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genetic algorithm
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Abstract. Modeling the process of ion exchange in glass requires accu-
rate knowledge of the self-diffusion coefficients of the incoming and out-
going ions. Furthermore, correlating the concentration profile of the in-
coming ions to a change in refractive index requires knowledge of the
correlation coefficient. We present a method by which these three pa-
rameters can be quickly determined experimentally, using a genetic al-

gorithm. Comparison with published data is presented. © 2005 Society of
Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.2048752]
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1 Introduction

Ton exchange in a glass substrate is a proven method for
producing optical waveguides. The relative ease by which
low-loss waveguides can be fabricated with low birefrin-
gence and excellent mode-matching to single-mode fiber
makes ion exchange a promising alternative to competing
technologies such as chemical vapor deposition and sol-gel
coating.1 Long used for the production of passive telecom-
munication devices, ion exchange has recently found appli-
cations in active devices and sensing.

The ion exchange process is described by the binary
diffusion equation:

aC, D, [ L, (1=M)(VC,)?
gt 1-(1-M)C, 1-(1-M)C,
qEext
-y, 1
T A:| (1)

where D, is the self-diffusion coefficient of the incoming
ionic species in the substrate glass; and M=D,/ Dy, where
Dy is the self-diffusion coefficient of the outgoing ionic
species, and Cy, is the concentration of the incoming ions,
normalized with respect to the saturated concentration. The
saturated concentration is dependent on the stoichiometry
of the substrate and melt, and as such, its exact value is
usually unknown. Instead, it is common to normalize C, to
equal unity at the surface of the substrate that is in contact
with the salt, and zero far away from this interface. Here
E.,, is the applied electric field, while T, k, and g are the
absolute temperature, Boltzmann’s constant, and the elec-
tron charge, respectively. In all practical cases, solution of
Eq. (1) requires numerical methods, as discussed in Ref. 5.

For small absolute concentrations of incoming ions, the
change in refractive index over that of the substrate is pro-
portional to the ion concentration:
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n(x,y,N) = ngp(N) + Ang(N) Cy(x,y), 2)

where ng, is the substrate index; and Any is the constant of
proportionality, which is equal to the largest index change.
The latter parameter is determined empirically, which jus-
tifies the use of the normalized concentration Cy.

To accurately determine the index profile using Egs. (1)
and (2), it is critical that the diffusion parameters D, and
M, and the proportionality constant Ang, are precisely
known. None of these values are routinely provided by the
substrate manufacturers; they must be determined experi-
mentally. This procedure generally consists of the follow-
ing steps: (1) processing of a slab (1-D) waveguide with no
applied electric field; (2) measurement of the resulting in-
dex profile, or more frequently, measurement of the effec-
tive indices of the guided modes, with subsequent recon-
struction of the index profile; and (3) determination of the
parameters that produced this index profile. Early efforts to
this end generally assumed a functional form for the index
distribution,’ allowing D, and An, to be calculated quickly
using the Wentzel-Kramer-Brillouin (WKB) dispersion re-
lation. However, assuming a particular functional form of
the refractive index is equivalent to specifying M. As the
index profile can resemble a complementary error function
(for M=1), parabola (M=0.5), Gaussian profile (M
~0.1), or steplike profile (M <0.1),! it is inadvisable to
make such an assumption when there is no a priori infor-
mation on the ion exchange system in question.

Simultaneous determination of D,, M, and An, by com-
parison of measured and modeled effective mode indices
was attempted by previous authors using what amounts to
“brute force” methods.’ In this procedure, the diffusion
equation (1) is solved numerically for assumed values of
D, and M, and the resulting concentration profile is con-
verted to an index profile for an assumed value of Ang. The
effective mode indices are solved for, and compared in a
squared-error sense with those measured from the fabri-
cated waveguide using a prism coupler. The parameters are
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Fig. 1 Flowchart illustrating the GA used for ion exchange param-
eter extraction.

altered until the squared error is acceptably minimized.
Given the nonlinearity of Eq. (1), this can be a very labor-
intensive process.

In this paper, we describe a novel method of determining
the ion exchange parameters that utilizes a genetic algo-
rithm. This technique provides accurate results with a mini-
mum of effort on behalf of the operator. Section 2 describes
the algorithm. In Sec. 3, we use the algorithm to determine
parameters of a particular glass, and compare them with
those found in Ref. 7. The implications of this method for
more complex ion exchange systems are discussed briefly
in Sec. 4.

