
Wilfrid Laurier University Wilfrid Laurier University

Scholars Commons @ Laurier Scholars Commons @ Laurier

Mathematics Faculty Publications Mathematics

2010

Parallelization of the Wolff Single-Cluster Algorithm Parallelization of the Wolff Single-Cluster Algorithm

Jevgenijs Kaupužs
University of Latvia

Jānis Rimšāns
University of Latvia

Roderick V.N. Melnik
Wilfrid Laurier University, rmelnik@wlu.ca

Follow this and additional works at: https://scholars.wlu.ca/math_faculty

 Part of the Applied Mathematics Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
Kaupužs, Jevgenijs; Rimšāns, Jānis; and Melnik, Roderick V.N., "Parallelization of the Wolff Single-Cluster
Algorithm" (2010). Mathematics Faculty Publications. 38.
https://scholars.wlu.ca/math_faculty/38

This Article is brought to you for free and open access by the Mathematics at Scholars Commons @ Laurier. It has
been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of Scholars
Commons @ Laurier. For more information, please contact scholarscommons@wlu.ca.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wilfrid Laurier University

https://core.ac.uk/display/143689639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholars.wlu.ca/
https://scholars.wlu.ca/math_faculty
https://scholars.wlu.ca/math
https://scholars.wlu.ca/math_faculty?utm_source=scholars.wlu.ca%2Fmath_faculty%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=scholars.wlu.ca%2Fmath_faculty%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholars.wlu.ca%2Fmath_faculty%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/math_faculty/38?utm_source=scholars.wlu.ca%2Fmath_faculty%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca

Parallelization of the Wolff single-cluster algorithm

J. Kaupužs* and J. Rimšāns
Institute of Mathematics and Computer Science, University of Latvia, 29 Rainja Boulevard, LV-1459 Riga, Latvia

R. V. N. Melnik
M2NeT Laboratory, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5

�Received 30 April 2009; revised manuscript received 12 January 2010; published 3 February 2010�

A parallel �open multiprocessing �OpenMP�� implementation of the Wolff single-cluster algorithm has been
developed and tested for the three-dimensional �3D� Ising model. The developed procedure is generalizable to
other lattice spin models and its effectiveness depends on the specific application at hand. The applicability of
the developed methodology is discussed in the context of the applications, where a sophisticated shuffling
scheme is used to generate pseudorandom numbers of high quality, and an iterative method is applied to find
the critical temperature of the 3D Ising model with a great accuracy. For the lattice with linear size L=1024,
we have reached the speedup about 1.79 times on two processors and about 2.67 times on four processors, as
compared to the serial code. According to our estimation, the speedup about three times on four processors is
reachable for the O�n� models with n�2. Furthermore, the application of the developed OpenMP code allows
us to simulate larger lattices due to greater operative �shared� memory available.

DOI: 10.1103/PhysRevE.81.026701 PACS number�s�: 05.10.Ln, 75.10.Hk, 05.50.�q

I. INTRODUCTION

The cluster algorithms are very useful in Monte Carlo
�MC� simulations of the lattice models near criticality, where
the usual Metropolis algorithm suffers from the problem of
critical slowing down. The Swendsen-Wang and Wolff clus-
ter algorithms �1–3� are well known. In distinction from the
Metropolis algorithm, they ensure reasonably small autocor-
relation times for large but finite lattices even at the critical
point �4–7� and therefore are widely used in MC simulations
of lattice models. For example, the Wolff algorithm has been
recently used in simulations of the Ising spin model in d=5,
6, 7, and 8 dimensions �8�, as well as in the MC study of
critical interfaces in the random anisotropy models �9� and
random-bond Potts model �10�. With a slight modification, it
has been recently applied to the study of Goldstone mode
singularity in the XY model �11,12�. Apart from the spin
models on regular lattices, it has been successfully used also
in MC simulations on Barabasi-Albert networks �13�. In �14�
the application of the cluster algorithms to the quantum spin
systems has been considered. In fact, there is a no-go theo-
rem that prevents the construction of an efficient Wolff-type
embedding algorithm in the standard Wilson formulation for
such models, but it is has proven to be possible in the frame-
work of D theory �14�.

The famous Wolff single-cluster algorithm �1� is particu-
larly effective in the simulation of equilibrium properties.
However, even using the cluster algorithms, the study of
critical-point properties with a reliable determination of the
critical exponents may require quite large computational
times and resources. A parallelization of the computer code
is a common method to reduce the computation time. A
trivial parallelization, by running several independent MC
realizations simultaneously, can provide a satisfactory solu-

tion of the problem in many applications. In fact, it does not
require any parallel code. However, in applications where
each of the runs should be long enough it may be useful to
speed up any of them by parallelizing the simulation code.
The Swendsen-Wang algorithm is relatively easy to parallel-
ize �see, e.g., �3�� as compared to the Wolff algorithm. How-
ever, it is known that the Wolff single-cluster algorithm can
even be several times more efficient in the simulation of
equilibrium properties �e.g., �15��. Therefore the develop-
ment of an efficient parallel version of this algorithm repre-
sents an important step forward. Two versions of the parallel
Wolff cluster algorithm, applied to the two-dimensional �2D�
Ising model, have been already proposed and tested in �15�.
Unfortunately, due to the irregular size, shape and position of
the Wolff clusters, this method does not easily lend itself to
efficient parallel implementation. One of the parallel ver-
sions proposed in �15� gave fairly good performance. The
basic idea of this parallelization is to split the lattice into N
partitions �strips�, where N is chosen to be an integer mul-
tiple of the number of processors P to ensure load balancing.
Each partition contains W columns and partition M is as-
signed to processor M mod P. In such a way, each of the
processors controls certain fraction of the lattice, and a data
exchange between processors is necessary to treat correctly
the spins on the partition boundaries. The larger is W the less
communications are necessary, but the load balancing is bet-
ter for smaller W. The speedup around 10 with efficiencies
around 35% have been reached by this algorithm at the criti-
cal temperature of 2D lattices with linear sizes greater than
L=512 �15�.

