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An approach to Mel’nikov theory in celestial mechanics
G. Cicognaa) and M. Santopreteb)

Dipartimento di Fisica, Universita` di Pisa, Via Buonarroti 2, Ed. B, I-56127, Pisa, Italy

~Received 26 July 1999; accepted for publication 21 October 1999!

Using a completely analytic procedure—based on a suitable extension of a classical
method—we discuss an approach to the Poincare´–Mel’nikov theory, which can be
conveniently applied also to the case of nonhyperbolic critical points, and even if
the critical point is located at the infinity. In this paper, we concentrate our attention
on the latter case, and precisely on problems described by Kepler-type potentials in
one or two degrees of freedom, in the presence of general time-dependent pertur-
bations. We show that the appearance of chaos~possibly including Arnol’d diffu-
sion! can be proved quite easily and in a direct way, without resorting to singular
coordinate transformations, such as the McGehee or blowing-up transformations.
Natural examples are provided by the classical Gylde´n problem, originally pro-
posed in celestial mechanics, but also of interest in different fields, and by the
general three-body problem in classical mechanics. ©2000 American Institute of
Physics.@S0022-2488~00!00302-9#

I. INTRODUCTION

In a previous paper,1 we discussed a completely analytic procedure—based on a suitable
extension of a classical method2—to introduce the Poincare´–Melnikov theory3–5 concerning the
appearance of chaotic behavior, which can be applied even to the case where the critical point is
not hyperbolic. The case of nonhyperbolic stationary points has been already considered by sev-
eral authors, although with quite different methods or in different contexts; we mention here Refs.
6–11; some other references, more strictly related to our arguments, will be given in the follow-
ing. In Ref. 1, we have also shown that our procedure may work even in some problems where the
critical point is locatedat the infinityof the real line, as occurs in the case of the classical Sitnikov
problem.12

In this paper, we want first of all to reconsider and refine this approach, concentrating our
attention precisely on problems described by Kepler-type potentials, in the presence of time-
dependent perturbations of a very general form. An example is provided by the classical Gylde´n
problem originally proposed in celestial mechanics, but also of interest in different fields~see Ref.
13!. We shall then extend this procedure to problems with 2 degrees of freedom and in the
presence of rotational symmetry, and show that the appearance of chaos~possibly including
Arnol’d diffusion14! can be proven quite easily and in a direct way, without resorting to singular
coordinate transformations, such as the McGehee transformations.15

Natural examples are provided by the general planar three-body problem in classical
mechanics.16–18

Let us remark that, although our procedure is quite general, we shall consider here—for the
sake of definiteness and clarity—only the case of the Kepler potentialV(r )51/r. From the
following discussion it will appear completely clear that the method can be easily applied—with
suitable minor adjustments—to different classes of problems, for instance to problems where the
Kepler potential is replaced by another ‘‘long range’’ potential, as, e.g.,V;1/rb.

a!Electronic mail: cicogna@difi.unipi.it
b!Present address: Department of Mathematics and Statistics, Victoria B.C., Canada. Electronic mail:

msantopr@math.uvic.ca
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II. THE GYLDÉN-TYPE PROBLEMS

We start considering a 2-degrees of freedom problem described by a Hamiltonian of the form

H5
1

2
p22

1

r
1eW~r ,t !, ~1!

wherep[(p1 ,p2), i.e., a standard~planar!Kepler problem plus a smooth perturbationeW(r ,t).
This problem can be easily reduced to a two-dimensional dynamical system for the two variables
r, ṙ , and for this reason we shall treat first this case, not only for better illustrating our procedure,
but also in view of some direct and interesting applications, which include the classical Gylde´n
problem.13

Consider the ‘‘parabolic’’ solution of the unperturbed (e50) problem~1!, which plays here
the role of the homoclinic solution corresponding to the critical point at the infinity, i.e.,r 5`,
ṙ 50; it satisfies the equations

ṙ 56
A2r 22k2

r
, u̇5

k

r 2 , ~2!

wherekÞ0 is the~constant!angular momentum, and the sign2 ~resp.1! holds for t,0 ~resp.
t.0). From~2! one gets

6t5
k21r

3
A2r 2k21const, u562 arctan

A2r 2k2

k
1const. ~3!

