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Recovering classical dynamics from coupled quantum systems through continuous measurement

Shohini Ghose,* Paul Alsing, and Ivan Deutsch
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131

Tanmoy Bhattacharya, Salman Habib, and Kurt Jacobs
T-8 Theoretical Division, MS B285, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 9 August 2002; published 20 May 2003!

We study the role of continuous measurement in the quantum to classical transition for a system with
coupled internal~spin!and external~motional!degrees of freedom. Even when the measured motional degree
of freedom can be treated classically, entanglement between spin and motion causes strong measurement back
action on the quantum spin subsystem so that classical trajectories are not recovered in this mixed quantum-
classical regime. The measurement can extract localized quantum trajectories that behave classically only when
the internal action also becomes large relative to\.

DOI: 10.1103/PhysRevA.67.052102 PACS number~s!: 03.65.Ta, 03.65.Yz, 03.65.Sq, 05.45.Mt

Quantum and classical mechanics offer differing predic-
tions for the dynamics of a closed system specified by a
given Hamiltonian. In recent years, it has been widely appre-
ciated that emergent classical behavior can result when a
quantum system is weakly coupled to an environment. Two
levels of description have been used to discuss this behavior.
The first utilizes the decoherence resulting from tracing over
the environment to suppress quantum interference. In many
circumstances this can lead to an effectively classical evolu-
tion of a phase-space distribution function@1#. A more fine-
grained description is achieved when the environment is
taken to be a meter that is continuously monitored, leading to
a ‘‘quantum trajectory unraveling’’ of the system density op-
erator conditioned on the measurement record@2#. If one
averages over all possible measurement results, the descrip-
tion reverts to that at the level of phase-space distributions.

The quantum trajectory approach is a powerful tool for
understanding and quantitatively identifying the quantum-
classical boundary@3,4#. Continuous measurement provides
information about the state of the system and thus localizes it
in phase space. These localized trajectories have added quan-
tum noise, however, due to quantum measurement back ac-
tion. Therefore, in order to recover the desired classical tra-
jectories, the system must be in a regime where the
measurement causes strong localization but weak noise. The
conditions for which both constraints are satisfied determine
a system action scale for which classical dynamics can be
observed in trajectories@4#. The trajectory approach provides
a description of experiments@5# where a single quantum sys-
tem is continuously monitored, thus enabling the study of
quantum back action and the transition to classical dynamics
in such systems. Continuous measurement records can also
be employed in real-time feedback loops opening up an ad-
ditional regime of quantum control@6#.

Reference@4# dealt with measured systems with one mo-
tional degree of freedom. As the number of dynamical vari-
ables is enlarged, analyzing the quantum-classical transition
becomes significantly more complex. Multiple coupled de-

grees of freedom can possess widely varying characteristic
actions. Continuous measurement may be performed on any
subset of the system variables with differing effects of quan-
tum back action. Finally, the quantum state of the coupled
system can become highly entangled so that the quantum
back action can be nontrivially distributed among the various
subsystems.

We present here the effect of continuous measurement on
the dynamics of a particle with coupled spin and motional
degrees of freedom. Numerical and analytical results demon-
strate that, even if the position measurement satisfies the in-
equalities required for classical behavior, its entanglement
with a quantum spin can still result in large measurement
back action. Such a mixed quantum-classical description of
systems with two coupled degrees of freedom is relevant in a
variety of settings, including the Born-Oppenheimer descrip-
tion of molecules, polaron dynamics in condensed matter@7#,
and the transport of ultracold atoms in magneto-optic traps
@8#. The last case is an experimentally clean system in which
state preparation, manipulation, and measurement have been
demonstrated@8,9#. The coupling between the motion of the
atom in the lattice and its internal spin dynamics leads to
entanglement at the quantum level and chaos in the classical
description@10#. Although not restricted to this system, our
analysis here is motivated by these experiments.

We take as our model Hamiltonian

H5
p2

2m
1

1

2
mvz21bzJz , ~1!

which describes a harmonic oscillator with massm and an-
gular frequencyv with an additional spin- (Jz)-dependent
constant forcebJz , that can be interpreted as arising from a
magnetic field with uniform gradient. This is none other than
a Stern-Gerlach Hamiltonian, but with an additional trapping
potential. The Hamiltonian also approximates a single lattice
site of a one-dimensional~1D! ‘‘lin-angle-lin’’ optical lattice
for trapping ultracold neutral atoms@8#, wherez andp are the
center-of-mass position and the momentum of the atom. The
spin Jz is a constant of motion and determines the effective
potential experienced by the center-of-mass motion: in the
quantum case, eigenstates withJz5MJ experience a har-
monic well centered at (MJ /uJu)Dz with Dz[2buJu/mv2.*Electronic address: sghose1@unm.edu
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The classical description generated by this Hamiltonian is
that of a magnetic moment moving in a spatially inhomoge-
neous magnetic field while trapped in a harmonic well. Here
we answer the question—when does the continuous quantum
measurement record follow the trajectory predicted by the
classical Hamilton equations? The measured signal can be
viewed as a ‘‘mean’’ that is proportional to the expectation
value of a quantum operator and a component that is well
described as a white-noise process. An example of a mea-
surement record is the photocurrent registered by the detector
of a probe laser beam.