Note that the average size of the Wolff cluster at the criti-
cal temperature is C�L2−� �1,3�, where � is the critical ex-
ponent, which is exactly 1/4 for the 2D Ising model and has
a remarkably smaller positive value in the three-dimensional
�3D� case. Hence, the Wolff cluster typically occupies the
fraction C /Ld�L2−d−� of the lattice in d dimensions.
Namely, this fraction decays with L as �L−1/4 in two dimen-
sions and slightly faster than L−1 in three dimensions. It*kaupuzs@latnet.lv

PHYSICAL REVIEW E 81, 026701 �2010�

1539-3755/2010/81�2�/026701�10� ©2010 The American Physical Society026701-1

means that, in contrast to the 2D case, the Wolff clusters near
the critical temperature will typically occupy only a very
small fraction of the whole lattice in the 3D case, as it is
the case for large lattices with L�1024 considered in our
study. It may cause certain difficulties in reaching an accept-
able load balancing and efficiency for such 3D lattices, using
the algorithm of �15�: a good load balancing could be
reached only at remarkably smaller values of W than in the
2D case, but smaller values of W imply larger time losses for
communications. The algorithm of �15� refers to the so-
called message passing interface �MPI� parallelization tech-
nique, where each processor works with its own memory,
which is related to certain fraction of the lattice in the MC
simulations. We present a parallel implementation using the
well-known OpenMP technique, which works with shared
memory. In this case we do not use any fixed separation of
the lattice, but only a separation of the current list of the
lattice sites belonging to the wave front of the growing clus-
ter.

II. ITERATIVE SIMULATION METHOD

As an example, we consider the 3D Ising model on
simple-cubic lattice with the Hamiltonian H given by

H/T = − ��
�ij�

�i� j , �1�

where T is the temperature measured in energy units, � is the
coupling constant ��=J /T, where J is the interaction en-
ergy�, and the summation takes place over all pairs �ij� of the
neighboring spins �i= �1 in the 3D lattice with periodic
boundary conditions. A spin configuration 	�
 in Eq. �1� ap-
pears with the probability

P�	�
� =
1

Z
e−H�	�
�/T �2�

according to the Boltzmann distribution, where Z
=�	�
 exp�−H�	�
� /T� is the partition function. In our MC
simulation, we measure the dimensionless �normalized to J�
energy per spin �=N−1��ij��i� j and magnetization m
=N−1��i=1

N �i� and determine averages of the type ��kml�,
where N=L3 is the total number of spins.

In studying the critical-point phenomena it can be useful
to design an algorithm which automatically finds the critical
point. Such an algorithm, known as the invaded cluster algo-
rithm, has been proposed in �16,17�. Recently, an algorithm
with similar properties, called the locally converging Wolff
algorithm, has been considered �18�. We present an algo-
rithm, which allows to find iteratively certain pseudocritical

coupling �̃c�L�, converging to the true critical coupling �c at
L→�. In our case, the fluctuation amplitude for the coupling
can be well controlled and, in principle, reduced to an arbi-
trarily small value. Besides, our method allows to recalculate

the simulation results for any slightly different from �̃c�L�
coupling.

The pseudocritical coupling corresponds to a given
value U0 of U= �m4� / �m2�2. The quantity U is related to
the Binder cummulant 1−U /3, which is zero in the high-

temperature phase ��	�c� and 2/3 in the low-temperature

phase ��
�c� at L→�. Consequently, �̃c�L� tends to �c at
L→� for any 1	U0	3. At �=�c, the ratio U tends to
certain universal value U��1.6 �19,20� when L→�. There-
fore we have chosen U0=1.6 to obtain pseudocritical cou-
plings closer to �c. At a given L, we use the Newton’s itera-
tions

�̃c
�n+1� = �̃c

�n� −
U − U0

�U/��
�3�

to find �̃c, where �̃c
�k� �k=n ,n+1� is the value of �̃c in the kth

iteration, whereas U and �U /�� are estimated from the simu-

lation of certain MC steps in the nth iteration at �= �̃c
�n�. The

first iteration has been used only for equilibration of the sys-

tem at a reasonably chosen �= �̃c
�1�, setting �̃c

�2�= �̃c
�1� after-

wards. In a few following iterations, �̃c
�n� reaches �̃c within

the statistical error and further fluctuates around this value.
In principle, the fluctuation amplitude � can be reduced to an
arbitrarily small value by increasing the number of MC steps
in one iteration NMCS. The pseudocritical coupling can be

estimated by averaging over �̃c
�n�, discarding some first itera-

tions. Quantities ��kml� at �= �̃c also can be evaluated by
such an averaging over their values estimated in a set of
iterations. However, such a method gives some systematic
errors of order �2 since corrections of this order have been
neglected in the Newton’s iterations. Such errors, however,
always tend to zero at NMCS→�.

