revelation, few experimental designs have focused on testing this 

hypothesis, therefore future research needs to thoroughly explore this paradigm.  

1.2 Benefits and Risks of Orthotics 

 The main goal of health practitioners in administering an effective intervention is 

to ensure that the benefits of the intervention out weigh the potential risks associated with 

the applied intervention. The estimated cost of custom-made orthotics (CFO’s) ranges 

from $300 to $700 per pair (Rao, Riskowski, & Hannan, 2012), therefore it is important 

practitioners provide evidence-based research to allow individuals to make an informed 

choice for wearing CFO’s. Currently in the literature a Cochrane review delineates only 

high-level evidence for the use of CFO’s for reducing pain in pes cavus, rheumatoid 

arthritis, juvenile idiopathic arthritis (JIA), and hallux valgus conditions (Hawke, Burns, 

Radford, & Du Toit, 2007). Due to a lack of high-level research designed studies, 

inconclusive findings have been drawn for the use of CFO’s on the various other foot 

disorders and accordingly the literature does not support their use at this time. A second 

benefit shown in the scientific literature is that CFO’s are beneficial for enhancing 

balance parameters for the elderly population. Previous studies have displayed significant 

improvements in balance measurements in individuals with impaired balance and at risk 

for falls (de Morais Barbosa et al., 2013; Gross, Mercer, & Lin, 2012). Overall, the 

research literature insinuates improvements in outcome measures will be obtained if 

CFO’s are dispensed properly and used for the appropriate condition. In this study, the 

focus is to disrupt balance by unexpected gait termination in order to observe how 

individuals respond to mechanical perturbations. Unexpected gait termination is a 
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dynamic task and is one of many ways to perturb gait; gait termination was chosen as it 

mimics a situation people encounter in everyday life.  

 While the efficacy of CFO’s remains unclear, there is a level of uncertainty of the 

potential negative side effects CFO’s may impose on the structure and function of the 

foot. To date, there is sparse evidence that demonstrates the safety of orthotics, although 

they have been acknowledged as having few side effects (Rao et al., 2012). The known 

side effects are predominantly self-reported by the individuals wearing the CFO’s and 

include discomfort, additional pain and/or skin irritation. Generally, the CFO’s are 

returned to the practitioner that prescribed the orthotic to make the appropriate 

adjustments to the areas of concern or recommend the individuals discontinue using 

them.  Previous literature has not objectively measured physiological changes that may 

occur to the foot as a result of wearing CFO’s. Additional research focusing on this area 

is needed to provide further insight into the overall safety and to strengthen the current 

clinical guidelines. There are currently no definitive evidence-based clinical guidelines 

recommending a timeline on the duration or frequency CFO’s should be worn for the 

various foot disorders utilizing CFO’s as an intervention. This postulates immediate 

concern to the small plantar intrinsic muscles of the feet, since these muscles and 

surrounding joints are in direct contact with the CFO. According to Nigg (2010), there 

are potential consequences that may occur by reducing the functional demand on those 

muscles and may be associated with the deterioration of muscle structure and 

performance.   
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1.3 Intrinsic Muscles of the Foot 

The intrinsic muscles of the foot are compartmentalized into dorsal and plantar 

intrinsic muscles. The plantar intrinsic muscles consist of 4 layers starting from 

superficial to deep (Figure 2). The superficial layer consists of the abductor hallucis (Abd 

H), flexor digitorum brevis (FDB), and abductor digiti minimi (Abd DM). The second 

layer contains the quadratus plantae and lumbrical muscles. The third plantar layer 

encompasses the flexor hallucis brevis, adductor hallucis, and flexor digiti minimi brevis. 

The deepest layer comprises of the dorsal and plantar interosseous muscles.  

 
 
Figure 2. Plantar view of the superficial, 2nd and 3rd layer of the plantar intrinsic muscles. 
(Adapted from Figure 26.16. Gilroy, MacPhearson, & Ross, 2008. Atlas of Anatomy; 
Thieme). 
 

 The role of the intrinsic muscles in foot function has been vastly underestimated. 

These muscles are viewed as not bearing importance in foot function and are frequently 
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disregarded due to their small size. An early electromyography (EMG) study by Mann & 

Inman (1964) identified during ground level walking the plantar intrinsic muscles were 

the most active during mid-stance up until toe-off, where the plantar intrinsic muscles 

then acted to stabilize the foot during propulsion. Recent studies have further investigated 

the functional role of the plantar intrinsic muscles and confirmed they play a vital role in 

controlling foot posture (Fiolkowski, Brunt, Bishop, Woo, & Horodyski, 2003; Headlee, 

Leonard, Hart, Ingersoll, & Hertel, 2008; Mulligan & Cook, 2013), the stiffness of the 

longitudinal arch and buttressing effect during foot loading (Caravaggi, Pataky, Günther, 

Savage, & Crompton, 2010; Kelly, Cresswell, Racinais, Whiteley, & Lichtwark, 2014). 

Deformation of the medial longitudinal arch was noted by an increase in navicular drop 

test when muscles were disrupted by lidocaine injection into the tibial nerve (Fiolkowski 

et al., 2003) and a fatiguing protocol in static stance (Headlee et al., 2008). Whereas a 

study by Mulligan & Cook (2013) demonstrated the opposite affect by maintaining 

support to the medial longitudinal arch by performing 4-weeks of short foot exercises of 

the intrinsic foot muscles to increase navicular height. The magnitude of muscle activity 

for plantar intrinsic muscles is variable and is dependent on the type of tasked performed, 

load applied and walking speed. Kelly et al. (2012) found performing single legged 

stance task showed greater average EMG muscle activity for the abductor hallucis, flexor 

digitorum brevis and quadratus plantae compared to the double leg stance. Thus, they 

concluded that increases in postural demand created increases in the plantar intrinsic 

muscle activity. A follow up study by Kelly et al. (2014) established muscle activity of 

the plantar intrinsic muscles were detected when loads between 50% and 150% of body 

mass was applied to the foot statically. Lastly, Caravaggi et al. (2010) observed when 
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faster walking cadences were performed it increased stiffness in the medial longitudinal 

arch. The investigators attributed the increased stiffness as a result of the recruitment of 

the plantar intrinsic muscles that become activated to absorb the higher ground reaction 

forces the foot sustains with quicker walking speeds and was later confirmed by a study 

done by Kelly, Litchtwark, & Creswell (2015).  

 The plantar intrinsic muscles like any other muscle in the body are susceptable to 

injury. Disuse muscle atrophy of the intrinsic foot musculature has recently been 

suggested as a possible source for acquired foot disorders. Observations from a cadaveric 

study revealed the flexor digitorum brevis muscle had reduced cross-sectional area in the 

feet with claw toe deformities (Locke, Baird, & Frankis, 2010). A more recent study by 

Mickle & Nester (2017) compared cross-sectional area (CSA) of the plantar intrinsic 

muscles to older adults with foot deformities and healthy older adults. They found that 

CSA decreases in abductor hallucis and flexor hallucis brevis muscle size in participants 

with hallux valgus and decreases in CSA for abductor hallucis, quadratus plantae, flexor 

hallucis brevis and flexor digitorum brevis in participants with lesser toe deformities 

compared to the healthy older adults. Since foot disorders are acquired over a length of 

time, it may be possible for the atrophy to be present prior to the development of the foot 

disorder. There is a paucity of research investigating possible mechanical adaptations to 

the plantar intrinsic muscles as a consequence of wearing custom-made foot orthotics 

(CFO’s). Although it is known that wearing CFO’s alter the distribution of plantar 

pressures, no previous study has investigated if disuse muscle atrophy ensues as a 

consequence of offloading specific plantar intrinsic muscles. 
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1.4 Disuse Muscle Atrophy 

 Disuse muscle atrophy occurs as a consequence of short-term and long-term 

muscular inactivity, immobilization, and unloading of the surrounding structures. It 

results in a loss of muscle mass, increase in fatty infiltration into the muscle (Borkan, 

Hults, Gerzof, Robbins, & Silbert, 1983; Forsberg, Nilsson, Werneman, Bergström, & 

Hultman, 1991; Overend, Cunningham, Paterson, & Lefcoe, 1992), changes in structural 

components of the neuromuscular system (Hather, Adams, Tesch, & Dudley, 1992), 

decrease in strength (Deschenes, Holdren, & Mccoy, 2008; Hvid et al., 2010), and 

adaptations in neural drive (Dudley et al., 1992; Seki, Taniguchi, & Narusawa, 2001), 

which collectively affect the functional capacity and performance of an individual 

(Aagaard, Suetta, Caserotti, Magnusson, & Kjaer, 2010; Coker, Hays, Williams, Wolfe, 

& Evans, 2015; Kortebein et al., 2008; Suetta et al., 2009). The rate at which muscle 

atrophy occurs from disuse depends on the degree of unloading and inactivity, the muscle 

group involved and anatomical location (Miokovic, Armbrecht, Felsenberg, & Belavy, 

2012; Psatha et al., 2012). The degree which a joint is limited or restricted in movement, 

and the position that the joint is immobilized in will have an effect on the rate the muscle 

atrophies. The rate of muscle atrophy is also greater when a muscle is immobilized in a 

shortened position rather than a lengthened position (Spector, Simard, Fournier, 

Sternlicht, & Edgerton, 1982). Furthermore, the rate the muscle atrophies is also 

influenced by anatomical location. During lower limb immobilization and unloading, the 

posterior calf muscles deteriorate at a faster rate and undergo a greater amount of disuse 

muscle atrophy than the knee extensors (vasti, rectus femoris) and ankle flexors (tibialis 

anterior, extensor digitorum longus). Studies by Miokovic et al. (2012) and Psatha et al. 
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(2012) demonstrated that the medial gastrocnemius and soleus atrophy the quickest. They 

hypothesize that the order in which atrophy occurs in the muscle coincides with the 

recruitment patterns during locomotion. Additionally, they found that many muscles do 

not atrophy uniformly along the length of the muscle, which is likely related to the 

specific use of each muscle. The earliest onset of disuse muscle atrophy observed in the 

literature is 72 hours (Lindboe & Platou, 1984). However, this was done by a more 

dramatic unloading methodology, where they immobilized the lower limb with a cast, 

while simultaneously on bed rest. An additional study found that 4 days of complete 

unloading via lower limb immobilization led to a 10% decrease in mean muscle fibre 

cross-sectional area (Suetta et al., 2012). It is important to note there is a lack of research 

that focuses on other mechanisms of inducing atrophy, where it may be beneficial to 

understand if disuse muscle atrophy can be influenced by assistive devices used on an 

everyday basis while mobile.    

