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PHYSICAL REVIEW A 69, 052116(2004)

Transition to classical chaos in a coupled quantum system through continuous measurement

Shohini Ghosé, Paul Alsing, and Ivan Deutsch
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA

Tanmoy Bhattacharya and Salman Habib
T-8 Theoretical Division, MS B285, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
(Received 9 September 2003; published 24 May 2004

Continuous observation of a quantum system yields a measurement record that faithfully reproduces the
classically predicted trajectory provided that the measurement is sufficiently strong to localize the state in
phase space but weak enough that quantum backaction noise is negligible. We investigate the conditions under
which classical dynamics emerges, via a continuous position measurement, for a particle moving in a harmonic
well with its position coupled to internal spin. As a consequence of this coupling, we find that classical
dynamics emerges only when the position and spin actions are both large compérdthése conditions are
quantified by placing bounds on the size of the covariance matrix which describes the delocalized quantum
coherence over extended regions of phase space. From this result, it follows that a mixed quantum-classical
regime (where one subsystem can be treated classically and the othedasst not exist for a continuously
observed spiri- particle. When the conditions for classicality are satisfiedhe large-spin limit), the quantum
trajectories reproduce both the classical periodic orbits as well as the classically chaotic phase space regions.
As a quantitative test of this convergence, we compute the largest Lyapunov exponent directly from the
measured quantum trajectories and show that it agrees with the classical value.

DOI: 10.1103/PhysRevA.69.052116 PACS numbsis): 03.65.Yz, 03.65.Ud, 05.60.Gg, 05.45.Mt

[. INTRODUCTION tinuously observed, we ask under what conditions the mea-
surement record is faithfully predicted by the classical dy-
The distinct dynamical predictions of quantum and clasmamical equations of motiofe.g., Hamilton’s equationsin

sical mechanics for a given Hamiltonian have been wella fundamentally quantum system the continuous measure-
known since the inception of quantum theory. Although onement has two basic effecté) through knowledge gained in
might naively expect “macroscopic systemg’e., ones the observation the state is localized to within the resolution
whose characteristic actiorisare large compared th) to  of the measurement anid) backaction noise is imparted to
behave classically, for systems with Hamiltonian chaosthe conjugate variables consistent with the quantum
Berry and Balazs have argued that the semiclassical approxiRformation-disturbance relations. Classical dynamics will
mation may break down in an exceedingly short time, logafrovide a good approximation to the measurement record
rithmic in /% [1]. Understanding how classical chaotic be-only when the localization is sufficiently strong so that tra-
havior emerges from the underlying quantum description is dectories can be defined in phase space and the backaction
fundamental problem in physics. The study of quantum nonnOIS€ IS sufficiently Weal_< so that these trajectories are bare_ly
linear dynamics for application to quantum information pro-disturbed. In general this balance can be struck for a suffi-
cessing[2] and feedback contrdB] provides further moti- ciently macroscopic system. The scale of action relativie to

vation to pursue a deeper understanding of the quantum at which this occurs characterizes the quantum/classical dy-

classical transition in chaotic systems. Finally, the experi—namlcal boundary.

. . : S A quantitative description of the time evolving continuous
mental state of the art is rapidly progressing to the S'tuat'O'?neagurement record an be made using the c?uantum rajec-

where individual quantum ;ys_tems can be monito'red in Efory formalism[13]. Bhattacharya, Habib, and Jacdhi®]
controlled way[4-9] necessitating a parallel theoretical de-are aple to find the conditions that achieve the strong-
velopment_. . _ ... localization/weak-backaction balance. The system they stud-
In previous studies, t_he quantum to .classmal transitioNgy \yas the Duffing oscillator—a driven nonlinear system
\I/vahs anglyzed Ey comr?arlnhg dlstr|but|on? '(;‘ ph:;se Sm}a with one dynamical degree of freedom. We seek to general-
t has been shown that the process of decoherence due g, y;q analysis to coupled systems with multiple degrees of

interaction with an environment can suppress quantum intetg.ooqom and no external classical driving force. New ques-
ference so that the quantum quasiprobability distribution refions arise for such coupled quantum systems. Since the

mains close to the corresponding classical phase space .dlsséale of the action relative th can differ for the different

tribution [11]. Here we extend a different approach taken 'nsubsystems, one can explore a regime where one degree of

g?f- [12] to define the err?e;gincg of cI_aslsicaI dyn.amicsfreedom has a large action while another is deeply quantum.
lven an experiment in which the dynamical system Is cony; is nown that such approximate mixed quantum-classical,

or “semiclassical,” systems can exhibit signatures of chaos
[14-17]: We wish to investigate whether such a description
*Electronic address: sghosel@unm.edu remains valid when we include the effect of the measure-
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ments required to observe chaotic trajectories when an actual &2 (P
experiment is performed. Another interesting question is E:F’
whether the quantum entanglement of the different degrees
of freedom plays a role in the approach to the classical re-