For a refined estimation, we expand ln��kml�, evaluated in

each iteration, in the Taylor series around the current �̃c
�n�

using Eqs. �1� and �2�. It allows us to estimate the values of

��kml� at any given � near �̃c, taking into account also the
nonlinear expansion terms. The averaging over a set of itera-
tions then gives us refined estimates of ��kml� at this �. Ob-
viously, we can determine from this calculation any second-
ary quantity like U at the considered �. In this way, we find

also the value of �= �̃c at which U=U0 holds. We have
Taylor-expanded ln��kml� instead of ��kml�, since it leads to
somewhat more symmetric and elegant formulas. Namely,
for any quantity x measured in MC simulation we obtain

� ln�x�
��

= N��� −
�x��
�x�

� , �4�

�2 ln�x�
��2 = N2����2 − ��2� − �x��

�x�
�2

+
�x�2�
�x� � , �5�

�3 ln�x�
��3 = N3�2���3 − 3�����2� + ��3� − 2 �x��

�x�
�3

+ 3
�x���x�2�

�x�2 −
�x�3�
�x� � . �6�

Note that it holds for any model with H /T=−�N�, obeying
Boltzmann statistics �2�.

The fluctuation amplitude � must be small enough to en-
sure a fast convergence of the Taylor expansions. We have
reached it by making sufficiently large number of MC steps

KAUPUŽS, RIMŠĀNS, AND MELNIK PHYSICAL REVIEW E 81, 026701 �2010�

026701-2

in one iteration, which corresponds to some 5000 or larger
number of sweeps Nsw �spin flips per N�. Possible systematic
errors have been controlled by comparing the simulation re-
sults for different Nsw in one iteration, as well as evaluating
the influence of nonlinear corrections in the Taylor series.
With our choice of Nsw and the total number of iterations
around 100, even a simple averaging �ignoring the nonlinear
corrections� gives satisfactory results with systematic errors
smaller than �, where � denotes the standard �statistical�
error. The refined estimation then gives negligible �smaller
than 0.1�� systematic errors.

A relevant question is how many iterations should be dis-
carded from the beginning of simulation. To clarify this
point, we have analyzed our simulation results obtained by
the serial Wolff algorithm for a set of sizes 160�L�1024.
Each simulation has been started with all spins up at �

= �̃c
�1� ranging from 0.221 6543 to 0.221 65475 �0.221 6546

for L�640�. The MC measurements have been performed
after each L /8 Wolff clusters. The number of measurements
Nmes in one iteration is about 33 000 or larger. Pseudocritical
couplings and related averages have been estimated collect-
ing the data from several �Nrun� runs, only the iterations
number n�5 being included. The same has been done with
two subsets of data including only the iterations number n

=3,4 �case 1� and n=5,6 �case 2�. The obtained values of �̃c
are compared in Table I, providing also the corresponding
parameters Nrun and Nmes, as well as Nit—the total number
of iterations with n�5. The indicated �in brackets� standard
errors are estimated by the jackknife method �see, e.g., �3�.�.

The pseudocritical couplings in Table I are rather close to

the true critical coupling �c, since �̃c changes with L only
very slightly. In fact, the actual values of about 0.221 6546
are well consistent with those reported for �c in literature
�20�. The estimates obtained from the third and fourth itera-
tions �n=3,4� satisfactory well agree with those obtained
from the following iterations �n�5�. However, in nine cases

from ten and for all L�384, �̃c of n=3,4 appears to be
slightly smaller than that of n�5. It points out to a possible
systematic deviation within about one � for n=3,4. The
agreement between the estimates at n=5,6 and n�5 is bet-
ter, since no such systematic deviation can be mentioned.

Note that the indicated standard errors for n=3,4 and n
=5,6 are estimated rather approximately because of quite
small total number of the used iterations.

We can judge from the above comparison that the first
four iterations should likely be discarded for a very accurate
and reliable estimation of the critical coupling. Accordingly,
it makes sense to speed up any individual run by paralleliz-
ing the code to obtain a good and reliable result in a shorter
time. We have tested also the Swendsen-Wang algorithm as a
possible alternative to the Wolff algorithm. In this case, we
have obtained �from two runs and totally 40 iterations with

n�5� �̃c=0.221 654 45�16� at L=256 in agreement with the
result of the Wolff algorithm. However, the estimated stan-
dard error is about 1.5 times larger despite the fact that the
total number of the used sweeps �MC steps in this case� is
not smaller, but even 3.37 times larger. So, we would need
about 7.5 times larger computational time with the

Swendsen-Wang algorithm to reach the same accuracy for �̃c
as with the Wolff single-cluster algorithm. This advantage of
the Wolff algorithm shows up if one starts the simulation
from the ordered state. The latter is recommended, since the
Wolff algorithm exhibits relatively poor equilibration prop-
erties when starting from the disordered state �5�. Hence, the
serial Wolff algorithm in our application appears to be faster
than the Swendsen-Wang algorithm, even if the latter would
be speeded up 3.2 times, as in �21�, by parallelizing the code.
Thus, we will focus further on the parallelization of the
Wolff algorithm.