 Investigators are faced with the difficult task to decipher if the changes from 

disuse muscle atrophy are associated to natural progression of aging, or as a result of 

unloading. Therefore, it is imperative to clarify if age is a dependent factor to the rate of 

disuse atrophy, and the effects it may have on recovery. Two recent studies have 

compared old and young men after 2 weeks of immobilization of the lower limb followed 

by a 4-week retraining period (Hvid et al., 2010; Suetta et al., 2009). An apparent 

difference between young and older men at baseline measurements existed, with older 

men exhibiting lower scores in maximal muscle strength, quadriceps muscle volume, and 

cross-sectional area of the compared to younger men. After 2 weeks of immobilization of 

the lower limb, the older individuals were more affected in neural activation and 
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function, whereas the younger group had different adaptive mechanisms that only caused 

changes to the muscle size and architecture. Moreover, it was evident that after 4 weeks 

of retraining the younger men were able to recover from the impairments experiences as a 

result of short-term immobilization, and return back to baseline values. The older men 

had similar recovery in isometric strength and dynamic strength, however they remained 

deficient in force rate capacity, impulse, muscle volume, and cross-sectional area of the 

muscle following the retraining period. These results indicate that older individuals have 

an impaired ability to recover from disuse muscle atrophy and may need to undergo 

longer retraining periods in comparison to younger individuals (Tanner et al., 2015). The 

older men’s inability to recover to their original baseline values corresponds to the 

evidence that suggests sarcopenia causes muscle loss of ~0.5 to 1% per year (Mitchell et 

al., 2012). Contrary to the evidence indicating sarcopenia as a potential factor to the rate 

of disuse muscle atrophy, there is opposing evidence against sarcopenia and ascribe the 

decline in muscle mass and strength to a sedentary lifestyle adopted with the progression 

of age. Wroblewski et al. (2011) examined master level athletes between the ages of 40 to 

81 years, subdivided them into 4 age groups based on decade and assessed muscle mass 

and strength using magnetic resonance images (MRI) and functional strength tests. They 

found that chronic exercising preserved the quadriceps muscle mass and prevented fatty 

infiltration from occurring from the measurements on the MRI. There were no 

differences across the age groups in measured mid-thigh total area, subcutaneous adipose 

tissue, and intramuscular adipose. In addition, they did find that peak torque of the 

quadriceps at the age of 60 years, however did not decline with further aging. The authors 
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concluded that individuals with sedentary physical activity levels contribute to the effect 

of chronic disuse rather than muscle aging. 

 

1.5 Purpose, Objectives and Hypotheses 

 In the current literature, there is a lack of evidence to explain whether mechanical 

adaptations occur to the structure of the foot as a result of wearing custom-made foot 

orthotics (CFO’s). Due to the poor understanding of the mechanisms of orthotics, it 

unknown if the plantar intrinsic muscles are affected since they are in direct contact with 

the CFO’s. The purpose of this study was to explore the effect of a 12-week custom-made 

foot orthotic intervention on the intrinsic muscles of the foot and dynamic stability during 

unexpected gait termination. The objectives of the study are to determine if the use of 

CFO’s cause: (a) changes to the structure of the plantar intrinsic muscles, (b) alteration to 

the magnitude and duration of the intrinsic muscles during the gait cycle and (c) changes 

in dynamic stability during gait.   

 It was hypothesized that individuals in the foot orthotic group will have decreased 

cross-sectional area measurement of the plantar intrinsic muscles at the end of the 12-

week intervention. Secondly, it was hypothesized that individuals in the orthotic group 

will have decreases in average magnitude of electromyography (EMG) muscle activity 

for the dorsal and plantar intrinsic muscles. Additionally, it was hypothesized the muscle 

burst activity duration of the orthotic group will remain the same at the end of the 

intervention. Lastly, it was hypothesized that individuals in the orthotic group will exhibit 

a decrease in dynamic stability from their baseline measurements to the end of the 

intervention during gait termination trials. More specifically, the orthotic group will have 
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a decrease in lateral stability margin and the centre of mass (COM) trajectory will 

approach closer to the lateral border of the base of support during gait termination trials. 

Using the additional measure of instability, the centre of mass—centre of pressure 

(COM-COP) relationship, it is hypothesized that the orthotic group maximum anterior-

posterior direction COM-COP differences will increase over time during gait termination.  
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2. Methodology  

2.1 Participants  

Eighteen healthy young adults between 21-33 years of age voluntarily participated 

for this study. Participants were recruited with posters displayed in the Kitchener-

Waterloo and Wilfrid Laurier University communities. Once they volunteered each 

individual attended a screening session prior to inclusion into the study. The screening 

session consisted of each participant completing the screening questionnaire (Appendix 

A), their foot posture was evaluated by a single examiner using the Foot Posture Index 

(FPI) (Appendix B), while weight bearing as described by Redmond et al. 2006 and 

Navicular Height (NH) (Appendix C) was measured to confirm a pronated foot posture 

(Mueller, Host, & Norton, 1993). The NH measurement was taken a total of three times, 

and then averaged. The screening questionnaire included general information of 

demographics, previous history of medical and lower limb injuries, and dietary protein 

intake consumption. The dietary protein food frequency questionnaire was only 

administered at baseline. After the screening session, the main researcher determined if 

each participant met the inclusion criteria of the study. The participants were included 

into the study if they did not meet the exclusion criteria: (a) worn custom foot orthotics 

(CFO) in the past year, (b) scored less than +5 on the FPI or had NH greater than 3.6 cm, 

(c) had a current lower limb injury, leg or foot pain, (d) neurological or musculoskeletal 

disorders affecting balance and coordination, (e) previous history of lower limb surgery, 

(f) dietary protein consumption exceeding Health Canada’s recommended daily intake 

(0.8 g/kg/d), and (g) on any medications affecting balance.  
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After the inclusion criteria was met, participants were placed into one of two 

groups by stratified sampling and then were randomized into either the orthotic (n= 9) or 

control group (n= 9). The control group was added to determine the effect of task over 

time and the effect of the intervention. The orthotic group age ranged from 21 to 33 years 

old (24.2 ±3.5), height ranged from 1.60 to 1.85m (1.74 ±0.07) and mass ranged from 

56.8 to 87.7 kg (70.4 ±9.4). The control group age ranged from 23 to 32 years old (25.3 

±3.0), height ranged from 1.57 to 1.88 m (1.77 ±0.09) and mass ranged from 59.1 to 91.8 

kg (76.8 ±13.6) (Table 1). Each participant signed a written consent form that outlined 

and detailed the protocol along with any possible risks associated with the study prior to 

the first testing session. They were permitted to revoke their consent at any time and 

withdrawal from the study. The Wilfrid Laurier University Ethics Board reviewed and 

approved the study prior to data collection.  

 
 
2.2 Custom-made Orthotic Casting, Fitting and Materials 

 Participants randomized into the orthotic group had a physical assessment session 

prior to data collection. Each participant was casted for a pair of custom-made foot 

orthotics (CFO’s) by a certified Pedorthist with twenty-five years of clinical experience. 

The participants were seated and a negative foam box cast was taken optimizing arch 

height, subtalar joint posture and forefoot to rearfoot alignment. The design of the CFO’s 

was standardized where all shell materials, liners and external postings were equivalent 

across all participants in the orthotic group, however they were customized to 

accommodate the varying degrees of the pronated foot postures. The CFO’s were ¾ of 

their foot length ending proximal to the metatarsal (MT) heads of each subject, the shell 
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material was composed of low pressure polypropylene, the external postings and liners 

made of ethylvinylacetate (EVA) (Figure 3). The participants in the orthotic group 

returned to the Pedorthist for a fitting session where minor adjustments were made if 

needed through heating and grinding to ensure proper fitting, comfort, and foot posture. 

All participants were then given an acclimatization period of one week to accommodate 

to the CFO’s before the start of the study. Participants were instructed to wear the CFO’s 

for a minimum duration of 6 hours a day or as long as possible throughout the twelve-

week study period. At the end of each week, all participants in the orthotic group 

received and completed a follow-up questionnaire (Appendix D) via e-mail to ensure 

adherence to the protocol.  

Figure 3. Custom-made foot orthotics (CFO’s) worn by participants in the orthotic 
group. (A) Overhead view (B) Medial view.  
!
!
2.3 Instrumentation and Data Processing 

! 2.3.1 Kinetics 

 Three force plates (Advanced Mechanical Technologies Inc., Watertown, MA) 

embedded securely into the floor were used to record kinetic data collected at a sampling 

frequency of 1000-Hz (Figure 4). The spacing of the force plates was designed to collect 

A! B!
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data for walking and gait termination tasks. The horizontal and vertical forces and 

moments were recorded and used to calculate the centre of pressure (COP) and rate of 

loading (ROL). All force measurements were normalized to the participant’s body weight 

in Newton’s (N).  A threshold of 10 N of vertical force was used to determine heel 

contact (HC) and toe-off (TO) of each force plate. The onset was determined when the 

vertical force exceeded 10 N of force and the offset was defined as when the vertical 

force fell below 10 N.  

 

 
Figure 4. Setup of the three force plates embedded into the floor: (A) force plate one 
(FP1), (B) force plate two (FP2), and (C) force plate three (FP3). The kinetic and 
kinematic reference systems were aligned with an origin of (0,0) as indicated above. 
 

2.3.2 Kinematics 

 Two OptoTrak 3020 motion capture banks (Figure 5) equipped with 6 cameras 

(Northern Digital Inc., Waterloo, ON, Canada) were used to locate the position of the 

markers placed on the body in three dimensional space during each task. One camera 

bank was positioned vertically and the other camera bank was positioned horizontally. A 

(0,0)!
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12 smart marker setup was applied in the frontal plane of the participant as used 

previously by Perry et al., (2007) and was sampled at a frequency of 100-Hz. The 

markers were placed on the forehead, bilateral acromion processes, xiphoid process, 

bilateral anterior superior iliac spines (ASIS), bilateral tibial tuberosities, bilateral 

anterior distal tibias, and bilateral base of the third metatarsals (Figure 6). The 

participants were able to move freely as a result of using a wireless strober.  

The kinematic data was processed using the Optofix (Mishac Kinetics, Waterloo, 

ON, Canada) program to fill in gaps of the missing data points using the cubic spline 

interpolation method. The cubic spline method calculated and completed the section of 

missing data by locating four points prior and four points after the gap to represent the 

actual motion trajectory of the specific marker position. The kinematic data collected was 

used to calculate the whole body centre of mass (COM) and the location of the lateral 

border of the base of support (BOS) in the transverse plane.  

 
Figure 5. OptoTrak 3020 Motion Analysis Systems: (Left to Right: Vertical and 
horizontal configuration). 
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Figure 6. The kinematic 12 frontal smart marker setup (anterior placement).  
!
!

