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ABSTRACT 

The invasive Spotted-Wing fruit fly, Drosophila suzukii, has inflicted substantial economic 

losses to the soft-fruit agriculture industry worldwide due to the ability of females in this species 

to use a large, serrated ovipositor to cut the fruit’s skin and lay eggs directly into the mesocarp of 

ripening fruit. Once the eggs hatch, larvae consume the fruit flesh, ultimately leaving the fruit 

unmarketable. This species parasitizes numerous commercial fruit types (including blueberries, 

blackberries, strawberries, raspberries and occasionally grapes) as well as fruits from a variety of 

wild plant species. Since fruit types vary in their nutritional composition, as well as their spatial 

and temporal availability, this suggests that D. suzukii experiences considerable environmental 

heterogeneity. The environment can have a large influence on the development and evolution of 

morphological, physiological, and behavioural phenotypes and, thus, can have significant 

implications for individual variation and population growth and change over time. Thus to better 

understand success if this invasive species we have examined the behavioural and developmental 

and reproductive performance of D. suzukii as it relates to their local environment. Specifically 

we focused on the role of the nutritional developmental history (NDH), which can either hinder 

or support offspring growth and survival, and may be an important factor when selecting 

habitats. Secondly, as the juvenile NDH has the potential to greatly influence adult phenotypes, 

and consequently individual reproductive potential, we also examined if NDH influenced the 

operation of sexual selection. Here we report evidence that NDH is an important factor for D. 

suzukii females when choosing oviposition sites, and can have dramatic consequences for 

offspring development, mate-choice, offspring fitness, and ultimately population growth. 

Information on these two subject areas (habitat and mate choice) is of great potential importance 

to bettering future management strategies (e.g. by manipulating fly numbers based on host 
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preference and reproductive strategies), which are currently limited by lack of knowledge on the 

biology of this species. 
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CHAPTER 1  

THE SIGNIFICANCE OF PREFERENCES IN DROSOPHILA SUZUKII 

Background 

Drosophila suzukii is a species of fruit fly originating in Asia (Kanzawa 1936) that has spread in 

the last dozen years to large portions of North America, South America and Europe, where it is 

considered an invasive pest species of significant economic threat (reviewed by Asplen et al. 

2015). In D. suzukii, females oviposit into ripe or ripening soft-fruits, rather than rotting or 

damaged fruits, which is more typical of other Drosophila spp. (Walsh et al. 2011), thanks to the 

presence of a large, serrated, ovipositor, which is used to cut the fruit’s skin (Atallah et al. 2014). 

Once hatched, the larvae consume the fruit tissue, creating soft and sunken areas, while fungal, 

bacterial, yeast and other infections render the fruit unmarketable (Walsh et al. 2011). 

Unfortunately, a number of commercial fruit types including blueberries, blackberries, 

strawberries, raspberries and occasionally grapes are parasitized by this fruit fly (Bellamy et al. 

2011; Lee et al. 2011), and, as a result, soft-fruit agriculture has suffered losses of up to 80% 

(USDA NASS 2009) with Bolda et al. (2010) estimating an economic loss of $500 million to 

California, Oregon and Washington, annually. As D. suzukii appears capable of rapidly invading 

vast areas of landscape, possibly facilitated by the utilization of native and ornamental fruiting 

plants (Heimpel et al. 2010; Walsh et al. 2011), there is also the potential for continued 

increasing costs in the future. For instance, D. suzukii was confirmed to inhabit the entire length 

of California through British Columbia (Bolda et al. 2010) following its first detection in Hawaii 

less than two decades earlier (Kaneshiro 1983). By 2010, flies had also been detected in Utah, 

Louisiana, North Carolina, South Carolina, Wisconsin, Michigan, Alberta, Manitoba, Ontario 

and Quebec (Burrack 2011; Davis 2011; Hamilton 2011; Isaacs 2010; Saguez 2013). 
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Currently, farmers rely extensively on insecticides and baited traps as a means of 

management of D. suzukii (Cini et al. 2012), both of which have proven to be largely ineffective 

at controlling infestations (Burrack et al. 2011; Cini et al. 2012; Iglesias et al. 2014; Lee et al. 

2013). These strategies are expensive and come with the risk of impacting non-target biota, 

through excessive chemical applications (Cini et al. 2012). Not surprisingly, then, there have 

been many scientific studies conducted to determine better control methods (Timmeren & Isaacs 

2013; Swoboda-Bhattarai & Burrack 2014; Lee et al. 2013). However, most studies remain 

within the realm of designing traps (e.g., varying bait recipes or trap colours), implementing 

insecticide protocols, and/or determining potential host susceptibility in various fruits. 

Meanwhile, the role that habitat and mate choice may have on life history variation has been 

largely overlooked. This is a surprising oversight given the importance of the environment and 

sexual selection as the means by which a wide variety of morphologies, physiologies, and 

behaviours have evolved (Andersson 1994). The research that makes up my thesis focuses on 

trying to understand how habitat and mate choice influences the life history of D. suzukii – 

specifically as it relates to individual fitness. By investigating these two areas, we may gain an 

understanding into the ways in which D. suzukii individuals attempt to acquire fitness benefits 

(e.g., through increased fecundity, or through advantageous habitat choice). Knowledge in these 

areas may be significant for designing innovative management strategies capable of disrupting 

the key components of this species’ success, especially since, given that the North American 

environment offers many novel hosts and climates, making good fitness-related choices may be 

central to its ability to adapt and thrive in unfamiliar landscapes. 
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Home “Sweet” Home:  

The importance of understanding habitat choice and its consequences in D. suzukii 

Habitat choice is an important aspect of many species’ ecology, and as such, has the potential to 

provide crucial insight into infestation intensity in D. suzukii. For instance, if flies have strong 

preferences for certain host fruits, they may choose to disperse widely in their environment, 

settling only when a desirable host site is found, while if they do not have strong preferences, 

their dispersal range may be more confined. Thus the movement of flies could greatly shift 

population distribution over time and space as a direct result of their habitat needs. In current 

models that estimate D. suzukii population growth, the positioning of flies is assumed to be static 

(e.g. Wiman et al. 2014), and the potential effects of immigration and/or emigration to control 

and manage are not considered. Given the vast geographic area D. suzukii has covered in the past 

two decades, it seems short-sighted to discount exploration as a potential significant trait in this 

species. Additionally, D. suzukii has been observed to travel among different crops in a mixed 

orchard setting (Harris et al. 2014) and other Drosophila sp. are known to travel in search of 

favorable habitat, traversing long distances in short periods of time (e.g. up to 676 km in 15 

hours; Coyne et al. 1982; Jones et al. 1981). Knowledge on habitat choice in D. suzukii may thus 

be an important factor for determining population size among different crops.  

Habitat preferences in D. suzukii may also help to explain how this species has succeeded 

and thrived in novel environments. For instance, in some phytophagous insects, the larval habitat 

(host) directly influences offspring development (Burrack et al. 2012), and other life history 

traits, including immunity strength (Chandra 1996; Ojala et al. 2005), metabolism (Galvan et al. 

2008; Kacar et al. 2015) and/or physiology (Bellamy et al. 2013; Delisle & Bouchard 1995; 

Gershman et al. 2006). It is possible that D. suzukii prefers those host plant species whose fruit 
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provides maximum fitness benefits (Jaenike 1978; Thompson 1998), a relationship which is not 

unusual among insects and their hosts (Barros & Zucoloto 1999; Craig et al. 1989). Often 

referred to as the “preference-performance” hypothesis or the “Mother knows best” principle 

(Gripenberg et al. 2010), such a relationship with hosts could allow D. suzukii to experience 

higher fitness in novel habitats. 

At this time, very little is known about D. suzukii habitat choice(s) and the life history 

consequences that come about from making particular choices. Of the few studies that have 

investigated host preference, results have been contradictory, possibly owing to differences in 

experimental design and/or the existence of confounding variables, making it difficult to find the 

meaning behind the behaviors. For instance, Burrack et al. (2012) reported field raspberries to 

have a much higher infestation rate compared to strawberries, while in a laboratory experimental 

setting, the opposite was true (Bellamy et al. 2013). As well, Abraham et al. (2015) and Bellamy 

et al. (2013) found that D. suzukii flies were equally attracted to strawberry and raspberry fruits 

in behavioral and antennal response assays to fruit volatiles. In terms of development, results 

indicate that larval performance also varies with fruit type, with flies developing on raspberry 

growing faster and larger compared to flies raised on blueberry, grape, cherry, strawberry and 

peach (Bellamy et al. 2013). However, the underlying reasons for these differences remain 

unknown. 

By not taking into account habitat choice and its influence on life history variation, current 

and future management strategies may be missing or misinterpreting factors enabling the species 

to thrive and so may be ill-equipped to dealing with the situation at hand. For instance, farmers 

might use information on factors influencing population size to plant their crops in 

configurations that reduce the chances of producing host reservoirs and of D. suzukii finding 
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fitness benefitting hosts. Finally, no matter the mechanism behind choice, information on habitat 

preference could be used to predict the directional movement of D. suzukii, preventing further 

establishment in present D. suzukii-free zones and/or reducing infestation intensity in D. suzukii-

occupied areas (e.g. planting less preferred hosts as a geographic barrier and deterrent and using 

preferred hosts as lures).  

 

Meet Your Match(maker):  

The importance of understanding mate choice and its consequences in D. suzukii 

Drosophila use a variety of signals when choosing mates, which may be visual, acoustic, 

gustatory, tactile and/or olfactory in nature (Greenspan & Ferveur 2000). Often associated with 

male courtship (Greenspan & Ferveur 2000) and competition for females (Rundle CHCS), 

secondary sexual traits include the cuticular hydrocarbon profile (CHCs; pheromones involved in 

courtship, species identity and sex identity; Ferveur 2005), sperm competition (Simmons 2005) 

and body size (Partridge et al. 1987; Pitnick 1991). Among closely related Drosophila species 

(and even between members of the same species), preference for mates is highly variable, with 

variation in individual fitness strongly tied to the outcome of mate choice (Singh & Singh 2014). 

In D. suzukii, courtship behaviours have recently been described for this species and  include 

signaling via wing movements (Revadi et al. 2015) and substrate-born vibrations (Mazzoni et al. 

2013). Furthermore, the presence of CHCs produced by D. suzukii females greatly stimulates 

male courtship levels (Revadi et al. 2015).  The specific expression of these sexual signals may 

be dependent on the extent of physiological stress experienced by an individual during their 

development (Buchanan 2000). Specifically, as Drosophila sp. raised on different media have 

been found to display distinct mating patterns (Sharon et al. 2010; Najarro et al. 2015; Dodd 
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1989; Abed-Vieillard et al. 2016), we may predict that the patterns of courtship and mating 

outcome may be due to differences in D. suzukii rearing environment and be important towards 

understanding the operation of sexual selection in this species. 

There are many way in which knowledge of how intersexual selection works in D. suzukii 

may be important in predicting fly movement and population size. This is because, as a 

behavioral motivator, mate choice may lead to flies seeking out desired mates and may act to 

direct fly movement among and between habitats and fly populations. Besides causing an 

immediate change in population size through immigration and emigration, such movement may 

alter population size through the emergence of an indirect fitness effect. In Drosophila, the 

genotypic and phenotypic composition of the social environment has been shown to modulate 

mating frequency, with higher genetic variability in the social group increasing the number of 

female matings (Krupp et al. 2008). Furthermore, more matings by females has been associated 

with an increase in female fecundity and offspring genetic variability, both of which could 

improve individual fitness (Billeter et al. 2012). As such, depending on the mating preference of 

D. suzukii, the extent of assortative or disassortative mating of individuals from different 

populations could influence population size through an increase in the number of offspring 

produced that also have higher fitness. The act of mate choice itself could have a negative effect 

on population size/fitness, for instance due to sexually antagonistic traits manifested in offpsring 

(Fedorka & Mousseau 2004) and/or sexual conflict (Pitnick & Garcia-Gonzalez 2002), or have a 

positive effect on population size, for example through increased offspring fitness (Ala-Honkola 

et al. 2015). Theoretically, D. suzukii flies could be more attracted to flies that developed on a 

particular habitat (host), but because they are locally adapted to their habitat of origin, produce 

less robust hybrid offspring. In D. melanogaster, hybrid inviability has been observed in 
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populations adapted to media of differing pH (De Oliveira & Cordeiro 1980). And as host 

availability in North America varies by species and by time of season, it is possible that lineages 

of flies, having access to one type of fruit for a number of generations, may become locally 

adapted to a particular fruit type before moving on to the next available host(s), where selective 

pressures associated with the new habitats may be quite different. For example, in Ontario, 

cherries and strawberries ripen approximately one month earlier than do raspberries and 

blueberries (Harvest Ontario 2016). Thus, following the end of a fruiting period, populations of 

flies will need to switch to a different host crop and if the nutritional composition and quality of 

the second host differs from the first host, and flies have adapted to produce offspring that 

develop better on the first host, then performance of the larvae could be negatively affected. 

Furthermore, as a new generation emerges from the second host, new and different phenotypes 

may be introduced into the population and, depending on the mate choices of the flies, this could 

have negative or positive implications for population growth. For instance, in the case where 

flies prefer to mate with flies of a phenotype that reduces overall female fecundity, then mate 

choice would have a negative effect on the population growth rate. Consequently, habitat choice 

can potentially play a significant positive or negative role in individual fitness depending on 

sexual preferences. 

Primarily focusing D. suzukii management science on trap design and chemical application 

has meant that many of the underlying mechanisms of mate choice in this species are largely 

unknown. By understanding the operation of sexual selection in D. suzukii, it may be possible to 

implement strategies that slow the spread and growth of populations. For instance, farmers could 

use such information to organize crops in ways that direct D. suzukii migration and/or control the 
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phenotype/genotype of flies that are able to interbreed and so determine the fitness of 

populations in the present and future.  

 

The relationship between mate choice and habitat choice 

Just as mate choice is influenced by habitat choice, habitat choice is likely influenced by mate 

choice. Distinguishing how each sways the other in choice situations will be important for 

understanding fly movement and individual fitness in D. suzukii. For example, flies that 

developed on one type of habitat may prefer mates with traits that are not attractive to flies that 

developed on a different habitat. Dodd et al. (1989) observed this type of behavioral isolation in 

populations of fruit flies raised on either a starch- or maltose-based media. In both cases, the 

fitness of the mating couples and their offspring may also be affected differently for reasons 

described above. Because of the potential interplay between mate and host choice, understanding 

the whole picture, which means understanding the relationship between host and mate choice, 

will be far more effective for management purposes. 

 

Objectives and significance 

The choices that organisms make can have large impacts on individual fitness and the fitness of 

the species as a whole (Hassell & Southwood 1978; Kokko et al. 2003). Currently, we 

understand very little of the choices that D. suzukii make in the environment and, being a highly 

successful invasive species that inhabits large expanses of variable landscapes, understanding D. 

suzukii’s choices may be of strong importance to their success and, potentially, their 

management.  
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In my research, two main themes are investigated. The first theme involves examining the 

effects of nutrition on adult D. suzukii behaviour and larval performance. Using a nutritional 

geometry framework (Simpson and Raubenheimer 1993), I assess (in Chapter 2), the relationship 

between D. suzukii’s performance and its nutritional acquisition in both choice and no-choice 

environments. Although nutritional geometry studies have been conducted with various 

Drosophila species, including D. melanogaster, none have exploited this formidable tool in 

studies with D. suzukii and, by using such a method, this research is able to identify currently 

unknown underlying factors that may be influencing D. suzukii host-choice preference(s) and life 

history in different environments.  

In the second theme, I study the relationship between habitat choice and mate choice on 

individual fitness while building off of the geometric framework devised in the first part 

(Chapter 3). I look at the effect to which the nutritional background of adults (aka the nutritional 

profile of the diet during development) shapes mating preference in both choice and no-choice 

situations and, using fecundity and offspring survival as a proxy for fitness, assess the 

importance of mate choice on an individual scale. Finally, to illustrate the fitness-related 

relationship between preference and performance, I integrate the observations on preference for 

hosts, developmental performance and preference for mates based on nutritional background. 
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Preamble 

The following chapter was written as a manuscript in the style of The Journal of Ecology and 

Evolution, where it has been submitted for consideration. 
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Abstract 

Since its arrival to North America less than a decade ago, the invasive Spotted-Wing fruit fly 

(Drosophila suzukii), has inflicted substantial economic losses to the soft-fruit agriculture 

industry due to its ability to oviposit into ripening fruits. There is an urgent need for more 

effective management approaches for this species, but little is known about the factors 

influencing the behavioural choices made by D. suzukii when selecting hosts, or the 

consequences experienced by their offspring developing in different environments. Using a 

nutritional geometry methodology, we found that the ratio of carbohydrates-to-protein (P:C) 

present in media greatly influenced adult D. suzukii behavior and offspring development. 

Whereas for oviposition and association behaviours, carbohydrate-rich foods were preferred by 

flies, we also saw that larval survival and eclosion rate were strongly dependent on protein 

availability. Here, we explore the preference performance hypothesis (PPH), in which females 

are predicted to oviposit on medias that provide the greatest offspring benefits, in regards to its 

relevance in D. suzukii behavior and consequences for management. Our results provide valuable 

insight into the ecology and evolution of this species that may lead to more effective 

management strategies. 
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Introduction 

The spotted-wing fruit fly, Drosophila suzukii, is an invasive agricultural pest known to attack a 

number of soft-fruit species including blueberries, blackberries, strawberries, raspberries and 

occasionally grapes (Bellamy et al. 2013; Lee et al. 2011). Unlike most other drosophilids which 

seek out rotting fruit, D. suzukii exploits a different environmental niche; ripe or ripening fruit 

(Walsh et al. 2011). This is facilitated by the females’ large, serrated, ovipositor which is used to 

cut the fruit’s skin before laying eggs directly into the mesocarp (Atallah et al. 2014), ultimately 

leaving it unmarketable (Walsh et al. 2011). Since its initial arrival in North America, this 

species has resulted in yield losses of up to 80% (USDA NASS 2009) with Bolda et al. (2010) 

estimating an annual economic loss of $500 million USD in California, Oregon and Washington 

alone. In order to control and/or manage this species, it is imperative that we understand the 

factors that contribute to its success. It is thus, somewhat surprising that there has been relatively 

little research conducted on the foraging behavior in this species or on the relationship between 

host-choice and life history traits, and what studies have been conducted have been of limited 

scope, have not controlled for potentially confounding variables, and/or have not explored the 

underlying reasons for any differences in behaviour or performance. Such information on host 

preferences and offspring performance is of great value for modeling population growth, 

monitoring spread and for designing better D. suzukii management plans.  