2 Description of the Genetic Algorithm for
Parameter Extraction

The genetic algorithm (GA), generally attributed to De

Jong,8 is a conceptual reduction of Darwin’s theory of natu-
ral selection.” The solution of a physical problem is opti-
mized by treating trial solutions as the individuals within a
population of “organisms,” which must evolve to conform
to the conditions set forth by the problem at hand. By se-
lecting the best individuals of a generation and combining
their characteristics, individuals from subsequent genera-
tions will on average approach the optimum solution to the
problem. Unlike traditional derivative-based optimization
algorithms, the GA is not prone to becoming trapped in
local extrema of the fitness function in “optimization
space” (the set of all possible combinations of the param-
eters to be optimized). Rather, the application of random
mutations enables the GA to escape such extrema to opti-
mize solutions globally. In addition, derivative-based meth-
ods require that the function to be optimized is “smooth”
(i.e., continuous and differentiable everywhere), a restric-
tion that does not apply to GAs.

The GA is particularly well-suited to “inverse”
problems—those for which an outcome is known and mod-
eling of the forward process is feasible, but for which sev-
eral initial conditions or physical parameters must be deter-
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Table 1 Example of 8-bit binary representation of parameter M,
where M varies from 0.1 to 0.61.

M Gene
0.100 00000000
0.102 00000001
0.104 00000010
0.608 11111110
0.610 11111111

mined. The problem of ion exchange parameter extraction
falls into this category. The GA for parameter extraction is
described in the flowchart shown in Fig. 1, with each step
described in the following.

2.1 Input Known Quantities and Create a First
Generation of Trial Parameters

The operator must input the known values of the prism
coupling wavelength, the substrate index at this wavelength
(which is easily observed as the “knee” of the prism cou-
pling spectrum), the measured slab mode indices . ,, and
the ion exchange time. Upper and lower bounds for all
three parameters must be provided as well. A narrow region
of parameter space will accelerate convergence to a solu-
tion, so any a priori knowledge is of great benefit. One
such constraint is that the lower limit of An, must be at
least nepr—ngp- A final input is the resolution with which
each parameter must be known.

Each parameter is binary-encoded into a bit string, com-
monly referred to as a “gene,” with the least significant bit
representing the specified resolution of the parameter. An
example is shown in Table 1. The three genes are then
concatenated into a “chromosome,” as illustrated in Fig. 2.
The initial population of trial parameter sets is randomly
generated using a uniform distribution (each bit is equally
likely to be “0” or “17).

2.2 Simulate lon Exchange and Calculate Slab

Mode Indices

In one dimension and with no applied electric field, Eq. (1)
becomes

ICs D, #Cy
gt 1-(1-M)C,| ay

(1= M)(9C4/dy)*
1-(1-M)C,

3)

With only one spatial dimension of interest, both explicit
and implicit methods can be employed to rapidly solve Eq.

DA An()
0010111010110110010100101110001011010
M

Fig. 2 lllustration of the concatenation of genes into a chromosome
that uniquely identifies a trial set of parameters.
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Crossover
Point

Parent #1 0010111010110110010100101110001011010
Parent #2 0110100101100100101110010000010110101

Child  0010111010110100101110010010010110101

Mutation

Fig. 3 Combination of genetic information by single-point crossover
and mutation.

(3), with stability issues managed by employing suitably
small time steps and grid spacing. This GA employs the
implicit three-point Crank-Nicolson method'® to solve for
C4(y,1). The Dirichlet conditions C4(0,r)=1 and C,(h,1)
=0 are used, where # is the deepest point in the computa-
tional domain.

The index profile is calculated from the concentration
profile using Eq. (2) and the trial value of An,. Effective
indices N, of all guided slab modes are calculated using
a fast algorithm derived from the WKB equation.11

2.3 Evaluate Figure of Merit

Each trial set of parameters is evaluated by comparing the
resulting set of mode indices to those measured by the
prism coupler, and assigning a “figure of merit” F to the
parameters:

F=exp {— [2 Win(Nege m = neff,m)2:| } . 4)

A weighted sum of squared errors is used here. The errors
are squared as in Ref. 7 to ensure that F is reduced for
errors in index of either sign. The weights w,, are optional
elements in F that reflect the differing levels of confidence
in the measured modes. Those that lie just above cutoff are
generally less accurate due to their proximity to the sub-

Fig. 4 Results of the genetic algorithm for extraction of ion ex-
change parameters. Each dot represents a trial solution evaluated
within the algorithm. The fitness is represented by shade—lighter
dots represent very poor fitness, while darker dots represent very
good fitness.

Optical Engineering
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Parameter Symbol Value
Exchange time tox 30 min
Exchange temperature T 324°C
Wavelength N 632.8 nm
Substrate index Nsub 1.5210
Measured effective indices Nett.m 1.5870, 1.5702,
1.5565, 1.5433,
1.5311
Weights Wi, 54,321
Generations Ng 20
Simulations per generation Sa 15
Self-diffusion coefficient of Ag* Dpg 1.09X107"® m?/s
Ratio of self-diffusion coefficients M 0.074
Maximum index change Any 0.075

strate “knee” in the prism coupling spectrum. The exponen-
tial drop-off in F for large mode errors serves to bias the
following generation toward an optimal solution, as de-
scribed in the following subsection.

