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Phase locking between Fiske and flux-flow modes in coupled sine-Gordon systems

Niels Grinbech-Jensen
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

James A. Blackburn
Department of Physics and Computing, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5

Mogens R. Samuelsen
Physics Department, The Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 7 December 1995

We investigate nonlinear resonant modes in coupled sine-Gordon systems with open boundary conditions.
The system models coupled Josephson junctions with boundary conditions representing the situation where an
external magnetic field is applied. The so-called Fiske modes are found to exist in phase-locked states where
the equivalent voltages across the individual coupled Josephson junctions are either identical or identical with
opposite signs. The analysis covers all Fiske modes including the flux-flow region. We present a comprehen-
sive comparison between results on analytical treatment and direct numerical simulations of the coupled field
equations[S0163-1829(96)05718-9]

[. INTRODUCTION with the kink soliton solutions. As a result, the important
details of multiple Fiske resonances are not considered in
Inductively coupled pairs of long Josephson junctionsthose treatments.

have been extensively investigated based on the experimen- In this paper we generalize the Kulik thedty?° to in-
tal geometries and coupling mechanisms suggested in Refslude phase-locked states between two inductively and/or ca-
1-6. The coupled system exhibits two different characteristipacitively coupled systems with aiding or opposing bias.
velocities for the linedr and the nonlinearrelativisticY®  This method describes the nonlinear modes as small resonant
modes, and this feature has led to several interesting obsquerturbations to a linear background. The advantage of this
vations such as phase locking between various modes in thapproach is that all the Fiskécavity) resonances are
coupled system$’~13power emissions exceeding the super-represented—including the flux flow regime—as results of
radiant limit1%14*5and stability of energetically unfavorable the damping, bias, and boundary conditions, and we can
bound states of fluxon modé<® Most theoretical analyses therefore obtain a reasonably good understanding of the
based on coupled and perturbed sine-Gordon systems hagemplicated dynamics of phase-locked excitations in
been done for the single solitdfiuxon) solutions, represent- coupled Josephson systems in external magnetic fields.
ing the zero-field dynamics of a trapped magnetic flux quan- The reality of the fabrication process implies that any
tum in each junction. However, other interesting modes arsample of Josephson junctions is characterized by a distribu-
relevant for this system. In particular, the so-called Fiske andion of system parameters. As a consequence it is never as-
flux-flow modest’~?*arising when the system is placed in a sured that two devices will respond with, e.g., the same fre-
magnetic field which is in the plane of the barrier and per-quency to the same external perturbation. Even if the
pendicular to the long axis of the junction, are extremelysystems are coupled, certain conditions must be satisfied be-
stable and therefore  useful in  experimentalfore some form of synchronization can be obtained. The aim
configurations?-1225-39These modes are characterized byof this paper is to investigate the question of when the ex-
resonances at the linear cavity frequencies and appear wheerimentally relevant Fiske modes can be expected to syn-
the junctions are embedded in an external magnetic field. Ahronize in a pair of coupled Josephson junctideme-
subset of the Fiske resonances are called flux flow when th€ordon systems). For simplicity we have decided to
normalized frequencyoltage)is near the normalized exter- represent any difference between the two systems as a dif-
nal magnetic fieldsee below). We note that previous theo- ference between their bias conditions. Thus, the coupled sys-
retical work has been published on flux-flow configurationstems are modeled as being identical except for their indi-
in coupled systeni$ as well as in single junctions, applying vidual bias. We note that differences in other parameters can
a moving kink soliton train solution as basis for the analysis easily be included in the analysibut we have here decided
However, such an ansatz gives rise to a single resondmee to simplify the expressions by limiting the parameter space.
asymptotic propagation velocityn the current-voltage char- In Sec. Il we develop the analysis which gives explicit pre-
acteristics and it can therefore not adequately describe thdictions for the existence of phase-locked states between any
Fiske resonances within the flux-flow regime. The difficulty two Fiske (or flux-flow) modes in the two systems. Section
originates near the boundaries of the system, where, e.g., thi includes comparisons between the predictions and nu-
injection process of a fluxon into the system, while keepingmerical simulations of the coupled sine-Gordon model. Sec-
the boundary magnetic field constant, is incommensuratéon IV discusses the results and concludes the paper.
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IIl. PERTURBATION ANALYSIS 7+ 7,
= y 9
We investigate the configuration of two parallel coupled s 2 ©
long Josephson junctioris,
_ M2 (10)
bxx— Pu—SIN=ady— 71— Ahy— Doty ) T
Yx— Yo — SINY= aihy— 72— A1 hyy— Aoy, (20  and the appropriate boundary conditions are given by
where the boundary conditions for a stacked configuration uX(O)zux(L)=(1+Al)*1f=F, (11)
are given byl
_ vx(0)=v4(L)=0. (12)
0)=y(L)=(1+A,) =T, 3
(0=l L) =( v ® We will now focus our attention to phase-locked Fiske
B 0)= (L) =(1+ A )*1'1:—1“ 4) (and flux flow solutions of equation$l) and (2). The fol-
X - ¥Px - 1 -4