To date, there is very limited information on the nature of host preferences in D. suzukii 

and in those that have been conducted, extrapolating the meaning behind the results is made 

difficult by confounding variables and/or non-rigorous methodology. Using a series of olfactory 

choice experiments, Abraham et al. (2015) found that flies were more attracted to the volatile 

scents originating from raspberries and strawberries than they were to scents obtained from 
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cherries and blueberries, while Bellamy et al. (2013) found that the scents of raspberries, 

strawberries and blackberries were more attractive to the volatiles emanating from peaches, 

cherries, blueberries and grapes. These results are suggestive that D. suzukii does exhibit host-

preferences but do not provide insight on actual egg-laying rates, or subsequent offspring 

performance. Field studies conducted by Burrack et al. (2013) found that infestation rates varied 

considerably between crop species and varieties, and that infestation rates differed considerably 

between years and often depended on the type of plot in which fruits were grown. In the lab, 

simple (no-choice or single-choice) oviposition preference assays using fruit, revealed that flies 

laid more eggs in raspberries than in blackberries, strawberries or blueberries (Burrack et al. 

2013). In contrast, in Abraham et al. (2015)’s assays —using pureed fruit media— females laid 

far more eggs in strawberry media than all other choices. However as fruit type/varieties differ in 

numerous ways, including colour, texture, size, shape & phenology, that could influence 

oviposition rates, as indicated by a complementary assay which revealed that surface hardness 

(and thus penetration force) dramatically influenced the number of eggs laid (Burrack et al. 

2013), which could obscure potential host preferences based on (for instance) differences in fruit 

chemical composition. The survivorship and development of offspring also appears to depend on 

the host chosen, as Bellamy et al. (2013) reported that larvae developed faster and grew larger on 

raspberries than on blueberries, grapes, cherries, strawberries and peaches, but the reason(s) for 

these differences is unknown. In our study, we set out to examine a potentially important 

underlying variable (the protein-to-carbohydrate ratio) that may be responsible for differences in 

host preference, an important first step towards understanding the ecology and life-history of this 

invasive species. 
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 For many insect species, proteins and carbohydrates are the two macronutrients that are 

most important for growth, reproduction and survival (Andersen et al. 2009; Carrel & Tanner 

2002; Jensen et al. 2015; Lihoreau et al. 2016; Maklakov et al. 2008; May et al. 2015; Morimoto 

& Wigby 2016; Raubenheimer & Simpson 2003; Rodrigues et al. 2016). While dietary protein is 

an important aspect for the stimulation of oogenesis and regulating vitellogenesis in females and 

for stimulating the production of sperm in males (Fenson et al. 2009; Fenson & Taylor 2012; 

Jensen et al. 2015; Lee et al. 2008; Lihoreau et al. 2016; Maklakov et al. 2008;  Pirk et al. 2010;  

Reddiex et al. 2013), carbohydrates are used principally as sources of energy for fat and 

glycogen synthesis (Friend 1958). Carbohydrates, being the more easily metabolized of the two 

(Maklakov et al. 2008; South et al. 2011), may be the more important nutritive resource for 

species that engage in high-energy activities such as flying. Among the fruit varieties parasitized 

by D. suzukii, the composition of proteins and carbohydrates vary in ratio (P:C) and 

concentration (P+C), and may be underlying factor(s) influencing host preference, offspring 

survival and egg-to-adult development in this species. For instance, raspberries, strawberries and 

blueberries, have P:C ratios of 1:5, 1:7 and 1:15, and P+C concentrations (g/kg) of 49, 56 and 

108, respectively (Table S1). Both protein and carbohydrate availability have been shown to be 

strongly associated with variation in foraging behavior, oviposition rate, development, 

reproduction, and longevity in a number of insect species (Jensen et al. 2015; Lee et al. 2007; 

Lihoreau et al. 2016; Maklakov et al. 2008; Morimoto & Wigby 2016; Reddiex et al. 2013; 

Rodrigues et al. 2015 ). For instance, while hissing cockroach, Gromphadorhina portentosa, 

females prefer to feed on relatively high-protein foods (Carrel & Tanner 2002), female D. 

melanogaster seem to prefer to feed on foods with relatively higher carbohydrates, as sites for 

both feeding and egg-laying (Lihoreau et al. 2016; Rodrigues et al. 2016). Such dietary 
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preferences may be the result of differences in the energy accessibility between the two 

macronutrients. Female choice for oviposition is also important for offspring success in a number 

of species (e.g. Andersen et al. 2010; Morimoto & Wigby 2016; Rodrigues et al. 2015), since the 

characteristics of the natal diet during development influences numerous traits correlated with 

fecundity and mating success. One such trait is adult body size, with larger males and females 

emerging from media of greater nutritional quality (e.g. Thomas 1993). Large individuals have 

been known to exhibit higher fecundity (Kaspi et al. 2002; LeFranc & Bundgaard 2000; 

Tantaway 1960) and mating success (Partridge et al. 1987ab). Often referred to as the 

“preference-performance” hypothesis or the “Mother knows best” principle (Gripenberg et al. 

2010), it argues that selection will act on a species such that females will evolve a preference to 

oviposit in environments that will maximize their offspring’s success. While this hypothesis has 

found some empirical support (Bellamy et al. 2013; Hanks et al. 1993; Rausher 1979), there are 

several documented cases of species in which females deposit eggs in suboptimal conditions 

indicating the preference-performance relationship is not a ubiquitous phenomenon, even among 

closely related taxa (Konig et al. 2016; Lihoreau et al. 2016; Rausher 1979). Preliminary 

evidence suggests that D. suzukii might be preferentally ovipositing in fruit types that maximize 

fitness, as females may lay more eggs in fruit type(s) that result in higher offspring survival 

(Bellamy et al. 2013; Burrack et al. 2013). However, because of the number of potentially 

confounding variables that accompany the use of fruit in such studies (including differences in 

penetration force), more standardized studies are needed to test this hypothesis. 

While D. suzukii are known to parasitize a number of different farmed and wild fruit 

species in North America –which vary widely in their protein to carbohydrate ratios– there has 

yet to be (to the best of our knowledge) any systematic examination of the nutritional geometry 



23 
 

of their feeding/egg-laying behavior, or a quantification of offspring performance in hosts 

differing in their protein-to-carbohydrate ratios. This is an important area of research with 

numerous implications for the study of this species. While D. melanogaster females may seek 

out medias that are relatively abundant in carbohydrates (Lihoreau et al. 2016; Rodrigues et al. 

2016), the same may not necessarily be the case for D. suzukii, as the former develop in rotting 

fruit, which are colonized by protein-rich molds and yeasts (Begon 1986; Da Cunha et al. 1951; 

Cooper 1959), while the latter develop in unspoiled fruits where (at least initially) the proteins 

available from the microbial community will be limited, and may primarily come from the fruit 

itself. As a result, there may be considerable differences in the selection experienced by these 

two species, which has led to the evolution of different sets of adaptations. A recent study by 

Jaramillo et al. (2015) examined numerous life-history traits in larvae grown on blueberries (P:C 

ratio of ~1:15) and on a standard laboratory fly media (P:C ratio of ~1:3). Surprisingly, they 

found that while development times differed between the two groups, there was no significant 

difference between the blueberry and yeast-reared D. suzukii for most variables measured 

(including survivorship, body size, rate of ovarian maturation, and fecundity over the first 14 

days of life). While Jaramillo et al. (2015)’s results are suggestive that D. suzukii has evolved the 

capacity to survive on relatively little dietary protein, because this study did not explore the 

entire spectrum of P:C ratio diets that flies may encounter in the wild, much remains unknown 

about the nature of the relationship between larval diet and development in this species.  

   Our assays are based upon the concept of nutritional geometry, which was developed by 

Simpson and Raubenheimer (1993) to dissect the relationship between an organism’s 

performance and their nutritional acquisition by manipulating two variables (in our case, protein 

and carbohydrates) across a “landscape”.  To assess the importance of P:C ratio on D. suzukii 
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foraging and egg-laying behavior, we measured the activity and oviposition preference of flies 

among eight different artificial medias in ‘cafeteria’-style arenas. To complement this study, we 

also tested the consistency of female behaviors by measuring egg-laying preference in a no-

choice experiment using the eight different diets. Finally, we addressed the importance of the 

natal diet on development and adult traits by comparing the development (egg-to-adult survival, 

eclosion rates and adult weights) of larvae under standardized competitive conditions on each of 

eight experimental diets. The ultimate goal of this study was to determine the importance of 

differences in protein to carbohydrate ratios in diets on adult foraging behavior and life history 

traits in D. suzukii, information that is potentially useful in furthering our understanding of 

evolutionary life-history traits as well as for managing and/or mediating the effects of this 

invasive pest species. 

 

Materials & Methods 

Drosophila suzukii Population History & Culture Protocols 

All flies used in this experiment originate from a large (~1400 adults/generation) laboratory 

population of Drosophila suzukii. This population was founded from a sample of individuals 

isolated from blackberries and raspberries collected from a Southern Ontario commercial farm 

during the summer of 2012 (described in Renkema et al. 2016) and which was shared with our 

lab in 2014 by Dr. Justin Renkema (University of Guelph). Since then, the flies have been 

cultured under standard laboratory conditions (25°C, 60% humidity, LD 12:12) on Rose’s fly 

media (that consists of a protein to carbohydrate ratio of ~1:3; Rose 1984). The population is 

cultured on a 21 day cycle, whereby on day 1 of the cycle, flies are mixed en masse under light 

anesthesia (CO2) and transferred to a fresh set of vials containing ~10 ml of fly media, with 20-
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25 flies per vial. After 48 hours in these vials, the flies are transferred to a second set of fresh 

vials before being discarded 48 hours later. 

Experimental Diets 

Preference and developmental performance of D. suzukii was analyzed using eight artificial diets 

in which the protein to carbohydrate ratio (P:C) was experimentally manipulated (P:C 1:12, 1:6, 

1:3, 1:1, 2:1, 4:1, 8:1, 24:1). We chose these P:C ratios based on two criteria. First, these ratios 

allow us to compare our results with the work of other researchers that use similar nutritional 

geometry methods to measure Drosophila behavior and life history, specifically those studies by 

Lihoreau et al. (2016) and Rodriguez et al. (2015). Second, these values span the range of 

potential P:C ratios encountered by D.suzukii in their natural habitat. For instance, the ratios 

1:12, 1:6, 1:3 and 1:1 span the P:C range commonly observed in farmed and wild fresh fruit 

commonly attacked by D. suzukii in North America (Table S1). The ratio 1:12 resembles the P:C 

ratio found in floral nectar (Kevan & Baker 1983), a hypothesized energy source for adult D. 

suzukii (Tochen et al. 2016). The ratios 2:1, 4:1, 8:1 and 24:1 represent the higher protein content 

potentially found in rotting fruits (Janzen 1977), a resource that has not yet been tested, to the 

best of our knowledge, in any oviposition or behavioral studies of D. suzukii. While the protein 

and carbohydrate (P+C) concentrations in fruit vary from 40 to over 200 g/L (Supplementary, 

Table 1), we chose to focus on a single concentration of 70 g/L, because it represents the average 

of a large majority of soft fruit species attacked by D. suzukii (e.g. raspberries, blackberries and 

cherries; Table S1) and is similar to the P+C concentration of the standard media (64 g/L) we use 

to culture our lab population (Rose 1984). 

To generate the eight different media, we manipulated the quantities of protein and 

carbohydrates (Table S2) in each recipe while keeping all other ingredients in the media 
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constant, as outlined by Lihoreau et al. (2016). The ingredients used in our media were very 

similar to Lihoreau et al.’s media, with the exception that we used a 1:1 mix of light and dark 

corn syrup as the carbohydrate source, instead of sucrose. Corn syrup was used because it 

contains a 1:1 ratio of fructose and glucose similar to that of fruit, it is the main carbohydrate 

source we use to culture our lab population and (unlike sucrose) has not been linked to a 

decrease in female fecundity and lifespan in Drosophila (Begon 1986; Hassett 1948; Lushchak et 

al. 2013). We used a 50:50 mix of whey (GNC #386306) and casein (Sigma-Aldrich, C3400) for 

the protein. All media includes Vanderzant vitamin mixture (Sigma-Aldrich, V1007; 0.25 g/L), 

methyl paraben (Bioshop, HYD202; 4 g/L) and propionic acid (Fisher Scientific A258-500; 1.5 

g/L). In all cases, we added nutritional yeast (10g/L), a common ingredient in the media of 

similar experiments with Drosophila (Lihoreau et al. 2016; Rodriguez et al. 2015). As such, the 

protein (0.46g/g) and carbohydrate (0.38g/g) content provided by the yeast was incorporated into 

the calculations.  All media contained 2% agar (Bio Basic Canada Inc. FB0012) and was dyed 

with green food colouring for greater contrast during egg counting.  

Assay 1:  Fly Movement and Oviposition in a ‘Cafeteria’ Choice Environment  

We first set out to quantify the behavior of D. suzukii in an environment where they have access 

to a wide range of P:C media types. We did so by first collecting 160 sets of 15 adult male and 

15 female flies from our stock population. These flies were collected on days 18-24 of their 

culture cycle and were fully mature and likely non-virgin. Each set of flies was placed, under 

light anesthesia (CO2), into a single vial containing 10 ml of lightly-yeasted culture media and 

stored in an incubator for 48 hours prior to the start of the assay. 

The “cafeteria-style” choice arenas (Figure S2.1) we used to measure fly behavior 

consisted of transparent plastic boxes (KIS Omni Box, 20.3 x 15.9 x 9.6 cm) to which we added 
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mesh-covered vent holes along the upper edges. At the bottom of each chamber we arranged 8 

petri dishes (BD Falcon, 31 mm) that each contained 8 ml of a different P:C media. We placed 

the dishes in the arenas ~2 hours before the introduction of the flies. The arenas, 80 in total, were 

housed in a well-lit and quiet room. The orientation of the arenas was alternated in order to 

account for any spatial effects that may have been present in the room. 

The assay began when we transferred (without anaesthesia) two vials of flies (60 flies in 

total) into each of the arenas. The flies were then left in the chambers for 25 hours, with a survey 

of fly locations made at 1, 4, 8, 21, 23 and 25 hours post-introduction. This time-range is meant 

to capture a wide ‘view’ of the potentially variable periods of D. suzukii activity levels, as 

activity levels in this species is known to vary significantly depending on the time of day 

(Ferguson et al. 2015). During each survey, the number and sex of all the flies located on the 

media surface of each petri dish was recorded. At the end of the 25 hour period, all of the flies 

were removed from the arenas and the eggs laid on the surface of each of the media in the petri 

dishes were immediately counted. 

Assay 2: Oviposition in a No-Choice Scenario 

In order to investigate egg laying behavior in a “no-choice” environment, we collected 880 

females from our lab population. These flies were collected on days 18-24 of their culture cycle, 

were fully mature, and presumably mated. Each female was placed, individually, into a vial 

containing 2 ml of one of the 8 P:C medias described above. Vials with flies were incubated for 

36 hours, before all females were removed and the number of eggs laid in each vial was counted.  

Assay 3: Larval Development on the Eight Different P:C Diets 

To quantify the development of D. suzukii larvae on media with different P:C ratios, (but 

standardized initial levels of larval competition), we collected eggs laid by adult flies from our 
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lab population. This was done by placing flies into half-pint laying chambers outfitted with 35 

mm petri dish lids (BD Falcon) containing a grape-agar media (Sullivan et al. 2000) for ~18 

hours. Eggs were sorted into groups of 20 and transferred into vials containing 10 ml of one of 

the 8 P:C media types (50 replicates per treatment). These vials were incubated, and starting 12 

days later, all eclosed adult flies were removed, sexed and counted every 48 hours, a schedule 

that continued until day 22. The first 50 females and the first 50 males collected from each media 

treatment on the census days were immediately frozen for later weighing. Flies were weighed by 

first placing them into a drying oven set at 70°C overnight and weighed on a Sartorius 

Ultramicrobalance to the closest 0.1g. 

Later, to investigate the possibility that D. suzukii larvae might benefit from the protein 

originating from microbial growth in the media, as is seen in other Drosophila species (Begon 

1986; Da Cunha et al. 1951; Cooper 1959; Lihoreau et al. 2016), we conducted a follow-up 

experiment. In this assay, we omitted the addition of antimicrobials (Tegosept and propionic 

acid) in the media, but otherwise followed the same experimental protocols used in the first 

developmental assay, except with fewer replicates (25) per treatment. Flies that eclosed as adults 

were removed, sexed and counted every 24 hours for a total of 22 days.  

