
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Mathematics Faculty Publications Mathematics 

2004 

Saari’s Conjecture for the Collinear Saari’s Conjecture for the Collinear n-Body Problem -Body Problem 

Florin Diacu 
University of Victoria 

Ernesto Pérez-Chavela 
Universidad Autónoma Metropolitana-Iztapalapa 

Manuele Santoprete 
Wilfrid Laurier University, msantopr@wlu.ca 

Follow this and additional works at: https://scholars.wlu.ca/math_faculty 

Recommended Citation Recommended Citation 
Diacu, Florin; Pérez-Chavela, Ernesto; and Santoprete, Manuele, "Saari’s Conjecture for the Collinear 
n-Body Problem" (2004). Mathematics Faculty Publications. 47. 
https://scholars.wlu.ca/math_faculty/47 

This Article is brought to you for free and open access by the Mathematics at Scholars Commons @ Laurier. It has 
been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of Scholars 
Commons @ Laurier. For more information, please contact scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/math_faculty
https://scholars.wlu.ca/math
https://scholars.wlu.ca/math_faculty?utm_source=scholars.wlu.ca%2Fmath_faculty%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/math_faculty/47?utm_source=scholars.wlu.ca%2Fmath_faculty%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 357, Number 10, Pages 4215–4223
S 0002-9947(04)03606-2
Article electronically published on November 4, 2004

SAARI’S CONJECTURE
FOR THE COLLINEAR n-BODY PROBLEM

FLORIN DIACU, ERNESTO PÉREZ-CHAVELA, AND MANUELE SANTOPRETE

Abstract. In 1970 Don Saari conjectured that the only solutions of the New-
tonian n-body problem that have constant moment of inertia are the relative
equilibria. We prove this conjecture in the collinear case for any potential that
involves only the mutual distances. Furthermore, in the case of homogeneous
potentials, we show that the only collinear and non-zero angular momentum
solutions are homographic motions with central configurations.

1. Introduction

In a series of papers published in the 1970s, Don Saari investigated the bound-
edness of solutions in the Newtonian n-body problem. In one of the earliest, [11],
he proved that if a solution has constant potential for any finite time interval, then
it has both constant potential and constant moment of inertia at all times. In the
same paper he stated what is now known as Saari’s conjecture: Every solution of
the Newtonian n-body problem that has constant moment of inertia is a relative
equilibrium.

During a recent visit at the University of Victoria, Don told us that in the 1970s
he had found a simple proof of his conjecture in the 3-body case. Unfortunately he
never published it, lost his notes, and could not remember the details. Although
many people tried to solve his conjecture, nobody has yet succeeded. In the late
1970s and early 1980s, Julian Palmore published two papers, [8, 9], in which he
claimed to have a proof, but his arguments do not survive a careful scrutiny. In
October 2002, Chris McCord gave a talk at the Midwest Dynamical Systems Con-
ference held at the University of Cincinnati, where he presented a proof in the case
of three bodies of equal masses, [6]. Also, Rick Moeckel has announced a computer-
assisted proof for the Newtonian 3-body case. At the time this article was written,
their papers had not yet been published.

Recently the interest in Saari’s conjecture has grown even more due to the varia-
tional proof given by Alain Chenciner and Richard Montgomery for the existence of
the figure eight solution, numerically discovered by Cristopher Moore, [2], in 1993.
Carles Simó studied this orbit numerically, [12], and found out that its moment of
inertia is very close to being a constant all along the motion. This fact prompted
Chenciner to ask for analytical arguments that the figure eight solution has no
constant moment of inertia.
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In this paper we make some modest steps towards understanding Saari’s conjec-
ture. In particular we prove that the conjecture is true in the collinear case for any
number of bodies and for any potential that involves only the mutual distances.
This generalizes a result obtained by Pizzetti in 1904, [10, 14], for the Newtonian
3-body problem. Our result is not only more general but the proof we provide
is much simpler than the one of the Italian mathematician. Our presentation is
organized as follows.

In Section 2 we introduce the equations of motion and several definitions. In
Section 3 we solve the collinear case, i.e., the one in which the bodies are on a line
that rotates in the plane of motion. We first prove that every non-zero angular
momentum and collinear solution of the n-body problem given by any potential
that depends only on the mutual distances alone, is homographic. This implies
that if the moment of inertia is constant, the only solutions of this type are the
relative equilibria. Moreover, we show that the only non-zero angular momentum
and collinear solutions of the n-body problem given by a homogeneous potential of
degree α �= −2 are the homographic motions with central configurations. We end
our paper with Section 4, in which we give a geometrical interpretation of Saari’s
Conjecture in the Newtonian case.