lowing treatment is further limited to the cases where the

In this model¢ and ¢ describe the phase differences of the phasesp and ¢ evolve according to

macroscopic superconducting quantum-mechanical wave

functions measured across each of the two junctions. The fL¢ dx)|= JLde

spatial coordinatex, is normalized to the characteristic Jo- 0o 0!

sephson lengthy =~ V#/2eduol ., and the normalized length where( ) indicates temporal averaging. This is the simplest
of a number of possible definitions of locking, but other
Yases of phase-locked dynamics can be obtained using the

of the systems is given bly. The temporal dimension, is
normalized to the inverse Josephson plasma frequenc
wy '~ hel2et,l.. Here, the permeability is given by, : :
o o . same formalism as presented below. Following the approach
the permittivity bye, and f[he c_rltlcal current denfslty '%' in Refs. 18, 19, 33, and 34, where the Fiske modes in a
The electric and magnetic thicknesses of the junction argj, e junction were treated, we apply trial functions for the
given by the insulating layet, andd=2\A +t,, N\, being coupled system of the form
the magnetic penetration depth of the superconductors. Tun-
neling of super current is represented by the sine terms, qua- *
siparticle tunneling is specified by the dissipation parameter ¢= ¢+ I'X+ wt+ E (Apcoswt + B, Sinwt) cosk,X,
a, and the normalized bias currents forced through the junc- m=0
tions aren, and n,, respectively. The coupling mechanisms (13)
are given by the parametera; (inductivef* and A, w
(capacitive). The normalized external magnetic field, which Y=o+ Ix+owt+ X, (C,cosmt+ D, Sinwt)cosk,x,
is in the plane of each junction and perpendicular to their m=0
long axes, is given by'. (14)
We note that for the “side by side” geometry of junctions where ¢, and i, are constantsk,=m=/L, and o= +1
described in Refs. 4 and 5 the boundary conditions are determines the Sign of the frequen(‘norma"zed Vo|tage)_
These trial functions assume monochromatic and near-linear

¢x(0)=hy(L)=(1—Ay) 'T=T, behavior of the phases with no frequency mixing to higher
= harmonics through the nonlinear terms. Clearly, these are
— i (0)=—¢(L)=(1-A,) T=T. severe assumptions which limit the validity of the resulting

predictions, but, as we shall see, we find fairly close agree-
ment between our perturbation analysis and full numerical
ysimulations of the phase equations.
The above ansatz reads for the equivalent system,(Eps.
and(8),

However, in the following we will only consider the bound-
ary conditions given by Eq$3) and(4), since the analysis,
numerical simulations, and results are qualitatively ver
similar to the treatment below.