2.3.3 Electromyography 

To assess muscle activity during normal walking and gait termination trials, 

surface electromyography (EMG) recorded by the Bortec AMT-8 Octopus system 

(Calgary, AB, Canada) was collected from two dorsal and two plantar intrinsic foot 

muscles of the right foot. All participants had the surface of their skin cleaned and 

prepped with 70% isopropyl-rubbing alcohol over each muscle being evaluated. Two 

pairs of 2cm Kendall foam electrodes with conductive adhesive hydrogel (Covidien, 

Mansfield, MA, USA) were placed on the most superficial intrinsic muscles: extensor 

hallucis brevis (EHB), extensor digitorum brevis (EDB), abductor hallucis (Abd H) and 

abductor digiti minimi (Abd DM). The Abd H electrodes were placed 1-2 cm posterior to 
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the location of the navicular tuberosity, the Abd DM electrodes were placed 1cm 

proximal to the styloid of the 5th metatarsal, the EDB electrodes were placed laterally to 

the extensor digitorum brevis longus tendon and anterior to the lateral malleolus, and the 

EHB electrodes were placed between the extensor hallucis longus and the extensor 

digitorum longus tendons (Arincini, Genc, Erdem & Yorgancioglu, 2003; Jung, Koh & 

Kwon, 2011; Kim, Kwon, Kim & Jung, 2013; La Scaleia, Ivanenko, Zelik & Lacquaniti, 

2014). In addition, all muscles bellies were identified by palpation and muscle resistance 

testing, and electrodes were placed in the direction of the muscle fibres (Figure 7) 

(Kendall, McCreary, Provance, Rodgers & Romani, 2005). The ground electrode was 

placed on the medial malleolus. Measurements of electrode distance from bony 

landmarks and photographs were taken to ensure accuracy of electrode placement for the 

second and third testing periods. A maximal voluntary contraction (MVC) value was 

obtained by observing the maximum values of the peak EMG magnitude during three gait 

trials and taking the average. The investigator retrospectively assessed the data of each 

participant’s fifty walking trials for that testing date and took three of the largest peak 

EMG magnitudes, averaged them and utilized it as that test date’s MVC.  

All EMG data were sampled at a frequency of 1000-Hz and amplified (Bortec, 

Calgary, AB, Canada) to maximize signal resolution. Raw EMG data were unbiased, full-

wave rectified and filtered using a dual pass first order Butterworth filter with a low-pass 

cut off frequency of 20-Hz to create a linear envelope. The linear envelope EMG was 

normalized to the peak magnitude of each muscle on the specific test date and averaged 

from three walking trials. The EMG, kinetic and kinematic systems were synchronized to 

collect data at the same time.  
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Figure 7. Electrode placement to the intrinsic muscles of the foot. (A) Abductor Hallucis 
(Abd H), (B) Abductor Digiti Minimi (Abd DM), (C) Extensor Digitorum Brevis (EDB), 
and (D) Extensor Hallucis Brevis (EHB).  
!
!

2.3.4 Ultrasound 

High-resolution ultrasound images of the plantar intrinsic muscles of the right 

foot were obtained using a 6-15 MHz linear transducer (Sonosite M-Turbo, Markham, 

ON, Canada) held by the research investigator on a marked location on the surface of the 

skin. Due to restrictive access to the ultrasound equipment, the plantar intrinsic muscles 

were only evaluated in 5 of 9 participants in both the OG and CG. Scanning lines 

developed by Mickle et al. (2013) and Angin et al. (2014) were used to obtain ultrasound 

images of the flexor digitorum brevis (FDB), abductor digiti minimi (Abd DM) and the 

C
B+

B+A+

C+ D+



! 26!

abductor hallucis (Abd H) (Figure 8). The FDB measurement was taken from the 

proximal 1/3 of the scanning line on the plantar surface that went from the medial 

calcaneal tuberosity to the 3rd digit. The Abd DM scanning line was drawn from the 

lateral calcaneal tuberosity and angled toward the styloid of the 5th metatarsal. Lastly, the 

Abd H scanning line began from the medial calcaneal tuberosity and went toward the 

navicular tuberosity. In addition, the investigator referenced anatomy and ultrasound 

textbooks to confirm appropriate location. Images were completed while the participant 

laid prone on a chiropractic portable table with their ankles resting in a neutral position. 

The transducer was placed longitudinally along the scanning line and then was rotated 

90° to obtain a cross-sectional image of the muscle. 

Figure 8. Scanning lines of plantar intrinsic muscles for obtaining the ultrasound images 
(A) FDB, (B) Abd DM, and (C) Abd H. The solid blue square represents the probe 
rotated to 90° to obtain a cross-section and the clear square is the probe placed 
longitudinally.  
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2.4 Experimental Protocol 

 Participants in both the orthotic group (OG) and control group (CG) completed 

baseline, 6-week and 12-week testing. Individuals in the orthotic group were expected to 

wear the orthotics for the duration of the study, whereas the participants in the control 

group were asked to continue wearing their normal footwear throughout the duration of 

the study. At the beginning of each testing session participants had cross-sectional 

diagnostic ultrasound images taken of three plantar intrinsic muscles of the right foot: 

flexor digitorum brevis (FDB), abductor digiti minimi (Abd DM) and abductor hallucis 

(Abd H). A gait termination protocol was adapted from Perry et al. (2001). All testing 

was completed barefoot and participants were not tested while wearing orthotics or any 

footwear. CFO’s have been shown to be beneficial for reducing foot pain, however it is 

assumed they are withdrawn from the footwear after the pain has resolved. Offloading the 

plantar intrinsic muscles may result in deficits in muscular function and expose these 

individuals to an increased risk of injury when they no longer wear the CFO, therefore 

participants were tested barefoot. Participants were instructed to walk down an 8m 

walkway barefoot looking straight ahead (Figure 9). Participants were told they may or 

may not hear an audio buzzer sound to terminate their gait at a pre-determined area. The 

audio buzzer was triggered by a foot contact force of 10N over the first force plate and 

then during the next two steps gait termination took place over the next two force plates. 

If they did not hear an audio buzzer they were asked to continue to walk to the end of the 

walkway. A total of 50 trials were recorded and 25% (12 of 50) of those trials were 

randomly selected for gait termination. Participants were given 3-5 practice trials to 

familiarize themselves with the normal walking and gait termination protocol.  
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Figure 9. Overhead view of the 8m walkway with the experimental instrumentation 
configuration and pre-determined area where gait termination occurred.  
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2.5 Data Analysis 

 The primary outcome measures of the study were cross-sectional area (CSA) of 

FDB, Abd DM and Abd H of the right foot, the transverse plane projection of the 

minimum (lateral stability margin) centre of mass location relative to the lateral base of 

support (COM-BOS), the maximum of the centre of mass-centre of pressure (COM-COP) 

difference in the anterior posterior (A/P) direction, the vertical force rate of loading 

(ROL), the average EMG magnitude, integrated EMG and muscle burst activity duration. 

The secondary outcome measures of the study were gait velocity, step length and step 

width.  

 The analysis window for the COM-BOS and COM-COP measures were 

calculated during the first single stance phase on force plate 1 (FP1) and the second 

single stance phase on force plate 2 (FP2). The ROL was calculated during the first 100 

m/s of contact with FP1, FP2, and if gait termination occurred force plate 3 (FP3). The 

analysis window for EMG measures during normal walking trials was defined as 100% 

of the gait cycle, the beginning being when the first right foot heel contact was made 

(0%) and the ending being when second right foot heel contact was made (100%). The 

analysis window for EMG measures taken during gait termination was defined as 100% 

of the gait cycle (first right heel contact on FP1 to second right heel contact on FP3) and 

for an additional 1 second after gait was terminated.  

 

2.5.1 Ultrasound Analysis  

Ultrasound Analysis was completed by a single investigator using ImageJ 

software (National Institute for Health, Bethesda, MD, USA). All images were 
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Figure 10. Longitudinal view (left) and cross-sectional area (right) ultrasound images of 
the plantar intrinsic muscles. (A) Flexor digitorum brevis (FDB), (B) Abductor digiti 
minimi (Abd DM) and (C) Abductor hallucis (Abd H). 
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randomized and assigned a numerical value by a second investigator so the primary 

investigator was blinded to the muscle and testing period of the image. At the end of data 

collection all images were analyzed all at once. The cross-sectional area (cm2) 

measurement of the FDB, Abd DM, and Abd H of the right foot were taken three times 

for each muscle and then averaged (Figure 10). A measurement scale was calibrated in 

the software program by measuring a known distance of 1 cm on the image. A pilot study 

was performed on six subjects to determine the reliability and revealed a simple Pearson 

correlation of 0.999 for both FDB and Abd DM, and 0.997 for Abd H when images were 

taken over two collection periods.  

!
2.5.2 Kinematic Analysis 

 The centre of mass (COM) was calculated taking the 12 smart marker positions 

from the OptoTrak Motion Analysis System and inputting their location in a customized 

program. The customized program calculated the COM by using a segmental average 

approach of seven segments as described by Winter (1995).  The lateral base of support 

was defined by taking the smart marker location of the anterior distal tibia and base of the 

3rd metatarsal of each foot and an estimated lateral border was calculated using the 

anthropometric distance from each marker to the lateral border of the foot. The minimum 

COM-BOS value was obtained by a customized analysis program using Microsoft Visual 

Basic. The lateral stability margin was calculated using trigonometry functions to find the 

distance between the COM to the lateral border. This variable was specifically selected 

since most falls occur in the M/L direction. The larger values of the displacement 

between the COM and the lateral base of support indicates greater stability, whereas the 
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smaller the margin between the two suggests instability and a reduced biomechanical 

capacity to respond to lateral perturbations. 

 Additionally, the secondary outcome measures of gait velocity, step length and 

step width were calculated using the smart marker positions. Gait velocity (m/s) was 

calculated from the obtained centre of mass distance it travelled during the analysis 

window and averaged over the analysis time window. Step length (m) was calculated by 

the difference in distance from the first foot contact to the second foot contact of the 

opposite limb and step width (m) was calculated by measuring the mediolateral distance 

from the first foot contact to the second foot contact of the opposite limb. 

 

! 2.5.3 Kinetic Analysis 

 Three force plates collected force measurements to calculate centre of pressure 

(COP) and vertical force rate of loading (ROL). The COP was calculated in the anterior 

posterior (A/P) and medial lateral (M/L) directions to give a spatial location. The A/P 

COP was calculated using the moment about the x axis (Mx, M/L) measurement and 

dividing it by the the vertical force (Fz) and the M/L COP was calculated using the 

moment about the y axis (My, A/P) measurement, multiplied by negative one (to correct 

for the default force plate axis) and then divided by the vertical force (Fz). The maximum 

COM-COP in the A/P direction was calculated in the customized analysis program, 

which measures the distance between the COM and COP during both single stance 

phases, the greater the distance between the two variables the larger the value, suggests 

instability. This difference in A/P maximum COM-COP was used to observe how far the 
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participant was being perturbed. This measures dynamic stability as the COM is still 

accelerating forward even though the participant has terminated their gait.  