Let us denote by

R5R~ t ! and U5U~ t !, ~4!

the expressions giving the dependence ofr and ofu on the timet which are obtained ‘‘inverting’’
Eq. ~3! with the conditionsR(0)5r min5k2/2 andU(0)5p ~let us emphasize that it isnot nec-
essary, for our purposes, to have the explicit form of these functions!. It will be useful only to
remark thatR(t) is an even function andU(t) is a odd function of time. The choiceU(0)5p
corresponds to select the solution describing the parabola with axis coinciding with thex1 axis and
going to infinity whenx1→1`; the whole Hamiltonian~1!, including the perturbationW(r ,t), is
rotationally invariant, and therefore this choice is clearly not restrictive. We refer to the next
section, where we shall consider symmetry-breaking perturbations, for some comment on this
aspect.

The first point is now to find the negatively and positively asymptotic sets to the critical point
r 5`, ṙ 50 in the presence of the perturbationeW(r ,t); notice that this point would in fact
correspond to the critical pointx5y50 under the McGehee’s singular coordinate
transformation,12,13,15

r 5
1

x2 , ṙ 5y, dt5
1

x3 ds, ~5!

but, instead of using this transformation~which usually requires quite cumbersome calculations!,
we introduce a direct method similar to the classical one used in Ref. 2~see also Ref. 1!. Precisely,
we want to show that some natural assumptions on the perturbationW(r ,t) may guarantee not
only the existence of smooth solutions approachingr 5`, ṙ 50 for t→6`, playing in this
context the role of stable and unstable manifolds of the critical point at the infinity, but also the
possible presence of infinitely many intersections of these asymptotic sets on the Poincare´ sec-
tions.

It is important to remark that the critical point at the infinity is clearly not a hyperbolic point,
and therefore the standard results of perturbation theory valid for hyperbolic points cannot be
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applied here. In particular, in order to be granted that the perturbation will preserve the property of
the point at the infinity of being a critical equilibrium, we have to impose that the perturbation
vanishes at the infinity. We shall give the precise rate of this vanishing in the following@see Eq.
~18! below#.

Let us write problem~1! in the form

r̈ 5
k2

r 32
1

r 22e
]W~r ,t !

]r
, ~6!

and let us look for solutionsr (t) of the perturbed problem~6! ‘‘near’’ the family of the ho-
moclinic orbitsR(t2t0); we then put~see Ref. 2!

r 5R~ t2t0!1z~ t2t0!. ~7!

Inserting into~6! ~with the time shiftt2t0→t!, we obtain

z̈1S 3k2

R4 2
2

R3D z5G~z~ t !,t1t0!, ~8!

where the r h.s.~which we will shortly denote byG(t,t0)! is given by

G~ t,t0![2e
]W~R~ t !,t1t0!

]r
1higher order terms inz~ t !. ~9!

Consider the homogeneous equation obtained puttinge50 in ~8!; one solution is clearlyṘ(t),
another independent solutionc(t) can be constructed with standard methods~see, e.g., Ref. 19!or
by direct substitution; these two solutions have a different behavior fort→6`, precisely,

Ṙ~ t !;utu21/3→0 and c~ t !;utu4/3→`. ~10!

As well known, the general solutionz(t) of the complete~nonhomogeneous!Eq. ~8! can be
written in the following integral form, withA,B arbitrary constants andt1 arbitrarily fixed,2,19

z~ t !5AṘ~ t !1Bc~ t !2Ṙ~ t !E
t1

t

c~s!G~s,t0!ds1c~ t !E
t1

t

Ṙ~s!G~s,t0!ds. ~11!