Statistical Analysis 

We used R 3.3.1 (R Core Team 2016) for all statistical analyses. The location of male and female 

flies on the eight different P:C medias was analyzed both together, and separately by sex using 

general linear models (GLMs) constructed with quasi-binomial error distributions. In each model 

the sum of all counts of flies on the surface of the petri dishes containing media over the course 

of the 25 hour observation period was the dependent variable and the total count of flies on all 

petri dishes in the chamber throughout the assay was the binomial denominator. The significance 
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of treatment was determined using the Anova function (in the car package), with type II sums of 

squares. To determine the differences in egg-laying behaviour associated with different media 

types we constructed a GLM with a quasipoisson error distribution. A model was created for 

each class of behavioural or fitness response, with treatment as an independent factor. The 

significance of treatment was determined using the Anova function, and specific differences in 

the number of eggs laid on each media type was determined using a Tukey HSD test. Egg-laying 

activity in the no-choice scenario was also analyzed using GLM a with quasipoisson error 

distribution. To see if females exhibited a similar preference for egg-laying site when given no 

choice versus a choice in media, we performed a Spearman correlation test in which we 

examined the number of eggs laid on each type of media where flies were given a choice and no 

choice. Survivorship among the different treatments was analyzed by fitting a GLM with a 

quasibinomial logit to the number of flies that eclosed in each vial in each treatment as the 

dependent variable and the initial number of eggs added to the vial was the binomial 

denominator. In order to measure potential differences in eclosion rate in different media we 

performed a Kruskal-Wallis (rank-sum) test on the number of flies that eclosed each day 

followed with a post-hoc comparisons of medians using the kruskal.mc function in the pgirmess 

package. Finally, the normally distributed male and female fly weights were analyzed separately 

by sex using an one-way Analysis of Variance (ANOVA) with post-hoc Tukey HSD tests to 

determine where the differences in adult weight lay between media treatments.  

 

Results 

Fly Distribution & Oviposition in “Choice” Chambers 
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Adult D. suzukii flies distributed themselves non-randomly among the eight P:C media in the 

choice arenas, with the greatest number of flies associating on the highest carbohydrate (1:12) 

media over the 25 hours of observation. This pattern was seen in both sexes when they were 

analyzed separately by sex (GLM: females: LLR χ
2
=350.05, df=7, p<0.001; males: LLR 

χ
2
=610.18, df=7, p<0.001) and when pooled together (LLR χ

2
= 750.11, df=7, p<0.001; Figure 

S2.2). Similarly, the number of eggs laid on the media differed significantly between media 

types (GLM, LLR,χ
2
=1458.9, df=7, <0.001). The greatest number of eggs were laid in the media 

with highest carbohydrate to protein ratio, 1:12 (mean =42.7 ± 2.98 eggs or ≈40% of eggs 

laid/chamber) and progressively fewer eggs were laid on media with a decreasing carbohydrate 

to protein ratio (Figure 2.1). When the C:P and P:C ratio was treated as a continuous variable, we 

saw a significant positive relationship and negative relationship with oviposition rate, 

respectively (Figure S2.5, ANOVA F=2289.5, df=1, 638, p<2.2x10
-16

; ANOVA F=175.37, df=1, 

638, p<2.2x10
-16

). 

Oviposition in “No-choice” Vials 

The median number of eggs laid by single D. suzukii in the “no-choice” vials differed between 

the media treatments (GLM, LLR,χ
2
=45.64, df=7, <0.001). We saw greater oviposition on those 

media with low P:C ratios (such as 1:12 and 1:6) than on those with high ratios (i.e. 24:1). When 

the C:P and P:C ratio was treated as a continuous variable, we saw a significant positive 

relationship and negative relationship with oviposition rate, respectively (Figure S2.6, ANOVA 

F=21.135, df=1, 878, p<4.9x10
-6

; ANOVA F=25.545, df=1, 878, p<5.3x10
-7

).We observed a 

significant positive correlation between the number of eggs laid on the media types in the no-

choice and choice experiments (Spearman’s Rho=0.785, S = 18, df=7, p = 0.028). 
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Development & Survivorship 

The egg-to-adult survivorship of D. suzukii differed depending on the type of media that the 

larvae developed on, albeit with opposing trends between the two experiments. In media with 

antimicrobials added (T+; GLM: LLR χ
2
=557.15, df=7, p<0.001), the greatest mortality arose on 

carbohydrate-rich medias, and the greatest survivorship on protein-rich medias (Figure 2.2A), 

whereas, in the media in which antimicrobials were omitted (T-; GLM: LLR χ
2
=46.54, df=7, 

p<0.001), the greatest mortality arose on protein-rich medias, and the greatest survivorship on 

carbohydrate-rich media (Figure 2.2B). When the C:P and P:C ratio was treated as a continuous 

variable, we saw a significant positive relationship and negative relationship with survivorship in 

both development experiments, respectively (Figure S2.7, with antimicorbials: ANOVA 

F=539.61, df=1, 396, p<2.2x10
-16

; ANOVA F=76.524, df=1, 396, p<2.2x10
-16

;
 
without 

anitmicrobials: ANOVA F=5.065, df=1, 172, p=0.026; ANOVA F=36.795, df=1, 172, p<8.1x10
-

9
).The number of males and females that eclosed did not differ between the eight media types, 

indicating there was no diet-related sex-biased survivorship (T+: GLM: LLR χ
2
=4.8397, df=7, 

p=0.680; T-: GLM: LLR χ
2
=8.8596, df= 7 , p=0.2629). Overall, we saw the flies’ development 

speed depended on the type of experience in both experiments (Kruskal-Wallis test: T+: females: 

χ
2
=132.8, df=7, p<0.0001; males: χ

2
=173.73, df=7, p<0.001; Kruskal-Wallis test: T-: females: 

χ
2
=157.82, df=7, p<0.0001; males: χ

2
=228.9, df=7, p<0.001; Figure S2.3). In media that 

contained antimicrobials, flies developing on carbohydrate-rich media tended to eclose later than 

those on protein-rich media (Figure S2.3A,B), whereas, in the media that did not contain 

antimicrobials, the opposite pattern was seen (Figure S2.3C,D). Flies developing on different 

media (with antimicrobials) also eclosed at different mean masses (ANOVA: males: F 

7,340=5.534, p<0.001; females: F7,378=3.227, p<0.001). Pairwise comparisons of weights do not 
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suggest any specific directional pattern, except perhaps a tendency for flies in the extreme ratios 

eclosing at a lighter weight than others (Figure S2.4 and S2.6). 

 

Discussion 

The Spotted-Wing fruit fly, Drosophila suzukii, is an invasive species responsible for a 

staggering amount of damage to agricultural efforts since its arrival in North America less than 

10 years ago (Bolda et al. 2010). However, despite the significant economic toil that it has 

inflicted on host crops, there has been surprisingly little research conducted on host-preference 

behaviors or on the fitness consequences associated with the choice of oviposition host in this 

species. Here, using a series of assays based on a nutritional geometry framework, we explored 

host-association preferences in adult D. suzukii, and tested the suitability of different 

developmental environments to their offspring. We found strong preferences for media 

containing a relatively low protein: carbohydrate ratio for association and oviposition. We also 

found, in direct relation to the presence or absence of antimicrobials in the media, strong 

variation in larval survival and development across the P:C ratio spectrum. Whereas the greatest 

larval survival and development was found to be on media with high P:C ratios when 

antimicrobials were present, the opposite was found to be true when antimicrobials were absent. 

We explore the potential causes and consequences of these conflicting results from evolutionary, 

ecological and management perspectives. 

In our first set of experiments, adult flies of both sexes were allowed to freely visit a 

variety of media that spanned a wide range of P:C ratios. We observed a significant non-random 

pattern in the physical location of both males and females, as well as in the number of eggs that 

were laid over the 25 hour observation period. Media with lower P:C ratios were consistently 
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visited more frequently (Figure S2.2), and were the site of greater oviposition, compared to 

media with higher P:C ratios (Figure 2.1, S2.5). Similarly, when individual females were placed 

into “no-choice” vials, those in the vials with low P:C media laid more eggs than those in the 

vials with high P:C media (Figure S2.6). Together, these results independently indicate a strong 

behavioral preference in adults for food medias that are rich in carbohydrates over those that are 

rich in proteins. The preference for high carbohydrates/low protein is not likely an artefact due to 

preferences that have evolved in the laboratory, as our media has a P:C ratio of ~1:3. A reason 

that flies exhibit this seeming preference may be due to the numerous metabolic benefits 

associated with this macronutrient (Maklakov et al. 2008; South et al. 2011). As is seen in other 

insects, the success of adult D. suzukii may depend on one’s ability to perform energy-

demanding activities (Maklakov et al. 2008; South et al. 2011), such as rigorous courtship 

displays (Revadi et al. 2015) and daily foraging for mates, nutritional resources, and hosts. 

Carbohydrates, being a rapidly metabolized form of energy, may be preferred by D. suzukii for 

meeting their energy demands and/or optimizing performance. Our results are consistent with 

recent nutritional geometry studies by Rodrigues et al. (2015), Lihoreau et al. (2016), and 

Schwartz et al. (2016) that each found female D. melanogaster also laid a greater number of eggs 

on low P:C ratio media. However, while Lihoreau et al. (2016) found that D. melanogaster flies 

spent ~23% of their time on high protein foods (despite not ovipositing) we did not observe a 

similar association behavior in D. suzukii, where flies spent only ~6% of their time on the high 

P:C media. In many adult species, dietary protein is an important aspect for the stimulation of 

oogenesis and regulating vitellogenesis in females and for stimulating the production of sperm in 

males (Fenson et al. 2009; Fenson & Taylor 2012; Jensen et al. 2015; Lee et al. 2008; Lihoreau 

et al. 2016; Maklakov et al. 2008; Pirk et al. 2010; Reddiex et al. 2013), and thus it was 
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somewhat surprising to observe such a strong bias in activity and oviposition for low P:C medias 

in D. suzukii. Given the unique ecological niche D. suzukii occupies - parasitizing undamaged 

instead of damaged fruit - it is possible that adults may have evolved to require relatively less 

dietary protein compared to other species of Drosophila. Further studies on protein consumption 

in this species, may provide insight into the behaviors and dietary needs of D. suzukii, advancing 

our understanding of evolutionary processes, as well as furthering the management of this 

species. 

Our oviposition results differ from the only previous study that examined oviposition-site 

choice in this species (Burrack et al. 2013). In that study, when flies were given a “choice” 

between raspberries (P:C ratio of ~1:4) and blueberries (P:C ratio of ~1:15), more eggs were laid 

on the former than on the latter. The reason for these differences may potentially be explained by 

differences in the experimental design of our two studies. Whereas we presented females with an 

artificial media for oviposition, Burrack et al.’s used intact blackberry, strawberry, blueberry and 

raspberry fruits. These various fruit differ in colour, aroma, size, texture, the force necessary to 

penetrate the skin (for example, blueberries require 3.4 times more force than raspberries; 

Burrack et al. 2013) and total macronutrient concentration (the P+C content of blueberry is ~2-

fold higher raspberries at ~108 g/kg of fruit), any of which may have influenced their results. 

Our use of a standardized media potentially controlled for many of these confounding variables, 

we were able to reveal a previously unappreciated perspective to D. suzukii behavior.  

Given the strong observed bias for increased oviposition on foods with low P:C ratios, we 

hypothesized that we would also see the greatest offspring success on this media, consistent with 

the Preference-Performance Hypothesis (PPH) or “Mother knows best” principle, in which 

female preference for oviposition is predicted to result in the highest offspring performance 
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(Gripenberg et al. 2010). Instead, in our third assay (in which we added antimicrobials to the 

media), we observed the opposite pattern of egg-to-adult survivorship and development rates as 

seen with the oviposition trend. The number of eggs that developed to adulthood on media with a 

low P:C ratio of 1:12 to 1:3 was markedly lower than those on media greater than 1:1 (Figure 

2.2A, S2.7A,B). The apparent unsuitability of the high carbohydrate diets was also reflected in 

the slower development times of the flies on carbohydrate rich diets (Figure 2.2B). In fruit flies, 

more rapid development may allow adult flies to gain a competitive advantage over slower 

developing conspecifics when it comes to acquiring resources and/or finding mates (Markow and 

O’Grady 2005; Prasad et al. 2001) and, typically, survival is lower and developmental rates are 

slower in resource poor environments (e.g. Gebhardt and Stearns 1988; Edgar 2006). These 

results are suggestive that, from a developmental perspective, protein availability is of greater 

importance than carbohydrates for juvenile D. suzukii development. Interpreting the results of the 

body weight (Figure S2.4) is made more complicated by the fact that, in Drosophila, individual 

growth rates are mediated by the degree of intra-specific competition (reviewed by Ashburner et 

al. 2005). While flies on low P:C foods suffer greater mortality arising from the lower nutritional 

quality of their diet, those that do survive benefit from reduced competition, while for those flies 

developing in the high P:C media, the access to better nutrition may be offset by the increased 

pressure arising from increased competition for resources. To date, the only other study that has 

investigated offspring development in D. suzukii in the context of nutrition is by Jaramillo et 

al.’s (2015), who found no effect of P:C ratio in the larval diets to the egg-to-adult survivorship 

of larvae developing. However, that study was limited to only 2 different media types. Our use of 

nutritional geometry, a model developed by Simpson and Raubenheimer (1993), allowed us to 

dissect the effects that protein and carbohydrates have on life history traits in a more 
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comprehensive and standardized fashion, ultimately revealing a previously unknown aspect of 

this species. 

The apparent conflict between the nutritional environment favored by D. suzukii adults 

and the types of resources that would most benefit their offspring would appear to be contrary to 

what one would have predicted according to the PPH (Gripenberg et al. 2010). The PPH has 

been tested in a number of insect species, and while several studies support this hypothesis, there 

are numerous cases where this relationship does not seem to apply (Gripenberg et al. 2010; 

Thompson 1988). For example, Lihoreau et al. (2016) observed that, in a similar nutritional 

geometry environment, female D. melanogaster “prefer” to lay more eggs on low P:C medias 

that are less supportive of larval development, than on high P:C medias, analogous to our 

observations with D. suzukii. Furthermore, females of the fruit fly species D. koepferae (Soto et 

al. 2012) the leaf galling insect Neopelma baccharidis (Faria and Fernandes 2001), and the 

Madrone butterfly Eucheira socialis (Underwood 1994), all show an oviposition “preference” for 

lower quality hosts. There are several potential explanations for the apparent conflict between 

optimal adult oviposition choice and offspring performance in D. suzukii. Firstly, it is possible 

that adult nutritional needs may trump the developmental needs of their offspring. Since 

reproduction and foraging are energy-demanding activities (Maklakov et al. 2008; South et al. 

2011), adult dietary requirements may take a higher priority over those of juveniles and females 

may increase their fitness by being ‘selfish’ (e.g. Janz et al. 2005; Mayhew 2001; Scheirs & De 

Bruyn 2002). Evidence for this relationship among insects has been observed in the grass miner 

Chromatomyia nigra where females will lay eggs on the hosts they feed on, but not on hosts that 

are best for offspring performance (Scheirs 2000). Secondly, flexibility in adult behavior may be 

limited by the amount of genetic variation within the species for this trait. Without the necessary 
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additive genetic variation, D. suzukii may be unable to evolve adaptive oviposition behaviors 

and, thus, adults are ‘trapped’ on a carbohydrate-seeking trajectory. Considering that D. suzukii 

populations in North America may have descended from a small number of colonizing 

individuals, it is possible that flies in this region, as a result of a genetic bottleneck, have 

experienced a substantial reduction in allelic diversity (England et al. 2003). Alternatively, this 

apparent conflict may be due to factors associated with our experimental media. In Nature it is 

typical for microbial numbers in fruit to progressively multiply following oviposition by D. 

suzukii females (Hamby et al. 2012) and such progressions can be an important source of protein 

for fruit fly larvae (Begon 1986; Brito Da Cunha et al. 1951; Cooper 1959). Our experimental 

media (which followed the recipe of Lihoreau et al. 2016) which includes antimicrobial additives 

may have prevented the rapid growth of bacteria and yeasts, thereby removing a potential protein 

resource for developing larvae. Indeed, when raised on media without antimicrobial additives, in 

our follow-up experiment, we found larvae to exhibit greater survivorship on the high 

carbohydrate ratios, suggesting that D. suzukii ultimately benefit from the presence of microbes 

during development (Figure 2.3B, S2.7C,D). If such is the case, then the diet of juvenile D. 

suzukii may not have diverged substantially from other Drosophila species that parasitize rotting 

fruit (Begon 1986; Brito Da Cunha et al. 1951; Cooper 1959; Lihoreau et al. 2016). The fact that 

D. suzukii larvae fared best on our high-protein medias (with antimicrobials included) certainly 

seems to support this hypothesis. In regards to the PPH, a potential relationship between 

microbial-sourced proteins in rotting fruit and increased larval success would suggest a more 

harmonious association between the life-stages than our initial assay indicated. Furthermore, if 

suitable microbial growth is found to be greatest in fruits that are highest in carbohydrates, which 

females appear to find more attractive for egg-laying, the PPH may be highly relevant to 
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understanding the behaviour of this species. A strong oviposition preference for high 

carbohydrate foods observed in D. suzukii, coupled with the ability to capitalize on the microbial 

community as a source of protein may be an important reason for the success of this invasive 

species. As such, future studies on the relationship between juvenile success and microbial 

communities in hosts could yield important information on the factors that promote or inhibit 

offspring development and its relation to adult behavior and fitness.  