) d(p -

gime. . ) o ) ﬂ:_me(z)_b(JZ%
We consider a dynamical system consisting of a particle dt

whose motion in a harmonic well is coupled to its spin. This

has wide applicability to a variety of phenomena including d<3>

generalizations of the Jaynes-Cummings model in quantum KI) X B((2) + vCjxp): (2
optics (coupling of an atomic pseudospin to a harmonic
mode of the electromagentic fieldLg], the spin-boson \yhere
model of condensed matter systefagy., polariton transport)
[19,20], and the motion of ultracold atoms in magneto- CJ><B(Z):<:] X B(2)) - (J) X B((2)) (3)
optical traps[21]. In previous worl{22], we considered an
integrable regime in which the Hamiltonian exhibits only is the covariance or the second cumulant. In general, these
regular motion. In the current paper we extend our analysi§orrelations are nonzero, so that the quantum expectation
to the classically chaotic regime. In particular, we studyvalues do not follow the classical trajectories. As we will see,
when the classical Lyapunov exponents are recovered froft the small7 limit, continuous measurement can act to
the quantum trajectories. This gives an unambiguous sign&l@mp the higher order cumulants with negligible quantum
ture of the emergent chaotic behavior. backaction noise, thereby recovering classical dynamics.
The paper is organized as follows. We start by describing .A special case to considgr is.when the action associated
the coupled motion-spin Hamiltonian in Sec. Il. The evolu-With center-of-mass dynamics is large enough such that,
tion of the system conditioned on a weak continuous meawere there no coupling between the two degrees of freedom,
surement can be described using a stochastic Schrod|ngme motion in the harmonic wells could be treated CIaSSica”y
equation as outlined in Sec. Ill A. We present our numericalvhile the uncoupled spin would still be deeply quantum. In
results for the evolution of the measured quantum systenthe coupled system, should we continue to assume that the
starting with the spin} system(Sec. IIl B), and then moving Motional subsystem can be treated classically and treat the
to the large spin limitSec. Il C). Analytical conditions for POSition and momentum operators approximately as ¢ num-
the recovery of classical dynamics are obtained in Sec. IV by€rs, thenC,.g~0. This leads to the “semiclassical”
bounding the nonclassical covariance matrix and thereby!€isenberg equations of motion, which haegactly the
showing that corrections to the classical trajectories alway§ame form as the classical Hamilton’s equations with
remain small. In Sec. V we compute the largest Lyapunov— 2, etc. If this approximation were correct it would imply
exponent of the quantum trajectories and compare it to théhat dynamics in this regime may also exhibit chaos as has
classical value in order to quantitatively demonstrate thdeen studied in various contexts—17]. The validity of this
emergence of classical chaos. We conclude with a brief sun@Pproximation and the resulting chaos has been questioned

dt

mary of our primary results in Sec. VI. in Refs.[25,26]. Qne of our gpals in this article is to inves—_
tigate whether this “semiclassical chaos” can be recovered in
Il. THE COUPLED SYSTEM OF SPIN AND MOTION the quantum trajectories, obtained when the system is weakly
o . . rved.
The Hamiltonian we consider here is observed
~n2
A= ;;m + %mwzzz +b2],+ ¢, (1) IIl. CONTINUOUS MEASUREMENT OF POSITION