 Secondly, the ROL (BW/s) was calculated as the slope from the onset of foot 

contact to the force (N) reached at 100 ms divided by the change in time. All ROL data 

were normalized to the participant’s body weight (BW) measured in Newton’s (N) to 

allow for comparisons across all participants. 

! 2.5.4 Electromyography Analysis 

 Each muscle burst was represented by average EMG magnitude, integrated EMG 

magnitude and activation duration as calculated during the analysis window. A muscle 

burst analysis window was defined when the onset of muscle activity had exceeded a 5% 

MVC threshold for each muscle consistently for 100 ms and cessation was determined 

when muscle activity fell below the 5% MVC threshold for 100 ms. Average EMG 

magnitude (v) was calculated by adding all the EMG magnitude data points within the 

specific muscle burst and dividing it by the total number of data points. The integrated 

EMG magnitude (v) was calculated by adding all the EMG data points within the defined 

muscle burst. Lastly, muscle burst duration (ms) was calculated by subtracting the time of 

onset from the cessation of the specific muscle burst. All EMG activity variables were 

normalized to the participants MVC.  Timing variables were normalized to the time of the 

predefined gait cycle. 

 

2.6 Statistical Analysis 

 Multiple three way repeated-measures analysis of variance (ANOVA) using SAS 

statistical software (University Edition, SAS Institute Inc., Cary, NC, USA) were 
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performed to determine the effect of wearing custom-made foot orthotics on each of the 

dependent variables. The dependent variables were minimum centre of mass—base of 

support (COM-BOS), maximum anterior-posterior (A/P) centre of mass—centre of 

pressure (COM-COP), average EMG magnitude (aEMG), integrated EMG (iEMG), 

muscle burst activity duration (MD), vertical rate of loading (ROL), gait velocity (GV), 

step length (SL), and step width (SW). The statistical model was comprised of one 

between-participant factor (participant group: orthotic vs control) and two within-

participant factors: (i) testing session (test date: baseline vs 6-weeks vs 12-weeks), and 

(ii) walking task (task: gait termination vs normal walking). Additionally, a two-way 

ANOVA was used to compare mean differences in cross-sectional area of the flexor 

digitorum brevis (FDB), abductor digiti minimi (Abd DM) and abductor hallucis (Abd H) 

muscles. The model had one between-participant factor (participant group: orthotic vs 

control) and one within-participant factor (i.e., test date: baseline vs 6-weeks vs 12-

weeks). The assumptions of normality of ANOVA were tested for each statistical analysis 

and when appropriate the data was rank-transformed to ensure that normality assumptions 

were met. Outliers were determined by setting a criterion to identify measures that were 

greater than two standard deviations of the variable mean. The data of the identified 

outlier was then inspected and video was reviewed to note possible reasoning for 

measurement error (e.g. missed force plate contact, missing marker) and if exclusion of 

the trial was not warranted, then the data was retained for analysis. The least square 

means for multiple comparisons was the post-hoc test used to determine where 

differences occurred. For all statistical analysis, the significance level was set a priori to 

α= 0.05.  
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3. Results 

3.1 Participant’s General Characteristics 

 There were no significant differences between the orthotic or control groups 

general characteristics for age (p=0.482), height (p=0.550), weight (p=0.263), FPI score 

(p=0.379) or navicular height (p=0.873). (Table 1). 

 

Table 1. Mean (SD) of participant’s general characteristics of the orthotic and control 
groups with p-values indicated. No significant differences between the groups (p>0.05). 
  
 Orthotic Group 

(n= 9) 
Control Group 

(n= 9) 
p-value 

Age 24.2 (3.5) 25.3 (3.0) 0.482 
Height (m) 1.74 (0.07) 1.77 (0.09) 0.550 
Weight (kg) 
        Range 

70.46 (9.36) 
56.8 to 87.7 

76.82 (13.55) 
59.1 to 91.8 

0.263 

FPI score (+) 6.4 (1.5) 7.1 (1.6) 0.379 
NH (cm) 2.36 (0.50) 2.31(0.66) 0.873 
Shoe Size * 
        Range 

7.6 (2.0) 
5 to 11 

8.9 (2.5) 
5 to 11.5 

0.231 

Gender M=3, F= 7 M= 5, F= 4  
* Shoe sizes were according to men shoe sizes 

3.2 Effect of CFO’s on Cross-sectional Area of the Plantar Intrinsic Muscles 

 There was a main effect of group and test date for the right flexor digitorum 

brevis (FDB) (p<0.001), the right abductor digiti minimi (Abd DM) (p<0.001), and right 

abductor hallucis (Abd H) (p<0.001). There were statistically significant interactions for 

group and test date on cross-sectional area (CSA) of the FDB (ηp
2=0.941), the Abd DM 

(ηp
2=0.932), and Abd H (ηp

2=0.934) muscles (p< 0.001). Following the 12-week 

intervention period, individuals that wore the CFO’s had a decrease in overall CSA from 

baseline measures for the FDB, Abd DM, and Abd H plantar intrinsic muscles.  
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For FDB, there was a statistically significant difference in CSA from baseline to 

6-weeks (2.09 ± 0.50 cm2 vs. 2.04 ± 0.55 cm2; p< 0.001) 6-weeks to 12-weeks (2.04 ± 

0.55 cm2 vs. 1.89 ± 0.46 cm2; p<0.001), and baseline to 12-weeks (p<0.001) for the 

orthotic group (Figure 14). The control group (CG) saw a slight increase in CSA of the 

FDB from baseline to 6-weeks (2.19 ± 0.46 cm2 vs 2.24 ± 0.49 cm2; p<0.001) and 

baseline to 12-weeks (2.19 ± 0.46 cm2 vs. 2.23 ± 0.49 cm2; p<0.001). There was no 

significant difference from 6-weeks to 12-weeks (p=0.10). The FDB CSA was smaller in 

the orthotic group (OG) compared to the control group (CG) at baseline (p<0.001), 6-

weeks (p<0.001) and 12-weeks (p<0.001). 

The CSA for Abd DM in the orthotic group were significantly lower from 

baseline to 6-weeks (1.23 ± 0.10 cm2 vs. 1.15 ± 0.12 cm2; p<0.001), 6-weeks to 12-weeks 

(1.15 ± 0.12 cm2 vs. 1.02 ± 0.09 cm2; p<0.001), and baseline to 12-weeks (p<0.001) 

(Figure 15). There was no significant difference in the CG from baseline to 6-weeks 

(p=0.26), baseline to 12-weeks (p=0.71) or 6-weeks to 12-weeks (p=0.14). The OG CSA 

in comparison to the CG CSA significantly differed at baseline (OG: 1.23 ± 0.10 cm2 vs. 

CG: 1.30 ± 0.27 cm2; p<0.001), 6-weeks (OG: 1.15 ± 0.12 cm2 vs. CG: 1.30 ± 0.28 cm2; 

p<0.001) and 12-weeks (OG: 1.02 ± 0.09 cm2 vs.  CG: 1.31 ± 0.27 cm2; p<0.001). 
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Figure 14. Effect of orthotics on cross-sectional area of the right FDB after a 12-week 
intervention. Standard deviation bars shown. Note: **= significance between groups, †= 
significance within orthotic group between test dates and ¥= significance within the 
control group between test dates. (p<0.05). 

 
Figure 15. Effect of orthotics on cross-sectional area of the right Abd DM during a 12-
week intervention. Standard deviation bars shown. Note: **= significance between 
groups, †= significance within orthotic group between test dates and ¥= significance 
within the control group between test dates. (p<0.05).�  
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Lastly, the Abd H had significant changes in the OG CSA across the different test 

dates, with decreases occurring from baseline to 6-weeks (1.38 ± 0.51 cm2 vs. 1.24 ± 0.42 

cm2; p<0.001), 6-weeks to 12-weeks (1.24 ± 0.42 cm2 vs. 1.14 ± 0.38 cm2; p<0.001), and 

baseline to 12-weeks (p<0.001) respectively (Figure 16). The CG had a slight decrease in 

CSA from baseline to 6-weeks (1.82 ± 0.20 cm2 vs. 1.79 ± 0.21 cm2; p<0.001), and 

baseline to 12-weeks (1.82 ± 0.20 cm2 vs. 1.81 ± 0.21 cm2; p=0.01). From 6-weeks to 12-

weeks the CG CSA increased slightly (1.79 ± 0.21 cm2 vs. 1.81 ± 0.21 cm2; p=0.02). The 

CSA of the Abd H as time progressed was significantly smaller in the OG compared to 

the CG at 6-weeks (OG: 1.24 ± 0.42 cm2 vs. CG: 1.79 ± 0.21 cm2; p<0.001) and 12-

weeks (OG: 1.81 ± 0.21 cm2 vs. CG: 1.14 ± 0.38 cm2; p<0.001).  

Figure 16. Effect of orthotics on cross-sectional area of the right Abd H during a 12-
week intervention. Significant interaction between group, test date and task (p<0.001). 
Standard deviation bars shown. Note: **= significance between groups, †= significance 
within orthotic group between test dates and ¥= significance within the control group 
between test dates. (p<0.05). 
!
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3.3 Effect of CFO’s on Balance Measurements 

! 3.3.1 Minimum COM—BOS (Lateral Stability Margin) 

 There was no significant main effect for group on the lateral stability margin 

(p=0.071). There were significant main effects for test date (p=0.002) and task (p<0.001). 

A significant interaction was observed for the effect of group, test date and task on the 

first single stance lateral stability margin (p= 0.028) (Figure 17). The LSMeans 

comparisons revealed the OG lateral stability margin measurements significantly differed 

between the three test dates in gait termination trials. The lateral stability margin for the 

OG increased from baseline to 6-weeks (6.4 ± 3.8 cm vs. 7.1 ± 3.4 cm; p<0.001) and 

baseline to 12-weeks (6.4 ± 3.8cm vs. 7.5 ± 3.8 cm; p<0.001), however there was no 

significant difference from 6-weeks to 12-weeks (7.1 ± 3.4 cm vs. 7.5 ± 3.8 cm; 

p=0.359). The CG lateral stability margin showed significant differences from baseline to 

6-weeks (9.1 ± 3.4 cm vs. 6.7 ± 3.1 cm; p<0.001), baseline to 12-weeks (9.1 ± 3.4 cm vs. 

7.7 ± 3.9 cm; p<0.001) and 6-weeks to 12-weeks (6.7 ± 3.1 cm vs. 7.7 ± 3.9 cm; 

p<0.001). Additionally, at baseline the OG had a significantly smaller lateral stability 

margin (6.4 ± 3.8 cm) compared to the CG (9.1 ± 3.4 cm; p<0.001), whereas at 6 weeks 

the OG had a slightly higher mean lateral stability margin of 7.1 cm (± 3.4) compared to 

the CG of 6.7 cm (±3.1) (p=0.034). However, it then remained similar between the 

groups at 12-weeks (p= 0.246). 

