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An approach to Mel'nikov theory in celestial mechanics

G. Cicogna® and M. Santoprete®
Dipartimento di Fisica, Universitali Pisa, Via Buonarroti 2, Ed. B, |-56127, Pisa, Italy

(Received 26 July 1999; accepted for publication 21 October)1999

Using a completely analytic procedure—based on a suitable extension of a classical
method—we discuss an approach to the Poineli@’nikov theory, which can be
conveniently applied also to the case of nonhyperbolic critical points, and even if
the critical point is located at the infinity. In this paper, we concentrate our attention
on the latter case, and precisely on problems described by Kepler-type potentials in
one or two degrees of freedom, in the presence of general time-dependent pertur-
bations. We show that the appearance of chgossibly including Arnol’d diffu-

sion) can be proved quite easily and in a direct way, without resorting to singular
coordinate transformations, such as the McGehee or blowing-up transformations.
Natural examples are provided by the classical Gylgeoblem, originally pro-
posed in celestial mechanics, but also of interest in different fields, and by the
general three-body problem in classical mechanics.2@0 American Institute of
Physics[S0022-2488(00)00302-9]

I. INTRODUCTION

In a previous paper,we discussed a completely analytic procedure—based on a suitable
extension of a classical methfeeto introduce the Poincardelnikov theory > concerning the
appearance of chaotic behavior, which can be applied even to the case where the critical point is
not hyperbolic. The case of nonhyperbolic stationary points has been already considered by sev-
eral authors, although with quite different methods or in different contexts; we mention here Refs.
6—11; some other references, more strictly related to our arguments, will be given in the follow-
ing. In Ref. 1, we have also shown that our procedure may work even in some problems where the
critical point is locatedt the infinityof the real line, as occurs in the case of the classical Sitnikov
problem??

In this paper, we want first of all to reconsider and refine this approach, concentrating our
attention precisely on problems described by Kepler-type potentials, in the presence of time-
dependent perturbations of a very general form. An example is provided by the classicai Gylde
problem originally proposed in celestial mechanics, but also of interest in different fselddRef.

13). We shall then extend this procedure to problems with 2 degrees of freedom and in the
presence of rotational symmetry, and show that the appearance of @hassmsbly including
Arnol'd diffusion’¥ can be proven quite easily and in a direct way, without resorting to singular
coordinate transformations, such as the McGehee transformations.

Natural examples are provided by the general planar three-body problem in classical
mechanicg®18

Let us remark that, although our procedure is quite general, we shall consider here—for the
sake of definiteness and clarity—only the case of the Kepler pote¥ifig=1/r. From the
following discussion it will appear completely clear that the method can be easily applied—with
suitable minor adjustments—to different classes of problems, for instance to problems where the
Kepler potential is replaced by another “long range” potential, as, &..1/r.

@Electronic mail: cicogna@difi.unipi.it
Ppresent address: Department of Mathematics and Statistics, Victoria B.C., Canada. Electronic mail:
msantopr@math.uvic.ca
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Il. THE GYLDEN-TYPE PROBLEMS

We start considering a 2-degrees of freedom problem described by a Hamiltonian of the form
1 1
HZEDZ—F-FGW(I',U, (1)

wherep=(p,p,), i.e., a standardplanar)Kepler problem plus a smooth perturbatiew(r,t).
This problem can be easily reduced to a two-dimensional dynamical system for the two variables
r, r, and for this reason we shall treat first this case, not only for better illustrating our procedure,
but also in view of some direct and interesting applications, which include the classicalinGylde
problem??

Consider the “parabolic” solution of the unperturbed=0) problem(1), which plays here
the role of the homoclinic solution corresponding to the critical point at the infinity,rizes,
r=0; it satisfies the equations

N A
f=t—-—, 0=—, (2)
r r
wherek# 0 is the(constantjangular momentum, and the sign (resp.+) holds fort<0 (resp.
t>0). From(2) one gets

k2 +r \2r —k?
St=—y J2r —k?+ const, 6= * 2 arctan—, — - const. )
Let us denote by
R=R(t) and ©=0(t), 4)

the expressions giving the dependence ahd of 6 on the timet which are obtained “inverting”

Eq. (3) with the conditionsR(0) =r ,,,=k%2 and©(0) = (let us emphasize that it isot nec-
essary, for our purposes, to have the explicit form of these fungtidinill be useful only to
remark thatR(t) is an even function an@®(t) is a odd function of time. The choid@(0)=1
corresponds to select the solution describing the parabola with axis coinciding withdbes and

going to infinity whenx; — + «; the whole Hamiltoniari1), including the perturbatiow/(r,t), is
rotationally invariant, and therefore this choice is clearly not restrictive. We refer to the next
section, where we shall consider symmetry-breaking perturbations, for some comment on this
aspect.

