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Intermittent Synchronization in a Pair of Coupled Chaotic Pendula

Gregory L. Baker
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James A. Blackburn
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H. J. T. Smith
Department of Physics, University of Waterloo, Waterloo, Ontario

(Received 29 September 1997; revised manuscript received 13 March 1998)

Numerical simulations have been carried out for a pair of unidirectionally coupled identical
pendula under the action of a common external ac torque. Both the master pendulum and the
slave pendulum were in chaotic states. The only form of persistent locking appeared to be a
computational artifact; otherwise the synchronization of slave to master was found to be intermittent.
[S0031-9007(98)06630-7]

PACS numbers: 05.45.+b

The possibility that coupling between chaotic systems
or subsystems could result in synchronization of the dy-
namics was introduced by Pecora and Carroll [1]. A con-
siderable body of theoretical work has now emerged on
this general topic, the investigations focusing on a num-
ber of prototype systems including Rössler [2,3], Lorenz
[4,5], and the so-called double scroll circuit [6]. Experi-
mental work, often conceived with respect to possible
communication applications, has mainly been done on
coupled Lorenz-based circuits [7], Rössler systems [8],
Chua circuits [9], and lasers [10].

The impact of the choice of coupling scheme on the
synchronizing outcome is a matter of current interest [11].
A fundamental factor is whether bidirectional (mutual) or
unidirectional coupling is assumed. Many examples of
the latter are to be found: Duffing’s equations [12], Lorenz
model [13], Rössler systems [14], mixed Lorenz-Rössler
[15], and unidirectionally coupled analog circuits [16,17].

The behavior of a unidirectionally coupled pair of
chaotic pendula is the subject of this Letter. Harmoni-
cally driven pendula have often served as prototypical
chaotic systems [18]. Beyond the rewards to be found
in exploring the rich dynamics of the pendulum within the
context of contemporary nonlinear dynamics, this system
possesses the additional significance of being an analog
of a capacitive Josephson junction—a superconducting
device of considerable practical importance [19].

In this work we find that permanent synchronization of
the two pendula does not occur except as a numerical arti-
fact arising from finite computational precision. Instead,
intermittent locking is seen to be an essential property of
this system. These results constitute a warning that care
must be exercised in assessing the results of numerical
studies which apparently lead to synchronized chaos.

The master pendulum is described in dimensionless
form by the usual nonautonomous expression in the an-
gular coordinateum

üm 1 Q21 Ùum 1 sinum ­ G0 cossVtd , (1)

where timet has been normalized in units ofv
21
0 , v0

being the small-angle resonant frequency of the pendulum,
Q21 is a damping coefficient,G0 is the drive torque
amplitude normalized by the pendulum critical torque
(mg,), and the drive frequencyV is expressed in units
of v0. Overdots denote derivatives in normalized time.

The slave pendulum is identical to the master, but is
coupled to it via the instantaneous angular coordinates as
follows:

üs 1 Q21 Ùus 1 sinus ­ G0 cossVtd

1 cfsinus 2 sinumg . (2)

Here c is treated as a parameter which sets the coupling
strength. The additional torque acting on the slave is
in this particular model taken to be proportional to the
difference in the gravitational restoring torques.

We note in passing that in Josephson devices, sinu rep-
resents a normalized junction supercurrent, so the form of
coupling assumed here would in that situation be propor-
tional to the supercurrent difference. Another coupling for
current-biased Josephson junctions, based on the phase dif-
ferenceus 2 um, was treated by Doedelet al. [20].

The nonautonomous second order equations (1) and (2)
can be written as equivalent sets of autonomous coupled
first order equations.

Ùum ­ vm ,

Ùvm ­ 2Q21vm 2 sinum 1 G0 coswm , (3)

Ùwm ­ V ,

and
Ùus ­ vs 1 csvm 2 vsd ,

Ùvs ­ 2Q21vs 2 sinus 1 G0 cosws , (4)

Ùws ­ V .
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The overall structure here is reminiscent of other unidirec-
tional coupling schemes, such as [14].

All of the results to be presented were computed with
the (not exceptional) valuesQ ­ 5.0, G0 ­ 1.2, andV ­
0.5. This places the master pendulum in a chaotic state.
Numerical solutions to Eqs. (1) and (2) were obtained
with a fourth order Runge-Kutta routine which employed
continuous half-step error monitoring as described in [21].
Generally, time grids of0.01s2pyVd were used, although
in some cases the grid was0.001s2pyVd.