Let us now look for solutionsz(2)(t) ~and resp.z(1)(t)! of ~11! with the property of being
bounded fort→2` ~resp.t→1`!; these will provide solutions

r ~6 !~ t !5R1z~6 !

of ~6! which belong, by definition, to the unstable and stable manifolds of the pointr 5`, ṙ
50. From~11!, we have then to require that the two quantities

c~ t !S B1E
t1

t

Ṙ~s!G~s,t0!dsD and Ṙ~ t !S A2E
t1

t

c~s!G~s,t0!dsD ~12!

remain bounded ast→2` when looking for ther (2) solutions, and resp. ast→1` for the r (1)

solutions.
Consider now the linearization of the problem~11! around the solutionz(t)[0; this amounts

in particular to deleting the higher-order terms in the expression ofG in ~9!. Taking also into
account the different behavior given in~10! of the two fundamental solutionsṘ(t) andc(t), it is
easy to see that the above conditions on the quantities~12! are simultaneously satisfied both at
t52` and att51` if for some t0 the following Mel’nikov-type condition:
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E
2`

1`

Ṙ~ t !
]W~R~ t !,t1t0!

]r
dt[M ~ t0!50 ~13!

is fulfilled, together with the additional one, i.e., that the quantity

Ṙ~ t !E
t1

t

c~s!
]W~R~s!,s1t0!

]r
ds ~14!

is bounded ast→6`. Once these conditions are satisfied, one can conclude that, as a conse-
quence of the implicit-function theorem2 ~or also thanks to a suitable version of the Lyapunov–
Schmidt procedure, see, e.g., Ref. 20!, there exists a smooth and bounded solution of~8!.

Let us now discuss the two above conditions~13!–~14!.
The first one is identical to the usual Mel’nikov condition obtained under the standard as-

sumption that the critical point is hyperbolic;3–5 Eq. ~13! can therefore be viewed as an extension
of the classical Mel’nikov formula to the present ‘‘degenerate’’ case, in which the critical point is
at the infinity. Let us now assume that the perturbationW(r ,t) is a smooth function, periodic in
the timet, with arbitrary periodT ~it is not restrictive to assumeT52p! and zero mean-valued,

E
0

2p

W~r ,t !dt50. ~15!

Then one can consider its Fourier expansion,

W~r ,t !5 (
n51

`

~An~r !cosnt1Bn~r !sinnt! ~16!

and~thanks to the parity of the functionR(t)! write down the Mel’nikov functionM (t0) defined
in ~13! in the form

M ~ t0!5 (
n51

`

~an cosnt01bn sinnt0!, ~17!

where

an5E
2`

1`

Ṙ~ t !
dAn~R~ t !!

dr
sinntdt, bn5E

2`

1`

Ṙ~ t !
dBn~R~ t !!

dr
sinntdt. ~178!

From this expression, one can immediately conclude that the functionM (t0), being a smooth
periodic function with vanishing mean value, must certainly possess zeros, thus fulfilling condition
~13!.

For what concerns the second condition, which requires the boundedness of~14! and which
appears here to compensate the lack of the ‘‘exponential dichotomy’’ peculiar of the hyperbolic
case, a simple estimate of the behavior asutu→` of the integral in~14!, using~10! and~16!, and
recalling from~3! that R(t);utu2/3 as utu→`, shows that it is sufficient to assume that the quan-
tities An(r ), Bn(r ) in the expansion~16! vanish asr→` according to

An~r !;
an

r d , Bn~r !;
bn

r d , with d.1/2 ~18!

in order to be granted that the above condition on~14! is satisfied. It can be noticed that the same
condition~18! would also guarantee that under the McGehee transformation12,13,15~5!, the pertur-
bation is not singular atx50.
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Changing now the point of view, and considering the Poincare´ sections of ther (2) and r (1)

solutions, the above arguments show that, once conditions~13!–~14! are satisfied, there occurs a
crossing of the negatively and positively asymptotic sets on the Poincare´ section. One usually
imposes at this point that the zeros of the Mel’nikov function~13! are simple zeros, i.e., that

]M

]t0
Þ0 ~19!

which ensures the transversality of the intersections, recalling that the functionM (t0) expresses
the signed distance between the intersecting manifolds.4,5 Actually, it can be noted that it is not
strictly necessary to impose this condition, indeed—according to an interesting and useful result
by Burns and Weiss21—it is sufficient that the crossing is ‘‘topological,’’ i.e., roughly, that there
is really a ‘‘crossing,’’ from one side to the other. But in our case this is certainly satisfied,
becauseM (t0), being a smooth periodic and zero mean-valued function, must necessarily change
sign ~see also Ref. 22 for a careful discussion on nontransversal crossings!. Using then standard
arguments, which are not based on hyperbolicity, thanks to the periodicity of the perturbation, one
immediately deduces2,4,5,21that there is an infinite sequence of intersections, leading to a situation
similar to the usual chain of homoclinic intersections typical of the homoclinic chaos.