A. Conditioned dynamics

where Z is the position operator of a particle of mass Using the formalism of generalized measurements, we

trapped in a harmonic well of frequenay and J; are the el a weak continuous observation of the particle’s posi-
components of the particle’s spin angular momentum. In adgjon via a stochastic Schrédinger equatit®SE) that de-
dition to the trap, the spin is coupled to an effective magneticScribes the evolution of the unnormalized wave functﬂm
field with a constant transverge direction)component and conditioned on a record of the position

gradient along the longitudindlk) direction. We can make . posit

the analogy to a classical Hamiltonian by replacing the spin ~ 1 — ~

with a classical magnetic moment of magnituge= yJ, djy) = {(EH - kzz)dt+ (4k(z)dt + \"deW)Z}W- 4)
wherey is the gyromagnetic ratio, interacting with the local

field B(z)=-(ce,+bze)/y via—u-B(2). For this classical This general form of the SSE for a continuous measurement,
analog system, coupling between the direction of the magdescribed by a Wiener proceg®/ of “strength k” and yield-
netic moment and the position of the particle in the wells caring a record(z) +(8k)"*?dw/dt has been previously derived
lead to chaotic motion in a spatially inhomogeneous fieldfor the specific case in which the position of a moving mirror

[23,24]. is monitored by an optical prob@7,28]. Scott and Milburn
The expectation values of the Heisenberg equations old29] obtained a similar equation for simultaneous measure-
tained from Eq(1) are ments of position and momentum using previous results on
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continuous position measurement operaf@31]. 60 @)
We evolve the SSE numerically using a “split operator”
method[32,33]

|lﬂ(t + dt)> - e—Mdt/2e—(i/ﬁ)H dte—Mdt/2|¢(t)>, (5)

where|) and|n<,7/> differ only in normalization. The exponen-
tiation of the Hamiltonian is written in Cayley forfi33]

1-L7dt\ [ 1-Lvdt|[ 1--~Tdt

(i _ ah 2h ah
i i i ' -60
- - 2 0 5 10 15 20
1+4ﬁTdt 1+2tht 1+4ﬁTdt it
(6) ——— .
!

where T is the kinetic energyV the potential, andVi=Kk[z 1300f %
- ((2)+dW/ V8kdt) P represents the conditioning and backac- noot N\
tion due to coupling of the particle to the measurement ap- o 900| Y W
paratus. The potential operator, block tri-diagonal in the basis Y NN
of position andJ, eigenstates, can be calculated using effi- HO0 *x %
cient algorithms for inverting such matric§84,35]. As 500¢ o
usual, the kinetic term is applied in the momentum basis 300l
using fast Fourier transforms. In order to increase the effi- 100l < - =
ciency of our numerical code we use a small grid in position Sm 7 T
and momentum adaptively centered around the location of 20 30 ) 50 20
the wave function. z/zg

FIG. 1. (Color online) @) Mean position of the measured s;ﬁn-
system (solid) in a single quantum trajectory witthz~ 22z,

We start by investigating the conditioned evolution of ac=200E,/J, andk=w/20z. Outer solid curves show the variance
spinJ=1/2 system. We choose the initial state to be a prod.of the wave function. The measurement backaction causes the quan-
uct of a coherent state for the motigoosition and momen- tum trajectory to diverge from the classiqalotted, blackjtrajec-
tum phase planeand a spin coherent stafdirection (6, ¢) tory. This is because part of the wave function moves along the

B. The spin- system

on the Bloch sphere] upper adiabatic potential while the rest moves along the lower adia-
' batic potentiadashed red curves ifd)]. Eventually, the measure-
|(0)) = |a=z+ip)|6, ¢). (7 ment collapses the wave function into the upper or lower potential

. . . . [solid blue line in(b)]. The classical motion is along the dashed-
We pick the spin direction to be along so that(6,#)  gotted potential inb).

=(w/2,0) (though any other direction would have been
equally suitable), the initial momentum to be zero, and th
initial position to bez(0) ~ 38z, with b=mw?Az/J and Az

~ 227, wherez,=\%/2mo is the width of the harmonic os-
cillator ground state. For these choices, the action in the m
tional phase spac&=mwAz?=250% This puts us in the
mixed quantum-classical regime described in Sec. Il. Th
transverse magnetic field is chosen so tieat200E,/J,
whereE,=%w/2 is the ground-state energy. We pick a mea-
surement strengtk=w/ 20z that satisfies the inequalities for
strong-localization/weak-backaction found in R@f2]in the
absence of coupling to the spin. This enables us to study ho

€hamics considered here, the classical and quantum equations

of motion for the higher cumulants differ, and because of
severe quantization effects for small spin, the wave function
Qdistribution is far from Gaussian, making the cumulant ex-
gansion of limited utility.