2. Equations of motion

Consider the planar motion of n interacting bodies P1, ..., Pn. Let the mass and
position (with respect to the center of mass) of the the body Pi be given by mi and
ri = (xi, yi). Let rij = |ri − rj | be the distance between the ith and the jth bodies
and denote x = (r1, ..., rn) ∈ R

2n and ẋ = (ṙ1, ..., ṙn) ∈ R
2n. Take L = T − U as

the Lagrangian function of the system under discussion, where U and T are the
potential and the kinetic energy. Then the Euler-Lagrange equations for the body
Pi are

(1) mir̈i = −∂U

∂ri
.

With the scalar product

(2) 〈x, ẋ〉 =
n∑

i=1

miri · ṙi

and the notation

(3) ∇ = (m−1
1 ∇1, . . . , m

−1
n ∇n),

the equations of motion take the simpler form

(4) ẋ = y, ẏ = −∇U,

where ∇i is the ith gradient component.
The moment of inertia and the kinetic energy can be written as

(5) I = 〈x, x〉, T =
1
2
〈y, y〉.

A central configuration of the n-body problem is a configuration x ∈ R
2n that

satisfies the algebraic equations

(6) ∇U(x) = ω2∇I

for some constant ω (see [7, 13, 14] for more details).
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A given solution x = x(t) of the n-body problem is called homographic if, in the
barycentric coordinate system, the configuration of the bodies is similar to itself
when t varies. By this we mean that there exist a scalar ν = ν(t) > 0, an orthogonal
2-matrix Ω = Ω(t) such that for every i and t one has

(7) ri = ν(t)Ω(t)r0
i ,

where ri, ν, Ω correspond to an arbitrary t and r0
i denotes ri at some initial instant

t = t0.
There are two limiting types of homographic solutions. One appears when the

configuration is dilating without rotation, i.e., Ω(t) is the identity matrix. Such
solutions are called homothetic. The other shows up when the configuration is
rotating without dilatation, i.e., ν(t) = 1. These particular homographic solutions
are characterized by

(8) ri = Ω(t)r0
i

and are called relative equilibria. In such cases the system rotates about the center
of mass as a rigid body, the angular velocity is constant and the mutual distances do
not changes when t varies. The relative equilibria are the solutions we are interested
in, and they make the object of Saari’s Conjecture.

In the following sections we will deal with two types of potentials that are more
general than the Newtonian one: first, when the potential energy is a function of the
mutual distances only and, second, when the potential is a homogeneous function
of degree α. In the latter case the Lagrangian function is of the form

(9) L = T − U =
1
2

n∑
i=1

miṙ2
i + β

∑
i>j

mimj |ri − rj |α,

where β = 1 if α < 0, whereas β = −1 if α > 0. The corresponding Hamiltonian
function is

(10) H = T + U =
n∑

i=1

p2
i

2mi
− β

∑
i>j

mimj |ri − rj |α.

The Lagrangian and Hamiltonian above describe the Newtonian n-body problem
when α = −1 and β = G, where G is the gravitational constant.

3. The collinear n-body problem

In this section we will prove Saari’s Conjecture in the collinear case for any
potential that depends on the mutual distances alone. By the collinear case we
mean the one in which the bodies are on a line that rotates in the plane around the
center of mass of the bodies.

Let K be the total angular momentum and let Ki be the angular momentum of
the body Pi about the center of mass. Denote by Mi the moment of the forces for
the body Pi. Fij is the force acting on the body Pi while interacting with Pj . It
is well known (see [14]), and easy to check, that every collinear solution is planar.
Assume that the potential U is function of the mutual distances alone. Note that
Fij = ∇rij

U . In this setting, we can prove the following result.

Theorem 1. Every collinear and non-zero angular momentum solution of the n-
body problem given by a potential that depends only on the mutual distances is
homographic.
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Since ri and Fij are collinear,

(11) K̇i = Mi =
n∑

j=0
j �=i

miri × Fij = 0.

Consequently Ki is a constant vector. If Ki is the component of Ki orthogonal to
the plane of motion, then Ki = ci, where ci is a constant. We can also write the
component of the angular momentum orthogonal to the plane of motion as

(12) Ki = ci = mir
2
i (t)ω(t),

where the angular velocity ω is the same for all the bodies, since they belong to
a line. Let us note that the vectors ri and the angular velocity ω may depend on
time.