The presence of such infinitely many intersections is clearly reminiscent of the chaotic be-
havior expressed by the Birkhoff–Smale theorem in terms of the equivalence to a symbolic
dynamics described by the Smale horseshoes. Actually, this theorem cannot be directly used in the
present context because its standard proof is intrinsically based on hyperbolicity properties.4,5

However, several arguments can be invoked even in the present ‘‘degenerate’’ situation. First of
all, for the case of degenerate critical points at the infinity, we can refer to the classical arguments
used in Ref. 12, and reconsidered by many others~see, e.g., Refs. 13, 16, 23!. More specifically,
see Ref. 24, where an equivalence to a ‘‘nonhyperbolic horseshoe’’ has been proven, in which the
contracting and expanding actions are not exponential but ‘‘polynomial’’ in time. Let us also
notice, incidentally, that the presence of Smale horseshoes and of a positive topological entropy
has been proven by means of a quite general geometrical or ‘‘topological’’ procedure21 which
holds, in the presence of area-preserving perturbations, even in cases of nonhyperbolic equilibrium
points ~i.e., not only in the case of degenerate critical points at the infinity, see Refs. 1, 25!.
Alternatively, in the general situation, one may possibly resort to the method of ‘‘blowing-up,’’
devised to investigate the properties of nonhyperbolic singularities by means of suitable changes
of coordinates.26,27

Finally, for what concerns the regularity of the solutions and of the asymptotic sets, see, in
particular, Refs. 23–25, 28.

Summarizing, we can state the following:
Proposition 1: Consider a Kepler-type problem as in (1), and assume that the perturbation

W(r ,t) is a smooth time-periodic function with zero mean value (16). Assume that it vanishes with
r→` in such a way that (18) are satisfied. Then there is a chaotic behavior of the solution,
induced by a chain of infinitely many intersections in the Poincare´ section of the negatively and
positively asymptotic sets of the critical point at the infinity.

Let us conclude this section with the obvious remark that the case of the Gylde´n problem, for
which the perturbation is given by

W~r ,t !5
m~ t !

r
, ~20!

wherem(t) is a periodic function, satisfies all the above assumption and therefore exhibits chaotic
behavior.13 The above discussion then generalizes this result to a larger class of problems and
under weaker assumptions.

809J. Math. Phys., Vol. 41, No. 2, February 2000 An approach to Mel’nikov theory . . .



III. PROBLEMS WITH 2 DEGREES OF FREEDOM

We now consider the case of planar Kepler-type problems as in~1! but in the presence of
perturbations of the more general formW5W(r ,u,t),

H5
1

2
p22

1

r
1eW~r ,u,t ![H01eW~r ,u,t !. ~21!

In this case the reduction of the problem as performed in Sec. II is no longer possible, and we have
to handle the four variablesx1 ,p1 ,x2 ,p2 ~or r , ṙ ,u,u̇!. The first point to be remarked is that the
degeneracy of the critical point at the infinity,r 5`, ṙ 50, appears now even worse than before,
indeed we have here a ‘‘continuous family of points at the infinity,’’ due to the arbitrarity of the
angle u; more precisely, the homoclinic manifold, i.e., the set of solutions of the unperturbed
equation which are doubly asymptotic tor 5`, ṙ 50, is given here, for each fixed valuekÞ0 of
the angular momentum, by the two-dimensional manifold described by the family of parabolas of
equationsr 5R(t2t0), q5U(t2t0)1u0 , whereR(t), U(t) have been defined in Sec. II~see
~3!–~4!!, with arbitraryt0 ,u0 , or—in Cartesian coordinatesu[(x1 ,p1 ,x2 ,p2)—by

x[x~u0 ,t2t0![~R~ t2t0!cos~U~ t2t0!1u0!,

Ṙ~ t2t0!cos~U~ t2t0!1u0!2R~ t2t0!U̇~ t2t0!sin~U~ t2t0!1u0!,

R~ t2t0!sin~U~ t2t0!1u0!, ~22!