The time evolving measurement record of the position of
the spin—% system is compared to the trajectory predicted by
the classical equations of motion in Fig. 1. Consider first the
classical dynamics. Note that even though there is a trans
verse magnetic field, the motion is regular, not chaotic. This
Wan be understood by writing the classical equations of mo-

the coupling to the spin changes the effect of the measurg: . oo
ment.
Differences between quantum and classical trajectories
arise from two possible sources, nonclassical initial states dz _
and nonclassical dynamics. For the integrable regime that we dr =p,

studied previously22], the system was linear, and therefore

the quantum and classical propagators wewplivalent.

Thus, only the difference between the quantum and classical

initial statewas responsible for any disparities between the dp
quantum and classical trajectorig®?]. For the nonlinear dy- dr
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dne oo tum potentials[Fig. 1(b)]. Thus, due to the entanglement
dr jzny' ) between motion and spin, the weak measurement of position
results in a projective measurement of the spin, very similar
to the situation for the spié—particle withc=0 [22]. The
=, -Cn, difference here is that the pointer basis associated with the
dr J J measurement apparatus is the adiabatic basis rather than the
magnetic sublevels associated with the space-fixed quantiza-
dn, _lg tion axis.
ar Sa™y We have thus shown that a continuously observed system
in a mixed quantum-classical regime does not follow the
where classical trajectory. This divergence of the two time series
_ occurs even in the absence of chaos and is simply a state-
z=7Az, ment that there is no smooth classical limit for low-spin sys-
tems. To explore the chaotic regime, we must reduce the
P=p/mwAz, ratio of the two actions in Eq(8). However, for a Spil’%-
system, this requires reduction of the external action to val-
lo= MwAZ, (99  Ues that violate the conditions required for classical dynam-
ics given in Ref.[12]. This means that both the predicted
regular and chaotic classical trajectories in the “semiclassi-

= 2
¢=cIime®AZ, cal” spin—% description cannot be seen in the measured dy-
namics.
7= wt,
wheren is the direction of the magnetic moment. We can see C. The large spin limit

from these equations that the dynamics depends on the ratio The classical equations of motion result in chaotic dynam-
of the actions of the coupled subsystems. In the classicaés when the time scales of the internal and external dynam-
limit, both external and internal actiorly and J become jcs are on the same order. With this in mind we kg¢tl=5
infinitely large relative taf, but the limit is taken such that gng c=200E,/J in the equations of motiofiEg. (8)]. The
ratio of the two remains finite and constant. For the ”Semi'c|assica| phase space for these parameters is mixed, with
classical” regime considered heig/J=500. The large dis- regions of stable motion separated by stochastic layers. We
parity between the actions of the external and internal dyshow in this section that this classical chaotic behavior can
namics separates the time scales of the position and magnefig recovered from the measured quantum system in the large
moment evolutions, effectively decoupling the spin from itS gction limit.
motion in the well. This leads to a regime where the mag- Figures 2(ajpnd 2(b)show two classical trajectories, one
netic moment can adiabatically follow the changing mag-of which is in a regular part of the phase space, and the other
netic field direction. The angle between the magnetic moin the chaotic region. The corresponding quantum trajecto-
ment direction and the local magnetic field becomes anjes are shown in Figs.(2) and 2(d)for a spin with an action
additional constant of motion apart from the energy, givingj=200 and measurement strendtk “’/823' We pick Az
rise to integrable motion. ~ 45z, which results in a ratio of characteristic actions in the
Figure 1 also shows a typical measured quantum trajecquantum system that is the same as the classical kgt
tory of the Spin% system. After a very short time, it fails to =5. As in the Spm% case, our choice of measurement
follow the classical adiabatic motion described above. Thisstrengthk satisfies the conditions for classicality in REE2]
behavior can be understood in a manner similar to that prenad there been no coupling to the spin. The initial quantum
sented in our previous study of linear dynamics, with nostate is chosen to be a product of a coherent state in position
transverse magnetic fiel@2]. Here, the initial wave func-  and momentum, centered at the classical initial values, and a
tion can be decomposed in the basis of adiabatic eigenstatgpin coherent state pointing in the same direction as the ini-
|+(2)), obtained by diagonalizing the total potential at eachtja| classical magnetic moment. In Fig. 2, the initial condi-
position tions for the regular quantum trajectory werg0)
_ _ =76z,,p(0)=0, and(0, ¢)=(7,0). The initial conditions for
|H0)) =[] 6.4) = $u(2)|+ (2 + ¢-(2)|-(2).  (10) the6zghaotic quantum trajectory wem0)=89, and p(0)
At the initial time, the¢,(2) and ¢_(z) components overlap =0,(0,¢)=(,0).
in space, but are pulled apart by the differential force of the The quantum trajectories in Fig. 2 successfully reproduce
upper and lower adiabatic potentigidashed lines in Fig. the classical mixed phase space. This is becaus@=f@0o0,
1(a)]. As the wave packet splits, the overlap betwgemnd  there are 2+1=401 adiabatic potentials rather than just two
¢_ gradually decreases and eventually, when the positioas in the spin;- case. The initial state is in a superposition of
measurement can resolve the two spatially separated compthie 401 eigenstates, but has most of its support concentrated
nents, the state is projected into one of the two quantunon just a few of the adiabatic potentials closest to the local
adiabatic eigenstates. This contrasts with the classical adigirection of the classical magnetic moment. The differential
batic motion which moves on aaverageof these two quan- force is thus very weak and only slightly splits the wave
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FIG. 2. Regular and chaotic
classical trajectorieg(a) and (b)]
are recovered in the quantum tra-
jectories [(c) and (d)] with J
=200#, Az~ 45, andk=w/8Z,