Now consider the ratio between the components of the angular momentum of
any two bodies Pi and Pj . Using (12), we get

(13)
ci

cj
=

mi

mj

r2
i

r2
j

,

consequently the ratio between distances is

(14)
ri(t)
rj(t)

=
√

mjci

micj
.

Consequently the geometrical configuration of the n bodies remains similar to itself
as t varies. This concludes the proof.

The particular Newtonian case of Theorem 1 was proved by Pizzetti in 1904 for
the 3-body case, [10, 14]. Unaware of his result, we found the above shorter, simpler
and more general proof. Using Theorem 1, we can now confirm Saari’s conjecture
in the collinear case for any number n of bodies.

Corollary 1. Consider the n-body problem given by a potential that depends on the
mutual distances alone. Then the only solutions that are collinear, have non-zero
angular momentum, and constant moment of inertia are the relative equilibria.

Proof. The component of the total angular momentum orthogonal to the plane of
motion can be written as

(15) K =
N∑

i=0

Ki = ω
N∑

i=0

mir
2
i = ωI = C,

where I is the moment of inertia. Since I and K are constant, ω is constant too. The
fact that mutual distances are also constant follows immediately from (12). Hence
we showed that if the moment of inertia is constant, the corresponding solutions
are relative equilibria. This completes the proof.

Corollary 1 completely characterizes the collinear solutions with constant mo-
ment of inertia, but Theorem 1 is not the strongest result that can be proved.
Indeed, in 1767 Leonhard Euler showed that if in the Newtonian case three bodies
of arbitrary masses are arranged initially on a line, as in Figure 1, such that the
ratio AB/BC of their mutual distances has a certain value given by a formula de-
pending on the masses, and if suitable initial velocities are assigned to the particles,
then they will move periodically on ellipses remaining on a line at all times. Such
motions are called homographic motions with central configurations.
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Figure 1. The Eulerian solution of the three-body problem.

This leads to a natural question: “Are there any collinear orbits given by ho-
mographic solutions with central configurations?” It turns out that the answer is
positive if the potential is homogeneous of degree α �= −2. More precisely, we have
the following result.

Theorem 2. The only collinear and non-zero angular momentum solutions of the
n-body problem given by a homogeneous potential of degree α �= −2, are the homo-
graphic motions with central configurations. In particular if the moment of inertia
is constant, the solutions are relative equilibria.

Proof. The first part of the proof follows immediately from Theorem 1 and Proposi-
tion 2.14 in [1], which shows that if the potential is homogeneous of degree α �= −2,
then the homographic solutions are homographic with central configurations. The
second part follows from Corollary 1. This concludes the proof.

We further present an alternative proof of Theorem 2, which uses Sundman’s
inequality. Differentiating the expression of the angular momentum of the body Pi

(see (12)) with respect to the time variable and using (11), we find that

(16) K̇i = 2miriṙiω(t) + mir
2
i ω̇(t) = 0.

This implies that

(17) ṙi = −ri

2
ω̇

ω
.

With these preparations, we can rewrite the kinetic energy,

(18) T =
1
2

N∑
i=1

(
miṙ

2
i + mir

2
i ω2

)
,

in the form

(19) T =
C

2

(
ω̇2

4ω3
+ ω

)
,

where we replaced ṙi with the expression in (17) and I with C/ω.
Now consider Sundman’s inequality

(20) 2TI − J2 ≥ |C|2,



4220 F. DIACU, E. PÉREZ-CHAVELA, AND M. SANTOPRETE

where

(21) J =
N∑

i=1

mi ri · ṙi =
N∑

i=1

miriṙi

(see [1, 14] for a derivation). Using (17), we can write

(22) J = −
N∑

i=1

mir
2
i

ω̇

2ω
= −I

ω̇

2ω

and since C = Iω, we get

(23) J = − ω̇

2ω2
C.

With the help of equations (19) and (23), we can write the left-hand side of Sund-
man’s inequality as

(24) 2TI − J2 =
C2

ω

(
ω̇2

4ω3
+ ω

)
−

(
− ω̇2C

2ω2

)2

= C2,

which becomes an equality in this case. Therefore the solutions are homographic
(as proved in [1]) and since U is homogeneous of degree α �= −2 ([1], Proposition
2.14), they are either solutions with central configurations or rigid motions. In the
latter case the moment of inertia I is constant and we can show as in Corollary 1
that the solutions are relative equilibria. This concludes the alternative proof.