In place of Egs.(1)-(4) we can rewrite the dynamical
equations in terms of the phase variablesindv, given by

1+o -
u=ug+I'x+ TmeE:o

_|_
u= y, (5)
A,+Cp Bn+Dp .
coswt + smwt)cosknx, (15)
_ 2 2
b=y
V=, (6)

l-o -
V=vgt —F—ot+ E

in which case the dynamical equations are 2 m=0

A.—C B.,.—D
MM coswt+ m2 m

whereug=(¢g+ yo)/2 andv o= (Po— to)/2. Inserting these
The new bias parameters are: into Egs.(7) and (8), multiplying the equations by cosk

(1+A) Uy (1= As)uy—Sinu cow = au,— 775, (7)

sinm)coskﬂx, (16)
(1=A vy~ (1 +Ay)vy—Siv cosu=avi— 4. (8)
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integrating the spatial dimension, and maintaining only term®scillating at w the following two equations from which
of up to first order iMA,, B,,, C,,, andD,,, yields for terms A, B,,, C,, andD,, can be extracted:

2 n no_. +Ch Bn"’Dn
2w — 1 COsw sinwt |+ aw sinwt— cosw
[(1—A,)w?—(1+A )k] t+ t]+ t t
1-0 2) 1+o
=cog ——wt+ug Z2(TL) co —5—ot+ug| - (L) sin —wt+u0 (17)
) ,.[A—C, B,—D, A,—C, B,—D,
[(1+Ay)w—(1—Apky] 5 coswt+ 5 Sinwt |+ aw 5 Sinwt— 5 Coswt
(1-0c 1) 1+o 2 [1+o
=sin — wt+uvg|| Z,”(I'L) co TmtJruO +Z,7(T'L) sin > wt+Ug (18)
|
wherez()(T'L) andz{®(T'L) are given by the two extreme caseg,= s and = — i.

In the following we will, for simplicity, consider the cases
of unidirectional @=1) and antidirectional ¢=—1)

2 L
(1) -
Zn (TL)= L(1+ 60 fo cosIx coskxdx propagation separately.
— Ngj
= 1iF5L (:.]W;LZ)_S(I?IS;Z' (19) A. o=1
no This case implies that the normalized voltage drops (
@ 2 L and w,),
z(I'L)= U1+—Mfo cosIX sink,xdx . }
_2I'L 1—(—1)"cosIL 20 w1=[<f0 </>th>,
" 146, (nm)?2—(TL)?" (20)
and wheres,,, ;=1 for m=n and &,,,=0 for m#n. From P jLde
Egs. (17) and (18) can then be extracted the coefficients, 2L t ’

A,, B,, C,, andD,. Note that unlike the case of kink

solitons, where good trial functions can be generated only foof the two systems must be identical. Since there is no ac
the extreme cases a@f= and ¢=— ¢ (see, e.g., Ref.)9  drive on the system we can choose to omit one of the con-
we can here find a useful approximate solutiondbrphase  stant phases. In this case we choose to elimingteom the
differences between the two phases. This is essential whesalculations, since holds the time difference between the
finding the locking range at a given frequency, since thidocked Fiske modes. We then find the amplitudes of the in-
range is determined by the dynamics of the modesveen duced resonances from Ed47) and(18) to be

A,+C, Z(Z)(FL)[(l A,)w? —(1+A1)k]+z (FL)

2 [(1—Ay)w?— (1+ A1)k +( Cow, (21)
Bo+Dp_ Zy'(FL[(1-Az)w~ (1+AyKi]-ZP(TL)aw
2 [(1—Ay) 02— (1+A)K2]?+ (aw)? oo, (22)
A,—C, ZO(TL)[(1+A)w?—(1-A)K]-Z2(TL)aw
= sivg, (23)

2 [(1+A)0°— (1-ADKS 2+ (aw)?