packets into nonoverlapping components. The position measection shows many islands of regular motion with thin sto-
surement acts only to damp the tails of the distribution wherehastic layers in between. An initial classical trajectory that
spread is substantial and keeps the wave function localizedtarts on a regular island cannot cross the stochastic layer
It does not, however, strongly project the spin state into ahat bounds it. In the limit of large actions, the asterisks in
single adiabatic state. A weak measurement of the positiofig. 3 show how quantum trajectories follow different clas-
also acts as a weak measurement of the spin so that tisécal periodic orbits. It is possible for the noise due to the
strong localization and weak backaction conditions can simeasurement to cause a quantum trajectory moving on a
multaneously be satisfied for both the position and the spinperiodic orbit to drift into the chaotic region and hence cross

A further qualitative example of the quantum trajectoriesa KAM surface. However, as the spin becomes larger and
recovering different structures in the mixed classical phaséarger, the noise becomes smaller and smaller, eventually be-
space is shown in Fig. 3. The dots represent a classical sucoming negligible in the extreme classical limit and it be-
face of section aE=0.08F,=0.08mw?AZ* with |,/J=2.5and comes increasingly unlikely for the quantum trajectory to
€=0.4. The slice is taken &@y=0,dJ,/dt>0. This surface of cross a KAM boundary.

18

IV. CONDITIONS FOR RECOVERING
CLASSICAL CHAOS

Classical dynamics is recovered when the mean position,
momentum and spin of the measured quantum system follow
classical trajectories. The equations of motion for the means
of these observables conditioned on the measurement are

PP, ot
d(3) = %dt +\/8kC, AW,
d(p) = - mwX2)dt - b(d,)dt + V8KC, AW,
A = ; 7 d(J) = %I x B(2))dt+ V8KC,,dW

z/zg _
= %) X B(@)dt+ yCyypt+ VBKCdW. (11)
FIG. 3. (Color online) Quantum trajectoriegasterisks)follow
the stable islands of the classical surface of sectiack dots). \We show how these equations approach the classical equa-
Shown are quantum trajectories that reproduce the regular motioions of motion by imposing the dual conditions of strong
around different period-1 fixed poingblue, green), a period-3 orbit localization and weak noise. The measurement must be
(red), and a higher period orhitnagenta). strong enough to localize the state in phase space so that it
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FIG. 4. Solutions off:zz(t)=Cu(t)/zS for the
regular and chaotic quantum trajectories of Fig.
2. The maximum cumulant is smaller than the
total phase space covered by the motion by a fac-
tor of about 100.

resembles a classical point, but weak enough to cause mindf the matrixW makes it impossible to solve fd&Z(t) ana-

mal measurement noise or backaction. From (&) we see lytically.