2.4 Create the Next Generation of Trial Parameters

If none of the trial sets of parameters produces an accept-
ably high figure of merit, it is necessary to create a new
generation of chromosomes. To accomplish this, “parent”
chromosomes are selected in proportion to their figure of

merit—a process known as “roulette wheel scaling”lz—and
their genetic material is combined using a single-point
crossover. A small probability of mutation of a random bit
is allowed. This is illustrated in Fig. 3.

3 Application of the GA

The GA described in the previous section was used to de-
termine the temperature-dependent ion exchange param-
eters for a Schott IOG-10 substrate undergoing silver-
sodium exchange in a 10% AgNO; melt. To enable a direct
comparison with the results of Ref. 7, identical effective
index data are used for slab waveguides fabricated at a
variety of temperatures and over a range of exchange times.
Figure 4 illustrates the output of the GA for one particular
set of input data, which is shown in Table 2. Each dot
within the figure represents a trial set of parameters; the
shade of the dot represents its figure of merit. Note that the
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refractive index

4
depth [um]

Fig. 5 Comparison of refractive index profile reconstructed from
measured modes (dotted line) and modeled from results of genetic
algorithm (solid line).

self-diffusion coefficient D, is now denoted D ,,, indicating
that silver is the incoming ion. Figure 5 compares the re-
fractive index profile arising from the results of the GA
with that reconstructed from the measured modes."> The
profiles are virtually indistinguishable.

Note that the self-diffusion coefficients are strongly
temperature-dependent. As ionic mobility depends on a mi-
croscopic level on the probability that an ion’s kinetic en-
ergy exceeds the activation energy required to break free
from its site in the glass matrix, DAg exhibits Arrhenius
behavior':

-E,
DAg(T)zDAgO exXp (F)’ (5)
where E,, is the activation energy. Plotting In (D,) versus
(1/kT) should produce a straight line of slope —E,. Any
data that deviate considerably from this line are erroneous,
suggesting that the GA be allowed to evolve further (or
possibly that the bounds on parameter values are incorrect).
In addition to improving the accuracy of the parameters,
knowledge of the temperature dependence enables the pa-
rameter values to be extrapolated to the lower temperatures
commonly encountered in field-assisted or annealing pro-
cesses. At these temperatures, D, may be sufficiently low
that fabricating a slab waveguide by thermal exchange from
a salt melt would take a prohibitive length of time. In fact,
it may be impossible if the temperature of interest falls
below the salt’s melting temperature.

Figure 6 shows the results of the GA over a range of
temperatures. The natural logarithm of D,, is plotted
against (g/kT), where the vertical error bars indicate the
range of calculated diffusion coefficients for different ex-
change times. The data show a strong linear trend, as ex-
pected (regression coefficient *=0.9734). The circles rep-
resent the values of D, calculated in Ref. 7. The value of
M was found to equal 0.074 for all temperatures (averaged
over exchange time). While M is expected to vary with
temperature, this dependence is considerably weaker than
that of D,g, and is not appreciable over the narrow tem-
perature range used. While the authors of Ref. 7 claim a
significant linear trend in the Stewart coefficient « (equal to
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19 19.2 194 196 198 20 20.2
/KT (V')

Fig. 6 Graph of In (Dpg) versus (g/kT). Results of the GA are shown
as circles, with error bars indicating the range of values for different
exchange times. The solid line represents a linear fit to the GA re-
sults. Results of Ref. 7 are shown as squares.

1—M), the data in their Table 1 does not clearly show this
over the small temperature range. For example, their calcu-
lated « values do not decrease monotonically with tempera-
ture, as expected. In all cases, the calculated value of Any
was 0.075.

4 Discussion

The ion exchange model of Eq. (1) used in this simulation
describes the exchange of two species of mobile ions.
While this is sufficient in most common substrates in cur-
rent use, the need may arise for modeling of ternary (or
higher order) ion exchange, for substrates that contain two
or more species of network modifiers with substantial con-
centration and mobility. In this case, Eq. (1) is no longer
strictly true. Fortunately, this issue is avoided through the
combined efforts of parameter extraction and process mod-
eling. As the parameter extraction algorithm uses experi-
mentally obtained effective index data as input, the calcu-
lated parameters can be thought of as “effective” physical
constants, which may have been perturbed by any number
of additional physical effects. These same parameters are
subsequently used in the process modeling, which also uti-
lizes Eq. (1) (see, for example, Ref. 5), making the full
modeling process self-consistent from an engineering
standpoint.
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