B,—Dn_ —Z¥(TL)[(1+85)0°~ (1-Apki]-ZP (ML) aw
2 - [(1+A2)w2_(1_Al)k§]2+(aw)2 Sl g. (24)
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The corresponding dc component of the dynamics is then A +C,
found by inserting Eqs(15), (16), and(21)-(24) into Eq. 2
(7). We are then able to evaluate the normalized dc current-

voltage [ 7@ (I-V)] characteristics of the coupled and (1-Ay)w?—(1+A,)K?

locked system as X[(1_A2)w2_(1+A1)k§]2+(aw)z’

=[Z(T'L) cosy+ZP(T'L) sinug]

(27)
B +1 “ (TL/2)? sif[(TL—nm)/2] B,+D, @ o .
Ns=aw 20~ [(FL+n7T)/2]2[(FL_n7T)/2]2 2 :_[Zn (FL) COSLb"’Zn (FL) SanO]
% aw
" aw sirfvg [(1—-Ay)) w?— (1+AK2]P+ (aw)?’
[(1+45) 0~ (1-Apk*+(aw)? (28)
. aw cogv, 25) A_C
[(1-A2)0°— (1+ A K+ (aw)?| S =[Z(I'L) costy—ZP(T'L) sinu]
This expression is valid when the second term on the right- % aw
hand side is relatively small, i.e., when the locked Fiske [(1+A)0°— (1-ADK2P+ (aw)?’
steps are small or are on the parts of the I-V curve close to (29)
the Ohmic line. The internal phaseg, determines if the
mode consists of two identical Fiske modag,€0), two B D
opposite (o= /2), or a mixture of the two extreme cases. n_“n_ ZO(TL) cost—Z2(TL) si
As can be seen from Eq25) the two extreme cases have 2 (25 (L) costy=Zy™(T'L) sinug]
their resonances at different frequencies, which is equivalent 2 2
to the split velocities of kink solitons discussed in Refs. 7-9. o (AHa)eT—(1- Ak
The internal phase can be controlled by the external bias [(1+A)0°— (1-A DK+ (aw)?’
currents, since the difference in bias currents can be shown (30)

to have the following relationship with the internal phase

[this is Sjone by inserting Eq¢15), (16), and(21)-(24)into A5 pefore the dc component of the dynamics can be found by
Eq. (8)]: inserting Eqs(15), (16), and(27)—(30) into the same equa-
tions, (7) and (8). The difference in biasypy, is now the

o - parameter giving the structure of the dc behavior, and the
1 (T'L/2)%sir?[(T'L—nm)/2]

i - sum of the biasesys, gives the range of locking as well as
T S'”(2“°)4n:2w [(TL+nm) 2] (TL—nm)/2]2 the constant phase,
, , - 1 & (TLR)?sirf[(TL—nm)/2]
« (1+A42) 0"~ (1-Av)k T a0t 5 L ETLnm 22Tl —nm)2]2
[(1+A5)0?— (1-Apkp]*+ (aw)?
(1-Ay)w2—(1+A,)K>2 " aw sin[Uy+n(m/2)]
T [(1-Ap) 0’ — 1+ A DK+ (aw)?| (26) [(1+A,) 0= (1-ADKF*+(aw)?
aw coF[Ug+n(m/2)]

This relationship also gives the limits to the difference in dc * [(1- Ay 0?— (1+ADKP+ (aw)?]’ (31)
bias for which the locked states of Fiske modes can exist.
Varyinguv from — 7/4 to 7/4 requires the difference in bias, 1"

14, t0 vary between its extreme values which can easily be = sin(2Ta)= — 1"
obtained from Eq(26). 7= SIN 0)4n=§;w (=1