Our interest is in the synchronization which the slave
may achieve with respect to the free-running chaotic
master. The master pendulum exhibits a familiar strange
attractor when a Poincaré section is plotted. If ideal
synchronization is achieved, the strange attractor for
the slave would be precisely registered, point-for-point,
with the strange attractor of the master. In the absence
of synchronization, Poincaré points move on the two
attractors in an uncorrelated fashion. An intuitive measure
of the quality of synchronization is thus

h ­
q

sus 2 umd2 1 s Ùus 2 Ùumd2 , (5)

which is the distance between a point on the master
attractor and its corresponding point on the slave attractor.

A typical result is depicted in Fig. 1. Two key prop-
erties are illustrated in this figure. First, after approxi-
mately 5000 forcing cycles (as shown in the figure inset)
the synchronization of slave to master becomes perma-
nent (a close inspection of the data reveals thath ­ 0).
We will show that this perfect locking is an artifact of the
computational process. Second, the slave achieves near
synchronization (hø 0) for significant intervals during
the earlier phase of the dynamics, but these intervals al-
ways end with a loss of synchronization, which inevitably

FIG. 1. Synchronization errorh versus time measured in
units of drive cycles. The simulation was done in double
precision with a coupling coefficientc ­ 0.79. The inset is
a magnified portion of the moment when hard locking sets in.

is followed by relocking, and so on. This form of syn-
chronization isintermittent. We now deal separately with
these two features.

Perfect synchronization (h­ 0) is possible for this
coupling scheme, but it is a computational artifact in
the following sense. Models based upon ODE’s [as
are Eqs. (3) and (4)] assume that variables such asum

and us are real numbers and can therefore never be
perfectly matched. (The inability to match variables is
also typically true of real world applications, although
the underlying causes may be various.) However, in
computers, the use of finite-bit representations of numbers
reduces any uncountable interval of real numbers to
a finite set, and therefore the precise equality of two
computed variablesis possible. If the conditionum ­ us

ever occurs in a numerical simulation, then according
to Eqs. (1) and (2) it will remain exactly so from then
on because the coupling term has vanished. This kind
of perfect synchronization was observed in both single
precision and double precision calculations, with the
moment of onset seemingly unpredictable.

It was found that this hard locking could be suppressed
by adding a feature to the program which randomly
scrambled thenth decimal digit in the variables (um, Ùum,
us, Ùus), wheren ­ 7 for single precision andn ­ 16 for
double precision. Effectively, this intervention added a
bounded rectangular distribution of noise thereby limit-
ing the randomization to the smallest level detectable by
either single or double precision arithmetic. When this
process was invoked, the intermittency persisted indefi-
nitely. It should also be noted that whileh is not ex-
actly zero in the intervals of softer locking, nevertheless,
it is very small and the locking is genuine. For example,
in double precision simulations it is typically found that
sum 2 usd # 10210 during synchronization.

In this connection we make two related cautionary re-
marks. First, the onset of hard locking (h ­ 0) could
be misinterpreted as the end of a chaotic transient, which
clearly it is not. Second, any simulation run which happens
to finish at some point within an extended synchronizing
window (say, several thousand cycles in duration) where
h ø 0 could be misinterpreted as having become perma-
nently synchronized. This also would be an illusion.

We turn now to intermittent synchronization. The in-
terleaved intervals of synchronized and unsynchronized
dynamics during any simulation run can be saved and
then sorted according to the duration of the individual
segments. The results of one such simulation—which
extended to a total of106 drive cycles—are shown in
Fig. 2. The linearity of the log version of the plot sug-
gests thatPstd ­ A exp

°
2

t

T

¢
, where P is the probabil-

ity of observing a locking interval of durationt and T
is the mean locking time. The slope of the log plot im-
plies a mean synchronizing time ofs0.036 3 ln 10d21 ­
12.1 drive cycles.

The distribution of synchronizing intervals shown in
Fig. 2 partially characterizes the intermittency which
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FIG. 2. Results of simulating the coupled pendula withc ­
0.80 for a total time of 106 cycles. Sorting the data yields
the histogram which represents the probability of occurrence of
locking times. Inset: Original data before log scaling.

occurs for a selected coupling parameterc. But the
interleaved intervals of broken synchronization are also
significant. In a simulation run of specified length, the
ratio of accumulated locked time to the total represents
the fraction of time which the system generally spends
in a synchronized condition. Figure 3 displays this type
of data as a function of coupling parameterc. While
intermittency was observed at allc, stronger coupling
resulted in an increasingly prevalent synchronized state
and longer intervals of locking.