that the noise terms are proportional to the covariances. We can, however, numerically integrate the coupled sto-
Hence, these covariances must remain small at all times tohastic equations for the meafigq. (11)] and the second
ensure that the noise terms stay negligible. Furthermore, theumulantsEq. (12)]. We do so by using an explicit Runge-
strong localization condition requires all the variances to reKutta type algorithm that is strongly convergent to order 1.5
main small relative to the total phase space explored by thg36]. Figure 4 shows the solution of the Riccati equation for
motion. Combining these two conditions results in the re-C,, using the quantum trajectories of Fig. 2. The other cu-
quirement that the covariance matrix which includes all themulants have similar magnitudes. Since the second cumu-
second cumulants must remain small at all times. In generalants remain small relative to the size of the phase space, we
the evolution of the second cumulants depends on the thirdxpect the solutions of Eq11) to agree with the classical
cumulants which in turn depends on the fourth cumulantsolutions at this value of the actions. Our numerical studies
and so on in an infinite hierarchy. However, if the condi-showed that this is indeed trug&ig. 2). Furthermore, we
tioned state remains almost Gaussian in the large actiohave verified that at these large values of the actions, the
limit, the third and higher cumulants can be neglected andrajectories obtained by evolving the full SSE agree well
the evolution of the second cumulants can be written inwith those obtained by solving the equations for the means

terms of a matrix Ricatti equation and second cumulants, indicating that the Gaussian approxi-
. - mation is valid. Hence, numerical solutions of the Riccati
C(t) =U +C(HVC(H) + WCH) + C(HW', (12)  equation are a good indication of when the measured dynam-
with ics can be approximated classically.
0 0O 00O -8 0 0 0O V. QUANTITATIVE RECOVERY OF CLASSICAL CHAOS
0 24% 0 0 O 0 0000 Our numerical and analytical studies have shown that
u={0 0 O0O0O}, V={ O O OO O], qualitative features of the classical trajectories are found in
0 0 00O 0 00O0O the measurement record of a continuously observed quantum
system when the actions are sufficiently large. We would also
0 0 000 0 0000 like to recover some quantitive property of the classical dy-
namics in order to make a direct comparison. A standard
0 1m0 0 0 measure of the degree of stochasticity of a classical chaotic
- mw? 0 0 0 -b system is the largest Lyapunov exponent, describing the av-
w=| -b,t) o 0 -blzt) 0 |, erage rate of divergence of neighboring trajectories.
We can compute a Lyapunov exponent for the measured
b{L(®) 0 b)) 0 -c quantum trajectories by using a method similar to that em-
0 0 0 c 0 ployed in classical nonlinear dynamig37—-39]. In the clas-
(13) sical case one chooses a “fiducial trajectory” and calculates
the average rate at which this and a neighboring trajectory
whereC is the covariance matrix (nominally an infinitesimal distance awagtiverge. In deter-
mining the rate numerically, the neighboring trajectory is
Ca Cop Cuy Coy Cog chosen at a finite, but very small distaneefrom the fidu-
Csp Cop Coy Cpy, Cpy, cial. The distance between the fiducial and neighboring tra-
c=| Cuy Cpy, Cyy Cis Coy | (14) jectory is propagated for a short tinfeto obtaind,(T). One
X Tex Ty X then restarts a neighboring trajectory, displaced a distance
Cay Cpy, Cug, Cup, Cup, from the fiducial along the direction connecting the fiducial

and old neighboring trajectory at timle and propagates the
distance again to yield the distandgT). After a long time
Unlike thec=0 cas€g22], we can no longer ignore tllgand  average, foN— « iterations, the rate of divergence will con-
J, components of the spin. Furthermore, the time dependenagerge to the largest Lyapunov exponent

Ca, Cpy, Cug CJyJZ Cyy,

052116-6
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N (a)
A= iz |n@_ (15) o _ _Classica] _
NTi=1 S
0.20,

For the quantum trajectories, one can repeat the same pro-
cedure, replacing the points that define the classical trajecto- 0.16
ries with the mean values of the relevant observables. The P(A) 912
quantum state, however, is defined by all higher cumulants 0.08
and these can effect the dynamics. Motivated by the classical
analysis, when defining a fiducial and neighboring quantum 0.04,
state, we do it so that they differ only in their means but 0 _ o _
share exactly the same higher order cumulants. We can 0 o1 02 03 04 05 06
achieve this with the help of the phase-space displacement A
and rotation operators, as described below. (b)