Assuming perfect measurement efficiency, the evolution
of the system conditioned on a noisy record of the atom’s
position, ^z&1(8k)21/2dW/dt, may be studied using a sto-
chastic Schro¨dinger equation@11#,

duc̃&5H S 1

i\
H2kz2Ddt1~4k^z&dt1A2kdW!zJ uc̃&,

~2!

where uc̃& denotes an unnormalized quantum state,k is the
‘‘measurement strength,’’ anddW describes a Wiener noise
process. Rewriting Eq.~2! in terms of positive operator val-
ued measures@12#, we can evolve this equation numerically
using a Milstein algorithm for the stochastic term. We pick as
our initial condition a product of minimum-uncertainty co-
herent states in position and spin, and compare to the classi-
cal trajectories initialized with the same mean values of
position, momentum, and spin direction; we choose the ini-
tial spin coherent state in thex direction. We fix b
52mv2Dz/J with Dz'22zg wherezg is the ground state
root-mean-square~rms! width of the wells. We choose the
action I, associated with the motion in the well, to beI
'1000\and a measurement strengthk5v/20zg

2 sufficient to
observe classical dynamics of the positional degree of free-
dom uncoupled from the spin subsystem@4#.

Consider first the behavior for the smallest spin system,
J51/2. We see in Fig. 1~a!that the quantum trajectory
quickly diverges from the classical trajectory. This can be
understood by noting that the initial quantum state pointing
in the x direction is an equal superposition of spin-up and
spin-down states that move along the wells centered atz↑
52Dz andz↓5Dz, respectively@Figs. 2~a!and 2~b!#. The
two spin components of the initial spatially localized wave
packet thus separate into a left and a right wave packet, so
that the total wave function evolves into an entangled Bell-
like state,uc(t)&5ufL&u↑&1ufR&u↓&, with ^fLufR& rapidly
decreasing from unity. As the two componentsfL and fR
experience different potentials, this splitting of the wave
packet is reflected in an initial rapid increase of the variance
in position of the wave function@outer solid curves in Fig.
1~a!#. Eventually, these components become resolvable be-
yond measurement errors, and the measurement collapses the
wave function into one of the wells. In contrast, the classical
dynamics predicts that the spin precesses freely and the par-
ticle experiences the average of the ‘‘left’’ and ‘‘right’’ po-
tentials.

Because the Hamiltonian under consideration islinear,
the distinct behavior of the quantum and classical dynamics

arisessolely from the choice of initial condition. Indeed, if
we choose an initial statistical mixture with equal probability
to have the magnetic moment aligned and antialigned along
z, the classical evolution produces the same probability dis-
tribution of thez component of the spin as that associated
with the spin-1/2 quantum particle initially polarized alongx.
For an initial coherent state, however, no classical distribu-
tion can match all observables. The particular choice of ini-

FIG. 1. Mean position of the measured system~solid! for differ-
ent values of spin withDz'22zg , I'1000\, k5v/20zg

2. Outer
solid curves show the variance of the wave function. AsJ gets
larger the mean position approaches the classical~dotted!trajectory.

FIG. 2. The spin-up and spin-down components of a spin-1/2
wave function move along two different potential wells~a!, ~b!. For
J@1/2, the spin components of the wave function evolve along
2J11 different potentials~c!. Histograms for the populations in
eachmz state for a spin-coherent state in thex direction ~d! show
that asJ gets larger the population becomes peaked around themz

50 state. The position is thus more likely to localize the wave
function in the central~classical!potential well.
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tial condition described above matches the distribution ofJz
at the expense of the other components of the spin. If the
system is generalized by adding a transverse magnetic field,
so that thex and y components affect the dynamics, these
initial conditions will also fail to reproduce the quantum be-
havior.

With these factors in mind, in this study, we have generi-
cally chosen to match the initial mean values of position,
momentum, and spin direction. The spin-coherent state in the
x direction, having a nonzero variance inJz , differs dramati-
cally from the classical state with mean moment alongx.
This difference affects the evolution of the mean values in
the measurement record in a profound way, as we saw above.

Unlike the spin-1/2 case, for a largeJ, an initial spin-
coherent state in thex direction is no longer a superposition
solely of spin-up and spin-down states in theJz basis, but
rather a distribution over all 2J11MJ states, peaked atMJ
50. Just as in the spin-1/2 case, an initially localized wave
function will spread out in space as the different spinor com-
ponents move along the different potentials centered atzMJ

52(MJ /J)Dz @Figs. 2~c!and 2~d!#. However, asJ becomes
larger, the population distribution becomes more peaked at
theMJ50 state and the potentials experienced by the differ-
ent components are more similar. Most of the population
moves along potentials centered nearz050, which are close
to the classical potential. The measurement is thus more
likely to localize the atom around the classical potential and
damp out the tails of the wave function that spread out over
the outermost potentials. The key point is that position mea-
surement no longer results in a strongly projective spin mea-
surement, and therefore the weak-noise condition can be met
along with the strong localization condition.