The first point is now to find the negatively and positively asymptotic sets to the critical point
r=o0, r=0 in the presence of the perturbatieiV(r,t); notice that this point would in fact
correspond to the critical pointx=y=0 under the McGehee’s singular coordinate
transformation?+315
1 1
rZF’ r=y, dtzﬁds, (5)
but, instead of using this transformationhich usually requires quite cumbersome calculations
we introduce a direct method similar to the classical one used in Reée2also Ref. 1). Precisely,
we want to show that some natural assumptions on the perturbaffort) may guarantee not
only the existence of smooth solutions approachimge, r=0 for t— =, playing in this
context the role of stable and unstable manifolds of the critical point at the infinity, but also the
possible presence of infinitely many intersections of these asymptotic sets on the Pegware
tions.

It is important to remark that the critical point at the infinity is clearly not a hyperbolic point,
and therefore the standard results of perturbation theory valid for hyperbolic points cannot be
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applied here. In particular, in order to be granted that the perturbation will preserve the property of
the point at the infinity of being a critical equilibrium, we have to impose that the perturbation
vanishes at the infinity. We shall give the precise rate of this vanishing in the folldweeyEq.
(18) below].

Let us write problem(1) in the form

kK2 1 oW(r,t)

e '
r? ar

(6)

F= e
r3

and let us look for solutions(t) of the perturbed problen(6) “near” the family of the ho-
moclinic orbitsR(t—ty); we then put(see Ref. 2)

Inserting into(6) (with the time shiftt—ty—t), we obtain
k2

R R

)Z=G(z(t),t+t0), (8)

where the r h.s(which we will shortly denote by5(t,ty)) is given by

AW(R(L), t+1o)

G(t,to =—€ ar

+ higher order terms inz(t). (9)

Consider the homogeneous equation obtained pu#ing in (8); one solution is clearlyr(t),
another independent soluti@r(t) can be constructed with standard meth@ie, e.g., Ref. 19r
by direct substitution; these two solutions have a different behavior-fot-, precisely,

R(t)~[t| "¥—0 and g(t)~|t|*3—o. (10)

As well known, the general solution(t) of the complete(nonhomogeneousiq. (8) can be
written in the following integral form, withA,B arbitrary constants ang arbitrarily fixed?*°

. . t t
z(t)=AR(t)+B¢(t)—R(t)ft zﬂ(s)G(s,to)dsﬁp(t)ft R(s)G(s,tg)ds. (11)
1 1

Let us now look for solutions{~)(t) (and resp.z(*)(t)) of (11) with the property of being
bounded fort— —c (resp.t— +); these will provide solutions

r&(t)=R+z*)

of (6) which belong, by definition, to the unstable and stable manifolds of the peint,
=0. From(11), we have then to require that the two quantities

(1)

B+JtR(S)G(s,t0)ds) and R(t)(A— Jtzp(s)G(s,to)ds) (12)
ty t

remain bounded as— — % when looking for the(7) solutions, and resp. ds- +« for ther(*)
solutions.

Consider now the linearization of the probléfrl) around the solutioa(t)=0; this amounts
in particular to deleting the higher-order terms in the expressio® @i (9). Taking also into
account the different behavior given (h0) of the two fundamental solutiorﬁ(t) andy(t), itis
easy to see that the above conditions on the quantitiBsare simultaneously satisfied both at
t=—c and att= + if for somet, the following Mel'nikov-type condition:
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R(t)

F wdtz (to) =0 "

is fulfilled, together with the additional one, i.e., that the quantity

IW(R +t
R(t) f U(s )M (14)

ar

is bounded as— *=. Once these conditions are satisfied, one can conclude that, as a conse-
quence of the implicit-function theorenfor also thanks to a suitable version of the Lyapunov—
Schmidt procedure, see, e.g., Ref. 20), there exists a smooth and bounded sol(&pn of

Let us now discuss the two above conditiqa8)—(14).