III. ESTIMATION OF THE CRITICAL COUPLING

The iterative method discussed in Sec. II allows us to
estimate the critical coupling �c by fitting the data of the

pseudocritical coupling �̃c�L�. According to the general
finite-size scaling arguments �see, e.g., �19,20��, we have

�̃c�L� − �c L−1/� �7�

at L→�, where � is the critical exponent of the correlation

length. The plot of �̃c vs L and the linear fit to Eq. �7� is
shown in Fig. 1. This plot has a rather small asymptotic slope

TABLE I. The values of �̃c depending on L, estimated from different sets of iterations �numbered by n�
at the simulation parameters given in columns 5–7.

L �̃c�n=3,4� �̃c�n=5,6� �̃c�n�5� Nmes Nrun Nit

1024 0.221654620�38� 0.221654598�51� 0.221654628�24� 33000 8 48

864 0.221654603�61� 0.221654633�53� 0.221654640�27� 33000 8 72

768 0.221654550�70� 0.221654708�34� 0.221654669�29� 33000 6 72

640 0.221654581�60� 0.221654583�68� 0.221654615�31� 33005 12 108

512 0.22165457�21� 0.22165491�13� 0.221654662�45� 33000 4 108

432 0.22165461�18� 0.22165467�21� 0.221654637�58� 33000 6 108

384 0.22165448�23� 0.22165461�26� 0.221654567�65� 31250 5 116

256 0.22165530�42� 0.22165439�47� 0.22165460�11� 46875 4 80

216 0.22165443�35� 0.22165556�28� 0.22165460�13� 40000 5 110

160 0.22165369�77� 0.22165406�75� 0.22165414�18� 50000 4 120

PARALLELIZATION OF THE WOLFF SINGLE-CLUSTER … PHYSICAL REVIEW E 81, 026701 �2010�

026701-3

�it almost saturates�, since U=1.6 is very close to its univer-
sal critical value. Due to the saturation effect, the fit result
for �c is not sensitive to any small variation in �, and we
have chosen the widely accepted �for the 3D Ising model�
value �=0.63. Figure 1 contains all data of Table I as well as
extra data points for L=320 and L=192. Besides, the values
for L=1024, 864, and 768 are estimated including also addi-
tional iterations produced by the parallel code, as discussed
in Sec. VI. The linear fit over the range L� �256,1024� gives
us �c=0.221 654 636�20�. This value is similar but more ac-
curate and slightly larger than the known ones �c
=0.221 654 55�5� �22� and �c=0.221 654 57�3� �23�, ob-
tained from the Binder cummulant and the susceptibility
data, respectively. As one can see from Fig. 1, the asymptotic

behavior of �̃c�L� estimated from L�256 is not well consis-
tent with the behavior at relatively smaller sizes L�192. It
means that a truly reliable estimation of �c from the Binder
cummulant data should be based on the simulation of larger
than L=192 lattices. Moreover, to see the asymptotic behav-
ior, it is necessary to have such data over a sufficiently wide
range of sizes. Hence, although one usually assumes that L
=128 is already quite large lattice size sufficient for good
estimations, our data show that the data up to L=1024 are
desirable to do the estimation of the critical coupling in a
good and reliable way.

IV. GENERATION OF PSEUDORANDOM NUMBERS

The choice of a random number generator plays some role
in specific implementations of our parallel Wolff algorithm.
It may also be important in obtaining high quality results. In
particular, we have found that some of the simulated quanti-
ties, such as specific heat �CV� of 3D Ising model near criti-
cality, are rather sensitive to the quality of pseudorandom
numbers �PRNs�. Therefore, a relevant question is how a
random number generator can be improved.

The problem of removing correlations in the subtract-
with-carry �SWC� generator proposed by Marsaglia and Za-
man �24� has been studied by Lüscher �25�. Given the first r
PRN’s x0 ,x1 , . . . ,xr−1 and the “carry bit” cr−1, the nth PRN
�n�r� produced by the SWC generator is

xn = �xn−s − xn−r − cn−1�mod b , �8�

where cn=0 if xn−s−xn−r�0 and cn=1 otherwise. Here b, r,
and s are positive integers, b is called the base and r
s are
the lags. The SWC generator fails to pass some correlation
tests. Lüscher has proposed to discard some of the PRN’s of
this sequence and use only the remaining ones. In this way,
the popular RANLUX generator has been developed. As pro-
posed by James �26�, one generates 24 PRNs, then discards
p−24 ones, and so on. The parameter p�24 defines the
so-called “luxury level,” i.e., p=48,97,223,389 correspond
to luxury levels 1–4, respectively.

Later, a random-walk test performed in �27� at r=24 and
s=10 has shown that the RANLUX generator shows better
results in this test as compared to the SWC generator. At
luxury level 2 the deviations from the expected probability
distribution lie on the boundary of observations in a test with
1011 stochastic trajectories, using about 1013 random num-
bers, whereas level 3 is safe in runs using less than 1015

PRNs �27�. In this case, however, only a small fraction 24/
223 of the PRN’s generated by the SWC algorithm is used,
which makes the RANLUX generator quite slow. Since we
deal with long MC simulations, a good but faster generator
would be more optimal in our application.