We can determine analytically the scale ofJ for which the
weak-noise and strong-localization conditions are satisfied
by generalizing the approach in Ref.@4#. The stochastic
equations of motion for the mean position and momentum
follow from Eq. ~2!,

d^z&5
^p&
m

dt1A8kCzzdW,

d^p&52mv2^z&dt2b^Jz&dt1A8kCzpdW, ~3!

d^Jz&5A8kCzJz
dW,

where Cab5(^ab&1^ba&)/22^a&^b& are the symmetrized
covariances. We have not included here thex andy compo-
nents of the angular momentum since the position and mo-
mentum equations depend only onJz . Because our system is
linear, these equations are the same as those for a classical
stochastic process. Nevertheless, because in ourinitial con-
dition the variances and higher moments of the quantum
state do not agree with the classical ones, the quantum ex-
pectation values will not, in general, follow the classical tra-
jectories. A measurement will be a faithful record of the clas-
sical equation only when the covariance matrix elements
remain small at all times relative to the allowed phase space
of the dynamics.

To determine the evolution of the cumulants, we truncate
the hierarchy of coupled cumulant equations, and neglect
third and higher cumulants since these remain small asJ
becomes large. Even under this approximation, although ana-
lytical solutions for the second cumulantsC(t) can be found
as solutions to a matrix Riccati equation@13#, they are in
general not simple functions of the system parameters. Nu-
merical studies show that the upper bounds on the magnitude
of C(t) decrease asJ is increased, as expected. Figure 3
shows a typical plot ofC(t) with J525\ andI'1000\. For
this value ofJ, the maximum variance in the measured po-
sition is already smaller than the allowed phase space of the
dynamics@Fig. 1~c!#by a factor of about 50.

Our numerical and analytical results show that classical
dynamics is recovered in this coupled system only when the
actions of both subsystems become large relative to\. When
one subsystem lies in the quantum regime, even a weak mea-
surement of the classical subsystem eventually results in a
strongly projective measurement of the quantum subsystem,
thus preventing the recovery of classical behavior. The dy-
namics of such coupled systems has previously been ap-
proximated in other contexts using a mixed quantum-
classical description@14#, where the classical subsystem
variables are described byc numbers while the quantum sub-
system variables are treated as quantum mechanical opera-
tors. In particular, the work by Schanz and Esser@14# treats
exactly the same model Hamilton as we consider here, but
with the addition of a transverse magnetic field. Such a de-
scription results in equations of motion for the means that
can lead to chaotic dynamics. However, in the absence of an
appropriate separation of time scales, the prediction of chaos
arising from such a mixed quantum-classical description has
been shown to fail@15#. Here we find that even in a regular
nonchaotic regime, for open systems, this mixed quantum-
classical description will have limited validity since it does
not take into account the effect of measurement back action
when the system is actually observed. While the Hamilton
and Heisenberg equations of motion will certainly agree in
the ensemble mean, variances will be quite large so that the
measured individual quantum trajectories will diverge
strongly from the mean. The same argument should hold for
open systems in the chaotic regime.

Beyond the behavior of the observables of each marginal
subsystem~internal and external!, entanglement in the whole
system characterizes the quantum to classical transition. In

FIG. 3. Solutions ofC(t) for J525\ andDz, I andk chosen to
be the same as in Fig. 1:~a! variancesCzz/zg

2 ~solid!, Cpp /pg
2 ~dot-

ted!, andCJzJz
/\2 ~dash-dotted!; and~b! covariancesCzp /zgpg

~solid!, CzJz
/\zg ~dotted!, andCpJz

/\pg ~dash-dotted!.
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the spin-1/2 case we have seen that the state can develop
nearly maximal entanglement, when the spin-up and spin-
down wave packets become spatially resolved. For larger
values ofJ, the evolution never results in such resolution,
and hence the entanglement, which is determined by the
overlap between the different spinor components of the wave
function, also decreases asJ increases. For pure bipartite
systems, a measure of the entanglement is given by the von
Neumann entropy of the marginal density matrixr̃ for either
subsystem,E52Tr( r̃ ln r̃). The degree of entanglement
generated in stochastic dynamics can be compared for differ-
ent values ofJ by calculating the normalized valueẼmax
5Emax/E0, where Emax is the maximum entropy achieved
during the monitored evolution andE0 is the maximum

possible entropy for the chosen initial state. We find that
Ẽmax falls off with increasingJ as expected, and with a 1/AJ
dependence for largeJ. These results raise intriguing ques-
tions about the role of entanglement between subsystems in
the transition to classical behavior.

In future work we hope to investigate these issues further.
Our model Hamiltonian becomes nonintegrable when an ad-
ditional magnetic field in thex direction is applied. We pro-
pose to generalize our results to this nonintegrable regime
and study the emergence of classical chaos through continu-
ous measurement and decoherence.

We thank Poul Jessen and Daniel Steck for helpful dis-
cussions. S.G., P.M.A., and I.H.D. were supported under
NSF Grant No. PHY-009569.
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