The first one is identical to the usual Mel'nikov condition obtained under the standard as-
sumption that the critical point is hyperbofic® Eq. (13) can therefore be viewed as an extension
of the classical Mel'nikov formula to the present “degenerate” case, in which the critical point is
at the infinity. Let us now assume that the perturbatiéfr,t) is a smooth function, periodic in
the timet, with arbitrary periodT (it is not restrictive to assum&=2) and zero mean-valued,

“W(r.t)dt=0. (15)
0

Then one can consider its Fourier expansion,

[

W(r,t) =Z A,(r)cosnt+B,(r)sinnt) (16)

and (thanks to the parity of the functioR(t)) write down the Mel'nikov functiorM (ty) defined
in (13) in the form

o

M(tg) = 21 (a;, cosnty+ B, sinnty), (17)
where
an=f+xR( )Msmntdt Bn= FwR(t)wgnntdt. a7

From this expression, one can immediately conclude that the fundifig), being a smooth
periodic function with vanishing mean value, must certainly possess zeros, thus fulfilling condition
(13).

For what concerns the second condition, which requires the boundedngisy) ahd which
appears here to compensate the lack of the “exponential dichotomy” peculiar of the hyperbolic
case, a simple estimate of the behavioftas:« of the integral in(14), using(10) and(16), and
recalling from(3) that R(t)~|t|?® as|t|—, shows that it is sufficient to assume that the quan-
tities A,(r), B,(r) in the expansiori16) vanish ag —« according to

An(r)~ a, B,(r)~ 5, with &>1/2 (18)

in order to be granted that the above condition(b) is satisfied. It can be noticed that the same
condition(18) would also guarantee that under the McGehee transforntafidte(5), the pertur-
bation is not singular at=0.
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Changing now the point of view, and considering the Poinsaetions of the (™) andr(™)
solutions, the above arguments show that, once conditit®is-(14) are satisfied, there occurs a
crossing of the negatively and positively asymptotic sets on the Poirseatéon. One usually
imposes at this point that the zeros of the Mel'nikov funct{@B) are simple zeros, i.e., that

M #0 19
oo (19)

which ensures the transversality of the intersections, recalling that the fulMiity) expresses

the signed distance between the intersecting manifoldsctually, it can be noted that it is not
strictly necessary to impose this condition, indeed—according to an interesting and useful result
by Burns and Weigd—it is sufficient that the crossing is “topological,” i.e., roughly, that there

is really a “crossing,” from one side to the other. But in our case this is certainly satisfied,
becauseM (ty), being a smooth periodic and zero mean-valued function, must necessarily change
sign (see also Ref. 22 for a careful discussion on nontransversal crossings). Using then standard
arguments, which are not based on hyperbolicity, thanks to the periodicity of the perturbation, one
immediately deducé$>?that there is an infinite sequence of intersections, leading to a situation
similar to the usual chain of homoclinic intersections typical of the homoclinic chaos.

The presence of such infinitely many intersections is clearly reminiscent of the chaotic be-
havior expressed by the Birkhoff-Smale theorem in terms of the equivalence to a symbolic
dynamics described by the Smale horseshoes. Actually, this theorem cannot be directly used in the
present context because its standard proof is intrinsically based on hyperbolicity prdjperties.
However, several arguments can be invoked even in the present “degenerate” situation. First of
all, for the case of degenerate critical points at the infinity, we can refer to the classical arguments
used in Ref. 12, and reconsidered by many otliseg, e.g., Refs. 13, 16, 23). More specifically,
see Ref. 24, where an equivalence to a “nonhyperbolic horseshoe” has been proven, in which the
contracting and expanding actions are not exponential but “polynomial” in time. Let us also
notice, incidentally, that the presence of Smale horseshoes and of a positive topological entropy
has been proven by means of a quite general geometrical or “topological” proétauizh
holds, in the presence of area-preserving perturbations, even in cases of nonhyperbolic equilibrium
points (i.e., not only in the case of degenerate critical points at the infinity, see Refs. 1, 25).
Alternatively, in the general situation, one may possibly resort to the method of “blowing-up,”
devised to investigate the properties of nonhyperbolic singularities by means of suitable changes
of coordinateg52’

Finally, for what concerns the regularity of the solutions and of the asymptotic sets, see, in
particular, Refs. 23-25, 28.