Ṙ~ t2t0!sin~U~ t2t0!1u0!1R~ t2t0!U̇~ t2t0!cos~U~ t2t0!1u0!).

In order to find conditions ensuring the occurrence of intersections of stable and unstable mani-
folds for the perturbed problem, we follow a similar~suitably extended!procedure as in Sec. II.
We first look for smooth solutions near the homoclinic manifold~see Sec. II; here, clearly,z
[(z1 ,z2 ,z3 ,z4)!

u5x~u0 ,t2t0!1z~u0 ,t2t0! ~23!

of the problem, which we now write in the form

u̇5J¹uH[F~u!1eJ¹uW ~24!

~J being the standard symplectic matrix!. Linearizing the problem along an arbitrarily fixed solu-
tion x(u0 ,t2t0) in the family ~22!, we get the following equation forz(t):

ż5A~u0 ,t !z1G~u0 ,t,t0!, ~25!

where

A~u0 ,t !5~¹uF !~x~u0 ,t !!, ~26!

and

G~u0 ,t,t0!5eJ~¹uW!~R~ t !,U~ t !1u0 ,t1t0!. ~27!

All the solutionsz(t) of ~25! are given by~cf. Ref. 19; when not essential, the dependence on
u0 ,t0 will be sometimes dropped, for notational simplicity!

z~ t !5zh~ t !1F~ t !E
t1

t

F21~s!G~s!ds, ~28!
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wherezh(t) is any solution of the homogeneous linear problem,

ż5A~u0 ,t !z, ~29!

and F is a fundamental matrix of solutions of~29!. There are certainly two solutions of~29!,
which are bounded for anytPR ~and vanish fort→6`!, namely

]x

]t
and

]x

]u
~30!

as one may easily verify~this also follows from general arguments29,30!. As seen in Sec. II, due to
the degeneracy of the critical point, instead of the exponential dichotomy, typical of the standard
hyperbolic case, we now get a power behaviorutus of the solutions, but the general arguments for
controlling the behavior for largeutu of the solutionsz(t) in ~28! can still be used. Precisely~cf.
Ref. 29!, observing also that, for Hamiltonian problems, the matrixF21J is the transposed of a
fundamental matrix of solutions of the same problem~29!, one deduces from~28! and ~30! that
there exist bounded solutions of~25!, both for t→1` and for t→2`, if the two following
conditions are satisfied~cf. Refs. 29, 30!:

E
2`

1`S ]x~u0 ,t !

]t
,¹uW~R~ t !,U~ t !1u0 ,t1t0! Ddt[M1~u0 ,t0!50 ~31!

and

E
2`

1`S ]x~u0 ,t !

]u
,¹uW~R~ t !,U~ t !1u0 ,t1t0! Ddt[M2~u0 ,t0!50, ~32!

where~•, •! stands for the scalar product inR4. Proceeding just as in Sec. II, we assume that the
perturbationW(r ,u,t) is a smooth time-periodic function, and we still assume to hold a condition
analogous to~18! in order to guarantee the boundedness ofz(t) at t56`, as already discussed.
The above conditions~31!–~32! can be more conveniently rewritten in the following form, using
~22!:

M1~u0 ,t0!5E
2`

` F Ṙ~ t !
]W~R~ t !,U~ t !1u0 ,t1t0!

]r
1U̇~ t !

]W~R~ t !,U~ t !1u0 ,t1t0!

]u Gdt50,

~33!

M2~u0 ,t0!5E
2`

1` ]W~R~ t !,U~ t !1u0 ,t1t0!

]u
50. ~34!

It can be significant to remark here that it is easy to verify that these conditions are identical to the
Mel’nikov conditions for the appearance of homoclinic intersections given e.g., in Refs. 5 and 31
in the standard hyperbolic case and deduced by means of a different procedure, namely,

E
2`

1`

~¹uH0 ,J¹uW!~x~u0 ,t !,t1t0!dt5E
2`

1`

$H0 ,W%~x~¯ !!dt50 ~35!

and

E
2`

1`

~¹uK,J¹uW!~x~u0 ,t !,t1t0!dt5E
2`

1`

$K,W%~x~¯ !!dt50, ~36!
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whereH0 is the unperturbed Hamiltonian, andK5x2p12x1p2 is the angular momentum~which
is indeed a constant of the motion forH0!. We can then say that, again and apart from the
additional condition~18!, just as in Sec. II, our procedure provides an extension of these formulas
to the nonhyperbolic degenerate case we are considering here.