(T'L/2)? sirf[(I'L—nm)/2]
B.o=-1 “TTLnm) 2P[(TL—nm)/2]2

_ When the two systems are biased_ with for_ces _of opposite (1+A2)w2—(1—A1)k§
signs, the two phase#&, and ¢, evolve in opposite directions > > 5
as well (w;=—w,). In this case we can therefore choose to [(1+A2) 0= (1-Apky]™+ (aw)
omit v, from the calculations since this phase does not con- _ 2 (14 2
tain important information about the locked state. We then (174"~ (1+ Ak (32)

find the counter pairs of Eq§21)—(24) for this case: C[(1- A= (1+A K2+ (aw)?)’
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wherely=ug+I'L/2. As in the above case, we can extract¢p= (v,=0) and the one indicated by RS’ is the

the locking range by varying, between— /4 andm/4 and  v,==/2 mode where¢,~—i,. Thus, as can be seen

observe the extreme values of E§2). from Egs. (25) and (31), the usual Fiske resonance at
It is important to notice that both pairs of expressions Eqsw:kn is now split into two resonances at

(25) and(26) and(31) and(32) are, under the given approxi- ,,— J@=A)/(1FA,)k,. Note that only for thevy=0,

mations, valid forall Fiske modedall n), including the so-  ;_1 "and; =0 modes can we rescale the Fiske steps to the

uncoupled ones described in Ref. 33. Due to the boundary

noting t.hat the above expressions prgdlct the situation W.her(?onditions a direct scaling cannot be made in any other case.
an unbiased system can be “pulled” into frequency locking

o ' . . -~ YFigure 1(ajillustrates the good comparison between the pre-
ggr:tisst;fjsg fgiiglzrg;j.erl?tizdf:l?ﬂ?e'r:ﬁ] ﬁgr(r:sct)i?]?;. t-lr—gts tﬁguadicted split Fiske resonances and the numeripal result§ when
above expressions Eqe31) and (32) also predict that an f[he two systems are biased e_qually. As the difference in b!as
unbiased system| ¢ =|74) can be driven into a mode is mcreasgd, Whlle. the sum is kgpt const.ant, the dynamics
where changes since the internal phasgis determined byyy [see

Eq. (26)]. Figure 1b) shows thel-V curve for the extreme

L L value of 5y, where the two Fiske modes unlock and
f ¢ dx)=— f Y dXx) .
0 0

|vo|=m/4, while Fig. Xc) shows the maximum value of
nq for which the system stays in a locked state of Fiske
modes. Here, the solid curve represents the maximum value
of expression Eq(26) (for vy=7/4) and the dots represent
We have performed direct numerical simulations of thenumerical simulations. The dots are displayed as pairs,
coupled phase equations using an explicit second-order finitwhere the lower is a value ofy in a locked state and the
difference Verlet-type integrator in time and space for theupper is a value of an unlocked state. The agreement be-
system given by Eqg.7) and(8). The spatial and temporal tween our analysissee Eqs(25) and(26)]and the numerical
discretizationsdt=<dx, were varied up tdx=0.05 in order results is very good, as is obvious from Fig. 1(c).
to ensure sufficient resolution of the modes in time and |n Fig. 2 we have shown the same comparison for the
space. For a single sine-Gordon system, stability of the Vergz—= —1 modes. In this case we keep constant and vary
let integrator requiredt<dx, while[due to the characteris- 75 from 0 until the system unlocks. We find almost the same
tic velocity, u=y(1+A,)/(1—A)] the coupled system re- |ocking range, and the simulations are in as good agreement
quiresdt<<dx. All simulations were performed by allowing it the prediction as in the case of=1 shown in Fig. 1.
a transient time of the dynamics to be at least 4000 normaIUSing the fluxon picture for the flux-flow mode, this means

ized time units followed by an equal averaging time for eachy, 5t phase-locking between two fluxon arrays is achieved as
a_cqwred number. Given t.h.e large parameter space, we ha%%sily when they move in the opposite direction as when
fixed the boundary condition df =9.5. We have further

e . ) ) . they move in the same direction—and the two locking phe-
limited our comparisons to the case of inductive coupling y gp

) . nomena are described by the same mechanism. In Fig. 3 are
A, (A,=0). This has been done for two reasons. First, mag- . )