The problem of improving pseudorandom number genera-
tors has been recently addressed in several papers, e.g., �28�,
and here we present additional ideas in addressing this issue.

The linear congruential generators providing the sequence

In+1 = �aIn + c�mod m �9�

of integer numbers In is a convenient choice. We have tested
some generators including that of �29� with a=843 314 861,
c=453 816 693, and m=231. The G05CAF generator of NAG
library with a=1313, c=0, and m=259 �generating odd inte-
gers� has been extensively used in �20�. We have compared
the results of both generators for the 3D Ising model, simu-
lated by the Wolff cluster algorithm, and have found a dis-
agreement by almost 1.8% in the maximum value of CV for
the system size L=48. Application of the standard shuffling
scheme �see, e.g., �3�, p. 391� with the length of the shuffling
box �string� Nsh=128 appears to be not helpful in removing
the discrepancy. The problem is that the standard shuffling
scheme, where the numbers created by the original generator
are put in the shuffling box and picked up from it with ran-
dom delays in about Nsh steps, effectively removes the short-
range correlations between the pseudorandom numbers, but
nevertheless it does not essentially change the block aver-
ages �In�k=k−1� j=n

n+k−1Ij over k subsequent steps if k�Nsh. It
means that such a shuffling is unable to modify the low-
frequency tail of the Fourier spectrum of the sequence In to
make it more consistent with white noise �an ideal case�. The
numbers In are repeated cyclically and the block averages
over the cycle do not fluctuate at all in contradiction with
truly random behavior.

To resolve this difficulty, we have applied a second shuf-
fling as follows. We have split the whole cycle of length m of
the actual generator with m=231 in 220 segments each con-
sisting of 2048 numbers. Starting with 0, we have recorded
the first numbers of each segment. It allows us to restart the

�

�

0 0.0001 0.0002 0.0003
L

-1/ν

0.2216540

0.2216542

0.2216544

0.2216546

βc

~

FIG. 1. The pseudocritical coupling �̃c vs L−1/�. The solid
straight line is the linear fit over the range of sizes L
� �256,1024�, yielding the estimate of the critical coupling �c

=0.221 654 636�20�. The dotted line is guide to eyes.

KAUPUŽS, RIMŠĀNS, AND MELNIK PHYSICAL REVIEW E 81, 026701 �2010�

026701-4

generator from the beginning of any segment. The last pseu-
dorandom number generated by our shuffling scheme is used
to choose the next number from the shuffling box, exactly as
in the standard scheme. In addition, we have used the last but
one number to choose at random a new segment after each
2048 steps. This double-shuffling scheme mimics the true
fluctuations of the block averages even at k�m. We have
used a very large shuffling box with Nsh=220 to make the
shuffling more efficient by mixing the pseudorandom num-
bers from many segments. Such a shuffling scheme has an
extremely long cycle: the logarithm of its length is compa-
rable with ln�Nsh!�.

A hidden problem is the existence of certain long-range
correlations in the sequence In of the original generator of
�29�. Namely, pseudorandom numbers of a subset, composed
by picking up each 2kth element of the original sequence,
appear to be rather strongly correlated for k�20. It is ob-
served explicitly by plotting such a subsequence In

� vs n,
particularly, if the first element is chosen I1

�=0. These corre-
lations reduce the effectiveness of our second shuffling. Cor-
relations of this kind, although well masked, exist also in the
sequence of G05CAF generator. Namely, if we choose I1

�=1
and k=25 and generate the coordinates �x ,y� by means of
this subset �known as the spectral test�, then we observe that
the x-y plane is filled by the generated points in a nonrandom
way. The origin of these correlations, obviously, is the choice
of modulo parameter m as a power of 2. Apparently, it is the
reason for systematic errors in some applications of
Swendsen-Wang algorithm discussed in �30�.

A promising alternative, therefore, is to use the well-
known Lewis generator �see, e.g., �3��, where m=231−1 is a
prime number, a=75, and c=0, as the original generator of
our double-shuffling scheme. This generator has been tested,
e.g., in �31�, providing good results in relatively short simu-
lations without any shuffling. As before, the cycle is split in
220 segments. However, the first segment now starts with 1.
Besides, the first and the last segments contain only 2047
elements instead of 2048. After all numbers of the previous
segment are exhausted, a new segment is chosen as follows:
if the last but one random number of our shuffling scheme is
I, then we choose the kth segment, where k=1+ �I /2048�.
Since we never have I=0 or I=m, it ensures that each seg-
ment is chosen with the probability proportional to its length.
We have used the shuffling box of length Nsh=106 for this
scheme.

Good results in the directed one-dimensional random-
walk test �see, e.g., �27�� may be important to ensure that the
pseudorandom number generator works well with the cluster
algorithms. At discrete times, the random walker either
makes step forward with the probability �, or stops with the
probability 1−�, starting a new random walk afterwards.
The probability of stopping at nth time step is P�n�
=�n−1�1−��. As in �27�, we have calculated the relative de-
viation �P�n�= �P��n� / P�n��−1 of the observed in MC simu-
lation probability P��n� from the exact value P�n� for n
�100 at �=31 /32. We have tested our latter shuffling
scheme, using up to 1012 stochastic realizations of the ran-
dom walk. For comparison, no more than 1011 stochastic
trajectories have been used in �27� to test the RANLUX gen-
erator. Our results for a set of 1012 trajectories are shown in

Fig. 2. Generally, only expected statistical fluctuations of
�P�n� around zero, which look different for different runs,
and no detectable systematic deviations have been observed.
Taking into account the very small values of �P�n� reached
in our test simulation, it confirms the high quality of the
generated pseudorandom numbers.