There were significant main effects for group (p<0.001), test date (p=0.039), and 

task (p<0.001) on the second single stance lateral stability margin. No significant 

interaction occurred for the effect of group, test date and task on the second single stance 

lateral stability margin (p=0.487). These findings are summarized in Table 2. 
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Figure 17. Effect of orthotics on first single stance minimum COM-BOS during gait 
termination. Significant interaction between group, test date and task (p=0.03). Standard 
deviation bars shown. Note: **= significance between groups, †= significance within 
orthotic group between test dates and ¥= significance within the control group between 
test dates. 
 
Table 2. Mean (SD) of the second single stance lateral stability margin (min COM-BOS 
distance in cm) during gait termination. No significant interaction between group, test 
date and task (p>0.05). 

*All values are in (cm) 
 
! 3.3.2 Maximum A/P COM—COP 

 There were significant main effects for group (p<0.001), test date (p<0.001), and 

task (p<0.001) on maximum A/P COM—COP. No significant interaction was revealed 

Group Baseline 6-Weeks 12-Weeks 

Orthotic 0.35 (0.21) 0.33 (0.16) 0.28 (0.17) 

Control 0.42 (0.19) 0.40 (0.19) 0.35 (0.18) 
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for the effect of group, test date and task on the maximum anterior-posterior centre of 

mass—base of support (COM—COP) model (p=0.569). These findings are summarized 

in Table 3.  

 
Table 3. Mean (SD) of maximum AP COM-COP distance (cm) during gait termination. 
No significant interaction between group, test date and task (p>0.05). 
!

Group Baseline 6-Weeks 12-Weeks 

Orthotic 20.7 (8.0) 18.0 (1.9) 17.4 (1.9) 

Control 19.2 (2.7) 18.2 (2.0) 18.3 (1.5) 

*All values are in (cm) 

 

3.4 Effect of CFO’s on Rate of Loading  

 There were significant main effects for group (p<0.001) and test date (p<0.001) 

on the first stance phase of ROL. There was no main effect of task (p=0.725) on first 

stance ROL. A significant interaction was shown for the effect of group, test date and 

task on force plate rate of loading for the first foot contact (p=0.042) (Figure 18). The 

analysis revealed that during the first foot contact to signal gait termination the OG had 

an initial decrease in loading rate from baseline to 6-weeks (14.79 ± 2.49 BW/s vs. 14.23 

± 2.80 BW/s; p=0.004) and then returned to a similar loading rate as baseline from 6-

weeks to 12-weeks (14.23 ± 2.80 BW/s vs. 14.70 ± 2.06 BW/s; p=0.014). There was no 

significant difference for rate of loading in the OG from baseline to 12-weeks (p=0.644). 

The CG increased single stance ROL from baseline to 6-weeks (15.21 ± 2.09 BW/s vs. 

16.63 ± 23.8 BW/S; p<0.001) and baseline to 12-weeks (15.21 ± 2.09 BW/s vs.16.86 ± 

2.61BW/s; p<0.001). There were no differences in ROL in the CG from 6-weeks to 12-
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weeks (p=0.101). Moreover, the OG demonstrated significant differences in rate of 

loading of the first foot contact as gait termination was initiated compared to the CG at 

baseline (p=0.027), 6-weeks (p<0.001) and 12-weeks (p<0.001). At the 6-week test date 

the OG had a lower rate of loading (14.23 ± 2.80 BW/s) compared to the CG (16.63 ± 

23.8 BW/s) while being signaled to terminate gait. Similarly, at 12-weeks the OG had 

lower rate of loading (14.70 ± 2.06 BW/s) compared to the CG (16.86 ± 2.61 BW/s).  

 There were significant main effects for group (p<0.001) and task (p<0.001) on the 

second stance ROL. There was no main effect for test date (p=0.702). The force plate rate 

of loading at the second foot contact had a significant interaction between group, test date 

and task (p<0.001). The OG displayed significant differences in rate of loading across the 

different test dates when gait termination occurred (Figure 19). The rate of loading 

decreased from both baseline to 6-weeks (23.32 ± 3.45 BW/s vs. 21.66 ± 4.96 BW/s; 

p<0.001) and baseline to 12-weeks (23.32 ± 3.45 BW/s vs. 21.81 ± 3.96; p<0.001), 

though no changes resulted from 6-weeks to 12-weeks (p=0.247). The CG second single 

stance ROL significantly differed from baseline to 6-weeks (p=0.002) and baseline to 12-

weeks (p<0.001). There was no significant difference from 6-weeks to 12-weeks 

(p=0.618) for the CG. In comparison to the CG, the OG had an initially had a higher rate 

of loading at baseline (OG: 23.32 ± 3.45 BW/s vs. CG: 22.56 ± 3.44 BW/s; p=0.026) an 

then had significantly lower rate of loading forces on the second force plate during gait 

termination trials at 6-weeks (OG: 21.66 ± 4.96 BW/s vs. CG: 23.75 ± 3.47 BW/s; 

p<0.001) and 12-weeks (OG: 21.81 ± 3.96 vs. CG: 23.86 ± 3.56 BW/s; p<0.001). 
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Figure 18. Effect of orthotics on first stance ROL (BW/s) during gait termination across 
the three test dates. Significant interaction between group, test date and task (p=0.042). 
Standard deviation bars shown. Note: **= significance between groups, †= significance 
within orthotic group between test dates and ¥= significance within the control group 
between test dates. (p<0.05). 
!

Figure 19. Effect of orthotics on second stance ROL (BW/s) during gait termination 
across the three test dates. Significant interaction between group, test date and task 
(p<0.001). Standard deviation bars shown. Note: **= significance between groups, †= 
significance within orthotic group between test dates and ¥= significance within the 
control group between test dates. (p<0.05). 
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3.5 Effect of CFO’s on Intrinsic Foot Muscles EMG 

! 3.5.1 Normalized average EMG magnitude 

 There were significant main effects for group (p<0.001) and test date (p<0.001) 

on average EMG magnitude of the AbdH. There was no main effect of task (p=0.727). A 

significant interaction was shown for the effect of group, test date and task on normalized 

average Abd H EMG magnitude (p=0.018) and normalized average EMG magnitude of 

EDB muscles (p=0.024). For the Abd H, the OG saw a significant change in average 

EMG magnitude across the test dates (Figure 20). A decrease in average EMG magnitude 

for the OG was seen from baseline to 6-weeks (14.9 ± 5.7% MVC vs. 12.8 ± 4.2% MVC; 

p=0.001), baseline to 12-weeks (12.8 ± 4.2% MVC vs. 12.0 ± 5.3% MVC; p<0.001), and 

6-weeks to 12-weeks (14.9 ± 5.7% MVC vs. 12.0 ± 5.3% MVC; p=0.019). A decrease in 

average Abd H EMG magnitude was shown in the CG from baseline to 6-weeks (16.7 ± 

7.0% MVC vs. 14.9 ± 5.7% MVC; p< 0.001) and baseline to 12-weeks (16.7 ± 7.0% 

MVC vs. 12.1 ± 4.0% MVC; p<0.001). There was no significant difference from 6-weeks 

to 12-weeks (p=0.142). However, no significant difference in average Abd H EMG 

magnitude existed when comparing the OG to the CG at baseline (p=0.077), 6-weeks 

(p=0.216) or 12-weeks (p=0.754). 

For the EDB muscle, the OG group had no significant differences in average 

EMG magnitude from baseline to 6-weeks (p=0.652), baseline to 12-weeks (p=0.222), or 

6-weeks to 12-weeks (p=0.926). The CG did not show differences between each test 

date’s average EDB magnitude from baseline to 6-weeks (p=0.585), baseline to 12-weeks 

(p=0.722) or 6-weeks to 12-weeks (p=0.364). Additionally, the OG did not significantly 
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differ from the CG average EDB EMG magnitude at baseline (p=0.900), 6-weeks 

(p=0.388) or 12-weeks (p=0.618).   

There was a significant main effect for task on average EMG magnitude of the 

Abd DM (p<0.001). There was no main effect of group (p=0.440). No significant 

interaction existed for the effect of group, test date and task on normalized average Abd 

DM EMG magnitude (p=0.348). 

There were significant main effects of group (p<0.001), test date (p<0.001), and 

task (p<0.001). No significant interaction existed for the effect of group, test date and 

task on normalized average EHB EMG magnitude (p=0.919). These findings are 

summarized in Table 4. 

 

Figure 20. Effect of orthotics on the average right Abd H magnitude during gait 
termination. Significant interaction between group, test date and task (p=0.018). Standard 
deviation bars shown. Note: **= significance between groups, †= significance within 
orthotic group between test dates and ¥= significance within the control group between 
test dates. (p<0.05). 
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3.5.3 Normalized EMG Muscle Duration 

 There were significant main effects for group (p=0.008), test date (p<0.001) and 

task (p<0.001) for Abd H muscle burst duration. No significant interaction was observed 

for the effect of group, test date and task (p=0.080) (Table 4). 

 There were significant main effects for group (p=0.029), test date (p<0.001) and 

task (p=0.044) for Abd DM muscle burst duration. No significant interaction was 

observed for the effect of group, test date and task (p=0.513). 

 There were significant main effects for group (p<0.001) and test date (p<0.001) 

for EDB muscle burst duration. There was no significant interaction for the effect of 

group, test date and task (p=0.229). 

 There were significant main effects for group (p<0.001), test date (p=0.028), and 

task (p<0.001) for EHB muscle burst duration. There was no significant interaction 

 shown for the effect of group, test date and task on normalized EMG muscle duration of 

EHB (p= 0.459). These findings are summarized in Table 4. 
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Figure 21. Effect of orthotics on integrated EDB EMG (% MVC) during gait 
termination. Significant interaction between group, test date and task (p=0.008). Standard 
deviation bars shown. Note: **= significance between groups, †= significance within 
orthotic group between test dates and ¥= significance within the control group between 
test dates. (p<0.05). 
!
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Table 4. Mean (SD) of average EMG magnitude (% MVC) and muscle burst duration (% of the gait cycle) during gait termination. 
No significant interaction between group, test date and task (p>0.05). 

 

! Muscle! Group! Baseline! 63Weeks! 123Weeks!

!
!
!

Average'EMG'
magnitude'
(%!of!MVC)!

Abd!DM! Orthotic! 11.9!(4.9)! 10.8!(3.3)! 11.6!(3.5)!

! Control! 11.5!(4.2)! 11.4!(3.7)! 11.6!(3.5)!

EHB! Orthotic! 12.9!(3.9)! 13.5!(3.8)! 13.1!(3.0)!

! Control! 13.3!(3.2)! 14.0!(2.9)! 14.7!(3.7)!

! Abd!H! Orthotic! 52.5!(65.4)! 32.5!(30.6)! 61.3!(69.5)!

! ! Control! 97.2!(115.9)! 32.5!(22.9)! 76.9!(1.36.2)!