) ; . . -2shown examples of comparisons in the parts of the parameter
netic coupling has been considered the important mechanisim

for Josephson systemdn Ref. 8 it was found that the small space where the first F'Ske steEs1) are IO_CaI'ZeQ' We
amplitude limit of the capacitively coupled system is equiva-"2ve here chosen to display the comparison in locking-range
lent to coupled nonlinear Schiinger equations modeling ©NlY- Figure 3(ajshows the case'=1, and Fig. 3(bshows
coupled optical fiber®®) Second, other publications, e.g., ©= —1. Reasonably good agreement between analysis and
Ref. 9, have demonstrated that comparisons between pertiimulations is again apparent, although the #$Imodes
bation analyses and numerical simulations for the capacitivBave weaker locking than predicted. Figurds)3and 3(d)
coupling behave with the same reliability as for the inductiveshow the same system, but fag=0.2. Here we find better
coupling. agreement than in Figs. 3(ahd 3(b). The reason for this is,
The quantities we have decided to compare are the lockef course, the relatively primitive analysis given in Sec. Il.
ing ranges between the two systems with nonequal biasé&henA; is small, F&(") and FSA~) are closely positioned
and we therefore started the systems in a given Fiske moden the frequency scale. Depending on the dissipation param-
with equal {#5,|=]7,|) bias. We then increased the differ- eter, the two resonances will mix through the nonlinearity of
ence betweefy,| and|#,| in small increments, while keep- the system and deviations from the single-mode analysis
ing the average of#n,| and|#,| constant. The individual given above may be expected. For moderately large coupling
average frequencies were monitored during this procedure toonstants this becomes less of a problem as the splitting
determine if the coupled systems were phase locked or notetween the characteristic velocities becomes larger. How-
In Fig. 1 we have shown theV curves for a system with ever, if the coupling is large enough for, e.g., £S2to be
parametersL=2, «=0.1, andA;=0.1. The curves are close to FS{"), this problem arises again. These are there-
shown near the flux-flow modes, which in this case are théore important considerations when designing coupled Jo-
Fiske modes centered arounc= 6. Figure 1(a)shows the sephson systems with optimized locking capabilities.
I-V curves forys= 7= 7, (0=1) with solid curves repre- Yet another important observation is that the locking
senting the expressions B@6) for vy=0 andvy= /2. The range seems to saturate with increasing coupling. The lock-
dots (@) represent the results of the numerical simulationsing range forA;=0.2 is of the same magnitude as for
The mode indicated with F&") is thenth Fiske step where A;=0.1. It is therefore not necessarily desirable with respect

Ill. NUMERICAL SIMULATIONS
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FIG. 1. Normalized current-voltage characteristics and locking FIG. 2. Normalized current-voltage characteristics and locking
ranges for the system given by Eq&)-(4) with parameters: ranges for the system given by Eqd)-(4) with parameters:
L=2,=9.5a=0.1,A,=0.1, A,=0, ando=1. Lines represent L=2,I'=9.5,a=0.1,A;=0.1, A,=0, ando=—1. Lines repre-
the result of the analysis, E¢@5) and(26), and® shows the result ~ sent the result of the analysis, E¢31) and(32), and® shows the
of numerical simulations. The Fiske resonances are shown as vefesult of numerical simulations. The Fiske resonances are shown as

tical dashed lines(a) 7 vs w; 7¢=0, vo=0. (b) 75 Vs w; Maxi-  Vertical dashed lines(a) 74 Vs ®; 7s=0, Up=0. (b) 7q VS w;
mum 74 andvo= /4. (c) 74 VS w; The locking range is given by Maximum z¢ anduo= /4. (c) 77 VS ; The locking range is given
the maximum value of Eq(26) for v o= /4. by the maximum value of E¢32) for uy= /4.