Our numerical procedure for extracting Lyapunov expo- 04 Quantum  J=200h
nents from the continuously observed quantum system is i ' '
thus as follows. We calculate a fiducial quantum trajectory
starting with an initial product of coherent states of motion et}
and spin. The neighboring trajectory is chosen by applying P()
the joint displacement-rotation operator to the fiducial at b
each stef. After, say the first iteration, the distance between
these quantum trajectories is calculated from the differences 0.1
in the means

0
dy(T) = \;’&(T)2+ Sp(T)? + su(T)2. (16) 0 01 02 03 04 05 06

A
The neighboring trajectory is then restarted by using the dis- o )
placement and rotation operators to shift the fiducial state at FIG. 5. Distribution of the largest Lyapunov exponent obtained
time T by € along the direction connecting the fiducial and from (a) c!assmal dynamics using 500 flduglal trajectoriesEat
original neighboring trajectory at timg. For example, the ~=0-58E with Io/J=5 andc=200E,/J. (b) Continuously measured

new mean position of the neighboring trajectatyT) is re- quantum dynamics using 100 fiducial quantum trajectories With
lated to that of the fiduciat(T) by =200#, Azz4529, andk:a)/82§. For numerical efficiency, the SSE

was integrated by truncating the cumulants at second order.
oz(T)
dl(T)e' (17) for these values of the actions, the trajectories obtained by
solving these equations are a good approximation to the ex-

This process is repeated N times, wNk-, and the largest ¢t trajectories obtained by solving the full SSE.
Lyapunov exponent is then determined via. Ep).

When the magnitude of the spthand external actiot VI. SUMMARY
are larggthe regime of interest), the Hilbert space dimension '
of the coupled system grows and tracking the evolution of We have studied the conditions under which the measure-
the full quantum state becomes numerically intensive. Howment record of a continuously observed quantum system can
ever, we have shown in the previous section that the Gaus$aithfully reproduce the chaotic trajectories predicted by
ian approximation applies in this regime. We can thus uselassical mechanics. This represents a calculation for the
this approximation to efficiently propagate the quantum tra-case oftoupleddegrees of freedom—spin and motion—with
jectories and thus compute the Lyapunov exponent for largan undriven Hamiltonian whose classical dynamics can ex-
values of the spin and external action. As a technical asiddibit chaos. In the mixed quantum-classical regime, with
whenT is very small, the qguantum noise due to the measurelarge motional action and small spin, the continuous mea-
ment can mask the exponential divergence of the quantursurement cannot simultaneously satisfy the conditions of
trajectories. We can cancel this effect by ensuring that thetrong localization and weak noise, thereby making it impos-
noise realizationslW for the fiducial and quantum trajectory sible to observe “semiclassical chaos.” In the large spin limit,
are the same. both conditions for classicality can be simultaneously satis-

Figure 5(a)shows a distribution of the largest classical fied. We computed a Lyapunov exponent directly from the
Lyapunov exponent obtained from 500 fiducial trajectories ameasured quantum trajectories that agrees with the largest
an energy ofE=0.58F, with 1,/J=5 andc=200E,/J. The classical Lyapunov exponent, thus showing the quantitative
Lyapunov exponent, computed using 100 fiducial quantuntorrespondence of classical and quantum trajectories. We
trajectories withJ=2007%, Az=~45z, and k=w/8z; [Fig.  also obtained general conditions for recovering classical dy-
5(b)], show good agreement with the classical distributionnamics from the measurement trajectories by studying the
As discussed above, for numerical efficiency the quantunevolution of the covariance matrix. These measure the quan-
trajectories were propagated using the coupled equations féum coherence that is delocalized across phase space and
the means and second order cumulants. We have verified théitus cause differences between the quantum and classical

(Z'(M) =) +
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propagators. While we can solve for the covariance matrixas classical dynamics is recovered in the measured quantum
analytically in the integrable regime, for the chaotic case werajectories. As in a pure system entanglement is as good a
solved the problem numerically. measure of correlation as the covariance. it might be useful
Whereas coupled degrees on freedom can lead to chaostatstudy the approach to classicality in terms of this comple-
the classical level, at the quantum level nonseparable Hamilmentary variable instead. We plan to explore this possibility
tonians will generally lead to entanglement between the difin more detail in future work.
ferent subsystemghere motion and spin). Entanglement is
generally considered to bime feature which distinguishes
guantum states from their classical counterparts. It is thus
natural to explore how the entanglement in our system varies This work was supported by NSF Grant No. PHY-009569.
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