D. suzukii is a serious economic pest and the progression of more effective control 

strategies is vital for avoiding large economic losses in the future. Our findings may be useful for 

farmers trying to decide on capture/control/removal strategies for various fruits that differ in P:C 

ratios. For example, from our experiments, it is clear that D. suzukii are strongly attracted to 

carbohydrate rich media for egg-laying, both in choice and in no-choice situations. Such 

behavior suggests that females will avoid laying eggs in habitats deemed unsuitable for 

oviposition and that the presence of carbohydrates and/or the absence of protein acts as an 

indicator of media suitability for oviposition. Fruits of lower P:C ratios, then, may act as both 

population “sinks” and “sources”, by drawing in more females and stimulating higher 

oviposition rates. In agroecosystems, it is generally considered that species live in a fragmented 

landscape where subpopulations are interconnected as a source-sink system (Tscharntke and 

Brandl 2004). Species richness and abundance is also dependent on local and landscape habitat 

characteristics (Rusch et al. 2013; Tscharntke and Brandl 2004; Weibell et al. 2003).  Thus, the 

implementation of management strategies that incorporate population ecology based on the host 

landscape may be met with greater pest control efficiency and effectiveness (Ferreira et al. 2014; 

Gilioli et al. 2013). In terms of managing D. suzukii, farmers may incorporate methods that focus 

or implement more intensive management on fruit types in the landscape that act as population 
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“sources” and “sinks”. If we integrate our oviposition and survivorship data for our treatments in 

which antimicrobials were added (which inhibited microbial growth) we see that, all else being 

equal, fruit that consist of a P:C ratio of 1:3 to 1:6 are most likely to contribute the greatest 

number of surviving offspring (Figure 2.3A). In the situation where there is no inhibition of 

microbial growth, the integration of ovipositon data and the survivorship in vials in which 

antimicrobials were omitted, fruit that is most likely to contribute the greatest number of 

surviving offspring consist of a P:C ratio of 1:12 and 1:6 (Figure 2.3B). Thus, farmers might do 

well to focus control efforts on crops in this P:C range. In order to implement this strategy to its 

greatest potential, insights from future studies looking at the antimicrobial properties of different 

fruit types and varieties could prove to be very valuable. In addition to incorporating a 

management strategy that is based on the existing population ecology demographics, growers 

may also enhance their results by altering the host landscape and manipulating fly movement. 

For instance, crop species may be used in the ‘push-pull’ strategy, whereby the distribution of a 

pest is manipulated for the purpose of management through the use of a combination of deterrent 

and attractive stimuli (Cook et al. 2007). In other words, the use of plants with fruits of a (more 

attractive) low P:C ratio may be used to deter or repel D. suzukii away (push) from the crop fruit, 

while, at the same time, lure flies (pull) into areas that contain traps or ‘trap crops’. Intercropping 

or the use of ‘cover crops’ is one way to incorporate this strategy, which involves that non-crop 

plant species, which modify pest behavior,  are integrated with crop species. Growers may also 

incorporate the ‘push-pull’ strategy by organizing plants in the landscape so that they act as 

‘barriers’. For example, plants that bear fruit of a low P:C ratio could be situated in areas 

surrounding the focal crop to prevent flies from entering into the crop area. Such a strategy 

would also allow management efforts to be focused on areas where pests are concentrated, 
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potentially reducing chemical pesticide use and, thus, the risk of insect resistance. In addition to 

incorporating a ‘custom’ management plan, the use of carbohydrates (e.g. corn syrup, juice etc.) 

in lures or baits may also improve the efficacy of attract-and-kill strategies, as adults were 

strongly attracted to the carbohydrate-rich medias in our experiment. Finally, from an ecological 

perspective, an association between larval success and microbial growth could have large 

implications on the population ecology of D. suzukii. For instance, different host fruits may vary 

in their susceptibility to the rate of microbial decay and/or the types of microbial life that it can 

support and, thus, contribute in various ways to population growth (e.g. if growth rate and 

different microbial species/taxa varies in its nutritional benefits). As such, a positive relationship 

between larval success and microbial colonization could be used to the farmers’ benefit through 

the use of crops better able to resist microbial degradation (e.g. through genetic engineering) 

and/or the use of practices that reduce microbial colonization in fruit post-egg transfer (e.g. 

sterilization of plant and fruit exterior). 

Nutritional geometry is an effective and well-established framework that is highly 

suitable for the investigation of targeted questions related to nutrition. By reducing the number of 

variables, the complexity of outcomes that accompany a complete diet is removed, allowing us to 

see how each nutritional variable affects life history traits, as well as to see how these variables 

interact. Our results highlight the importance that P:C ratios have on adult behavior and larvae 

performance in D. suzukii. Whereas, low P:C ratios were preferred by adults for association and 

oviposition, high P:C ratios provided the best nutritional environment for offspring. These results 

provide important insights into the foraging behaviors and nutritional needs of this pest species, 

which is important for improving current management. 
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Figures 

 

 

Figure 2.1. Oviposition preference among medias differing in protein: carbohydrate (P:C) ratio 

in choice environments. Boxplots of numbers of eggs female D. suzukii laid on each of the eight 

different P:C medias in each choice chamber (80 chambers in total) over a 25-hour period. The 

box encloses values between the first and third quartiles of the data (the inter-quartile range 

(IQR)), whereas the horizontal bar within the box indicates the median. Whiskers extend from 

the box to largest/smallest values that are within 1.5 × the IQR of the box. Values outside that 

range are outliers and are indicated by circles. Boxplots that are not sharing a letter have 

significantly different means. 

a             b             c           d           d            e            e             e 

Ratio of Proteins to Carbohydrates in Media 
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Figure 2.2. Larval survivorship on medias differing in protein: carbohydrate (P:C) ratio. 

Boxplots of proportion of flies that eclosed as adults within 22 days following the transfer of a 

standardized number of eggs (20) into vials containing artificial media A) with antimicrobials 

and B) without antimicrobials. The box encloses values between the first and third quartiles of 

the data (the inter-quartile range (IQR)), whereas the horizontal bar within the box indicates the 

median. Whiskers extend from the box to largest/smallest values that are within 1.5 × the IQR of 

the box. Values outside that range are outliers and are indicated by circles. Boxplots that are not 

sharing a letter have significantly different means. 
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Figure 2.3. Predicted number of surviving adults on medias differing in protein: carbohydrate 

(P:C) ratio. Boxplot of number of adults predicted to eclose on substrates of differing P:C ratios 

based on oviposition rates in a choice environment and survivorship values derived from the 

assays in media, A) inhibited microbial growth and B) supported microbial growth. In both 

analyses there was significant differences in the number of expected offspring eclosing from 

each media type (Kruskal-Wallis tests: A: χ
2
=356.01, df=7, p<0.0001; B: χ

2
=476.45, df=7, 

p<0.001). The box encloses values between the first and third quartiles of the data (the inter-

quartile range (IQR)), whereas the horizontal bar within the box indicates the median. Whiskers 

extend from the box to largest/smallest values that are within 1.5 × the IQR of the box. Values 

outside that range are outliers and are indicated by circles. Boxplots that are not sharing a letter 

have significantly different medians. 
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Supplementary Tables & Figures 

Supplemental Table 2.1. The protein to carbohydrate ratios and concentrations of fruit species 

attacked by D. suzukii in North America. Nutritional information accessed from the USDA 

Nutrient Database (https://ndb.nal.usda.gov/ndb/). 

 

Species Protein: Carbohydrate 
Protein + Carbohydrate 

(g/kg) 

Blueberry (Vaccinium spp.) 1:15 108 

Plum (Prunus spp.) 1:14 107 

Elderberry (Sambucus spp.) 1:10 77 

Peach (Prunus persica) 1:9 89 

Sweet Cherry (Prunus spp.) 1:8 90 

Nectarine (Prunus persica) 1:7 91 

Sour Cherry (Prunus spp.) 1:7 96 

Strawberry (Fragaria spp.) 1:7 56 

Apricot (Prunus spp.) 1:6 104 

Mulberry (Morus spp.) 1:6 94 

Currant (Ribes spp.) 1:5 84 

Gooseberry (Ribes spp.) 1:5 52 

Raspberry (Rubus spp.) 1:5 49 

Chokecherry (Prunus virginiana) 1:5 169 

Blackberry (Rubus spp.) 1:4 63 

Grape (Vitis spp.) 1:3 220 

 

 

 

 

 

 

Supplemental Table 2.2. Exact quantities of protein (P) and carbohydrates (C) in each 1 L ratio 

recipe. 

Ratio P:C 1:12 1:6 1:3 1:1 2:1 4:1 8:1 24:1 

Protein (g/L) 5 10 18 35 47 56 62 67 

Carbohydrates (g/L) 65 60 53 35 23 14 8 3 

 

 

 

https://ndb.nal.usda.gov/ndb/
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Supplementary Figure 2.1. Picture of a “choice” chamber containing dishes of the eight 

different protein-to-carbohydrate (P:C) ratio medias.  

 

 

 

 

Supplementary Figure 2.2. Boxplots of distribution of flies among medias differing in protein 

to carbohydrate ratio (P:C). Proportions of time Drosophila suzukii females (A), males (B) and 

both sexes together (C) spent on each of the eight different P:C medias in the choice chambers at 

any one time over a 26-hour observation period. The box encloses values between the first and 

third quartiles of the data (the inter-quartile range (IQR)), whereas the horizontal bar within the 

box indicates the median. Whiskers extend from the box to largest/smallest values that are within 

1.5 × the IQR of the box. Values outside that range are outliers and are indicated by circles. 

Boxplots that are not sharing a letter have significantly different means. 
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Supplementary Figure 2.3. Boxplots of dates of eclosion from pupae of adult Drosophila 

suzukii on medias differing in their protein: carbohydrate (P:C) ratio. Left panels (A & C) 

indicate observations made for males, while right panels (B &D) indicate observations made for 

females. Top panels (A &B) represent data collected from the assay in which antimicrobials 

were added to media while bottom panels (C &D) represent data collected from the assay in 

which antimicrobials were omitted from the media. The box encloses values between the first 

and third quartiles of the data (the inter-quartile range (IQR)), whereas the horizontal bar within 

the box indicates the median. Whiskers extend from the box to largest/smallest values that are 

within 1.5 × the IQR of the box. Values outside that range are outliers and are indicated by 

circles. Boxplots that are not sharing a letter have significantly different medians. 
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Supplementary Figure 2.4. Boxplot of weights of adult male (A) and female (B) Drosophila 

suzukii raised on media differing in protein: carbohydrate (P:C) ratio (with antimicrobials). The 

box encloses values between the first and third quartiles of the data (the inter-quartile range 

(IQR)), whereas the horizontal bar within the box indicates the median. Whiskers extend from 

the box to largest/smallest values that are within 1.5 × the IQR of the box. Values outside that 

range are outliers and are indicated by circles. Boxplots that are not sharing a letter have 

significantly different means. 
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Supplementary Figure 2.5. Scatter plots illustrating the regression lines between the total 

number of eggs laid in the ‘choice’ scenario in relationship to A) the carbohydrate to protein 

ratio in the media (slope of 0.033 and y-intercept of 0.029) and B) the protein to carbohydrate 

ratio in the media (slope of -0.009 and y-intercept of 0.169). 

 

 

 

 

 

Supplementary Figure 2.6. Scatter plots illustrating the regression lines between the total 

number of eggs laid in the ‘no choice’ scenario in relationship to A) the carbohydrate to protein 

ratio in the media (slope of 0.238 and y-intercept of 3.095) and B) the protein to carbohydrate 

ratio in the media (slope of -0.013 and y-intercept of 4.45). 

 

A) B) 

A) B) 
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Supplementary Figure 2.7. Scatter plots illustrating the regression lines between the proportion 

of offspring surviving in relationship to A) the carbohydrate to protein ratio in the media with 

antimicrobials added (slope of -0.048 and y-intercept of 0.652), B) the protein to carbohydrate 

ratio in the media with antimicrobials added (slope of 0.44 and y-intercept of 0.014), C) the 

carbohydrate to protein ratio in the media with antimicrobials omitted (slop of 0.490 and y-

intercept of 0.011), and D) the protein to carbohydrate ratio in the media with antimicrobials 

omitted (slope of -0.014 and y-intercept of 0.591). 

 

 

 

 

A) B) 

C) D) 
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CHAPTER 3 

NUTRITIONAL DEVELOPMENTAL HISTORY AND ITS CONSEQUENCES FOR 

REPRODUCTIVE SUCCESS IN DROSOPHILA SUZUKII 

Yvonne Young & Tristan A.F. Long 
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Preamble 

The following chapter was written as a manuscript in the style of Animal Behavior, where it will 

be submitted for consideration shortly.  
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Abstract 

The characteristics of an individual’s juvenile developmental environment can have important 

consequences for their adult reproductive success as it may shape the development and 

expression of phenotypes that are relevant to the operation of sexual selection. In complex 

landscapes, species may exhibit phenotypic plasticity that enables individuals to maximize their 

reproductive potential. Drosophila suzukii is an economically important invasive pest species 

that lays its eggs in many types of soft-fruits and, consequently experiences large intra-

population spatial and temporal variation in its nutritional developmental environment. Here, we 

examine whether the developmental environment influences D. suzukii mate choice and 

offspring performance. Using flies raised on either a low or high “quality” diet we examined 

mating preferences, fecundity and offspring survivorship in no-choice, female choice and male 

choice contexts. Overall, we found, depending on the environmental context, evidence for 

adaptive and non-adaptive mate choice behaviors that were associated with the phenotypes of 

flies that had developed on different media.  These results reveal the complex nature of the 

relationship between the developmental environment and individual reproductive success in D. 

suzukii, which has important potential implications for future management plans involving this 

pest species. 
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Introduction 

Sexual selection theory posits that mate preference(s) should evolve if individuals of one sex 

vary in quality, or reproductive potential, thereby making ‘choosy’ behavior beneficial for 

improving fitness relative to a random-mating strategy (reviewed by Kokko et al. 2003; 

Promislow 1998). The intensity of ‘choosiness’ during mate selection is often associated with the 

life history of the species in that the more cost there is associated with making a ‘bad’ mate 

choice, the greater the advantage of being choosy. Central to every sexual selection model is the 

idea that there is a fitness benefit associated with being ‘choosy’ (reviewed by Kokko et al. 

2003; Bateson 1984) and many studies have attempted to measure these benefits (Head et al. 

2005; Petrie 1994; Reynolds and Gross 1992; Ryan and Altmann 2001; Simmons 1987). Benefits 

can be direct and involve the production of more and/or better quality offspring For instance, 

common measurements of fitness among insects include the number of eggs produced following 

copulation and the survivorship of the offspring to adulthood. Benefits can also be indirect in 

that the fitness of the offspring is increased (Kokko et al. 2003). Such measurements typically 

include the mating attractiveness of the offspring (e.g.‘sexy son’ hypothesis; Weatherhead and 

Robertson 1981). 

One factor with the potential to amplify these costs, and thus increase sexual selection 

pressures on a species, is that of the local environment (Awmack and Leather 2002; Botero and 

Rubenstein 2012; Chain and Lyon 2008; Cockburn et al. 2008; Gardner et al. 2009; Miller and 

Svensson 2013). By shaping individual traits that are highly relevant to the fitness of the 

organism, the developmental environment can influence the phenotypes of individuals, which 

has substantial consequences for individual fitness variation. In species experiencing large 

phenotypic and/or behavioral variation on a regular basis there may be strong selection to choose 
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partners that will provide the greatest fitness benefits (Botero and Rubenstein 2012; Cotton et al. 

2006; Miller and Svensson 2013). This relationship, where greater phenotypic variation results in 

greater ‘choosiness’ by individuals for partners, has been observed in a number of species 

including the black field cricket (Teleogryllus commodus; Hunt et al. 2005), the stalk-eyed fly 

(Telopsis dalmanni; Hingle et al. 2001), the deep snouted pipefish (Syngnathus typhle; Mazzi 

2004) and the fruit fly (Drosophila melanogaster; Sharon et al. 2010; Najarro et al. 2015; Dodd 

1989; Abed-Vieillard et al. 2016). In all cases we see strong selection to choose mates able to 

provide the best fitness advantage. 

Drosophila suzukii, the spotted-wing fruit fly, an invasive and economically important 

agricultural pest to North America, Europe and South America (reviewed by Asplen et al. 2015), 

is a species that inhabits (with apparent ease) many different environments. These environments 

not only vary spatially, encompassing cities, towns, agricultural areas and natural environments, 

but also vary temporally in the resources that they provide. As a generalist parasite of thin-

skinned fruits (Asplen et al. 2015), which includes commercial crops such as blueberries, 

blackberries, strawberries, raspberries and occasionally grapes (Bellamy et al. 2013; Lee et al. 

2011) and numerous wild and ornamental fruits (Heimpel et al. 2010; Walsh et al. 2011), D. 

suzukii potentially experiences large heterogeneity in the types of fruits available to them for 

ovipositing.  In insects, it is well known that the nutritional environment during development can 

play a significant role in determining adult phenotype and/or behavior (Awmack and Leather 

2002; Etges et al. 2006; Fedina et al. 2012; Schultzhaus et al. 2017) which ultimately has 

consequences for an individual’s potential reproductive success (Awmack and Leather 2002; 

Gardner et al. 2009; Padilla and Adolph 1996). In D. suzukii, since larvae develop in different 

fruit species and fruit species vary in their nutritional composition and quality, this means that 
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populations potentially consist of a wide range of different adult phenotypes. Indeed, host-

induced variation in the adult size of D. suzukii females has been observed in individuals raised 

on various fruit-based medias. In the study by Bellamy et al. (2003) it was found that females 

raised on a cherry substrate and a raspberry substrate were significantly larger than females 

raised on a blackberry, blueberry, grape or peach substrate. We also observed differences adult 

size in our nutritional geometry experiment (Chapter 2) where larvae that developed on medias 

consisting of the highest and lowest protein-to-carbohydrate ratio (1:12 and 24:1) were smaller 

than those in the mid-ranges. Larger size in females in insects is often associated with increased 

fecundity and fertility (Honek 1993), suggesting that D. suzukii females may experience 

variation in fecundity as a direct result of their specific diet during development. As such, it is 

worth considering the importance of sexual selection in situations where the quality of potential 

mates differ, and it is possible that D. suzukii’s success as an invasive pest may be associated 

with its ability to distinguish and choose mates that are of higher quality, thus maximizing 

individual fitness. Observations made by Diepenbrock et al. (2016) suggest that D. suzukii alters 

its behavior to improve individual fitness based on prior experience with the host environment.  