Summarizing, we can state the following:

Proposition 1: Consider a Kepler-type problem as in (1), and assume that the perturbation
W(r,t) is a smooth time-periodic function with zero mean value (16). Assume that it vanishes with
r—oo in such a way that (18) are satisfied. Then there is a chaotic behavior of the solution,
induced by a chain of infinitely many intersections in the Poineaetion of the negatively and
positively asymptotic sets of the critical point at the infinity

Let us conclude this section with the obvious remark that the case of thérGyldblem, for
which the perturbation is given by

W(r,t)= @, (20)

whereu(t) is a periodic function, satisfies all the above assumption and therefore exhibits chaotic
behaviort® The above discussion then generalizes this result to a larger class of problems and
under weaker assumptions.
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lll. PROBLEMS WITH 2 DEGREES OF FREEDOM

We now consider the case of planar Kepler-type problems d%)ibut in the presence of
perturbations of the more general foivi=W(r, 6,t),

1 1
szpz—F+eW(r,0,t)EH0+eW(r,¢9,t). (21)

In this case the reduction of the problem as performed in Sec. Il is no longer possible, and we have

to handle the four variables,,p;,X»,p, (or r,i,6,6). The first point to be remarked is that the
degeneracy of the critical point at the infinitys=o0, r =0, appears now even worse than before,
indeed we have here a “continuous family of points at the infinity,” due to the arbitrarity of the
angle 6, more precisely, the homoclinic manifold, i.e., the set of solutions of the unperturbed
equation which are doubly asymptoticite-~, r =0, is given here, for each fixed valke: 0 of

the angular momentum, by the two-dimensional manifold described by the family of parabolas of
equationsr =R(t—tgy), 9=0(t—tg) + 6y, whereR(t), O(t) have been defined in Sec. ($ee
(3)—(4)), with arbitrarytg, 8y, or—in Cartesian coordinates= (x4 ,p1,X2,P2)—by

X=Xx(0p,t—tg)=(R(t—tg)cog O (t—tg) + by),
R(t—t)cog O (t—tg) + ) — R(t—to) O (t—to)Sin(O (t—tg) + ),
R(t—to)sSin(O (t—tg) + 6p), (22)

R(t—t)SiN(O (t—tg) + Hy) + R(t—ty) O (t—ty)cog O (t—to) + 6p)).

In order to find conditions ensuring the occurrence of intersections of stable and unstable mani-
folds for the perturbed problem, we follow a simil@uitably extendedprocedure as in Sec. Il.
We first look for smooth solutions near the homoclinic manif(deée Sec. IlI; here, clearly,

=(21,23,23,24))
u=x(6p,t—tg)+z(6,t—to) (23)
of the problem, which we now write in the form
u=JV,H=F(u)+eJV ,W (24)

(J being the standard symplectic matrix). Linearizing the problem along an arbitrarily fixed solu-
tion x(6y,t—tp) in the family (22), we get the following equation fa(t):

2=A(0,,1)2+ G(6p,1,to), (25)
where
Ao, 1)=(VF)(x(bo.1)), (26)
and
G(b,t,te) = €I(V W) (R(1),0(t) + g, t+1o). 27)

All the solutionsz(t) of (25) are given by(cf. Ref. 19; when not essential, the dependence on
09,y will be sometimes dropped, for notational simpligity

z(t)=zh(t)+cp(t)fcp—l(s)e(s)ds, (28)
1
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wherez,(t) is any solution of the homogeneous linear problem,
2=A(6g,1)z, (29)

and @ is a fundamental matrix of solutions ¢29). There are certainly two solutions (9),
which are bounded for anye R (and vanish foit— o), namely

Ix ax
E and &—0 (30)

as one may easily verifthis also follows from general argumefts9. As seen in Sec. Il, due to

the degeneracy of the critical point, instead of the exponential dichotomy, typical of the standard
hyperbolic case, we now get a power behaVifff of the solutions, but the general arguments for
controlling the behavior for largl| of the solutionsz(t) in (28) can still be used. Preciselgf.