Notice also that, as a consequence of the vanishing of the perturbationW at t56`, the first
Mel’nikov condition ~33! can be written in the simpler form,

M1~u0 ,t0!5E
2`

1` ]W~R~ t !,U~ t !1u0 ,t1t0!

]t
dt50, ~338!

where clearly the derivative]/]t must be performed only with respect to the explicit time-
dependence ofW.

It is also clear that, when the perturbation is independent ofu, as in the cases considered in
Sec. II, one consistently gets that the first condition~33! becomes just~13!, whereas the second
one ~34! is identically satisfied.

Let us now introduce the ‘‘Mel’nikov potential’’W5W(u0 ,t0) ~cf. Ref. 32!, corresponding
to the perturbationW(r ,u,t),

W~u0 ,t0!5E
2`

1`

W~R~ t !,U~ t !1u0 ,t1t0!dt, ~37!

then one gets from this definition and from~338!–~34!,

M1~u0 ,t0!5
]W
]t0

50, M2~u0 ,t0!5
]W
]u0

50. ~38!

In other words, the two Mel’nikov conditions are equivalent to the existence of stationary points
for the Mel’nikov potentialW(u0 ,t0). On the other hand,W is a smooth doubly-periodic func-
tion, and such a function certainly possesses pointsū0 , t̄ 0 where the two partial derivatives in~38!
vanish, and this implies that the two conditions~338!–~34! are certainly satisfied.

Now, exactly the same arguments~and with analogous remarks!presented in Sec. II show that
the vanishing of the Mel’nikov functions entails the presence of a complicated dynamics, pro-
duced by the chain of the infinitely many intersections of the asymptotic sets, see, e.g., Refs. 5 and
28 for a detailed description of this ‘‘multidimensional’’ case.

In this context, we can also consider the appearance of Arnol’d diffusion.14,33 Indeed, the
integrals of the Poisson brackets appearing in the Mel’nikov condition~35!–~36! give precisely
the total amount of the ‘‘variations’’ produced by the perturbation, fromt52` to t51`, to the
quantitiesH0 andK along the homoclinic solutionx. Proceeding in a similar way as in Ref. 14, we
can now look for the intersections of the asymptotic sets corresponding respectively fort→2`
and fort→1` to differentvaluesk1 andk2 of the angular momentumK. Observing that for both
these solutions the energyH0 is the same,H050, then—following a by now classical idea14—the
above Mel’nikov conditions must be replaced by conditions of the form,

M1~u0 ,t0!50, M2~u0 ,t0!1k12k250, ~39!

and, exactly as in Ref. 14, the conclusion is that, foruk12k2u small enough, intersections occur
even from homoclinic solutions corresponding to different values ofK. This argument is then
consistent with the occurrence of Arnol’d diffusion; actually, a complete argument would neces-
sitate a consideration of the role played, in the present ‘‘degenerate’’ situation, by the usual
‘‘nonresonance’’ conditions; anyway, we point out that, in the same situation, i.e., in the case of
general three-body problem, but using a different approach, the occurrence of Arnol’d diffusion
has been discussed in great detail by Xia.17,18 On the other hand, it is also known that the
phenomenon of Arnol’d diffusion requires a quite delicate treatment; see Ref. 34 for a compen-
dium of facts, remarks, related questions, and for a list of relevant references on this point.
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Let us remark incidentally that the introduction of the above Mel’nikov potentialW would be
in general impossible if the perturbation is not Hamiltonian, i.e., if the problem~24! has the form
of a general dynamical system,

u̇5J¹uH01eg~u,t ![F~u!1eg~u,t !, ~40!

where the perturbing termg(u,t) ~or g(r , ṙ ,u,u̇,t)! is ‘‘generic.’’ Then in this case the above
arguments cannot be repeated, and in particular the two Mel’nikov conditions, which can now be
written in the general form,

M1~u0 ,t0!5E
2`

1`

~¹uH0 ,g!~x~u0 ,t !,t1t0!dt50, ~41!