In this study, females that developed on fruits of lower nutritional quality demonstrated 

behavioral plasticity in egg-laying by preferring to oviposit on higher quality hosts. Juvenile 

experience with hosts has also been found to modulate behaviors in a number of other insect 

species (reviewed by Anderson and Anton 2014). In terms of sexual selection, D. suzukii exhibit 

a number of traits commonly associated with species that have strong mate preferences. For 

example, male D. suzukii use highly sophisticated courtship displays, involving elaborate 

movements with their sex-specific, single-spotted wings (Revadi et al. 2015) and substrate-borne 

vibrations (Mazzoni et al. 2013), which, in other Drosophila species, are used to communicate 
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information about a male’s reproductive quality and entice females into mating(reviewed by 

Ewing 1983). Drosophila suzukii also release a “perfume of pheromones” (cuticular 

hydrocarbons), which are thought to advertise sexual maturity and other aspects of mate 

“quality” in other Drosophila and function as a chemical cue during mate choice (reviewed by 

Ferveur 2005). By investigating sexual selection in D. suzukii we may gain a better 

understanding of how environmental heterogeneity influences sexual selection in this species and 

also gain insight into the factors that enable this pest to be so successful in foreign and complex 

environments- information which may be useful for improving control methods of D. suzukii. 

For instance, knowledge on the male phenotypic characters that are found attractive to females 

may be used to improve the attractiveness of reared male flies for release as part of the sterile 

insect technique, a management strategy that aims to reduce population growth through the 

facilitation of matings between sterile and wild individuals (Klassen and Curtis 2005). As well, 

knowledge on individual fitness of flies of particular phenotypes may be used to plant host crops 

in configurations that produce phenotypic combinations that are of lower fitness (e.g., reduced 

egg production following mating with a particular phenotype). 

Mating behavior in organisms is based on the presence of relevant cues (e.g., 

pheromones, colour, vocalizations) that are recognizable and can be used to determine whether 

an individual is worth pursuing/accepting as a potential mate (Kokko et al. 2003). Adding 

complexity to this mate assessment system is the modification of these sexually relevant cues by 

the environment. In cases where modifications are common and highly variable, a plastic, 

experience-based mate preference may be more adaptive than a limited, innate response (Botero 

and Rubenstein 2012; Cotton et al. 2006; Miller and Svensson 2013). In insects, and especially in 

fruit flies, one such phenotypic trait is that of adult size (Amitin and Pitnick 2007; Credland et al. 
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1986; Pitnick and Garcia-Gonzalez 2002). Size in insects tends to be positively correlated with 

female fecundity (e.g. more eggs are laid by large females than by small females) as well as 

“attractiveness” and male competitiveness (Bonduriansky 2001). As such, larger individuals 

often have higher mating frequencies, and higher reproductive output compared to smaller 

individuals (Credland et al. 1986; Honek 1993; Morimoto et al. 2016; Partridge et al. 1987; 

Parker and Pizzari 2010; Pitnick and Garcia-Gonzalez 2002; Wigby et al. 2015). Behavioral 

phenotypic differences can also result from variation in the offspring’s developmental diet. For 

example, fruit flies raised on different media have been found to display distinct mating patterns 

(Abed-Vieillard et al. 2016; Dodd 1989; Najarro et al. 2015; Sharon et al. 2010). In cases where 

the quality of the juvenile diet differs, differences in mating strategy can be elicited, creating a 

situation of condition-dependence in mate choice wherein high quality individuals are more 

likely to show the strongest mate preference (reviewed by Cotton et al. 2006). For example, Hunt 

et al. (2001) demonstrated, by varying the quality of the juvenile diet, that the condition in adult 

female black field crickets (Teleogryllus commodus) was correlated with variation in preferences 

for males. Females that were raised on high quality diet were both larger and had higher survival 

rates than females raised on low quality diet, and displayed stronger directional selection for 

males that produced higher frequency calls (which is indicative of higher male quality). 

Alternatively, species may evolve a non-traditional approach to choosing mates and, instead, 

choose to assortatively mate with others based on their own environmentally-induced phenotype 

(unrelated to condition). In insects, this phenomenon has been observed in situations where there 

have been environmentally-induced modifications to the pheromone (e.g. epicuticular 

hydrocarbon; Etges et al. 2006; Ferveur 2005; Geiselhardt et al. 2012) and/or microbiome profile 

(Ringo et al. 2011). For example, male mustard leaf beetles Phaedon cochleariae have been 
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observed to prefer to mate with females that were raised on the same host plant species as a 

result of having a more similar cuticular hydrocarbon phenotype than those raised on a different 

host plant species (Geiselhardt et al. 2012). In D. melanogaster, differences in the protein 

availability in culture media have resulted in strong assortative mating preferences induced by 

changes in the hydrocarbon profile by the commensal bacteria Lactobacillus plantarum (Ringo et 

al. 2011). However, it is also true that dietary mediated differences in hydrocarbons may not 

always result in phenotypic-based sexual preference (Fedina et al. 2012).  

Here, we set out to examine whether the quality of the developmental diet influences the 

mating behavior and individual reproductive success of D. suzukii. We studied combinations of 

male and female flies based on their nutritional developmental history (NDH) in both choice and 

in no-choice mate assays. The results of these assays revealed differences in individual 

choosiness (that are suggestive of condition-dependent mating) as well as differences in 

fecundity and offspring survival that are associated with the NDH of the parents. In addition, we 

show that the effects of the social context may also influence mating behavior in this species. 

This study shows that D. suzukii exhibits behavioral plasticity in mate selection and that the 

environment can affect phenotypic traits relevant to individual fitness – information which could 

be used to improve management of this invasive pest. 

 

Materials & Methods 

Drosophila suzukii Population History & Culture Protocols 

In this experiment, we used Drosophila suzukii adults that originated from a large (~1400 

adults/generation) laboratory population. This population was shared with our lab in 2014 by Dr. 

Justin Renkema (then of the University of Guelph, now located at the University of Florida) and 
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originates from individuals isolated from blackberries and raspberries collected from a Southern 

Ontario commercial farm during the summer of 2012 (described in Renkema et al. 2016) Since 

then, the flies have been cultured under standard laboratory conditions (25°C, 60% humidity, LD 

12:12) on Rose’s fly media (Rose 1984). Following a 21 day culturing cycle , on “Day 1” of the 

cycle, the population of flies is mixed en masse under light anesthesia (CO2) and transferred to a 

fresh set of vials containing ~10 ml of fly media, with 20-25 flies per vial. After 48 hours in 

these vials, the flies are transferred to a second set of fresh vials (which serves as a “back-up” 

stock) before being discarded 48 hours later. 

Experimental Diets 

To analyze the influence of different developmental environments on D. suzukii 

reproductive behavior, we raised larvae on two artificial diets in which the protein to 

carbohydrate ratio (P:C) was experimentally manipulated to create a high carbohydrate-low 

protein diet (P:C 1:3) and a low carbohydrate-high protein diet (24:1). We chose these P:C ratios 

based on a previous study we conducted (see Chapter 2), in which, using a nutritional geometry 

framework (Simpson and Raubenheimer 1993), we assessed the performance of D. suzukii larvae 

on eight different medias ranging in P:C ratio (P:C 1:12, 1:6, 1:3, 1:1, 2:1, 4:1, 8:1, 24:1). From 

this study we found that larval survival and eclosion rate was positively associated with the 

availability of protein in the media and that larval performance was significantly different across 

the P:C landscape. As such, the two ratios, 1:3 and 24:1, represent two very different nutritional 

environments for larvae. Furthermore, these two P:C ratios are likely to be similar to the 

environments that are encountered by D. suzukii in their natural habitat. For instance, the P:C 

ratio of ~1:3 is commonly observed in farmed and wild fresh fruit commonly attacked by D. 

suzukii in North America (Table 2.1), and the P:C ratio of 24:1 is potentially found in rotting 
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fruits that contain protein-rich microbial organisms (Janzen 1977). The observation that females, 

in a choice and no-choice scenario, lay eggs on media consisting of a 1:3 and 24:1 P:C ratio 

(Chapter 2) also suggests that this species potentially parasitizes both intact, fresh fruits as well 

as rotting fruits in the wild. 

In keeping with our prior developmental study (Young et al. 2017; Chapter 2), the two 

different media were generated by way of the manipulation of the quantities of protein and 

carbohydrates in each recipe while keeping all other ingredients in the media constant, as 

outlined by Lihoreau et al. (2016). Specific details on the recipes used are listed in Chapter 2. 

Experimental Flies 

Flies with different nutritional developmental histories (NDHs) were generated by raising 

individuals on the two medias differing in their protein-to-carbohydrate ratio (P:C). To do this, 

we first collected eggs produced by flies from our lab population by placing groups of flies into 

half-pint laying chambers that had been outfitted with 35 mm petri dish lids (BD Falcon brand) 

which contained a grape-agar media (Sullivan et al. 2000). Approximately 18 hours later flies 

were removed from the half-pint chambers and eggs were sorted into groups of 20 and 

transferred into vials containing 10 ml of one of the 2 P:C media types. Vials were incubated 

under standard conditions and beginning 14 days later, adult flies were collected as they eclosed 

from their pupae, sorted into groups of 10 by sex under light CO2 anesthesia and transferred into 

vials containing standard laboratory media. Virginity of females was confirmed by the 

examination of holding vials for the absence of hatched eggs and larvae. 
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No-Choice Mating Assays 

In order to obtain baseline measurements of mating behavior and fitness of D. suzukii from 

different NDHs, we conducted a series of experiments in a so-called ‘no-choice’ environment. 

In these assays we combined (without anesthesia) a single female and single male, that had been 

generated and collected as virgins following the protocols described above. All four possible 

combinations of NDH and sex of the pairs were created (Figure S3.1), and each of these 

treatments consisted of 60-70 replicates each. All vials were set up for observation starting 

around ~9am on the 14-17th day of the fly’s life cycle. Once combined, the vials were placed 

horizontally on a vertical board in an evenly lit, bright, quiet room and, observed continuously 

for a maximum of 6 hours for the initiation and termination of copulation, which were measured 

to the closest second. At the end of the assay, we lightly anesthetized the flies and removed all of 

the males, leaving the single mated females in the vials. These vials were then incubated for ~24 

hours at which time the mated female, under anesthesia, was carefully removed from the vial 

and, placed into an individual egg-laying chamber (Kartell Polyethylene 7ml vials 226245-10) 

and closed with a cap that contained grape-agar media. The number of eggs each female laid in 

the vial (that she was previously housed in) was counted. After ~16 hours in the incubator, the 

females were removed from the egg-laying chambers and the number of eggs laid by each 

individual female in the media counted. Immediately following counting, in cases where there 

were >5 eggs, half were placed into a vial containing ~10 ml of media of a 1:3 P:C ratio and the 

remainder into a second vial containing ~10 ml of media of a 24:1 P:C ratio. These vials were 

then incubated and at both 16 and 18 days post-egg transfer, the number of flies that successfully 

eclosed in each vial were counted. 
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Choice Mating Assays 

To examine the impact of the opportunity for sexual selection to operate (via intra-sexual 

competition and/or inter-sexual choice), we conducted two experiments in which a single focal 

individual (raised in one of the two different nutritional environments) was placed into a 

chamber with members of the opposite sex (and that had also originated from different 

nutritional environments; Figure S3.1).We conducted one assay in which each of the vials 

contained a single focal male and two females (“male choice assay”) and a second in which each 

of the vials contained a single focal female and two males (“female choice assay”).  In order to 

be able to identify the NDH of the fly that mated with the focal fly during the mating assay, we 

dusted all non-focal flies en masse ~16 hours prior to the mating assay with orange or pink non-

toxic dry pigment (~0.01 g/60 flies; DayGlo® Color Corp. AX-12-5 Neon Red and AX-15-N 

Blaze Orange).Flies were dusted with the two pigments in a balanced manner between treatments 

(NDH), so that half of the flies from each treatment were dusted one colour and the other half 

dusted the other colour. Once flies were dusted, they were immediately sorted, under light 

anesthesia, into groups of two flies that differed both in NDH and dust colour, and placed into 

vials containing standard laboratory media. Focal flies (not dusted) were also transferred singly, 

under light anesthesia, into vials containing standard laboratory media. Dusting and/or transfer of 

flies into the vials was done ~16 hours before the start of the mating assay to give flies enough 

time to remove excess dust and recover.  

For the mating assay, four different combinations of flies were created based on the  focal 

fly NDH and the dust colour of the two potential mates (Figure S3.1) with a total of 55-72 

replicates created per combination. The assay began at ~9am on the 14-17th day of the flies’ life 

cycle by combining the non-focal paired flies with the focal flies via lightly tapping the flies into 
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the vials. Flies in vials were observed and scored in the manner above and the start time and end 

time of each mating recorded. For each mating that was observed, we also identified the NDH of 

the non-focal fly chosen using a handheld UV light (Vansky UV Flashlight B011LPWXV6) 

which causes the pigment to fluoresce, allowing for a more efficient means of colour 

identification. At the end of the assay, we counted the number of eggs laid by each female and 

measured survivorship of the offspring following the same protocol as described in the no-choice 

mating assay. 

Statistical Analysis 

All statistical analyses were conducted using R (v 3.3.1; R Core Team 2016). Mating rates were 

analyzed using general linear models (GLMs) constructed with quasibinomial error distributions. 

In the no-choice experiment, the NDH background treatment of both flies and their interaction 

were the independent variables, and the occurance/absence of mating was the dependent 

variable. For the two choice experiments, our model also included the specific colour-

combination used to distinguish between the two competing flies (there were four possible 

combinations of NDH treatment and dust colour). Comparisons of the mating rates involving the 

four different NDH combinations obtained from the three experiments were also analyzed using 

General Linear Models (GLMs) constructed with quasibinomial error distributions. The 

significance of factors in all tests was determined using the Anova function (in the car package) 

using a type II sums of squares analysis of deviance test. 

As mating latency was consistently non-normal (and could not be transformed to 

normality using either log and square root transformations), we analyzed this data using the 

Scheirer-Ray-Hare method (Scheirer et al. 1976), where the dependent variable (latency) is first 

ranked and then analyzed using a two-(or three-)way ANOVA (using function aov). We 
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analyzed latencies using datasets that a) contained latency values obtained from both mated flies 

and substituted latency values equivalent to the duration of the assay used for vials in which no 

mating was observed and b) only latency values from flies that were observed to start mating 

during the observation window. Independent variables used in these analyses of choice and no-

choice assays were the same as those described above. The four different NDH combinations in 

the three experiments were compared using a Kruskal-Wallis test (where maximum latency 

values were capped across the three assays so that differences between the total length of the 

three trials was not confounding). Post-hoc tests, when conducted were performed using the 

kruskalmc function in the pgirmess package. Copulation durations in each of the choice and no-

choice assays were also analyzed using the Scheirer-Raye-Hare method and, due to non-normal 

distributions, we used the same methods and independent described above. Comparisons of 

median copulation durations between the trials for each of the four different NDH combinations 

were also conducted using the same Kruskal-Wallis methodology. 

 Egg production was analyzed using data collected during the first ~16 hours post-mating, 

from the 16 to~32 hours post-mating period and across the whole 32 hour period using GLMs 

constructed with quasipoisson error distributions. For both the choice and the no-choice 

experiment, the NDH treatment of the mating female fly, the mating male fly and their 

interactions were independent variables, and the number of eggs laid was the dependent variable. 

Comparisons of egg production between the choice and no-choice assays for each of the four 

different NDH combinations were also analyzed using general linear models (GLMs) 

constructed with quasipoisson error distributions. The significance in all tests was determined 

using the Anova function with type II sums of squares, and a Tukey HSD test was used when 

necessary to locate the specific location of differences between group means. 
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 Survivorship of the larvae on the two different medias was analyzed separately using 

GLMs structured with quasibinomial error distributions. For all experiments, the proportional 

survivorship was the dependent variable and the independent variables were the male NDH 

treatment, the female NDH treatment and their interaction. Comparisons of survivorship between 

the three choice and no-choice assays for each of the four NDH combinations were also analyzed 

using general linear models (GLMs) constructed with quasibinomial error distributions. The 

significance in all tests was determined using the Anova function with type II sums of squares, 

and a Tukey HSD test was used when necessary to locate the specific location of differences 

between group means. 

 

Results 

Mating Rates & Mate Selection 

In the no-choice assay, neither male nor female NDH had a significant effect on the likelihood 

that the two flies would mate during the observation period (Table 3.1a). In the female choice 

experiment, however, we saw that females from the 1:3 NDH treatment were more likely to mate 

than those from the 24:1 NDH (Table 3.1b). In the male choice experiment we observed that the 

number of matings increased when 1:3 females were orange and 24:1 females were pink 

compared to the situation in which the colours were reversed (Table 3.1c). 

When the four potential combinations of NDH males and females were compared across 

the choice and no-choice trials we observed that in the case where 1:3 females mated with 1:3 

males, more matings occurred in the male choice than in the female and no-choice experiments 

(Table 2a; Figure 3.1). Similarly, where 24:1 females mated with 1:3 males more matings 

occurred in the male choice experiment compared to the no choice experiment (Table 2d; Figure 
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3.1). No significant differences in mating likelihood were found between the two other NDH 

combinations (Table 2bc; Figure 3.1) 

Our analysis of the outcome of matings of focal flies in both the female and male choice 

experiments did not reveal any significant biases associated with their partner’s NDH (Table 

3.2). 

Mating Latency 

Neither female nor male NDH significantly influenced the time to mating in the no choice trial 

when we included both the times from mated and non-mated flies (where the latency of non-

mated flies was set to be equal to the maximum duration of the experiment) (Table 3.4a). 