Ref. 29), observing also that, for Hamiltonian problems, the makrixJ is the transposed of a
fundamental matrix of solutions of the same problé2f), one deduces frorf28) and (30) that

there exist bounded solutions @25), both fort— 4+ and fort— —o, if the two following
conditions are satisfie@f. Refs. 29, 30):

f*‘” dx(6p,t) B
» T,VuW(R(t),e(t)+6o,t+to) dt=M4(6p,to)=0 (31)
and
e dx(6o,t) _
J_ T,VUW(R(t),e(t)‘l‘ 00,t+t0) dt=M2(00,to):0, (32)

where(-, -) stands for the scalar product Rf. Proceeding just as in Sec. I, we assume that the
perturbationW(r, 6,t) is a smooth time-periodic function, and we still assume to hold a condition
analogous tq18) in order to guarantee the boundednesg(of att= =, as already discussed.
The above conditiong31)—(32) can be more conveniently rewritten in the following form, using
(22):

|, IW(R(1),0(1)+ 6y, t+t . IW(R(1),0(1)+ 6y, t+t
Ml(ao-to):f_w[R(t) (R(1) E?r) o O)+8(t) (R(1) ;0) o 0) dt=o0,
(33)
+2 JW(R(1),0(t) + 0y, t+ 1t
Mz(goyto):fﬂo (R ;; 0 O)=0. (34)

It can be significant to remark here that it is easy to verify that these conditions are identical to the
Mel'nikov conditions for the appearance of homoclinic intersections given e.g., in Refs. 5 and 31
in the standard hyperbolic case and deduced by means of a different procedure, namely,

+ o + oo
J _(VuHo, JV W) (x (6o, 1), t+1o)dt= fo {Ho, W}(x(---))dt=0 (35)

and

| vkam 0.0, 0= [ KW dt-o, (36)

— o0
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whereH,, is the unperturbed Hamiltonian, ad=x,p;— X1p, is the angular momenturtwhich
is indeed a constant of the motion féty). We can then say that, again and apart from the
additional condition(18), just as in Sec. Il, our procedure provides an extension of these formulas
to the nonhyperbolic degenerate case we are considering here.

Notice also that, as a consequence of the vanishing of the perturlitadn= + oo, the first
Mel’'nikov condition (33) can be written in the simpler form,

Ml( ﬁoyto): eroo (9W(R(t),6(t)+ 00,t+t0) dt=0 (33’)

—o ot '

where clearly the derivativéd/ot must be performed only with respect to the explicit time-
dependence div.

It is also clear that, when the perturbation is independer#, @fs in the cases considered in
Sec. I, one consistently gets that the first condit{88) becomes jus{13), whereas the second
one (34) is identically satisfied.

Let us now introduce the “Mel'nikov potentialWW=W(#6,,ty) (cf. Ref. 32), corresponding
to the perturbatioW(r, 6,t),

W( 90,t0)=J7+:W(R(t),6(t)+ 60,t+t0)dt, (37)

then one gets from this definition and frai®3')—(34),

A4% A4%
Ml(ao,to):WO:O, Mz(ao.to):(y—aoZO- (38)

In other words, the two Mel'nikov conditions are equivalent to the existence of stationary points
for the Mel'nikov potentiaDV(6,,tg). On the other handyV is a smooth doubly-periodic func-
tion, and such a function certainly possesses pd@ipis, where the two partial derivatives {38)
vanish, and this implies that the two conditiof@3')—(34) are certainly satisfied.

Now, exactly the same argumerigd with analogous remarkgiesented in Sec. Il show that
the vanishing of the Mel’'nikov functions entails the presence of a complicated dynamics, pro-
duced by the chain of the infinitely many intersections of the asymptotic sets, see, e.g., Refs. 5 and
28 for a detailed description of this “multidimensional” case.

In this context, we can also consider the appearance of Arnol'd diffdéithindeed, the
integrals of the Poisson brackets appearing in the Mel'nikov condi{8&i(36) give precisely
the total amount of the “variations” produced by the perturbation, ftem-o tot= +«, to the
guantitiesH, andK along the homoclinic solutioy. Proceeding in a similar way as in Ref. 14, we
can now look for the intersections of the asymptotic sets corresponding respectively for
and fort— + o0 to differentvaluesk, andk, of the angular momenturd. Observing that for both
these solutions the energ, is the sameH =0, then—following a by now classical id¥a-the
above Mel'nikov conditions must be replaced by conditions of the form,

M1(69,t9)=0, My(6g,tg)+k;—k,=0, (39)

and, exactly as in Ref. 14, the conclusion is that,|fgr—k,| small enough, intersections occur
even from homoclinic solutions corresponding to different value&K.ofrhis argument is then
consistent with the occurrence of Arnol'd diffusion; actually, a complete argument would neces-
sitate a consideration of the role played, in the present “degenerate” situation, by the usual
“nonresonance” conditions; anyway, we point out that, in the same situation, i.e., in the case of
general three-body problem, but using a different approach, the occurrence of Arnol'd diffusion
has been discussed in great detail by ¥i& On the other hand, it is also known that the
phenomenon of Arnol’d diffusion requires a quite delicate treatment; see Ref. 34 for a compen-
dium of facts, remarks, related questions, and for a list of relevant references on this point.