As another test, we have simulated by the Wolff algorithm
the mean energy ���, specific heat CV, as well as its deriva-
tives CV� =�CV /�� and CV� =�2CV /��2 for the 2D Ising model
at the critical point and have compared the results with those
extracted from exact formulas �see, e.g., Eqs. �7� and �8� in
�32��. The test simulations consisting of 4.8�108 and 2.4
�107 cluster-algorithm steps have been made for the lattice
sizes L=48 and L=256, respectively. The values provided by
the G05CAF generator and our two shuffling schemes agreed
with the exact ones within the errors about one �. The most
serious deviation of 2.37� has been observed for CV� in the
case of L=48 simulated by our first shuffling scheme. At L
=48, one standard deviation � corresponded to �0.0009%
relative error for ���, �0.02% error for CV, �0.2% error for
CV� , and �0.35% error for CV� . At L=256 these errors were
�0.0012%, �0.12%, �3%, and �4%, respectively. We
have used our second shuffling scheme with the Lewis gen-
erator in the simulations and parallel implementations dis-
cussed here.

V. PARALLEL VERSION OF THE WOLFF ALGORITHM

According to �1�, one step of the Wolff single-cluster al-
gorithm for the Ising model consists of the following sub-
steps:

�1� Choose a seed spin of the new cluster at random and
flip it;

�2� Look in turn at each of the neighbors of that spin and
find the ones, which are pointing in the opposite direction as
the flipped seed spin. Each of them is added to the cluster
and simultaneously flipped with probability Padd=1−e−2�.

�3� For each spin that was added in the last step, examine
each of its neighbors to find the ones which are pointing in
the opposite direction, adding each of them to the cluster and
simultaneously flipping with probability Padd=1−e−2�. This
step is repeated until there are no new spins added to the
cluster.

This algorithm is formulated in �3� in a slightly different
way, where the flipping of cluster spins is postponed to an
extra step.

���

�

�

�

�

0 20 40 60 80 100n

-0.00005

0.00000

0.00005

δP(n)

FIG. 2. The relative error �P�n� in the MC measured probability
of a random walk of length n at �=31 /32, estimated from a set of
1012 stochastic trajectories.

PARALLELIZATION OF THE WOLFF SINGLE-CLUSTER … PHYSICAL REVIEW E 81, 026701 �2010�

026701-5

A new generation of spins is added to the growing Wolff
cluster at each iteration of step 3. Our basic idea is to per-
form any of such iterations by using parallel threads, pro-
vided that the wave front of the growing cluster, consisting
of the spins added in the last step, occupies more than Nmin
lattice sites. We will call these spins the wave-front spins. If
the wave front contains �Nmin spins, then it is treated seri-
ally by the master processor. Here Nmin is an optimization
parameter. Apart from the parallelization of step 3, the pseu-
dorandom numbers in our algorithm are also generated in
parallel and stored in an array for further use when neces-
sary. Finally, the Monte Carlo measurements of energy and
magnetization are also performed by parallel threads, which
is quite simple and therefore will not be discussed in detail.

The parallel treatment of one iteration of step 3 is per-
formed according to the following scheme:

�1� divide the list of the wave-front coordinates �coordi-
nates of those spins added in the last step� between the pro-
cessors. Three arrays with these x, y, and z coordinates, as
well as the array of spin variables are stored in the shared
memory.

�2� Perform step 3 of the Wolff algorithm in parallel only
for the subset of those neighboring spins, which are located
in one of the six possible directions from each of the consid-
ered wave-front spins. The work of processors is synchro-
nized by putting the OMP BARRIER after this substep. Then
the same is performed for the remaining five directions, put-
ting the OMP BARRIER after each of them. Each processor
treats certain fraction of the cluster wave front, assigned in
step 1 of this scheme. Besides, each processor forms its own
lists of x, y, and z coordinates of newly added spins and
counts the number of elements in these lists. These lists and
numbers of elements are shared variables; however, each
processor stores them in a separate subdomain of the shared
memory.

�3� Form the common lists of the x, y, and z coordinates
of newly added spins. It is done in parallel, in such a way
that each processor writes its own list in a certain place of the
common shared arrays, determined according to the values
of shared variables �numbers of elements� defined in the pre-
vious step. The total number of elements in the common lists
is determined by the master processor.

In the above scheme, it is necessary that each processor
works with certain fraction of the shared arrays assigned to it
according to the thread number. It is reached by using the
following structure in the parallel region of the FORTRAN

code:

DO ID�1,IPROC
IF�OMP_GET_THREAD_NUM��.EQ.ID-1�

THEN

………
END IF

END DO

Here IPROC is the number of processors used. All the op-
erators of steps 2 and 3 in the above scheme are put inside
the logical IF between THEN and END IF. In this case cer-
tain value of ID is assigned to each thread �these are num-

bered from 0 to IPROC-1�, which allows to organize explic-
itly its work depending on the thread number.