! Abd!DM! Orthotic! 49.4!(69.4)! 22.6!(23.5)! 61.2!(73.8)!

EMG'Muscle'
Duration' ! Control! 70.5!(89.1)! 29.3!(28.6)! 152.1!(194.1)!

(%!of!the!Gait!
Cycle)! EDB! Orthotic! 49.4!(38.7)! 33.2!(35.6)! 28.4!(14.9)!

! ! Control! 79.4!(79.2)! 54.9!(70.5)! 108.2!(143.1)!

! EHB! Orthotic! 60.7!(36.9)! 59.4!(38.2)! 60.6!(43.0)!

! ! Control! 102.0!(80.1)! 90.5!(62.7)! 120.0!(140.6)!
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3.6 Effect of CFO’s on Secondary Outcome Measures 

! 3.6.1 Step Width 

 There were significant main effects for group (p<0.001) and test date (p<0.001) 

for the first single stance step width. There was no main effect task (p=0.069). Group, test 

date and task had a significant interaction on second single stance step width (p=0.025). 

The OG step width during second single stance significantly differed between the 

different test dates (Figure 22). Step width in the OG decreased from baseline to 6-weeks 

(26.8 ± 2.4 cm vs. 25.5 ± 2.9 cm; p<0.001) and baseline to 12-weeks (26.8 ± 2.4 cm vs. 

25.8 ± 2.2 cm; p=0.005). There was no significant difference in step width from 6-weeks 

to 12-weeks (p=0.360). The CG increased their second single stance step width over time. 

A significant increase was shown from baseline to 12-weeks (25.2 ± 2.9 cm vs. 26.7 ± 

2.1 cm; p<0.001) and 6-weeks to 12-weeks (25.4 ± 2.3 cm vs. 26.7 ± 2.1 cm; p<0.001). 

However, no significant difference was seen in the CG from baseline to 6-weeks 

(p=0.967).  In contrast to the CG, the OG differed in step width in the second single 

stance at baseline (p<0.001) and 12-weeks (p=0.001). At baseline the groups differed in 

second single stance step width by 1.6 cm (OG: 26.8 ± 2.4 cm vs. CG: 25.2 ± 2.9 cm) 

with the OG having a larger step width. Whereas at 12-weeks, the difference in step 

width between the two groups became smaller and only differed by 0.9 cm (OG: 25.8 ± 

2.2 cm vs. CG: 26.7 ± 2.1 cm) with the OG taking a smaller step width on the next foot 

contact after being signaled to terminate gait compared to the CG. No significant changes 

in step width occurred between the two groups at 6-weeks (p=0.575).  
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 There were significant main effects of group (p<0.001), test date (p<0.001), and 

task (p<0.001) for second stance phase step width. There was no significant interaction 

was shown for first single stance step width (p=0.614) (Table 6). 

 

Table 6. Mean (SD) of first single stance step width (cm) during gait termination. No 
significant interaction between group, test date and task (p>0.05). 
 

Group Baseline 6-Weeks 12-Weeks 

Orthotic 24.3 (4.3) 24.0 (2.3) 24.9 (1.8) 

Control 24.6 (3.2) 23.6 (2.9) 24.0 (2.4) 

*All values are in (cm) 
 
 

3.6.2 Step Length 

 There were significant main effects of group (p<0.001), test date (p<0.001) and 

task (p<0.001) for first and second stance phase of step length. No significant interaction 

was observed for the effect of group, test date and task on first stance step length 

(p=0.731) or second stance step length (p=0.136). These findings are summarized in 

Table 7. 

 
3.6.3 Gait Velocity 

 There were significant main effects of group (p<0.001), test date (p=0.019), and 

task (p=0.009) for first stance average gait velocity. There were significant main effects 

of group (p<0.001), test date (p=0.054), and task (p<0.001). No significant interaction 

was observed for the effect of group, test date and task on average gait velocity of the 
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first single stance (p=0.219) or average gait velocity of the second single stance 

(p=0.207). These findings are summarized in Table 7.  

 

 
Figure 22. Effect of orthotics on second single stance step width (cm) during gait 
termination. Significant interaction between group, test date and task (p=0.025). Standard 
deviation bars shown. Note: **= significance between groups, †= significance within 
orthotic group between test dates and ¥= significance within the control group between 
test dates. (p<0.05). 
 

3.7 Adherence of CFO’s 

 There was 100% response rate in completing weekly reports over the course of 

the 12-week intervention for those in the orthotic group (n= 9). The average days per 

week that participants wore the CFO’s was 6.0 days (± 1.19) and the average hours per 

day the participants wore the CFO’s was 6.7 hours per day (± 1.03). Over the 12-week 

intervention, only 2 of 9 participants wore the CFO’s less than 5 days a week, and all the 

participants on a weekly average wore the CFO’s > 6 hours per day. In the first week, 3 

of 9 participants reported mild discomfort and 1 of 3 of those participants reported 
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blistering in the arch. After the 6-week test date, 3 of 9 participants reported mild to 

moderate discomfort for only one of the weeks out of the 6-weeks remaining. All 

participants continued using the CFO’s and no dropouts were reported.   
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Table 7. Mean (SD) of first and second single stance step length (cm) and first and second single stance average gait velocity (m/s) 
during gait termination. No significant interaction between group, test date and task (p>0.05). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

! Phase! Group! Baseline! 63Weeks! 123Weeks!

!
!
!

Step%Length%
(cm)!

1st!stance!phase! Orthotic! 68.1(6.2)! 69.1!(7.2)! 70.0!(7.2)!

! Control! 72.0!(4.3)! 74.4!(5.6)! 74.7!(4.4)!

2nd!stance!phase! Orthotic! 50.6!(4.4)! 50.3!(5.9)! 49.1!(5.4)!

! Control! 52.6!(4.3)! 52.8!(4.0)! 51.6!(4.6)!

! 1st!stance!phase! Orthotic! 1.30!(0.12)! 1.22!(0.21)! 1.27!(0.14)!

Gait%Velocity%
(m/s)!

! Control! 1.31!(0.13)! 1.36!(0.12)! 1.37!(0.12)!

2nd!Stance!phase! Orthotic! 0.74!(0.09)! 0.70!(0.12)! 0.74!(0.14)!

! ! Control! 0.77!(0.07)! 0.79!(0.10)! 0.79!(0.07)!
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4. Discussion 

4.1 Purpose and Hypotheses Revisited 

Custom-made foot orthotics (CFO’s) are a common intervention used to treat foot 

disorders and pain. However, the mechanisms of CFO’s are poorly understood and the 

side effects associated with CFO’s have not been investigated. The purpose of this study 

was to examine the effect of a 12-week CFO intervention on the adaptations to the 

plantar intrinsic muscles of the foot and dynamic stability during gait termination in 

young adults with a pronated foot posture. It was hypothesized that individuals in the foot 

orthotic group would have decreased cross-sectional area (CSA) measurement of the 

plantar intrinsic muscles at the end of the 12-week intervention. The orthotic group did 

result in decreased CSA at the end of 12-weeks to three plantar intrinsic muscles 

compared to the control group: flexor digitorum brevis (FDB), abductor digiti minimi 

(Abd DM), and abductor hallucis (Abd H). Secondly, it was hypothesized that the 

orthotic group would exhibit a decrease in dynamic stability. Contrary to our hypothesis 

the results yielded an increase in lateral stability margin for the orthotic group during 

second single stance of gait and no significant changes in maximum A/P COM-COP 

differences compared to the control group. Thirdly, it was hypothesized that the orthotic 

group would have decreased average EMG magnitude of the plantar intrinsic muscles and 

the duration of the muscle burst activity would result in no change. The orthotic group 

resulted with a significant decrease in average EMG magnitude of only the Abd H muscle 

compared to the control group. No changes were observed in the duration of muscle burst 

activity of the plantar intrinsic muscles in either the orthotic group or control group. A 

decrease in their average EMG magnitude suggests that the orthotic group did not have to 
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engage their plantar intrinsic foot muscles as actively and may explain why changes in 

the secondary measures of vertical force rate of loading and step width behaviours when 

attempting to terminate their gait. 

 

4.2 Effect of CFO’s on the CSA of the Plantar Intrinsic Muscles of the Foot 

 As hypothesized, the orthotic group saw significant decreases in cross-sectional 

areas of the FDB (9.6%), Abd DM (17.1%), and Abd H (17.4%) at the end of the 12-

week intervention. It is apparent that the mechanical effect of offloading structures on the 

plantar foot, as a result of wearing CFO’s, caused disuse muscle atrophy, an adaptation 

which changed muscle mass. Often the goal of CFO’s is to decrease plantar pressures to 

help modify symptoms of pain. A study by Chia et al. (2009) showed a reduction in 

rearfoot peak pressure by 34.4% as a result of wearing CFO’s. However, these reductions 

in plantar pressures over the long-term may be related to offloading muscle function and 

causing muscle disuse atrophy. One of the proposed theories of CFO’s is the tissue-stress 

theory, where the CFO intent is to offload specific structures and redistribute the load to 

other areas of the plantar aspect of the foot. With no specific clinical guidelines in place 

for frequency or duration of CFO use, disuse atrophy can occur according to the theory. 

Therefore, the current study results should be used to assist in the development of 

appropriate clinical guidelines to help guide practitioners prescribing CFO’s in their 

clinical decision making process for their long-term use. While the difference may appear 

minuscule, it is important to interpret the results in context to the normal mass of the 

plantar intrinsic muscles. The plantar intrinsic muscles are small muscles in relation to 

the extrinsic muscles of the foot and their main function is to stabilize the foot during 
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static and dynamic movements (McKeon, Hertel, Bramble, & Davis, 2014). The amount 

of atrophy that resulted in this study of each plantar intrinsic muscle may be detrimental 

to their ability to function optimally and may require muscle strengthening exercises to 

be prescribed in adjunct to wearing CFO’s in the first 12 weeks. Additionally, in the 

present study there were differences in cross-sectional area at baseline measures between 

the orthotic group and control group, these differences may have resulted due to 

differences in anatomy and variability of shoe sizes or due to the varying degree of 

pronated foot postures between the groups.  

 

4.3 Effect of CFO’s on Dynamic Balance Stability 

 Contrary to the proposed hypothesis, the orthotic group demonstrated a slight 

increase in the mean lateral stability margin of 0.70 cm in the first single stance phase. 

The second single stance phase is the next step to occur after gait termination is triggered. 

The orthotic group was able to make a small adjustment in their COM-BOS relationship 

initially and then maintained that change throughout the remainder of the intervention. 