J. Math. Phys., Vol. 41, No. 2, February 2000 An approach to Mel'nikov theory . . . 813

Let us remark incidentally that the introduction of the above Mel'nikov potemtialould be
in general impossible if the perturbation is not Hamiltonian, i.e., if the prolimhas the form
of a general dynamical system,

U=JV Ho+ eg(u,t)=F(u)+ eg(u,t), (40)

where the perturbing terrg(u,t) (or g(r,t,6,6.,t)) is “generic.” Then in this case the above
arguments cannot be repeated, and in particular the two Mel'nikov conditions, which can now be
written in the general form,

Ma(lo.to)= | (VuHo,0)(x(00.0).t+to)dt=0, (@1
to
Moot~ | (TK.0)(x(0p.0).1+to)dt=0, @2)

give two “unrelated” restrictions om,,ty, and one then remains with the problem of discovering
if there are or not somé,,ty, which satisfy simultaneously both these conditions.

We can then summarize the above discussion in the following form:

Proposition 2: Let us consider a perturbed Kepler problem with Hamiltonian (21), where W
is a smooth, time-periodic function, vanishing at the infinity according to (18). Then, there is a
chaotic behavior (possibly giving rise also to Arnol'd diffusion), induced by an infinite sequence
of intersections in the Poincarsection of the negatively and positively asymptotic sets of the
critical point at the infinity. In the case where the perturbed problem has the form (40) with a
non-Hamiltonian perturbation @u,t), the same result is true if there are sorg, t, satisfying
simultaneously the two conditions (44(32).

IV. SOME APPLICATIONS AND FINAL REMARKS

We shortly consider here some applications of the discussion presented in Sec. lll.
As a first particular case, assume that the perturbation, ,t) is of the form

W=W(r,a6+bt), (43)

whereq, b are arbitrary constantshe constantr should be clearly an integer, abé: 0), then the
two conditions(33')—(34) actually coincide; observing on the other hand that the Fourier expan-
sion of such aW is a series as if16) in terms of the single variable #+bt, then these two
conditions take the same form as(itv), and the Mel’'nikov function is a smooth periodic function
of afy+ bty, leading thus directly to the same conclusions obtained above for what concerns the
existence of zeros, and of their properties as \elk really not a restriction to assume thatis
zero mean-valued, cf. Ref. 13).

A specially important example of this situation is provided by the restricted circular three-
body problem, in this case indeed the perturbation is givefi by

1 coq6-t) 1
W= e T ,
V1+r2+2r cog6—t)

(44)

r r

and therefore just one condition has to be considered. The presence of the chaos produced by the
chain of intersections of the asymptotic sets then is automatically granted by our discussion.
Notice that the above expressi¢fd) is actually the first-order expansion of the full potential in
terms of the parameter (which in this case is given by the mass ratidbetween two celestial
bodies), but also the exact expression of this potential, as given in Ref. 16, is in fact a function of
06—t only.
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It is completely clear that, in the presence of a more general perturbation, e.g., of the form
(just to give an example)

W(r,0,t)=W(1)(I‘,0—t)+W(2>(I’,0+t),

one now obtains two different Mel'nikov conditions, and the presence of a chaotic behavior

follows from the existence of simultaneous solutlcﬂa,sto, which is ensured by the arguments
shown in Sec. Ill.

The above results hold essentially unchanged if the perturbation depends @artwore)
parameterg,,e,,..., i.e., if one assumes th&{ may be written in the fornicf. Ref. 29),

W= GlW(l)(r,g,t)+62W(2)(r,9,t)+"' . (45)

A natural example is provided by the planar three-body problem, where one has to deal, in the
more general elliptic case, with a quite complicated expression of the perturbation containing three
parametergdifferent masses and eccentriéity®. Let us remark, however, that, at least in the
simpler case of restricted elliptic problem, in which one has two param@tgrsu is one mass

ratio ande,= e the eccentricity), the perturbation cannot be written as in the above “first-order”
form (45), but rather it takes the forrh

W= 1(Wq)(1,60,t) + €Wy (r,0,1)) (46)

in which the eccentricity plays the role of a “second-order” perturbation. On the basis of our
previous arguments, we can just say that the presence of zeros of the Mel'nikov functions, as
obtained above for the circular casg=e=0, cannot be destroyed by the higher-order perturba-
tion due to the eccentricity, and therefore chaos should be expected to persist in the elliptic case,
whereas Arnol'd diffusion should appear as a second-order effect. A complete study of the general
three-body problem, and a full discussion of its chaotic properties, including the appearance of
Arnol'd diffusion, together with several other dynamical features, is given in Refs. 16—18.