The splitting of the procedures of adding and flipping of
spins by treating separately each of the six directions with
OMP barriers in between, as explained in point 2 of the
above scheme, is a very essential point. It ensures that the
parallel algorithm works correctly. Namely, it excludes the
situations where different processors try to flip simulta-
neously the same spin, i. e., write simultaneously in the same
unit of the shared memory. Without the separation, this
would be possible if such a spin is a neighbor of two or
several wave-front spins. Even if the result of simultaneous
flipping could appear to be correct �once the spin is added to
the cluster, it can be formally added at the same time repeat-
edly, although it could fail technically�, a problem remains
such that the newly added spin can appear two or several
times in their common list formed in step 3 of our scheme.
Excluding the simultaneous flipping, our separation auto-
matically resolves this problem, as well.

We propose to generate the pseudorandom numbers in
advance. We have found empirically how it can help to make
our parallel code more efficient. In fact, the adding of a spin
with the probability Padd requires only to compare a uni-
formly distributed random number r� �0,1� with Padd.
Therefore we need not to store the generated random num-
bers, but only a random sequence of two numbers, 0 and 1,
where 1 corresponds to r	 Padd �acceptance� and 0 to r

 Padd �rejection�. We generate such a sequence in advance
and store it in an array RANDO of certain dimension M to
use it in parallel, as well as in serial treatments of the cluster
wave front. Each processor takes the elements from certain
fraction of this array. The number of such fractions is equal
to the number of processors used the parallel treatment. In
the case of the serial treatment, the elements are taken from
that fraction, which contains more elements not used yet.
The supply and use during one complete treatment of a
cluster-wave front is organized as follows:

�1� Check the number of still not used or available ele-
ments in all fractions of the array RANDO. If, for any of the
used fractions, two conditions are satisfied: �1� the number of
available elements nav is smaller than n�, where n� is certain
number of available elements at which the treatment of the
currently considered wave front can be surely completed,
and �2� the number of available elements is smaller than a
half of all elements, then generate pseudorandom numbers
�in parallel� to replace all the already used elements of the
array RANDO with new elements.

�2� If, after step 1, nav�n� holds for all the used fractions
of RANDO, then treat the current wave front �or complete to
do this if step 2 is repeated�, counting how many unused
elements are left in the fractions of RANDO. Otherwise, de-
termine a part of the wave front which can be surely treated
�and is not treated in previous iterations of step 2�, then treat
this part, counting how many unused elements are left in the
fractions of array RANDO, and return to step 1.

Condition �2� in step 1 is added to ensure that the array
RANDO is completed with new elements only in sufficiently
large portions, which increases the efficiency of the code. We
have used a rather large array of dimension M =40 000 000.
It, again, increases the efficiency of the parallel generation of

KAUPUŽS, RIMŠĀNS, AND MELNIK PHYSICAL REVIEW E 81, 026701 �2010�

026701-6

the pseudorandom numbers. Besides, at such a large M, we
practically never return in the above scheme from step 2
back to step 1 in the actually considered simulations near the
critical point.

Consider now the parallel generation of pseudorandom
numbers, using the shuffling scheme described in Sec. IV. In
this case the parallel threads should generate independent
sequences of pseudorandom numbers. It is achieved by using
different initial sets of variables characterizing the current
state of the shuffling scheme, further called the generator
state variables �such as the arrays representing the shuffling
boxes, and last generated number�, for each of the threads.

It is convenient to store all the different sets of state vari-
ables for different threads in the shared memory, since then
they are not lost outside the parallel regions of the code and
can be written in a file to continue the simulation from a
record, if necessary. In principle, one can always generate a
random number just when it is necessary, relating explicitly
certain set of variables to certain thread number within the
already mentioned structure of the logical IF. However, to
get an efficient parallel code in this way is a difficult task.
We have tried to generate separately the random sequences
of 0 and 1, stored in the array RANDO and used later ac-
cording to the described scheme. In this case nothing be-
comes better if we try to do the parallel generation working
just with the shared variables. However, it allows to test how
efficient the parallel generation of the pseudorandom num-
bers alone is. Surprisingly, we have found that it is even
slower than the serial generation, although this conclusion
may depend on the specific generator and specific computer
used. We have performed our test simulations on the Opteron
cluster containing 4 cores �2 sockets�2 cores per socket�
per node running at 2.2 GHz �Shared Hierarchical Academic
Research Computing Network: www.sharcnet.ca cluster nar-
whal�. An essential property of the used pseudorandom num-
ber generator is the presence of a large shuffling box �see
Sec. IV�. It means that the search of elements with randomly
chosen addresses in a large array takes place permanently.
We have tested by a serial code that such a use of the shuf-
fling box slows down the generator remarkably �although it
does not slow down too much the whole simulation�. This
has led us to a conclusion that searching random addresses in
the shared memory by several processors simultaneously is
quite inefficient. Indeed, we have found that the efficiency of
the parallel generation becomes close to 100% if private in-
stead of shared variables are used for our shuffling scheme
locally inside a parallel region. Namely, we update the array
RANDO as follows:

�1� Define the private state variables of the shuffling
scheme and assign them the values of the corresponding
shared variables depending on the thread number;

�2� Generate in parallel the pseudorandom numbers and
update the array RANDO �shared variable�, working with the
private state variables; and

�3� Assign the final values of the private state variables
used by each thread to the corresponding shared variables.