However, as is evident in Fig. 3, theprecision of
the calculations was observed to significantly affect the
properties of the intermittency. A possible interpretation
of this effect can be found in the fact that a computation
to n1 significant digits has a largerequivalent noise
(arising from round off uncertainties) than a computation
to n2 digits, if n1 , n2. In this connection, we mention
two recent reports of experimentally observed intermittent
loss of synchronization in coupled chaotic electronic
oscillators, attributed in [22] to attractor bubbling, and in
[23] to on-off intermittency. Numerical simulations of
unidirectionally coupled Rössler oscillators with additive
noise [24] also exhibited on-off intermittency.

Further support for intermittency comes from the appli-
cation of two analytic tests of synchronization. First, we
examine the system using the approach of Fujisaka and
Yamada [25,26] with a linear approximation of the system
just off the synchronization manifold (for whichh . 0).
In compact notation the pendula modeled by Eqs. (3) and
(4) can be expressed as

Ùxm ­ Fsxmd ,

Ùxs ­ Fsxsd 2 csxm 2 xsd ,
(6)

FIG. 3. Effect of the coupling coefficientc on the fraction
of a total observation interval during which the slave is
synchronized to the master. Clearly evident is the strong
influence of the number of significant digits used in a
simulation.

where c is now a 3 by 3 coupling matrix (in the
present case it has only one nonzero component). These
equations are linearized to give the approximate dynamics
transverse to the synchronization manifold,

d Ùx' ­ hDFfxsmstdg 2 cjdx' , (7)

whereDFfxsmstdg is the Jacobian of the flow evaluated
on the synchronization manifold. The vectorxsmstd is
the identical orbit for both transmitter and receiver on the
manifold. For the two-pendulum system, Eq. (7) becomesØØØØØØ

Ùvm 2 Ùvs
Ùum 2 Ùus
Ùwm 2 Ùws

ØØØØØØ ­

ØØØØØØ
2Q21 2 cosusm 2G0 sinwsm

1 2 c 0 0
0 0 0

ØØØØØØ
3

ØØØØØØ
vm 2 vs

um 2 us

wm 2 ws

ØØØØØØ . (8)

The corresponding eigenvalue problem yields

l1,2 ­ 2
1

2Q
f1 6

p
1 2 s2Qd2s1 2 cd cosusm g ,

l3 ­ 0 becausewm ­ ws .
(9)

Fujisaka and Yamada [25,26] suggest that high-quality
synchronization occurs when the largest eigenvalue is
negative. However, if the term in the radical is greater
than one, then one of the eigenvalues will be negative.
Numerical simulation of this term shows that it varies
chaotically about unity with an average value that is
typically slightly less than one. The chaotic variation is
due to the chaotic angle coordinateusm. Therefore the
largest eigenvalue is not always less than zero, and this
particular criterion for synchronization is not obeyed.
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As a further test, we apply the more stringent criterion
for strong synchronization suggested by Gauthier and
Bienfang [22], namely, that a sufficient condition that
all perturbations decay to the manifold without transient
growth is that

dL
dt

­ 2dx'std hssDFfxsmstdg 2 cddx'j , 0 (10)

for all times. The Lyapunov functionL ­ jdx'stdj2
is equal to the square of the magnitude of the vector
describing the distance from the synchronization manifold
as defined above. Straightforward calculation for the
pendula leads to condition (10) becoming

2
1
Q

svm 2 vsd2 1 f1 2 c 2 cosusmg 3

sum 2 usd svm 2 vsd , 0 (11)

for synchronization. Again numerical simulation shows
that this condition is not uniformly obeyed. The time se-
ries for this expression is intermittently positive or negative
with a typical average value very slightly less than zero in
the region of synchronization, and randomly slightly pos-
itive or negative elsewhere. Therefore intermittent syn-
chronization of the coupled pendulums remains a plausible
behavior.

In conclusion, we have used numerical and analytic
tests to show that the synchronization between unidirec-
tionally coupled pendula is intermittent. This work indi-
cates the need for care in distinguishing between intermit-
tency, truly persistent synchronization, and the numerical
artifact of hard locking. As a final note, we can report

FIG. 4. Synchronized chaos in a pair of unidirectionally
coupled Duffing oscillators governed bÿy 1 0.1 Ùy 1 y3 ­
10 cost and ẍ 1 0.1Ùx 1 x3 ­ 10 cost 1 1.5s y xd. (a) In-
termittent synchronization resulting from the addition of noise
in the 8th digit; (b) occurrence of hard locking in the noise-
less case.

that we have also observed evidence of intermittent syn-
chronization in coupled Duffing oscillators (see Fig. 4).
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