M2~u0 ,t0!5E
2`

1`

~¹uK,g!~x~u0 ,t !,t1t0!dt50, ~42!

give two ‘‘unrelated’’ restrictions onu0 ,t0 , and one then remains with the problem of discovering
if there are or not someū0 , t̄ 0 which satisfy simultaneously both these conditions.

We can then summarize the above discussion in the following form:
Proposition 2: Let us consider a perturbed Kepler problem with Hamiltonian (21), where W

is a smooth, time-periodic function, vanishing at the infinity according to (18). Then, there is a
chaotic behavior (possibly giving rise also to Arnol’d diffusion), induced by an infinite sequence
of intersections in the Poincare´ section of the negatively and positively asymptotic sets of the
critical point at the infinity. In the case where the perturbed problem has the form (40) with a

non-Hamiltonian perturbation g(u,t), the same result is true if there are someū0 , t̄ 0 satisfying
simultaneously the two conditions (41)–(42).

IV. SOME APPLICATIONS AND FINAL REMARKS

We shortly consider here some applications of the discussion presented in Sec. III.
As a first particular case, assume that the perturbationW(r ,u,t) is of the form

W5W~r ,au1bt!, ~43!

wherea, b are arbitrary constants~the constanta should be clearly an integer, andbÞ0!, then the
two conditions~338!–~34! actually coincide; observing on the other hand that the Fourier expan-
sion of such aW is a series as in~16! in terms of the single variableau1bt, then these two
conditions take the same form as in~17!, and the Mel’nikov function is a smooth periodic function
of au01bt0 , leading thus directly to the same conclusions obtained above for what concerns the
existence of zeros, and of their properties as well~it is really not a restriction to assume thatW is
zero mean-valued, cf. Ref. 13!.

A specially important example of this situation is provided by the restricted circular three-
body problem, in this case indeed the perturbation is given by16

W5
1

r
2

cos~u2t !

r 2 2
1

A11r 212r cos~u2t !
, ~44!

and therefore just one condition has to be considered. The presence of the chaos produced by the
chain of intersections of the asymptotic sets then is automatically granted by our discussion.
Notice that the above expression~44! is actually the first-order expansion of the full potential in
terms of the parametere ~which in this case is given by the mass ratiom between two celestial
bodies!, but also the exact expression of this potential, as given in Ref. 16, is in fact a function of
u2t only.
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It is completely clear that, in the presence of a more general perturbation, e.g., of the form
~just to give an example!

W~r ,u,t !5W~1!~r ,u2t !1W~2!~r ,u1t !,

one now obtains two different Mel’nikov conditions, and the presence of a chaotic behavior
follows from the existence of simultaneous solutionsū0 , t̄ 0 , which is ensured by the arguments
shown in Sec. III.

The above results hold essentially unchanged if the perturbation depends on two~or more!
parameterse1 ,e2 ,..., i.e., if one assumes thatW may be written in the form~cf. Ref. 29!,

W5e1W~1!~r ,u,t !1e2W~2!~r ,u,t !1¯ . ~45!

A natural example is provided by the planar three-body problem, where one has to deal, in the
more general elliptic case, with a quite complicated expression of the perturbation containing three
parameters~different masses and eccentricity17,18!. Let us remark, however, that, at least in the
simpler case of restricted elliptic problem, in which one has two parameters~e15m is one mass
ratio ande25e the eccentricity!, the perturbation cannot be written as in the above ‘‘first-order’’
form ~45!, but rather it takes the form17

W5m~W~1!~r ,u,t !1eW~2!~r ,u,t !! ~46!

in which the eccentricity plays the role of a ‘‘second-order’’ perturbation. On the basis of our
previous arguments, we can just say that the presence of zeros of the Mel’nikov functions, as
obtained above for the circular casee25e50, cannot be destroyed by the higher-order perturba-
tion due to the eccentricity, and therefore chaos should be expected to persist in the elliptic case,
whereas Arnol’d diffusion should appear as a second-order effect. A complete study of the general
three-body problem, and a full discussion of its chaotic properties, including the appearance of
Arnol’d diffusion, together with several other dynamical features, is given in Refs. 16–18.
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