to phase locking to simply increase the coupling between thgeneral trend seems to be that the “fast” modes$1™))
two systems. This is in agreement with the results for fluxorhave smaller locking ranges than predicted, whereas the slow
locking,”® where a moderate coupling parametar,£0.1)  modes(FS1™)) are given almost perfectly by the expres-
in many cases creates roughly the same locking range assions above. Still, we note that all qualitative features of the
larger coupling parameter. locking range and the order of magnitude seem to be well
In order to demonstrate the validity of the present analysisddressed by the above description of the dynamics. It
for longer systems, we have performed simulations forshould be pointed out that the analysis in this paper contains
L=10 as well. Figures 4 and 5 summarize the simulationsio information about the stability of the observed modes—
for the first Fiske step(FS1*)) for a system given by only about their existence. We can therefore not give general
a=0.1 andA;=0.1. The comparisons for tHeV curves for comments on when to expect the different branches on the
vo=0 (solid) and vy=7/2 (dashed)show reasonable, but |-V curves to be relevant. A comprehensive stability analysis
not perfect, agreement. In both Figfa®#(oc=1) and %a) was given in Ref. 9 for isolated kink solitons in coupled
(oc=—1) we observe a smaller deviation from the linearsystems. This analysis, using the profile of the soliton, led to
curves than predicted by the theory. This is in good agreethe conclusion that the fagslow) mode of kink solitons
ment with the assumptions built into the analysis. The correcould  never (only) be stable at velocities
sponding locking ranges between the Fiske modes are shown< 1—A,/{1+A,. Given the close relation between kink
in Figs. 4(b)and 5(b). As for theL=2 cases we find rela- solitons and Fiske modes, it might be expected that the same
tively good agreement between analysis and simulations. Avould be true for Fiske states. However, looking at Fig)4
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FIG. 3. The locking ranges in bias for a system giverLby2, '=9.5, «=0.1, andA,=0. The Fiske resonances are shown as vertical
dashed lines. Dots®) represent the results of numerical simulations of Efys-(4) and solid lines represent the results of the analysis, Eq.
(26) (6=1 andA;=0.1) (a), Eq.(32) (c=—1 andA;=0.1) (b), Eq.(26) (c=1 andA;=0.2) (c), Eq.(32) (6=—1 andA;=0.2) (d).
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FIG. 4. Normalized current-voltage characteristics and locking FIG. 5. Normalized current-voltage characteristics and locking
ranges for the system given by Eqg&)-(4) with parameters: ranges for the system given by Eqgd)—(4) with parameters:
L=10,I'=9.5,¢4=0.1,A,=0.1,A,=0, ando=1. Lines represent L=10,I"=9.5, «=0.1,A,;=0.1, A,=0, ando=—1. Lines repre-
the result of the analysis, Eq25) and(26), and® shows the result  sent the result of the analysis, E¢31) and(32), and® shows the
of numerical simulations. The Fiske resonances are shown as veresult of numerical simulations. The Fiske resonances are shown as
tical dashed lines(a) 7 Vs w; 74=0, v,=0. (b) 54 VS w; The  vertical dashed linesa) 54 Vs w; 7s=0, Uy=0. (b) 7 VS w;
locking range is given by the maximum value of E@6) for The locking range is given by the maximum value of E8§2)
vo= /4. for Ug= m/4.
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we find a large overlap in frequen¢ypeedbetween the two
branches of FS1. Thus, the stability information from kink 010
solitons cannot be extrapolated over to the Fiske and flux- 3'
flow modes discussed here. The analysis predicts the locking
range to be independent of which brarast or slow)the
dynamics is operated at; i.e., only the frequency determines
the locking range. Figure 4 also demonstrates this feature.
Indeed, for the frequency range of overlap between(F51 ;
and FS17) in Fig. 4a), we find the corresponding locking 0.00L
ranges in Fig. &) to be independent of which branch is
consideredFig. 4(b) has two sets of overlapping dots, rep-
resenting the phase-locking simulations of the two modes].
Finally, comparisons for the =10 case in the flux-flow
region are shown. The dynamical behavior turned out to be
extremely complicated in this case and we found mostly cha-
otic dynamics fora=0.1 when operating the system near
|o|=|T"|. This resulted in inherently unstable resonances
which have therefore been omitted in this the presentation.
The reason for the complicated behavior is a combination of :
proximity to the strong flux-flow resonance, whetel ~T", 0.001 : ']
and the length of the system. In fact, the system length de- 8 9 10 11
termines the frequency spacing between the fundamental
Fiske resonancesjw, = m/L, whereas the coupling deter-
mines the spacing between the split mode&,uA1