This finding suggests that the participants in the orthotic group may have perceived that 

they were unstable without wearing the CFO while being tested and developed a 

protective strategy when adapting to terminating their gait. The results also indicate that 

the orthotic group participants did not allow their COM to approach the limits of the 

lateral border of their BOS in order to safely terminate their gait. Previous study by 

Marigold & Patla (2002) suggested that repeated exposures of unexpected slip 

perturbations allowed the central nervous system to adapt quicker to the next perturbation 

and participants applied proactive strategies to increase dynamic stability when 
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anticipating the next perturbation. Whereas the control group saw the opposite effect and 

overall had a moderate decrease in the mean lateral stability margin compared to baseline 

scores. The control group showed an initial decrease at 6-weeks of 2.4 cm and then 

slightly increased back another 1 cm, however still remained lower compared to baseline. 

This finding suggests that a learning effect occurred from baseline to 6-weeks of testing. 

It appears the control group took a cautious approach to executing the gait termination 

task and might have been a result of them consciously knowing they did not receive the 

CFO’s in their footwear at the beginning of the study. This is apparent by the large 

differences in the minimum COM-BOS distance between the control and orthotic groups 

at baseline. Once the control group became comfortable after the baseline testing date, 

they improved their mean lateral stability margin from 6-weeks to 12-weeks, which may 

be the actual representation of their true dynamic stability during gait termination. At the 

end of the 12-week intervention the control group achieved slightly greater stability than 

the orthotic group during second single stance of gait termination.   

 In postural control there is constant communication between the central nervous 

system, muscular and sensory systems that determines how we respond to various 

perturbations by either controlling COM motion or altering our base of support (Horak, 

2006; Maki & McIlroy, 2006). Although the participants in the orthotic group of the 

current study saw deficits of the plantar intrinsic muscle CSA’s, they may have overcome 

the deficit by relying on other resources of postural control to increase stability. For 

example, if muscle atrophy occurs in the plantar intrinsic muscles of the foot, our body 

adapts by relying on other systems such as the somatosensory system more heavily to 
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help attain information on body position and therefore is one of the many components of 

balance.     

The secondary measures of first and second stance phase vertical force rate of 

loading and second stance phase step width confirm altered approaches to achieving 

dynamic stability during gait termination between the two groups. The orthotic group 

decreased their mean ROL of the first stance phase as gait termination was being signaled 

to 14.23 BW/s at 6-weeks and then returned back to baseline values of 14.70 BW/s at 12-

weeks. There are two possible explanations for why this result may have occurred. First, 

since there was disuse atrophy occurring to the plantar intrinsic muscles, it may have 

prevented the muscular system to generate muscular torque from the joints in the foot and 

may have relied on other muscle torque to be generated from other areas such as the 

ankle, knee or hip joints. Secondly, this result also suggests that the individuals in the 

orthotic group developed a dependency for the orthotic and because testing was done 

without the orthotic they walked over the first force plate anticipating the signal to 

terminate gait. Although mean gait velocity did not result in a significant interaction, the 

orthotic group did decrease from 1.30 m/s (baseline) to 1.22 m/s (6-weeks) and then 

returning near baseline values 1.27 m/s (12-weeks). Addison & Lieberman (2015) 

compared impact loading rates between walking and running tasks and showed that 

changes in velocity effect impact loading rates. The higher impact loading rates were a 

result of higher velocities. This is also apparent in the results of the first single stance 

mean ROL of the control group, where the participants were able to achieve higher mean 

ROL from baseline (15.21 BW/s) to 6-weeks (16.63 BW/s) and 12-weeks (16.86 BW/s). 

Additionally, it seems the control group increased their walking gait velocity, although no 
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significant interaction existed, from baseline (1.31 m/s) to 6-weeks (1.36 m/s) and 

remained similar at 12-weeks (1.37 m/s). Moreover, during second stance phase the 

orthotic group decreased the mean ROL only from baseline (23.32 BW/s) to 6-weeks 

(21.66 BW/s), whereas the control group only showed an increase in mean ROL from 

baseline (22.56 BW/s) to 6-weeks (23.75 BW/s). Overall, this suggests that the control 

group had to generate more force per second during the first and second stance phase to 

slow down their COM in order to terminate their gait compared to the orthotic group. 

Despite the orthotic group showing a small increase in lateral stability margin, the 

second single stance step width resulted in a significant difference from baseline to 6-

weeks by 1.2 cm and then no changes at 12 weeks. Our results were different from two 

studies that found a narrower step width was associated with a reduction in the medial-

lateral (M/L) margin of stability (MOS) in younger adults (Arvin et al., 2016; McAndrew 

Young & Dingwell, 2012). Although according to Arvin et al. (2016), having reduced 

M/L COM displacement and velocity together with taking a narrower step can be a 

strategy used to more tightly control the COM over the narrower BOS. Additionally, the 

control groups strategy to increase second stance step width agrees with the approach of 

the above studies showing increases in step width influences the system to be more 

stable. Moreover, the mean ROL may help to explain the significant differences in 

second stance phase step widths between the orthotic and control groups. Since the 

control group was able to generate more forces per second and able to slow down the 

COM quicker compared to the orthotic group, the control group was able to take a wider 

second step on average following the initiation of gait termination. 
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4.4 Effect of CFO’s on the Average EMG Magnitude of the Plantar Intrinsic Muscles  

 Although it was hypothesized that all four intrinsic muscles of the orthotic group 

would decrease in average EMG magnitude during gait termination trials, the current 

study demonstrated that only the Abd H muscle had decreased changes in magnitude. The 

remaining three muscles showed no changes across the 12-week intervention testing. The 

orthotic group average Abd H EMG magnitude showed decreased differences of 2.1% 

MVC (baseline to 6-weeks) and 0.8% (6-weeks to 12-weeks). This finding may suggest 

that due to mechanical effect of the CFO of decreased muscle CSA it could have impeded 

the function of the Abd H to fully engage. Another explanation for the decreases may 

have been as a result of a learning effect. Since both groups have never been exposed to 

gait termination protocols before it’s possible that at baseline because it was a newer 

activity that may help explain that initially more muscle activity was required to perform 

the task before becoming familiar and adjusted accordingly, hence the small decrease 

over time. Similarly, the control group had only an initial decrease of 1.8% MVC 

(baseline to 6-weeks) and then did not differ from 6-weeks to 12-weeks. Previous 

research has demonstrated that the Abd H muscle has increases in activation patterns with 

increased postural demands (Kelly et al., 2012) and is important in creating stiffness in 

the medial longitudinal arch when exposed to increased load (Kelly et al., 2014). 

Therefore, the gait termination task may have not been a difficult task to perform for the 

participants in this study. Increased muscle activity was not required from the Abd H in 

assisting to bringing the COM velocity to zero but rather there may have been an increase 

in muscle torque from the knee or hip joints. Muscles such as the extrinsic muscles (e.g. 

gastrocnemius, tibialis anterior) of the lower limb may be contributing a substantial 
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amount of muscle activation to create stability when trying to perform gait termination in 

addition to Abd H muscle. 

 

4.5 Limitations 

 The main limitation in the current study was the participants were tested only in a 

barefoot condition. Testing participants in barefoot on its own may have hindered the 

overall effect CFO’s had on dynamic stability outcome measures, as previous studies 

have shown that testing in barefoot provided greater increases in dynamic stability in A/P 

and M/L directions during single-leg jump landings compared to minimalist footwear and 

normal footwear (Bowser, Rose, McGrath, & Davis, 2017). The knowledge of the results 

from barefoot, normal footwear, and footwear with CFO’s could have provided a 

complete understanding of what is occurring to dynamic stability in those conditions and 

mimicked real life footwear selections. There are many different options for selecting 

variables to measure dynamic stability, therefore the two stability measures used to 

analyze balance control in this study may have been a limitation. Another limitation was 

that surface EMG can only measure muscle activity of superficial muscles, which our 

study was limited to the muscles selected for this study. The design of the study having 

repeated measures of EMG perhaps also was a limitation of using EMG due to the 

difficulty of placing the electrodes in the exact location every test date and the difficulty 

for participants to create MVC’s of the plantar intrinsic muscles. However, precautionary 

measures were taken with the same investigator applying the electrodes based on 

photographs and measurements taken from anatomical landmarks to ensure consistency. 

Another limitation of instrumentation was the amount of pressure applied to the skin with 
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the ultrasound probe. Again, precautionary measures were taken with one assessor 

conducting all measurements and applied the same consistent pressure across all 

participants. The use of ultrasound to assess the intrinsic muscles has shown to be cost-

effective and reliable measure (Crofts, Angin, Mickle, Hill, & Nester, 2014; Mickle, 

Nester, Crofts, & Steele, 2013) and is an alternative to magnetic resonance imaging. 

Other limitations noted are the selection of gait termination protocol as the mechanical 

perturbation to challenge young healthy adults balance parameters. Although it is 

perceived that a ceiling effect might have occurred, the observations made while 

participants performed the unexpected gait termination protocol showed that many trials 

were not performed successfully (i.e. participants could not control COM within the base 

of support and took an extra step off the force plate). This suggests that the task was not 

too simple to perform and the protocol addressed that by being unexpected. There also 

appeared to be a practice effect due to the control group having changes in their dynamic 

stability over time. Further limitations were that the control group was aware they did not 

receive CFO’s and this knowledge may have altered their normal walking strategies and 

behaviours during testing. Additionally, stratifying participants by age alone was a 

limitation of the study. Future research should stratify groups with a combination of 

matching age, weight and gender. A final limitation was that this study did not control for 

current physical activity levels of participants and the main investigator was not aware if 

participants were performing in exercises that may have enhanced their responses to 

increase dynamic stability.  
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4.6 Future Research Considerations 

 The current study provided important information regarding the effect CFO’s 

create on structural and functional adaptations of the foot after short-term use, as no 

previous research has explored this avenue. The results of this study demonstrated that 

disuse muscle atrophy of specific plantar intrinsic muscles occurred as a result of 

offloading these structures and altered function by adopting compensatory strategies to 

maintain dynamic stability. Therefore, future research should look at adaptations that 

occur over the long-term use of wearing CFO’s to see if disuse muscle atrophy continues 

to progress over a longer period of time (e.g. 6-months, 1 year). Currently, there are no 

current clinical guidelines that provided any evidence to practitioners who prescribe 

CFO’s on the frequency and duration they should be worn. As future research continues 

to explore this avenue, employing appropriate guidelines can ensure safety of their use. A 

second consideration to enhance the findings from the current study would be to measure 

CSA and EMG magnitude of the plantar intrinsic and extrinsic muscles of the lower limb 

over the long term wearing CFO’s and measure if any strength deficits exist to depict 

changes in muscle function. Thirdly, it would be beneficial for future research to look at 

more specific populations such as older adults with foot deformities. Previous research 

has shown that individuals with specific foot deformities have changes in muscle mass of 

specific plantar intrinsic foot muscles, the same population that may utilize CFO’s as an 

intervention. Future research should focus on whether applying a CFO to a foot deformity 

associated with muscle atrophy either creates no change, exacerbates the symptom or 

further progresses the foot disorder and what those effects may impose on dynamic 

stability and muscle strength.   
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5. Conclusion 

 The current study examined the effect of a 12-week CFO intervention on the 

adaptations to the plantar intrinsic muscles of the foot and dynamic stability during 

unexpected gait termination in young adults with a pronated foot posture. The short-term 

use of CFO’s appeared to decrease muscle CSA of the FDB, Abd DM and Abd H plantar 

intrinsic muscles and altered the approach these individuals incorporated to respond to 

the mechanical perturbation from unexpected gait termination. It is well documented in 

the literature that young adults show better responses to recover balance compared to 

older adults (Maki, Edmondstone, & McIlroy, 2000; Rogers, Hedman, Johnson, Cain, & 

Hanke, 2001). However, it is not well known the extent of compensatory strategies used 

by young adults to respond to perturbations when the muscular system incurs a deficit 

due to wearing CFO’s. This study demonstrated that when the muscular system is 

impeded negatively by disuse atrophy, the compensatory strategies to achieve increased 

stability differs between the individuals with an impeded muscular system and 

individuals with an intact muscular system. Therefore, this study improves our 

understanding of the negative consequences that might arise from wearing CFO’s and the 

effects it has on dynamic stability during gait termination in young healthy adults.   
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Appendix A 

 

SCREENING(QUESTIONNAIRE(
!
VOLUNTEER)EXCLUSION)CRITERIA) ) Date:)(MM/DD/YYYY):)! ! ! ! ! ,)! ! ! ! ! ,)! ! ! ! ! !
!
Name:!! ! ! ! ! !