1G. Cicogna and M. Santoprete, Phys. Lett286, 25—-30(1999).

2S.-N. Chow, J. K. Hale, and J. Mallet-Paret, J. Diff. EqB%, 351-3731980).

3V. K. Mel'nikov, Trans. Moscow Math. Socl2, 1-56(1963).

4J. Guckenheimer and P. J. Holmdsonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields
(Sprlnger Berlin, 1983

S. Wiggins,Global Bifurcations and Chao&Springer, Berlin, 1989

6S. Schecter, SIAMSoc. Ind. Appl. Math. J. Math. Anal.18, 1142—115618, 1699—-17151987).

’S. Schecter, Nonlinearit§, 79-99(1990).

8B. Deng, SIAM(Soc. Ind. Appl. Math.J. Math. Anal.21, 693—7201990).

°F. Battelli, Ann. Mat. Pura Appl166, 267—-2891994).

10F, Battelli, Boll. Un. Mat. Ital. B8, 87—110(1994).

113. H. Sun and D. J. Luo, Sci. China, Ser3&, 523-5341994).

123, Moser,Stable and Random Motions in Dynamical SystéRriceton University Press, Princeton, 1973

13F, Diacu and D. Selaru, J. Math. Phy9, 6537—-65461998).

14y, 1. Arnol'd, Dokl. Akad. Nauk SSSRI56, 9—-13(1964).

15R. McGehee, J. Diff. Eqnsl4, 70-88(1973); see also Invent. MatB7, 191-2271974).

167. Xia, J. Diff. Eqns.96, 170—1841992).

177. Xia, J. Dyn. Diff. Eq.5, 219-240(1993).

187 Xia, J. Diff. Eqns.110, 289—-321(1994).

19E. A. Coddington and N. Levinsoifheory of Ordinary Differential EquationdvicGraw—Hill, New York, 1955.

203, K. Hale, inBifurcation Theory and Applicatiopgdited by L. SalvadoriSpringer, Berlin, 1984 pp. 106—151.

21K, Burns and H. Weiss, Commun. Math. Ph$32, 95-1181995); see also A. J. Homburg and H. Weiss, Maryland and
Pennsylvania State Universitiégreprint, 1999.

22y, Rayskin, Department of Mathematics, Texas University Augtireprint 1998.

28X .-B. Lin, Dynamics Reporte&, 99—-189(1996).

24H. Dankowicz and P. Holmes, J. Diff. Eqrkl6, 468—4831995).

2], Casasayas, E. Fontich, and A. Nunes, Nonlinedjt1193-1210(1992); Nonlinear Diff. Eq. Appl4, 201-216
(1997).

26F. Dumortier, J. Diff. Eqns23, 53—-106(1977).

2TM. Brunella and M. Miari, J. Diff. Eqns85, 338—3661990).



J. Math. Phys., Vol. 41, No. 2, February 2000 An approach to Mel'nikov theory . . . 815

28C. Robinson, J. Diff. Eqns52, 356—3771984).

293, Grindler, SIAM (Soc. Ind. Appl. Math. J. Math. Anal.16, 907—-931(1985).

30M. Santoprete, thesis, Department of Physics, University of Pisa, 1999.

31C. Robinson, Contemp. Math98, 45-53(1996).

32A. Delshams and R. Raneiz-Ros, Commun. Math. Phy$90, 213—-2451997).

33p. J. Holmes and J. E. Marsden, J. Math. PI&.669—-6751982).

34p. Lochak, inHamiltonian Systems with Three or More Degrees of Freedd®TO ASI Proceedings, edited by C. Simo

(Kluwer, Boston, 1999 pp. 168—183.



	An Approach to Mel’nikov Theory in Celestial Mechanics
	Recommended Citation

	tmp.1333652049.pdf.CZ7Sr