— /—1+A1— /—1—A1. Thus, a long system will create more FIG. 6. The locking ranges in bias for a system given by
interference and mixing between the split modes of different :#9)’F:9'5'_“:0'2' A1=0.1h, anda,=0. The Fiske resonances
Fiske resonances. Figure 6 indicates all the split Fiske res _gn(*), for n:2257:§3,6 are i own as Ve.rt'clald dor:teddl."nes Snd
nances in the flux-flow region. The indicated frequency re- ; for n= are shown as vertical dashed lines. Dots

N i _ (@) represent the results of numerical simulations of Efjs-(4)
gion includes(dotted) FSr{~) with n=27-36 and(dashed) S .

1) oo . . and solid lines represent the results of the analysis, &6)
FSr*) with n=25-33. The potential for very complicated , _ __
. : . X (0=1) (a), and Eq.(32) (o= —1) (b).

frequency mixing between various Fiske modes is clearly
seen. We have therefore damped the dynamics by increasing ) )
the dissipation parameter t®=0.2. Figure 6 shows com- duency. Very good agreement is found between the analysis
parisons between the analysis and simulations for the lockingnd numerical simulations of both short and long systems for
range in a System witlh. =10, «=0.2, andAl: 0.1. The oth the flux-flow and the low-order Fiske StepS. Apart from
results span several of the resonances, and excellent agrétescribing the coupled modes, and hereby understanding
ment is found between the analysis and the simulations foPhase locking between the various Fiske modes of equal and
both o=1 [Fig. 6(a)]Jand o= —1 [Fig. 6(b)]; even for this opposite bias and voltage, we have noted several useful fea-
very complicated case. The most significant difference betures for experimental systems. One of the most important
tween the simulated locking ranges and the analysis is that @servations is that phase locking seems to saturate with

slight frequency shift seems to be present in the figures. Thigioderate coupling, as was also found for phase locking be-
is, however, a minor detail, which is not surprising given thetween fluxon modes. The reason for the saturation seems to

severe approximations built into the analysis. be the interference between the various split Fiske reso-
nances in the coupled system. This interference gets worse
for longer systems since the frequency spacing between the
average of the Fiske resonances decreases with lebgth (
We have also noticed the dynamics becoming complicated as
We have analyzed a system of two inductively and cathe interference gets stronger. If phase locking between pe-
pacitively coupled sine-Gordon phases, which in the inducfiodic states of Fiske modes is the goal of inductively
tive case has been used as a model for magnetically coupledupled Josephson junctions, a large coupling parameter is
long Josephson junctions. Experimentally, the most fretherefore not necessarily the optimal situation. On the other
quently studied Fiske and flux-flow resonant®g?25%gc-  hand, we have also observed that a too weak coupling re-
cur when an external dc magnetic field is applied to the syssulted in complicated dynamics and locking ranges smaller
tem in order to force flux penetration through the boundarieshan predicted. The reason for this is closely related to the
of the junctions. The synchronized states have been observeliscussion above. For small coupling parameters we only see
experimentally and even the=—1 case, where the volt- the frequency mixing between the split resonances of the
ages of two Josephson junctions have opposite signs, hagame basic Fiske mode. Similarly, a shorter system is prob-
recently been observed experimentally in Ref. 12. We havebly to be preferred over a system of long junctions, since
developed a spatial multimode theory for the interaction ofthe Fiske resonances then will be well separated. These con-
two equal resonances and evaluated the range in bias diffesiderations should also include the damping parameter
ence for which these modes stay locked at the same fresince this determines the width of the resonances, and
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