Let us remark that the homogeneity of the potential is an essential hypothesis
of the theorem since there are quasi-homogeneous potentials (see [4]), in particular
the Lennard-Jones potential, which have central configurations that depend on the
mutual distances and hence, in those cases, different and more complex types of
motions might occur.

4. A geometrical interpretation

In this section we will give a geometrical interpretation of the above results in the
Newtonian case. Our discussions with Don Saari revealed that he had developed a
similar geometric understanding of the problem long before we found ours.

The moment of inertia can be written in terms of the relative distances as

(25) I =
1

2M

n∑
i=1

n∑
j=1

mimjr
2
ij .

For three collinear bodies, the potential energy and the moment of inertia contain
only three terms, so it is natural to try to represent the manifolds I = constant
and U = constant in the space of relative distances.

m1

r12
�

r23
�

m3

�

m2

Figure 2. Three bodies on a line for a fixed ordering of the masses.

Moreover since the bodies are on a line, they are subject to additional constraints.
For instance if one fixes the ordering of the masses as in Figure 2, the condition is
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that r13 = r12 + r23, which means that the bodies are confined to a plane in the
space of relative distances. Since three bodies can be ordered in three ways, the
corresponding conditions define three planes in the space of mutual distances, as we
illustrate in Figure 3, which depicts the intersection of the manifolds U = constant,
I = constant, and the three planes that give the collinear configurations. It is
now easy to see that, once ordering the bodies, the collinear relative equilibria
correspond to the case in which the intersection of U = constant and I = constant
restricted to the plane is just one point.

From the purely geometric point of view there are three possible cases for the
outcome of the above intersection: empty, one point, or two points. But by Moul-
ton’s theorem we know that for each ordering there is only one relative equilibrium
and thus the relative equilibrium must correspond to the case when the intersection
of I =constant and U =constant is tangent to the plane (see Figure 3). This is an
alternative proof of Saari’s Conjecture in the collinear case of three bodies.

Figure 3. Intersection of the manifolds U = constant, I =
constant with the three planes in the case of equal masses.

However, this proof cannot be generalized to n > 3. Indeed, the geometry
becomes more complicated as the number of bodies increases. It is first easy to find
the following recurrence relation for the number M(n) of the mutual distances of
n bodies:

(26) M(n + 1) = M(n) + n.

Since M(3) = 3, this recurrence relation can be solved; it leads to the formula

(27) M(n) =
n(n − 1)

2
.

The number of linear relations that must be verified so that the n bodies are on
a line can also be found. The recurrence relation that gives the number R(n) of
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linear relations is

(28) R(n + 1) = 2R(n) − R(n − 1) + 1.

The initial conditions R(2) = 0 and R(3) = 1 lead to the formula

(29) R(n) =
n(n − 1)

2
− (n − 1).

This means that we have M(n) unknowns, R(n) linear relations, and two more
relations given by U = constant and I = constant. Consequently if n > 3 the
number of mutual distances is larger than the number of relations. In general this
implies that the problem could have infinitely many solutions, unless the intersec-
tion is degenerate, in which case the intersection reduces to one point. As we have
shown in the previous section, Saari’s Conjecture is true in the general case, so the
intersection is indeed one point. For n > 3, however, it is impossible to draw this
conclusion only from geometrical considerations. But it is interesting to remark
that the dynamics of the problem leads to this unlikely geometric configuration.
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Note added in proof

At a conference held at the beginning of June 2004 in Cala Gonone, Sardinia, the
first author gave a talk on Saari’s Conjecture. At the end of the talk, Rick Moeckel
asked what happens in the rectilinear case (when all the bodies move on a fixed
line). The author answered that collisions always occur, so the potential becomes
infinite and the moment of inertia cannot be constant, therefore the conjecture is
false. But he could not remember the collision proof on the spot. Rick Moeckel
found an alternative argument the next day, using McGehee coordinates. The proof
the first author thought about can be found on page 45 of

F. Diacu, Singularities of the N -body Problem, in Classical and Celestial Mechanics
—The Recife Lectures, pp. 35–62, H. Cabral and F. Diacu, editors, Princeton Univ.
Press, Princeton, NJ, 2002.
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