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VOLUME 40, NUMBER 16
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Chaos in extended linear arrays of josephson weak links

M. A. H. Nerenberg and R. J. Spiteri
Department of Applied Mathematics, University of Western Ontario, London, Canada N6A 5B9

James A. Blackburn
Department of Physics and Computing, Wilfred Laurier University, Waterloo, Ontario, Canada N2L 3C5
(Received 6 July 1989)

Extended linear arrays of interacting Josephson weak links are studied by numerical simulation
using the resistively shunted junction model. The minimum coupling strength for chaotic behav-
ior is determined as a function of the number of links. This strength is found to diminish steadily
with increasing number, despite the inclusion of only nearest-neighbor interaction. The implica-
tions for Josephson technology are briefly discussed. Mathematically, the results are a confir-

mation of the Ruelle-Takens scenario for chaos.

I. INTRODUCTION

In a previous publication! the discovery in numerical
simulation of chaotic behavior was first reported for the
system of three noncapacitive weak links with nearest-
neighbor coupling. The links were biased by dc currents,
but no ac drive was applied. Two coupled links can have
chaotic oscillations but only if there is an ac drive as well.?
Mathematically these systems have the lowest possible di-
mension of phase space for which chaos can occur. In the
limit of zero coupling, the former is equivalent to three in-
dependent one-dimensional systems for which chaos is im-
possible. Chaos does not immediately occur upon cou-
pling the system arbitrarily weakly, rather a definite
threshold for chaos exists, below which the system exhibits
multiperiodic (quasiperiodic) motion. The threshold of
chaos for three weak links was found to be quite high, cor-
responding to fairly substantial interaction between pairs
of weak links.

The question we raise here is whether this threshold in
the coupling parameter would drop for larger systems,
thus rendering extended arrays of weak links, a technolog-
ical prospect, more prone to chaotic behavior with its con-
comitant equivalent high noise level. The general question
of whether chaos in extended arrays of coupled nonlinear
oscillators is increasingly likely with increasing number
may be of larger interest as such systems occur in many
biological realms.

II. THEORY

In the resistively shunted junction model the equation*
governing a linear array of N capacitance-free junctions is
do;

7 -Ri[ (I,' "Ic‘ sin¢,-)+a(1,-_1 —Ic,_‘simbi—n)

+alli+— I, sing;+1)], i=1,2,... ., N, (1)

where R; is the resistance of the ith junction, I, its critical
current, ¢; is the phase across it, I; is the dc bias current
through it, and ¢ is the normalized time.* Variables with
subscript 0 or V+1 are taken to be zero, consistent with
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the first and NVth junction being coupled to only one neigh-
bor. Equation (1) assumes nearest-neighbor coupling
only, with a characterizing the strength of that interaction
(assumed the same for all pairs), which could have its ori-
gin in quasiparticle diffusion between proximal junctions
or from intentional coupling in the circuit, e.g., shunting
resistors.? (All parameters are dimensionless, normalized
as in Ref. 4.)

A single junction, for I; > I, is an oscillator with its
own characteristic Josephson frequency. When coupled,
an array can behave coherently with all the junctions fre-
quency locked,* at least for suitable ranges of parameters.
This, like chaos, is a peculiarly nonlinear phenomenon.
For it to occur, a must be sufficiently large to cause junc-
tions with slightly different frequencies to pull each other
into mutual synchronization. For small a, this becomes
impossible if there is even moderate dispersion in the
Josephson frequencies of the various links. Multiperiodic
motion, in which there are up to N independent frequen-
cies, will occur instead.

Since the equations are periodic in each of the ¢,
geometrically the system follows a trajectory on an N-
torus. This path never closes, but ultimately covers the
entire torus provided that the frequencies are independent
(that is, if there is no rational relation amongst them). If
there are rational relations the trajectory will cover a
lower dimensional subspace. In the case of total frequen-
cy locking where there are N — 1 such relations, the tra-
jectory is a closed curve.

In summary, if we imagine a increasing from zero
where the system is equivalent to NV one-dimensional oscil-
lators, we would first expect to find multiperiodic behav-
ior, then for sufficiently high a either chaotic motion or
coherent motion.! Since a precondition for coherent
motion is that the Josephson frequencies be in close prox-
imity to each other, chaos should prevail with even
moderate dispersion in parameter values (+2%). Ac-
cording to a result of Ruelle and Takens,> chaos is possi-
ble in a nonlinear system having three or more indepen-
dent frequencies, that is for a system on a torus of dimen-
sion greater than two. For the system of /V weak links
there are a maximum of N independent frequencies in-
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volved. We set out to find the minimum e« for which this
occurs as a function of N, for N greater than two.

III. METHODS

Equation (1) was solved numerically in 17-decimal ar-
ithmetic using a fourth-order Runge-Kutta method. Two
different situations, with values of N ranging from 3 to 18
in one (Case 1) and from 3 to 144 in the other (Case 2)
were considered.