However, when we analyzed only the flies that had successfully mated during the assay we 

observed that 1:3 males mated later than 24:1 males (Table 3.4a). When examining the times of 

both mated and non-mated replicates in the choice trials, latency was significantly affected by 

focal fly treatment, albeit with opposing trends. Whereas 1:3 females mated sooner in the female 

choice assay (Table 3.4b), 1:3 males mated later in the male choice assay (Table 3.4c). No 

significant affects from treatment or combination of flies was found in the choice assays when 

only mated fly times were assessed (Table 3.4bc). 

From the comparisons of the four individual NDH combinations across the choice and 

no-choice trials, in which both mated and non-mated fly times were included in the analyses, we 

found that when 1:3 males mated with 1:3 females, it took significantly longer for matings to 

start in the male choice assay compared to the female choice assay (but not compared to the 

latency in the no-choice assay; Table 3.4a). No significant differences were observed between 

the other three NDH combinations when both mated and non-mated fly data was analyzed 

together (Table 3.5a-d). In contrast, when we examined the start times of only those flies that 
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mated we found, mating latencies were significantly longer on average in the no-choice assays 

when the NDH of the sexes differed (Table 5cd; Figure 3.2) and that there was no significant 

differences in latencies when the NDH of the sexes were the same (Table 5ab; Figure 3.2). 

Copulation Duration 

The NDH of males and females did not significantly influence copulation duration length in the 

no-choice assay (Table 3.6a). In the female choice assay, a significant interaction between 

female treatment and mating duration was detected, wherein females raised on the 1:3 media 

mated for longer periods compared to females raised on 24:1 media. In the male choice assay, 

neither male nor female NDH treatment nor their interaction was found to significantly influence 

copulation duration (Table 3.6c). 

The comparison of copulations between the choice and no-choice assays for each of the 

four NDH combinations revealed a significant difference in duration between the choice and no-

choice assays when the sexes differed in NDH. In the case where 24:1 females mated with 1:3 

males, those in the male choice assay mated for significantly longer than those in the female 

choice assay, but not when compared to those in the no-choice (Table 3.7c; Figure 3). In the case 

where 1:3 females mated with 24:1 males, those in the no-choice assay mated significantly 

longer than those in the choice assays (Table 3.7d; Figure 3). 

Egg Production  

Fecundity in the first ~16 hours post-mating 

The average number of eggs that females produced in the no choice experiment was significantly 

greater when both males and females were from the 24:1 NDH compared to the two 

combinations in which females mated to males of a 1:3 NDH (Table 3.8a). Focal fly treatment 
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and non-focal fly combination did not appear to influence egg production in the choice assays 

(Table 8bc; Figure 3.4). 

In the comparisons of average egg numbers for each of the four NDH combinations 

significant differences between the choice and no choice assays were revealed. Where females 

had mated to 24:1 males, a significantly greater number of eggs were laid in the male choice and 

no-choice assays compared to the female choice assay (Table  3.9bd) and where females had 

mated to 1:3 males, significantly more eggs were laid in the male-choice assay than in the female 

choice and no-choice assays (Table 3.9ac). 

Fecundity during hours 16 to 32 post-mating 

The average egg production in the no-choice assay revealed an interaction between male and 

female NDH and female egg production, as 1:3 females that mated with 1:3 males laid 

significantly fewer eggs than females mated to 24:1 males (but not when 24:1 females mated 

with 1:3 males; Table 3.10a). Focal fly treatment and non-focal fly combination did not appear to 

influence egg production in both of the choice assays (Table 3.10bc). 

A significant difference in egg production between the choice and no-choice assays was 

detected in two of the four NDH combinations. In the case where both sexes shared a NDH of 

1:3, pairs in the female choice assay produced more eggs than pairs in the no-choice assay (but 

not when compared to the male-choice assay; Table 3.11a) In the case where both sexes 

originated from the 24:1 media, pairs in the female choice assay produced a greater number of 

eggs than pairs in the male-choice assay (but not when compared to the no-choice assay; Table 

3.11b).  

 

 



75 
 

Total egg production (hours 0-36, post-mating) 

The NDH of males and females had a significant effect on total egg production in the no-choice 

assays: pairs that shared a 24:1 NDH produced a significantly greater numbers of eggs than pairs 

where the female was mated to a male of a 1:3 NDH (Table 3.12a; Figure 3.4). Focal fly 

treatment and non-focal fly combination did not influence egg production in either of the choice 

assays (Table 3.12bc; Figure 3.4). 

Three of the four NDH combinations differed in total egg production in different ways 

between the choice and no-choice assays. When both sexes were of a 1:3 background, females in 

the male choice assay produced significantly more eggs than females in the other two assays 

(Table 3.13a; Figure 3.5). When both sexes were of a 24:1 background, females in the no-choice 

experiment produced a greater number of eggs when compared to the other two experiments 

(Table 3.13b; Figure 3.5). Finally, when 1:3 females mated with 24:1 males, females in the male 

choice assay produced, on average significantly more eggs compared to those in the female 

choice assay (but not when compared to those in the no-choice assay; Table 3.13c; Figure 3.5). 

Egg-to-Adult Offspring Survivorship 

On 24:1 media 

In the no-choice assay survivorship of eggs-to-adults on the 24:1 media did not significantly 

differ depending on the NDH of either males or females or their interaction (Table 3.14a). As 

well, focal fly treatment and non-focal fly combinations did not appear to influence survivorship 

on 24:1 media in both of the choice assays (Table 3.14bc). 

In all four NDH combinations, comparisons between the choice assays and no-choice 

assay revealed significant differences between groups (Table 3.15a-d; Figure 3.6). In the two 

combinations where females were mated to 1:3 males, a greater fraction of larvae survived to 
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adulthood in the male choice assay than in the female choice assay (but not when compared to 

the no-choice assay; Table 3.15ac; Figure 3.6). When females were mated to 24:1 males, 

offspring fared significantly better in both the no-choice assay and male choice assay when 

compared to the female choice assay (Table 3.15bd; Figure 3.6). 

Survivorship on 1:3 media 

Although our GLM indicated a significant interaction between survivorship and NDH of males 

and females on 1:3 media in the no choice assay (p=0.0028), the subsequent post-hoc Tukey test 

did not detect any statistically significant difference between groups (at the α=0.05 family-wise 

level). Focal fly treatment and non-focal fly combination did not appear to influence survivorship 

on 1:3 media in either of the choice assays (Table 3.15bc). 

The NDH combination of mated pairs did not influence survivorship on the 1:3 media 

(Table 3.16a-d). While our GLM revealed a significant interaction when 24:1 females mated 

with 1:3 males (p=0.0002; Table 3.16c), when we followed up with a post-hoc Tukey test we did 

not identify any statistically significant difference between groups (at the α=0.05 family-wise 

level). 

 

Discussion 

Drosophila suzukii is a highly successful invasive pest species that threatens soft fruit crops 

worldwide (Bolda et al. 2010). In this study, we investigated two largely unknown aspects of 

their ecology and developmental biology. First, we explored whether nutritional developmental 

history (NDH) influenced sexual behaviour in this species. Overall, we found that flies that had 

developed on the lower quality media (1:3 proteins : carbohydrates) were both less attractive and 

less choosy compared to flies that had developed on the higher quality media (24:1). As such, 
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low-quality flies in this species may assortatively mate, although not necessarily by design. We 

also found evidence that either females make sub-optimal choices when selecting mates or that 

individuals vary their reproductive investment based on their current social circumstances. In the 

second part of this study, we examined the relationship between mate choice and individual 

fitness variation in D. suzukii. Here we found that the NDH had an impact on both egg 

production and survival and that this impact was also highly influenced by social context, 

suggesting that choice is important to the fitness of this species. Together, these results provide 

valuable information on the biology of D. suzukii which can be incorporated into future pest 

management plans. 

 

D. suzukii exhibit nutritionally-induced phenotypes relevant to sexual selection and fitness 

In all three of our experiments, adult D. suzukii showed differences in mean mating behaviors 

that were associated with their NDH, which suggests individual behavioural phenotypes exhibit 

phenotypic plasticity with respect to developmental nutrition characteristics. Although the flies 

did not show a bias for types of mates based on their NDH, we found evidence that males which 

had developed on the low quality 1:3 media were generally less sexually attractive to females 

that had developed on the better quality 24:1 diet. This can be seen from both the later start times 

and the shorter mating durations in the choice trials compared to the no-choice trials where a 1:3 

male mated with a 24:1 female. In D. melanogaster both copulation latency (Ratterman et al. 

2014, as well as Tennant et al. 2014) and copulation duration (Bretman et al. 2013) are under 

joint control of both sexes, with females mating less readily and more briefly with less attractive 

males. The observation that the 1:3 males were apparently less attractive to 24:1 females is not 

too surprising considering that, in our previous nutritional geometry experiment with D. suzukii 
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(Chapter 2), we observed, on average, longer egg-to-adult developmental times and smaller adult 

weights when flies developed on the poorer quality (low protein) medias. A similar result was 

obtained by Silva-Soares et al. (2017) in an experiment that used a nutritional geometric 

methodology. We also observed that, in the male choice experiment, the combination of dust 

colour and the NDH of the potential mates had an effect on mating rate, with the number of 

matings increased when 1:3 females where dusted orange and 24:1 females were dusted pink.  

However, since the male flies did not show mate preferences based on NDH, it is unlikely that 

this bias had a significant impact on mate choice. In line with the observation that 1:3 females 

appear to be less choosy about who they mate with, it may be that the orange dust made females 

easier to locate for males, which might explain this trend. Among insects, it is well documented 

that the nutritional composition of the diet can have important consequences for developmental 

pathways (Andersen et al. 2009; Carrel & Tanner 2002; Lihoreau et al. 2016; Maklakov et al. 

2008; May et al. 2015; Morimoto & Wigby 2016; Raubenheimer & Simpson 2003; Rodrigues et 

al. 2016) and directly influence traits associated with reproductive success. Slower 

developmental times and smaller average adult sizes (e.g., Thomas 1993) are two phenotypic 

characteristics often observed in insects that have developed on a lower quality diet, and which 

are also correlated with lower reproductive potential (Amitin and Pitnick 2007; Bonduriansky 

2001; Credland et al. 1986; Nijhout et al. 2013; Pitnick and Garcia-Gonzalez 2002). In the no-

choice assay, we observed that egg production differed between NDH treatments: when females 

were mated to a 1:3 male they experienced reduced egg production for both the first ~16h, the 

second 26h post-mating and in total. However, these differences were not observed when males 

and females had the ability to choose between two potential mates. We hypothesize that egg 

production was lower in the no-choice vs. choice because the social context either has a large 
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influence on a) the reproductive investment between certain phenotypes or b) the reproductive 

potential between certain phenotypes (discussed below). No significant differences were 

observed in offspring survivorship in terms of the NDH combination of the mated pairs in any of 

the three assays. The results on survivorship, however, should be treated with some caution as 

each replicate (individual female) was represented by a very small number of surviving offspring 

(average of 0.86 per female or 13%), numbers which are much lower than what was expected 

based on the 50% mortality on the low quality diet that we had previously observed (Chapter 2). 

One possible reason for the low larval survivorship in our experiments could be that the very low 

numbers of larvae in the vials (average of 3.45 eggs) hindered the process of larval “working” or 

softening the hard agar-based media (reviewed by Ashburner et al.2005). This process may be 

important for accessing nutrients. In addition to differences in attractiveness and/or vigor, we 

also observed a difference in the degree of choosiness exhibited by flies based on their NDH. 

Flies from the 1:3 NDH tended to be less “choosy” than flies of a 24:1 NDH. This trend was 

particularly obvious in the female choice assay, where, in comparison to the 24:1 females, 1:3 

females mated significantly sooner and in a greater proportion, suggesting that 1:3 females are 

more willing to mate as well as forgo a more thorough assessment of male quality before 

deciding to mate. If 1:3 females are, indeed, of lower quality, then a condition-dependent 

strategy could provide a number of fitness advantages. If the process of discriminating between 

potential mates is costly (e.g., time spent sampling takes away from time spent foraging and 

ovipositing), then lower quality flies that are less able to pay the costs of being choosy could 

potentially gain greater fitness benefits by being less choosy about who they mate with (Cotton 

et al. 2006). As seen in our fecundity analysis, it appears that, in D. suzukii, this may be also 

context-dependent, as 1:3 flies appeared to incur fitness losses more when they did not have a 
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choice of mates. We discuss this point, and its implications for management, in this species 

below. 

 

Potential for assortative mating among low quality individuals in D. suzukii 

While we did not observe assortative mating based on NDH in the three different assays, the 

combination of males being both less attractive and females less choosy when developing on low 

quality media could potentially result in low quality flies assortatively mating. Furthermore, 

since 1:3 males mated more with 1:3 females in the male choice assay, they may also prefer 

females from the same NDH, this increases the likelihood of assortative mating arising in certain 

situations (e.g., in social environments where males are less common than females). The other 

(not exclusive) possibility for why 1:3 males mated more frequently with 1:3 females could be 

because 1:3 females were also less choosy in who they mated with compared to the 24:1 females. 

Assortative mating is a relatively common phenomenon in sexually reproducing species and has 

the potential to result in greater local adaptation (Bateson 1983). From our fecundity and larval 

survival analysis, this does not appear to be the case between 1:3 flies, at least in the no-choice 

assay, because the total number of eggs produced from matings between 1:3 males and 1:3 

females was significantly fewer compared to the number of eggs produced from matings 

between 1:3 flies and 24:1 flies. However, it is possible that any benefit gained from 

assortatively mating may have been offset by the direct costs of being of a lower quality. 

Although we did not observe statistically significant evidence of assortative mating between the 

24:1 flies, it does appear, at least in the no-choice assay, that matings between these two 

phenotypes did have benefits to their fecundity. 
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Females appear to make poor mate choices and/or flies vary their reproductive investment 

based on their social context 

Our analysis of fecundity and offspring survival in relation to the NDH combination 

revealed that D. suzukii females experienced a reduction in total fecundity and offspring survival 

when they had a choice of mates. One possible explanation for this could be that, simply put, 

female D. suzukii make poor mate choices. Poor mate choice is not uncommon among insects 

and particularly among Drosophila species (Parker 1979; Gowaty 1997; Gowaty & Buschhaus 

1998; Holland & Rice 1998; Gavrilets et al. 2001). Rather than provide an honest signal of 

quality, male ornaments may actually manipulate or coerce females into choosing them at the 

advantage of the males’ fitness but to the detriment of the females’ fitness (Arnqvist 2006). 

Sperm is relatively much less costly to produce compared to eggs, and, thus, a sexual conflict 

can ensue when males gain more benefit from mating with many individuals over a few high 

quality individuals, evolving dishonest strategies to accomplish this (Kokko et al. 2003). It 

should be noted, however, that females may gain fitness benefits in other ways not measured in 

our experiments (e.g., indirect fitness, manifested as offspring of superior reproductive success) 

and which requires further investigation in future studies. Alternatively, another possibility for 

lower egg numbers and reduced offspring survival when females choose mates is that females 

may allocate their reproductive investments differently based on the current social context. In the 

female choice trial, for example, females did not have to compete for male attention and also had 

more than one male available to sire her offspring. As such, females may not have experienced a 

competitive pressure to invest into producing lots of offspring sired from one male and instead 

preferred to invest more heavily into producing moderate numbers of offspring of mixed 

paternity. In other words, females were choosing to ‘share’ eggs among multiple fathers instead 
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of giving one male a large portion of eggs for fertilization. The benefits of a mixed paternity are 

numerous and include an increase in genetic diversity and fertilization success and, where pre-

copulatory mate-choice cues are unreliable or absent, polyandry in females may even be selected 

for (reviewed by Jennions and Petrie 2000). Interestingly, we did find some potential (and 

admittedly highly speculative) evidence that females in the choice experiment may have been 

intending to ‘share’ their brood with the two males present and invest less per mating (so called 

“bet-hedging”, see Garcia-Gonzalez et al. 2015). For example, 24:1 females mated for 

significantly shorter periods of time with males in the female choice assays than with the males 

in the male choice assay. This was somewhat surprising as in D. melanogaster there is strong 

pattern of longer copulation durations when multiple males are present (Friberg 2006 and 

Bretman et al. 2010) presumably in response to the greater risk of sperm competition. This may 

represent female D. suzukii taking an active role in early termination of copulations (Bretman et 

al. 2013). Although no significant difference in egg production was observed in the 24:1 females 

between the female and male choice trials, survival of the offspring was significantly worse on 

the 24:1 media when females had a choice of more than one mate. Furthermore, 1:3 females laid 

more eggs in total when they did not have a choice of mates with more of those offspring 

surviving on the 24:1 media. Similarly males may also be bet-hedging by attempting to mate 

with multiple females rather than ‘place all of their eggs into the same basket’, so to speak (e.g, 

in the male choice assay; see Pitnick & Markow 1994). We did not find evidence of this, in our 

experimental results, but this may be due to the fact that males do not need to reduce copulation 

durations between females in order to provide an equal ‘share’ of sperm since it is likely to be 

much more plentiful (at least in our experimental context). Although we did not deliberately set 

out to measure if flies mated with both flies in the vial or not, we did observe 19-30% of the 
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males mating with the second female in the male choice trials. Alternatively, it is also possible 

that, instead of females allocating fewer progeny to each mate (in the female choice assay), 

females may instead be allocating more progeny to the one available male sire (in the male 

choice assay). The occurrence of female-female competition has been found to influence the 

intensity of sexual selection in many species (Kvarnemo and Ahnesjo 1996), which may also 

influence parental investment.  As before, the same may be said for the males (Kvarnemo and 

Ahnesjo 1996). 