Address:! ! ! ! ! !!

! !! ! ! ! ! !

City,!Prov:!! ! ! ! ! !Postal!Code!! ! ! ! ! !

Tel!#:! (! ! ! ! ! )8! ! ! ! ! !Best!time!to!call:!! ! ! ! ! !!

!
Age:!! ! ! ! ! yrs.!!Height:!!! ! ! ! ! cm! Weight!! ! ! ! ! kg!!!!!! Shoe!Size!! ! ! ! ! !
)

Gender:) M ! F !
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!

Please!check!(!√))!if!applies) ) ) ) ) ) ) ) ) )
!

! ! ! How!much!does!the!condition! !
! ! interfere!with!your!activities?!
!

! ! ! ! ! ! ! !!!!!!!!!!!!!Y/N!! little! mod! a!great!
! ! ! ! ! ! ! ! ! or!none! ! deal!

Do)you)have)any)conditions)that)limit)the)use)of)your)arms)or)legs?)Select! ! ! !
!

Describe:!!
!
! ! ! ! ! ! ! ! ! ! !

Do)you)have)or)have)you)ever)had:) ) ) ) ) Please!check!if!applies!

! a)! paralysis! ! ! ! ! ! ! !

! b)! epilepsy!! ! ! ! ! ! ! !

! c)! cerebral!palsy! ! ! ! ! ! ! !

! d)! multiple!sclerosis! ! ! ! ! ! !

! e)! Parkinson's!disease! ! ! ! ! ! !

! f)! stroke! ! ! ! ! ! ! ! !

! g)! any!other!neurological!disorder!! ! ! ! ! ! !!!!!

! h)! diabetes! ! ! ! ! ! ! !

! i)! problem!with!your!vision!that!isn't!corrected!by!glasses! ! ! !

! j)! a!balance!or!coordination!problem! ! ! ! !

! k)! an!inner!ear!disorder! ! ! ! ! ! !

! l)! hearing!problems! ! ! ! ! ! !

! m)! constant!ringing!in!your!ears! ! ! ! ! !

! n)! ear!surgery! ! ! ! ! ! ! !

!
)
Have)you)ever)had)any)serious)problems)with)your)memory?! ! Select! !
!
Have)you)had)a)concussion)within)the)last)three)months?! ! Select! !
!
Do)you)have)or)ever)had)recurrent)ear)infections?! ! ! Select! !
!
Have)you)ever)had)frostbite)in)the)lower)extremities?! ! ! Select!
!
Do)you)have)or)have)you)ever)had):)

! ! ! ! ! ! ! ! ! How!much!does!the!condition!!
! ! ! ! ! ! ! ! !!!!!!!!!!!!!!interfere!with!your!activities?!!!

!

! ! ! ! ! ! ! ! Y/N! little!! mod! a!great!
! ! ! ! ! ! ! ! ! or!none! ! deal!

! a)! problems!with!your!heart!or!lungs!! ! Select! ! ! !

! b)! high!blood!pressure! ! ! ! Select! ! ! !

c)! blood!circulation!problems! (generally)! Select! ! ! !

! ! ! (specifically!lower!extremities)! Select! ! ! !
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! d)!! cancer! ! ! ! ! ! Select! ! ! !

! e)! arthritis! ! ! ! ! ! Select! ! ! !

! f)! rheumatism! ! ! ! ! Select! ! ! !

! g)! back!problems! ! ! ! ! Select! ! ! !

! h)! a!joint!disorder! ! ! ! ! Select! ! ! !

! i)! a!muscle!disorder! ! ! ! Select! ! ! !

! j)! a!bone!disorder! ! ! ! ! Select! ! ! !

! k)! spina!bifida! ! ! ! ! Select! ! ! !

(
Have)you)ever)severely)injured)or)had)surgery)on)your!
! a)! head! ! ! ! ! ! Select! ! ! !

! b)! neck! ! ! ! ! ! Select! ! ! !

! c)! back! ! ! ! ! ! Select! ! ! !

! d)! pelvis! ! ! ! ! ! Select! ! ! !

! e)! ankle,!knee,!or!hip!joints?! ! ! Select! ! ! (
!
!
! ! ! ! ! ! ! ! ! How!much!does!the!condition!!
! ! ! ! ! ! ! ! ! interfere!with!your!activities?!
!

) ) ) ) ) ) ) ) Y/N! little!! mod! a!great!
! ! ! ! ! ! ! ! ! or!none! ! deal!

Have!you!ever!broken!any!bones?! ! ! ! Select! ! ! !
!
! Which!ones?!:!!!! ! ! ! ! ! !
!
Have)you)had)any)recent)(specify)!
! !!!a)!illnesses! ! ! ! ! ! Select! ! ! !

! !!!b)!injuries!! ! ! ! ! ! Select! ! ! !

! !!!c)!operations! ! ! ! ! ! Select! ! ! !

!

!
Do)you)have)difficulties)performing)any)daily)activities?! Select! ! ! ) )
)
Which!activities?:!! ! ! ! ! !
! ! !!!!
)
)
Are)you)currently)taking)any)medications)(prescription)or)overStheScounter),)or)other)drugs?!
! !
! Medication! ! ! Ailment! ! ! Frequency!of!use!
! !
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!

Yes No

SUPPLEMENTS

FISH

RED2MEAT

POULTRY

NUTS/SEEDS

DIETARY2PROTEIN2INTAKE

Please&check&(√)&all&questions&with&either&YES2or2NO.2Check&YES&ONLY&if&you&consume&any&of&the&following&ONCE2
or2MORE2per2week2for&an&entire2YEAR.

If&you&check&YES&for&any&of&the&following&questions,&please&specify&the&number2of2times2per2week2consumed&and&
an&approximate2amount2you2have2at2each2sitting2for2a2typical2week.

Food2Item

a)&Whey&Protein

b)&Soy&Protein

Frequency2of2Consumption/Week

c)&Tuna
d)&Salmon
e)&Halibut
f)&Talapia

#&days&______&&X&&Amount&per&DAY&________
#&days&______&&X&&Amount&per&DAY&________
#&days&______&&X&&Amount&per&DAY&________

(Please2specify2the2brand2and2scoops/day)

#&days&______&&X&&Amount&per&DAY&________

#&days&______&&X&&Amount&per&DAY&________

k)&Mutton

#&days&______&&X&&Amount&per&DAY&________
#&days&______&&X&&Amount&per&DAY&________
#&days&______&&X&&Amount&per&DAY&________
#&days&______&&X&&Amount&per&DAY&________
#&days&______&&X&&Amount&per&DAY&________

#&days&______&&X&&Amount&per&DAY&________
(References:&1&palm=&~3&oz)

g)&Beef
h)&Pork
i)&Veal
j)&Lamb

#&days&______&&X&&Amount&per&DAY&________
#&days&______&&X&&Amount&per&DAY&________

(Reference:21&palm=&~3&oz)

(Referemces:21&palm&=&~3&oz)

(Reference:&1&thumb&length&=&1&oz)

o)&Almonds
p)&Cashews
q)&Pumpkin&Seeds
r)&Chia&Seeds
s)&Flax&Seeds

#&days&______&&X&&Amount&per&DAY&________
#&days&______&&X&&Amount&per&DAY&________
#&days&______&&X&&Amount&per&DAY&________
#&days&______&&X&&Amount&per&DAY&________

l)&Chicken
m)&Turkey

#&days&______&&X&&Amount&per&DAY&________
#&days&______&&X&&Amount&per&DAY&________

n)&Peanuts
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Appendix B 
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Appendix C 

NAVICULAR HEIGHT (NH) 

 

 

 

Arch Classification Navicular measurement 
(cm) 

Severely Low < 2.7 

Low 2.7 to 3.5 

Normal 3.6 to 5.5 

High 5.6 to 6.4 

Severely High >6.4 

!

  

NH- The position of the navicular bone has implications on the medial longitudinal arch of the foot. 
The individual stands up in a static weight bearing position with feet staggered (right foot in front of 
left) and is asked to maintain a relaxed position. The examiner identifies and landmarks where the 
navicular tuberosity is located via palpation.  In this position, the examiner takes an index card and 
lines it up from the floor and against the medial area of the foot and makes a mark on the index card. 
The perpendicular distance measured from the navicular tuberosity to the ground is then recorded. 

Nilsson!et!al.!2012!



! 83!

Appendix D 

The weekly follow-up questions sent to participants at the end of each week via e-mail. 
 
 
Week)1!
!
(a)!How!many!days!did!you!wear!your!orthotics?!
!
(b)!On!average,!how!many!hours!in!a!day!did!you!wear!your!orthotics?!
!
(c)!Did!you!experience!any!pain!or!discomfort!while!wearing!your!orthotics?!
!
(d)!What!type!of!foot!wear!did!you!wear!your!orthotics!in?!(i.e.!boots,!running!
shoes,!slippers,!etc.)!You$can$have$multiple$responses$to$this$question.!
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Appendix E 
 

Table Ei. Mean (SD) integrated Abd H EMG (% MVC) during gait termination. No significant 
interaction between group, test date and task (p>0.05). 

 
 
Table Eii. Mean (SD) integrated Abd DM EMG (% MVC) during gait termination. No 
significant interaction between group, test date and task (p>0.05). 

 
 
Table Eiii. Mean (SD) integrated Abd DM EMG (% MVC) during gait termination. No 
significant interaction between group, test date and task (p>0.05). 
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