In the previous work! it was found that for three weak
links, chaos was observed at the lowest values of @ when
one of the links had across it a low-average dc voltage
(frequency) compared to the other two. In Case 1, we
therefore chose varying parameters including dc current
biases to produce a significantly lower voltage across one
junction. For the second series of numerical experiments
(Case 2) a more physically realistic array model was used;
here all junctions were assumed to have a common bias
(I;=2 for all {), and the R; and I, were chosen to be
(1+40.02x;), where the u; were 2N randomly chosen num-
bers in the interval (—1,1). This was intended to simu-
late an experimental situation in which the junctions are
fabricated to a tolerance of 2%.

In both cases the largest Lyapunov exponent A was cal-
culated by the method of Bennetin, Galgani, and Strel-
cyn.® A positive A indicates chaos, while a A of zero im-
plies multiperiodic motion. As this parameter is numeri-
cally determined, it is important to distinguish between a
small positive exponent (especially likely to occur at the
onset of chaos) and a truly zero exponent. This deter-
mination was verified in two ways. Since A is the time
average of the exponential divergence of neighboring tra-
jectories, this divergence was monitored to see whether it
was steadily accumulating as the simulation proceeded in
time, for approximately 10° time units. To corroborate
some of these determinations another aspect of chaos was
exploited. Chaotic motion is intrinsically not time reversi-
ble in the sense that information about the initial condi-
tions is lost at an exponential rate determined by A. For
multiperiodic motion this is not the case, so that here solv-
ing Eq. (1) from O to T followed by solving the time-
reversed equations [Eq. (1) with R; = — R;] with the ini-
tial conditions determined by the final values at time T
should return us to the initial conditions after a further
time 7, within error bounds determined by the numerical
algorithm employed. This method corroborated the con-
clusions obtained by the Lyapunov exponent since runs of
~10° time units resulted in a return to the original initial
conditions within ~10 ~7 or 10 ~% when A =0 (just below
the predicted threshold of chaos), while the deviations
from the starting point after time reversal were orders of
magnitude higher for A >0 (just above), often ~1 or
higher. The loss of accuracy seemed to imply that chaotic
oscillations first occur only in a small subgroup of neigh-
boring links, and that as a is increased further, such oscil-
lations then spread to the remainder of the array.

The rate at which the volume of an infinitesimal N-
dimensional box in phase space evolves with time was
monitored to determine whether the chaotic solutions
were indeed strange attractors. Just above the threshold
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for chaos this rate was found generally to oscillate around
zero indicating no observable volume shrinkage implying
either an extremely weak attractor (which is not easily
verifiable due to numerical error), or a solution akin to a
chaotic trajectory of a Hamiltonian system for which
Liouville’s theorem precludes attraction. Well above the
threshold, however, associated with much larger A values,
the volume rate was negative attesting to the attracting
nature of the solution.

IV. RESULTS AND CONCLUSIONS

Figure 1 gives the a threshold for chaos as a function of
N, the number of links, in both Cases 1 and 2. Because in
Case 1 “optimum” conditions for producing chaos were in
place, the thresholds are generally lower than for Case 2,
the perhaps more realistic simulation of an experimental
or technological system. We draw attention to the fact
that in both cases the threshold drops steadily with in-
creasing numbers of links, despite the nearest-neighbor
aspect of the mutual interaction. The more rapid initial
drop at small N fits with the nonexistence of chaos for
N <3, perhaps in rough analogy to a requirement of
infinite coupling there.

One might infer from both cases that the thresholds will
drop indefinitely close to a=0 as N— +oco. This is im-
possible to determine definitively by any numerical calcu-
lation involving necessarily finite amounts of computing
time. Suffice it to say that already at N =18 and N =144
in the respective cases, the threshold is small compared to
an experimental’ a~0.1. This warrants the assertion
that chaos will be virtually generic to any system involving
extended arrays of oscillating weak links in close proximi-
ty to each other, as envisaged in technological applica-
tions, unless, for example, they were contrived by extreme
uniformity of manufacture and strong coupling to operate
in a totally frequency-locked coherent state. Thus, rela-
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FIG. 1. Logarithmic plots of the threshold values of the di-
mensionless coupling parameter a against N, the number of
weak links in the array. The numerals 1 and 2 adjacent to the
curves refer to Cases 1 and 2 of the text. Smooth curves are
drawn through the actual data at the integer values of NV indi-
cated, only as a visual guide to the general trend.
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tively high noise levels could be expected in extended
Josephson systems.

From a mathematical view, the results are consonant
with the Ruelle-Takens scenario which asserts that a non-
linear system with three or more independent frequencies
may be unstable against chaotic behavior. Our results in-
dicate that this proclivity for chaos in fact increases
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steadily with increasing numbers of independent frequen-
cies.
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