 

Opportunity for mate choice and its consequences for D. suzukii mating and fitness 

In our studies with D. suzukii we found that the ability to choose mates resulted in 

differences between treatments in both mating behavior and individual fitnesses. When females 

chose to mate with a (low-quality) 1:3 male, the total number of eggs females produced, on 

average, was significantly greater compared to when females were ‘forced’ (in the no-choice 

environment) to mate with a 1:3 male. Whether this was because females were a) able to avoid 

deleterious fitness consequences from mating with a poor-quality male in the choice environment 

or because b) females simply invested less into egg production due to lower levels of male 

stimulation in the no-choice assay, is a question that remains unanswered. Either way, this 

suggests that the social circumstances potentially have a significant influence on the fitness of 

individual D. suzukii when the paternity is from a male of a low-quality phenotype. Mate choice 

has been found to be highly beneficial for maximizing fitness (Kokko et al. 2003; Jennions and 

Petrie 2000). For instance, larvae exhibit better competitive success when they came from 

parents who were given the opportunity to choose mates (Partridge 1980; Long et al. 2012). 

Females have also been documented to invest in offspring in accordance to the perceived 
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attractiveness of their mate, with greater attractiveness of mates receiving greater parental 

investment (Horvathova et al. 2012; Bateson 1983). As discussed above, we also found that, in 

choice situations, females appear to make poor mating decisions and/or flies invest reproductive 

efforts differently based on their social context.  This was demonstrated by the fewer total 

number of eggs laid and the poorer survivorship of offspring in the female choice trials 

compared to the no-choice trials. Our experiments also reveal that the context can potentially 

result in differences in offspring production. When we compared total progeny among the 

apparently choosier, more attractive, higher quality 24:1 phenotypes, assortative pairing 

surprisingly resulted in fewer total progeny in both the female and male choice assays compared 

to the no-choice assay. This potentially suggests that higher quality individuals may either invest 

reproductive efforts more moderately in choice situations where there are more potential mating 

opportunities or make poorer choices (e.g., higher chance of being attracted to dishonest cues 

about mate quality), and is an interesting subject for future research. 

 

Consequences of D. suzukii mate choice and fitness: an interaction between phenotype and 

social context 

The differences in D. suzukii mating behavior and fitness, between and within the three 

different experimental assays, suggest that population growth rate in this species potentially 

depends on the interaction between the types of adult phenotypes present (high or low quality) 

and the current social dynamics (no-choice, male choice, female choice) at any given time. This 

could have large implications for the management of this pest as different habitats may 

experience different growth rates. If we consider populations consisting of both low and high 

quality phenotypes, and in which potential mates and competitors are scarce (e.g. as in a very 
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small population), the NDH of the flies is likely to have the greatest impact on total egg 

production, with females that mated to low quality males experiencing the greatest loss. Thus in 

populations consisting of only one phenotype, those consisting of all high quality individuals 

would be most likely to produce a significantly greater number of offspring. In the situations 

where there are mixed phenotypes of differing quality and potential mates and competitors are 

both abundant (e.g., as in a large population), NDH may become less of a factor in terms of 

fitness variation and, instead, female choice may play a more considerable role in determining 

population growth. In the case where females hold more “power” over who they mate with, 

populations of this social construct may experience a more moderate type of growth rate as we 

found females to make poorer mate choices and/or invest less generously in the number and 

quality of offspring. However, the effect of female competition on reproductive investment 

should still be considered in these populations as it may counteract the reduced egg production 

from poor female choice/mating investment. Ultimately more research is needed to fully 

understand how females and males invest reproductive efforts in multi-female-multi-male social 

constructs. In contrast, where males exhibit mate choice, populations with this social construct 

may experience greater growth rates (relatively), as males were found to make more adaptive 

mate choices. The same may be true in populations where there is a female sex-bias, due to 

males potentially making better mate choices and/or females investing more generously in the 

number and quality of offspring they sired per male. Finally, a population of mixed phenotypes 

that is highly male-biased may experience a relatively moderate increase in offspring numbers 

based on the fact that although males were found to potentially make better mate choices, these 

benefits may be offset by females investing less reproductively per mating as a strategy to 

increase mixed-paternity.  
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There are a number of important lessons that can be drawn from the results of our assays 

when considering future plans for the control of this pest species. First of all, the fact that D. 

suzukii exhibits phenotypic plasticity with consequences to sexual selection and fitness implies 

that population growth rate potentially varies between habitat types. For example, areas where 

crops and/or surrounding hosts (e.g., wild fruits) are high in carbohydrates and low in protein 

(pre and post egg-transfer; Chapter 2) may experience lower population growth rates due to 

reduced fecundity. Furthermore, the promotion of mixing “low quality” flies with high quality 

flies could help reduce population growth rates.  Secondly, our results give support to the use of 

the sterile insect technique (Klassen and Curtis 2005) to control D. suzukii. Since releasing large 

numbers of males in the environment could, potentially, cause females to adopt the ‘mixed-

paternity strategy’ described earlier, this strategy may not only result in a reduction in egg 

production due to mating with infertile flies but also result in a reduction in egg production due 

to females and/or males moderating their reproductive investment. 

 

Conclusions 

The results of our study provide preliminary evidence of nutritionally-associated phenotypic 

plasticity in D. suzukii and that phenotypes of adults that developed on protein-

poor/carbohydrate-rich diets tend to be less reproductively successful as adult individuals. Male 

flies that developed on lower quality media were not only less attractive to potential mates but 

they also imparted negative fitness consequences to the females that mated with them in no-

choice environments. Females raised on lower quality media were also less choosy when it came 

to choosing mates, potentially indicative of a ‘condition-dependent’ mating strategy, which could 

also result in ‘inadvertent’ assortative mating between male and female low-quality flies.  
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Assortative mating could have negative implications to female fitness in situations where a 

choice of males is not typical. Integrating these trends reveals that mate choice in D. suzukii 

depends, potentially, on the combination of the phenotypes and the social construct within the 

local vicinity at any given time. Furthermore, the choice of mates, in itself, has important fitness 

consequences that can be both beneficial and deleterious depending on the phenotype 

combination of mating pairs. If we wish to obtain a more thorough depiction of mating behavior 

in this species, future research will also need to look at behaviors and fitness of individuals in 

multi-female-multi-male contexts and through the measurements of other potential indirect and 

direct benefits not measured here. 
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Tables & Figures 

Table 3.1. Analysis conducted on mating rates in the no choice (a), female choice (b), and male 

choice (c) trials. Analysis was conducted using GLMs with quasibinomial distributions. 

TRIAL FACTORS LRχ
2
 df p 

a) No choice Male treatment 

Female treatment 

Male treatment: Female treatment 

0.1772 

0.4294 

0.0990 

1 

1 

1 

0.6738 

0.5123 

0.7531 

b) Female choice Male combination 

Female treatment 

Male combination: Female treatment 

0.3587 

5.5863 

2.3695 

1 

1 

1 

0.5493 

0.0181 

0.1237 

c) Male choice  Female combination 

Male treatment 

Female combination: Male treatment 

9.4927 

1.8215 

0.7129 

1 

1 

1 

0.0021 

0.1771 

0.3985 

 

Table 3.2. Comparisons in mating rates between the four NDH combinations across the three (no 

choice (NC), female choice (FC) and male choice (MC)) trials (a-d). Analysis was conducted 

using GLMs with quasipoisson distributions. 

TRIAL LRχ
2
 df p NC MC FC 

a) 1:3 male +1:3 female 24.089 2 5.878x10
-6

 b a b 

b) 24:1 male + 24:1 

female 

3.5878 2 0.1663 na na na 

c) 1:3 male + 24:1 

female 

6.5359 2 0.0381 b a ab 

d) 24:1 male + 1:3 

female 

7.1685 2 0.0278 a a a 

 

Table 3.3. Analysis conducted on mate selection in the female choice (a) and male choice (b) 

trials. Analysis was conducted using GLMs with quasibinomial distributions. 

TRIAL FACTORS LRχ
2
 df p 

a) Female choice Male combination 

Female treatment 

Male treatment: Female treatment 

0.1871 

0.0006 

0.2707 

1 

1 

1 

0.6653 

0.9803 

0.6029 

b) Male choice Female combination 

Male treatment 

Female combination: Male treatment 

0.9560 

1.7439 

0.0316 

1 

1 

1 

0.3282 

0.1866 

0.8589 
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Table 3.4. Analysis conducted on mating latency in the no choice (a), female choice (b), and 

male choice (c) trials. Analysis was conducted using anovas. In the case where a significance 

was found we followed with a Kruskal-Wallis Rank Sums test and Tukey post-hoc. 

TRIAL FACTORS df Mean 

sq 

F p 

a) No choice (Mated and non-mated) 

Male treatment 

Female treatment 

Male treatment: female 

treatment 

 

(Mated only) 

Male treatment 

Female treatment 

Male treatment: female 

treatment 

 

1 

1 

1 

 

 

1 

1 

1 

 

11762 

413 

777 

 

 

10091 

469 

3948 

 

2.269 

0.080 

0.150 

 

 

4.403 

0.204 

1.723 

 

0.133 

0.778 

0.699 

 

 

0.0374 

0.6518 

0.1912 

b) Female 

choice 

(Mated and non-mated) 

Male combination 

Female treatment 

Male combination: female 

treatment 

 

(Mated only) 

Male combination 

Female treatment 

Male combination: female 

treatment 

 

1 

1 

1 

 

 

 

1 

1 

1 

 

53 

26131 

2162 

 

 

 

831.0 

1864.1 

943.8 

 

0.010 

5.077 

0.420 

 

 

 

0.264 

0.592 

0.300 

 

0.9192 

0.0251 

0.5175 

 

 

 

0.608 

0.443 

0.585 

c) Male choice (Mated and non-mated) 

Female combination 

Male treatment 

Female combination: male 

treatment 

 

(Mated only) 

Female combination 

Male treatment 

Female combination: male 

treatment 

 

1 

1 

1 

 

 

 

1 

1 

1 

 

42664 

17789 

2397 

 

 

 

229.6 

1493.9 

17.7 

 

8.365 

3.488 

0.470 

 

 

 

0.114 

0.741 

0.009 

 

0.0042 

0.0630 

0.4937 

 

 

 

0.736 

0.391 

0.926 
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Table 3.5. Comparisons in latency made between the four NDH combinations across the three 

(no choice (NC), female choice (FC) and male choice (MC)) trials (a-d). Due to non-normal 

distribution, analysis was conducted using anovas and, in the case where a significance was 

found, followed with a Kruskal-Wallis Rank Sums test and Tukey post-hoc (results not shown 

here). 

TRIAL FACTORS LRχ
2
 df p NC MC FC 

a) 1:3 male + 

1:3 female 

Trial (mated +  

non-mated) 

Trial (mated 

only) 

19.211 

 

3.3630 

2 

 

2 

6.736x10
-5 

 

0.1861 

ab 

 

na 

b 

 

na 

a 

 

na 

b) 24:1 male 

+ 

24:1 

female 

Trial (mated +  

non-mated) 

Trial (mated 

only) 

1.9842 

 

3.1759 

2 

 

2 

0.3708 

 

0.2043 

na 

 

na 

na 

 

na 

na 

 

na 

c) 1:3 male + 

24:1 

female 

Trial (mated +  

non-mated) 

Trial (mated 

only) 

2.9374 

 

8.9906 

2 

 

2 

0.2302 

 

0.0112 

na 

 

b 

na 

 

a 

na 

 

a 

d) 24:1 male 

+ 

1:3 female 

Trial (mated +  

non-mated) 

Trial (mated 

only) 

4.7005 

 

9.1112 

2 

 

2 

0.0953 

 

0.0105 

na 

 

b 

na 

 

a 

na 

 

a 

 

Table 3.6. Analysis conducted on mating duration in the no choice (a), female choice (b), male 

choice (c) trials. Analysis was conducted using anovas. In the case where a significance was 

found we followed with a Kruskal-Wallis Rank Sums test and Tukey post-hoc. 

TRIAL FACTORS df Mean sq F p 

a) No choice Male 

Female 

Male: female 

1 

1 

1 

364 

7243 

22025 

0.068 

1.355 

4.122 

0.7943 

0.2454 

0.0434 

b) Female 

choice 

Male combination 

Female treatment 

Male combination: female 

treatment 

1 

1 

1 

13477 

36313 

12 

2.625 

7.074 

0.002 

0.1065 

0.0083 

0.9613 

c) Male choice Female combination 

Male treatment 

Female combination: male 

treatment 

1 

1 

1 

533 

1353 

14729 

0.093 

0.237 

2.584 

0.760 

0.627 

0.109 
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Table 3.7. Comparisons in mating duration between the four NDH combinations across the three 

(no choice (NC), female choice (FC) and male choice (MC)) trials (a-d). Due to non-normal 

distribution, analysis was conducted using anovas and, in the case where a significance was 

found, followed with a Kruskal-Wallis Rank Sums test and Tukey post-hoc (results not shown 

here). 

TRIAL LRχ
2
 df p NC MC FC 

a) 1:3 male + 1:3 female 4.8579 2 0.0881 na na na 

b) 24:1 male + 24:1 

female 

3.1526 2 0.2067 na na na 

c) 1:3 male + 24:1 female 9.2333 2 0.0099 ab b a 

d) 24:1 male + 1:3 female 10.7790 2 0.0046 b a a 

 

Table 3.8. Analysis conducted on egg-laying rates ~16 hours post-mating in the no choice (a), 

female choice (b), and male choice (c) trials. Analysis was conducted using GLMs with 

quasipoisson distributions. 

TRIAL FACTORS LRχ
2
 df p 

a) No choice Treatment 21.1450 3 9.824x10
-5

 

b) Female choice Female treatment 

Successful male treatment 

Female treatment: Successful male 

treatment 

1.1139 

0.2625 

0.5833 

1 

1 

1 

0.2912 

0.6084 

0.4450 

c) Male choice Male treatment 

Successful female treatment 

Male treatment: Successful female 

treatment 

0.0156 

3.6852 

0.1195 

1 

1 

1 

0.9006 

0.0549 

0.7296 

 

Table 3.9. Comparisons in egg-laying rates ~16 hours post-mating between the four NDH 

combinations across the three (no choice (NC), female choice (FC) and male choice (MC)) trials 

(a-d). Analysis was conducted using GLMs with quasipoisson distributions. 

TRIAL LRχ
2
 df p NC MC FC 

a) 1:3 male + 1:3 female 24.13 2 5.757x10
-6

 a b a 

b) 24:1 male + 24:1 

female 

21.283 2 2.39x10
-5

 b b a 

c) 1:3 male + 24:1 female 16.14 2 0.0003 a b a 

d) 24:1 male + 1:3 female 30.744 2 2.109x10
-7

 b b a 
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Table 3.10. Analysis conducted on egg-laying rates ~26 hours post-mating in the no choice (a), 

female choice (b), and male choice (c) trials. Analysis was conducted using GLMs with 

quasipoisson distributions. 

TRIAL FACTORS LRχ
2
 df p 

a) No choice Treatment 10.5650 3 0.0143 

b) Female choice Female treatment 

Successful male treatment 

Female treatment: Successful male 

treatment 

0.1164 

0.6834 

1.4113 

1 

1 

1 

0.7330 

0.4084 

0.2348 

c) Male choice Male treatment 

Successful female treatment 

Male treatment: Successful female 

treatment 

0.0369 

1.8277 

1.0910 

1 

1 

1 

0.8477 

0.1764 

0.2962 

 

Table 3.11. Comparisons in egg-laying rates ~26 hours post-mating between the four NDH 

combinations across the three (no choice (NC), female choice (FC) and male choice (MC)) trials 

(a-d). Analysis was conducted using GLMs with quasipoisson distributions. 

TRIAL LRχ
2
 df p NC MC FC 

a) 1:3 male + 1:3 female 13.575 2 0.0011 a ab b 

b) 24:1 male + 24:1 

female 

7.7458 2 0.0208 ab a b 

c) 1:3 male + 24:1 female 6.1007 2 0.0473 a a a 

d) 24:1 male + 1:3 female 4.4342 2 0.1089 na na na 

 

Table 3.12. Analysis conducted on total egg production in the no choice (a), female choice (b), 

and male choice (c) trials. Analysis was conducted using GLMs with quasipoisson distributions. 

TRIAL FACTORS LRχ
2
 df p 

a) No choice Treatment 32.613 3 3.887x10
-7

 

b) Female choice Female treatment 

Successful male treatment 

Female treatment: Successful male 

treatment 

0.0802 

0.8769 

1.5217 

1 

1 

1 

0.7770 

0.3490 

0.2174 

c) Male choice Male treatment 

Successful female treatment 

Male treatment: Successful female 

treatment 

0.0805 

5.4850 

0.1400 

1 

1 

1 

0.7766 

0.0192 

0.7083 

 



100 
 

Table 3.13. Comparisons in total egg production between the four NDH combinations across the 

three (no choice (NC), female choice (FC) and male choice (MC)) trials (a-d). Analysis was 

conducted using GLMs with quasipoisson distributions. 

TRIAL LRχ
2
 df p NC MC FC 

a) 1:3 male + 1:3 female 15.566 2 0.0004 a b a 

b) 24:1 male + 24:1 

female 

8.0933 2 0.0179 b a a 

c) 1:3 male + 24:1 female 2.1325 2 0.3443 na na na 

d) 24:1 male + 1:3 female 7.5 2 0.0235 ab b a 

 

Table 3.14. Analysis conducted on offspring survivorship on the 24:1 P:C media in the no 

choice (a), female choice (b), and male choice (c) trials. Analysis was conducted using GLMs 

with quasibinomial distributions. 

TRIAL FACTORS LRχ
2
 df p 

a) No choice Treatment 7.7287 3 0.0520 

b) Female choice Female treatment 

Successful male treatment 

Female treatment: Successful male 

treatment 

0.0231 

0.7656 

0.6379 

1 

1 

1 

0.8791 

0.3816 

0.4245 

c) Male choice Male treatment 

Successful female treatment 

Male treatment: Successful female 

treatment 

0.2876 

0.6884 

0.3572 

1 

1 

1 

0.5917 

0.4067 

0.5501 

 

Table 3.15. Comparisons in offspring survivorship on the 24:1 P:C media between the four NDH 

combinations across the three (no choice, female choice and male choice) trials (a-d). Analysis 

was conducted using GLMs with quasibinomial distributions. 

TRIAL LRχ
2
 df p NC MC FC 

a) 1:3 male + 1:3 female 14.864 2 0.0006 ab b a 

b) 24:1 male + 24:1 

female 

71.406 2 3.122x10
-16

 b b a 

c) 1:3 male + 24:1 female 15.828 2 0.0004 ab b a 

d) 24:1 male + 1:3 female 41.732 2 8.672x10
-10

 b b a 
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Table 3.16. Analysis conducted on offspring survivorship on the 1:3 P:C media in the no choice 

(a), female choice (b), and male choice (c) trials. Analysis was conducted using GLMs with 

quasibinomial distributions. 

TRIAL FACTORS LRχ
2
 df p 

a) No choice Treatment 14.065 3 0.0028 

b) Female choice Female treatment 

Successful male treatment 

Female treatment: Successful male 

treatment 

1.9247 

0.9443 

0.1173 

1 

1 

1 

0.1653 

0.3312 

0.7320 

c) Male choice Male treatment 

Successful female treatment 

Male treatment: Successful female 

treatment 

0.0017 

1.0323 

0.0266 

1 

1 

1 

0.9676 

0.3096 

0.8705 

 

Table 3.17. Comparisons in offspring survivorship on the 1:3 P:C media between the four NDH 

combinations across the three (no choice, female choice and male choice) trials (a-d). Analysis 

was conducted using GLMs with quasibinomial distributions. 

TRIAL LRχ
2
 df p NC MC FC 

a) 1:3 male + 1:3 female 1.2468 2 0.5361 na na na 

b) 24:1 male + 24:1 

female 

4.1674 2 0.1245 na na na 

c) 1:3 male + 24:1 female 17.442 2 0.0002 a a a 

d) 24:1 male + 1:3 female 1.5601 2 0.4584 na na na 
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Figure 3.1. Mating rates of D. suzukii based on the nutritional developmental history (NDH) 

combination of flies in the three different assays.  Flies were raised on a low quality diet (1:3 

flies) or a high quality diet (24:1 flies) to create two different phenotypes, creating four NDH 

combinations.  The NDH combinations are 1:3 females with 1:3 males in (A), 24:1 females with 

1:3 males in (B), 1:3 females with 24:1 males and in (C) and 24:1 females with 24:1 males in 

(D). Letters denote significant differences. 
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Figure 3.2. Mating latencies (in seconds) of D. suzukii based on the nutritional developmental 

history (NDH) combination of flies in the three different assays.  Boxplots of mating latencies 

from replicates where flies successfully mated. For all assays, flies were raised on a low quality 

diet (1:3 flies) or a high quality diet (24:1 flies) to create two different phenotypes, creating four 

NDH combinations.  The NDH combinations are 1:3 females with 1:3 males in (A), 24:1 females 

with 1:3 males in (B), 1:3 females with 24:1 males and in (C) and 24:1 females with 24:1 males 

in (D). The box encloses values between the first and third quartiles of the data (the inter-quartile 

range (IQR)), whereas the horizontal bar within the box indicates the median. Whiskers extend 

from the box to largest/smallest values that are within 1.5 × the IQR of the box. Values outside 

that range are outliers and are indicated by circles. Boxplots that are not sharing a letter have 

significantly different medians. 

A B 

C D 

a                  a                a 

  

a                  a                b 

  

a                  a                b 

  

 a                 a                 a 

  



104 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Mating durations (in seconds) of D. suzukii based on the nutritional 

developmental history (NDH) combination of flies in the three different assays.  Boxplots of 

the time spent during mating by flies of a particular NDH. In all assays, flies were raised on a 

low quality diet (1:3 flies) or a high quality diet (24:1 flies) to create two different phenotypes, 

creating four NDH combinations.  The NDH combinations are 1:3 females with 1:3 males in (A), 

24:1 females with 1:3 males in (B), 1:3 females with 24:1 males and in (C) and 24:1 females 

with 24:1 males in (D). The box encloses values between the first and third quartiles of the data 

(the inter-quartile range (IQR)), whereas the horizontal bar within the box indicates the median. 

Whiskers extend from the box to largest/smallest values that are within 1.5 × the IQR of the box. 

Values outside that range are outliers and are indicated by circles. Boxplots that are not sharing a 

letter have significantly different medians. 
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Figure 3.4. Egg production in D. 

suzukii based on the nutritional 

developmental history (NDH) 

combination of flies in the three 

different assays.  Boxplots of the 

number of eggs laid by females over a 

26 hour period following mating in the 

no-choice assay (A), female choice 

assay (B) and male choice assay (C).  

For all assays, flies were raised on a 

low quality diet (1:3 flies) or a high 

quality diet (24:1 flies) to create two 

different phenotypes, creating four 

NDH combinations.  The NDH 

combinations are 1:3 females with 1:3 

males, 24:1 females with 1:3 males, 1:3 

females with 24:1 males and 24:1 

females with 24:1 males. The box 

encloses values between the first and 

third quartiles of the data (the inter-

quartile range (IQR)), whereas the 

horizontal bar within the box indicates 

the median. Whiskers extend from the 

box to largest/smallest values that are 

within 1.5 × the IQR of the box. Values 

outside that range are outliers and are 

indicated by circles. Boxplots that are 

not sharing a letter have significantly 

different means. 
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Figure 3.5. Egg production in D. suzukii based on the nutritional developmental history 

(NDH) combination of flies in the three different assays.  Boxplots of the number of eggs laid 

by flies of a particular NDH over a 26 hour period following mating. In all assays, flies were 

raised on a low quality diet (1:3 flies) or a high quality diet (24:1 flies) to create two different 

phenotypes, creating four NDH combinations.  The NDH combinations are 1:3 females with 1:3 

males in (A), 24:1 females with 1:3 males in (B), 1:3 females with 24:1 males and in (C) and 

24:1 females with 24:1 males in (D). The box encloses values between the first and third 

quartiles of the data (the inter-quartile range (IQR)), whereas the horizontal bar within the box 

indicates the median. Whiskers extend from the box to largest/smallest values that are within 1.5 

× the IQR of the box. Values outside that range are outliers and are indicated by circles. Boxplots 

that are not sharing a letter have significantly different means 
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Figure 3.6. Offspring survivorship on 24:1 media (high quality) in D. suzukii based on the 

nutritional developmental history (NDH) combination of flies in the three different assays.  

Boxplots of the number of larvae that successfully developed into adults on the media consisting 

of a protein : carbohydrate ratio of 24:1. In all assays, flies were raised on a low quality diet (1:3 

flies) or a high quality diet (24:1 flies) to create two different phenotypes, creating four NDH 

combinations.  The NDH combinations are 1:3 females with 1:3 males in (A), 24:1 females with 

1:3 males in (B), 1:3 females with 24:1 males and in (C) and 24:1 females with 24:1 males in 

(D). The box encloses values between the first and third quartiles of the data (the inter-quartile 

range (IQR)), whereas the horizontal bar within the box indicates the median. Whiskers extend 

from the box to largest/smallest values that are within 1.5 × the IQR of the box. Values outside 

that range are outliers and are indicated by circles. Boxplots that are not sharing a letter have 

significantly different means. 
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Supplementary Figures 

 

Supplementary Figure 3.1 The combinations of D. suzukii flies in the three different mating 

assays based on their nutritional developmental history (NDH). Flies were either raised on a 

media with a protein to carbohydrate ratio of 1:3 (carbohydrate-rich; light-coloured flies) or 24:1 

(protein-rich; dark-coloured flies) and organized into particular groups based on NDH and sex 

depending on the assay. Males have a single dark spot on each wing, whereas females do not. 
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CHAPTER 4 

ON THE BEHAVIOURAL ECOLOGY OF AN INVASIVE SPECIES 

In this thesis, I explored the potential importance of habitat and mate choice decisions on life 

history variation in Drosophila suzukii – a highly successful invasive species that is currently 

devastating soft fruit agriculture worldwide (Asplen et al. 2015). A parasite of fruit, D. suzukii 

inhabits environments that contain hosts (that often vary considerably in nutritional 

composition/quality) that are potentially available for oviposition, both spatially and temporally. 

Such differences have the potential to influence individual morphological, physiological and 

behavioural phenotypes important to fitness (Andersson 1994). Considering the (rather 

prodigious) success that D. suzukii have experienced, my thesis work is based on the premise 

that this species may owe some of its invasive ability to fitness-benefitting preferences in 

habitat(s) and mates. As such, the results of my experiments provide valuable insight into the 

biology of this species and in ways to improve current and future management techniques (e.g. 

through the manipulation of fly movement and population growth). In terms of assessing the 

relationship between habitat choice and fitness, I conducted a series of nutritional geometry 

experiments, in which female oviposition preference, fly association and larval performance was 

measured among different media that varied in their nutritional composition. Comparisons were 

then made between the results of these experiments to determine if D. suzukii provided offspring 

with the best developmental diet in accordance with the “preference-performance” hypothesis or 

“mother knows best” principle (Gripenberg et al. 2010). Utilizing knowledge about offspring 

performance from the previous assay, I then addressed D. suzukii’s ability to choose mates that 

provide the best individual fitness. In three separate experiments that differed in social context 

(no choice, female choice and male choice), I measured the mate preferences of flies that had 
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been raised on either a low or high quality diet, and were, presumably, of a low or high quality 

phenotype, respectively. Together, these assays uncover previously unknown details about this 

economically important species that can be of great use when planning future management 

strategies. 

 I found in the habitat choice and larval development experiments that adult D. suzukii 

prefer to associate and oviposit on media that is rich in carbohydrates, but that their offspring 

perform best when they are laid on media that that is rich in protein. Assuming that the 

nutritional composition of fruit remains the same following oviposition, then this observation 

suggests a possible conflict may be occurring between the life stages in this species. For 

example, rather than lay eggs that are best for offspring development, females may instead lay 

eggs wherever they obtain their own resources (e.g., wherever there is ample sugar). 

Alternatively, in the event that the nutritional composition of the fruits following female 

oviposition does change (which will be of benefit to the larvae), then, rather than experiencing a 

conflict, D. suzukii have a “preference-performance” relationship between mother and offspring. 

Interestingly, in a second, follow-up developmental experiment, in which antimicrobials were 

not added to the media, larvae were found to perform almost equally well on the high-

carbohydrate medias as they did on the high-protein medias. If this is the case, then targeting the 

growth of microbia in fruits following oviposition maybe a ‘fruitful’ trajectory in future control 

of this pest. In terms of current management, the fact that flies are highly attracted to sugary 

medias does suggest that trapping methods may be improved by the addition of sugary volatiles 

in baits. Additionally, observed differences in larval performance on the different ratios suggest 

that population growth is likely to be influenced by fruit variety and that crop design could help 

to reduce numbers. 
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In the mating experiments, I found that D. suzukii exhibited evidence of phenotypic 

plasticity related to both mating behavior and reproductive output. Flies appeared to discriminate 

between phenotypes as well as to adapt their behavior to improve personal reproductive success. 

This was supported by the observation that flies that developed on the lower quality diet (P:C of 

1:3), and thus were presumably of a lower quality phenotype, were less attractive to flies that had 

developed on the higher quality diet (P:C of 24:1). Flies from the lower quality natal 

environment appeared to be less choosy about who they mated with, which suggests that D. 

suzukii may utilize a condition-dependent mating strategy to improve individual fitness, since 

being less choosy in this case may offset costs of potentially not getting a chance to mate (Cotton 

et al. 2006). The observation that lower quality flies are less choosy and less attractive also 

suggests that there is the potential for assortative mating to occur between D. suzukii flies of a 

lower quality phenotype. Although assortative mating has the potential to provide fitness 

advantages in the form of local adaptation (Bateson 1984) I did not see any clear evidence of this 

in regards to fecundity or larval survival. However, this may be due to flies of this phenotype 

having limited reproductive capacity. In terms of the importance of mate choice on individual 

fitness, I found conflicting results. On one hand, having a choice of mates was found to be 

beneficial in the case where females were mated to low quality males, yet choice also seemed to 

come at a cost to fitness, since females appeared to make poor mate choices. In other Drosophila 

species, sexual conflict plays a large role in mate choice (Parker 1979; Gowaty 1997; Gowaty & 

Buschhaus 1998; Holland & Rice 1998; Gavrilets et al. 2001) and the observation that females 

make poor mate choices suggests that D. suzukii may not be an exception to the “rule”. However, 

rather than females making poor choices, flies may instead be altering their reproductive 

investment (e.g., through the use of ‘bet-hedging’; see Garcia-Gonzalez et al. 2015) based on the 
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current social context and, thus, more research in this area is needed. In the field these 

observations may suggest that D. suzukii population growth is dependent on the interaction 

between the types of phenotypes present (low/high quality) and the social context (no-choice, 

female choice, male choice). Farmers, then, may benefit from exploiting this interaction to 

reduce population growth. For example, by promoting the immigration of low quality flies into 

populations of high quality flies. 

A multi-scenario situation: Habitat and mate choice combined 

When we integrate the results of both the habitat and mate choice assays, it is possible to 

envision several scenarios in which population growth rate is largely dependent on the nature of 

the female-offspring relationship, the size of the population, the types of hosts available and the 

occurrence of immigration/emmigration. In the case where female oviposition preference 

conflicts with the dietary needs of juveniles (e.g., because the fruit does not become colonized by 

a protein-rich microbiotic community), then we might expect populations to consist of mostly 

low quality individuals when host fruits that are both high in sugar and low in protein are 

common. Size also matters; smaller sized populations are likely to exhibit the slowest growth 

rates due to reduced fecundity as a result of females mating with low quality males in a no-

choice situation. However, the effect of size may be offset by the increased mating rates between 

low quality phenotypes due to lower choosiness and increased reproductive investment for 

competition with mates (Kvarnemo and Ahnesjo 1996). As the population grows larger we may 

then eventually see a slowing in the growth rate as flies reduce their reproductive investments (as 

a result of ‘bet-hedging’). In the scenario where D. suzukii exhibits a positive relationship 

between female choice and offspring success (e.g., due to beneficial microbial colonization in the 

rotting fruit), then, alternatively, we might expect to see the opposite trend, where populations 
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consist of mostly high quality individuals when hosts that are high in sugar/low in protein are 

abundant. Contrary to the first scenario, in these populations fecundity might be higher in the no-

choice situations compared to the choice situations, so we may expect to see the highest growth 

rate when populations are relatively small. As the population becomes larger, we might expect 

the growth rate to slow down due to greater choosiness in mates, and the effects of poor female 

choice/lower reproductive investment. As such, the scenario where the ‘preference-performance’ 

hypothesis does not apply, surprisingly, is potentially the one in which the fastest population 

growth occurs – that is, only when the population has reached a size where mate choice is an 

option. Considering the immense variations between landscapes inhabited by D. suzukii, 

however, and the temporal changes in host availability, another possible scenario is that the 

phenotypes that make up any given population become a mix of low and high quality. This is 

because, regardless of the oviposition preference of females, populations of D. suzukii may 

potentially be ‘forced’ to oviposit on less preferred hosts at some time or another (due to a lack 

of alternative oviposition sites) and these low quality offspring then mix with members of the 

previous generation or from other populations via immigration/emigration. Thus, in these 

populations, we might expect to see a growth rate that is in-between that of the two scenarios 

described above. Overall, if there is one theme to unite all of these scenarios, it is that D. suzukii 

lives amongst a highly complex environment and that the plastic responses we see in 

development and mate choice suggest that a plastic response to environmental conditions may be 

an adaptive evolutionary strategy. As such, models predicting population growth rate and success 

in this species will need to take into account many different variables and their interactions with 

each other. 
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A final note and future directions 

In conclusion, the results of my experiments provide novel insights into the biology and behavior 

of D. suzukii. It has been made clear that flies have strong preferences for certain fruit-related 

compounds over others, which could, regardless of the nature of the mother-offspring 

relationship, have a significant influence on individual fitness. This may be through differences 

in offspring performance as well as through differences in adult phenotype, which ultimately, 

can determine population growth/success. In hindsight, however, because fruits vary greatly and 

certainly in much more than just their protein-to-carbohydrate ratio, a more complete 

understanding of this relationship requires that future research also investigate, in an integrated 

fashion, the behaviors of D. suzukii towards other fruit-related factors such as the concentration 

of protein and carbohydrates, colour, fruit-specific volatiles, penetration force, stage of ripeness 

etc. Similarly, other factors that could influence larval performance need to be investigated. Such 

variables include those that make up the host fruit chemical composition (e.g., micronutrients, 

plant-specific compounds etc.). As well, the prevalence and importance of microbial growth as a 

larval protein source will be an important avenue of research for management purposes, and 

which is likely to involve numerous different aspects including the nutritional quality of various 

microbial species and the success of colonization among different fruit varieties. In terms of 

sexual selection in D. suzukii, much more research is required to understand their reproductive 

behavior. The experiments I conducted were exploratory and involved only a select few of the 

many possible environmental and social variables to which flies in the wild will experience. 

Additionally, in order to better understand reproductive behaviors in this species, the possibility 

of poor female mate choice/variation in reproductive investment will need to be teased apart and 

other measures of fitness not measured in my experiments investigated (e.g., indirect benefits). 
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Finally, as there may be differences in behavior between populations based on differences in life 

history (as was observed!) over single and/or multiple generations, and/or due to differences in 

genetics, it will be important that the experiments reviewed here be repeated with flies that 

originate from other wild and lab-related origins for empirical support (and for fun!). 
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