A high efficiency can be reached only if the assignment
steps 1 and 3 take a relatively small time as compared to
the generation step 2. Since we use a large shuffling box
of the size Nsh=106, we take even much larger dimension

M =4�107 of the array RANDO to ensure this. After the
implementation of this scheme, the generation of the pseu-
dorandom numbers is parallelized very efficiently.

However, the problem with searching of array elements
appears also in the treatment of the wave front of the grow-
ing Wolff cluster. The elements in this case are the values of
the wave-front spins with coordinates taken from certain
lists, as explained before. These coordinates are not ordered,
but also are not completely random. We have observed some
speeding up �relative to the serial treatment� in the parallel
treatment of the wave front on two and four processors, if the
wave front contained more than 500 spins. Therefore we
have set the optimization parameter Nmin=500 in our algo-
rithm. However, we have not observed that the speedup be-
comes almost proportional to the number of processors even
for much larger wave fronts containing more than 10 000
spins. The reason for this could be, again, a not quite effi-
cient parallel searching in shared arrays.

There are two possible ways to implement the adding of a
spin to the cluster �simultaneously flipping it� with certain
probability Padd. One way is to look first whether the actual
spin is opposite to the cluster spins and, if it is true, then look
for a random variable to add or reject the spin. Another way
is to look first for the random variable and, if it is such that
the spin can be added, then add the spin if its direction �sign�
is appropriate. In the first case, it is always necessary to
search in an array to determine the spin value, and in fewer
cases one needs to have a random variable. In the other case
it is vice versa. So, if the searching is relatively slow as
compared to the generation of a random number, then the
second implementation is more efficient. However, in our
simulations, the first implementation works better both in
serial and in parallel code, and the tests and discussions that
follow refer only to this case.

VI. TEST SIMULATIONS

We have performed a series of test simulations to estimate
the efficiency of the developed parallel procedure, as well as
to compare the results with those of the serial code. We have
tested also the influence of the lattice sizes on the estimation
of critical exponent �.

Note that initialization of parallel region and OMP barri-
ers requires some time, which can even exceed that of a
serial calculation of the corresponding simulation step.
Therefore, only a large enough generation of newly added
spins, forming the wave front of a growing Wolff cluster, is
worth to be treated in parallel, and the parallel code is more
efficient for larger lattice sizes. As we have mentioned al-
ready, our simulations showed some speedup of this step
only if the wave front contained more than some Nmin=500
spins. Hence, smaller wave fronts have been treated serially.
For the lattice size L=1024, used in our test simulations, the
wave front at ���c�0.221 654 6 typically contains several
thousands of spins so that it is most often treated in parallel.
For much smaller lattices, e.g., L�128 considered in �20�,
the wave front at ���c usually contains less than 500 spins.
However, since the generation of the pseudorandom numbers
is always parallel, some speedup is observed even for such
relatively small lattices.

PARALLELIZATION OF THE WOLFF SINGLE-CLUSTER … PHYSICAL REVIEW E 81, 026701 �2010�

026701-7

We have compared the simulation times of the parallel
code with those of the serial code. In our test simulations on
the Opteron cluster described before, the parallel code
speeded up the simulation near the critical point �i.e., at �
=0.221 654 6� about 1.79 times on two processors and about
2.67 times on four processors for the lattice of linear size
L=1024. It corresponds to 89% and 67% efficiency, respec-
tively. These estimates represent average values over long
runs in an equilibrium state. In fact, we have used here an
initial spin configuration obtained after one of the long serial
runs considered in Sec. II. In the following test simulations,
15000 measurements and 15 000�128 clusters of average
size 1 317 115.5 have been generated by the serial code in
390.36 h. The same number of measurements and clusters
has been generated in 217.81 h by the parallel code on two
processors. The average cluster size was slightly different in
this case �due to fluctuations�, i.e., 1 312 678.2. It has been
taken into account that the simulation time is proportional to
the mean cluster size for a precise comparison of the simu-
lation speeds—spin flips per time. Similarly, the simulation
including 33 000 measurements and 33 000�128 clusters of
average size 1 304 379 has been performed in 319.14 h on
four processors, leading to the above mentioned estimate of
the speedup and efficiency.

Thus, using four processors, the code generated on aver-
age about 221 Wolff clusters per minute in the equilibrium
state at �=0.221 654 6 and L=1024. There is, however, an
initial delay of about 25 s due to the initialization of the
shuffling scheme. It has been subtracted from the total simu-
lation times to obtain the above mentioned estimates.

We have also performed longer test simulations, applying
the iterative scheme introduced in Sec. II, with the aim to
compare the results with those of the serial code for L
=768,864,1024. Only one run �Nrun=1� with the total num-
ber of the used iterations Nit=10 for L=768 and Nit=8 for
L=864,1024 have been performed. Two processors have
been used for L=768,864 and 4 processors for L=1024. The
first four iterations have been discarded for two smallest
sizes L=768 and L=864, as in the case of the serial simula-
tions �Sec. II�. We have used the already equilibrated initial

spin configuration for L=1024, discarding only the first two
iterations. Other simulation parameters, not mentioned here,
are the same as in the serial simulations.

The pseudocritical couplings, provided by our parallel

simulations, i.e., �̃c=0.221 654 693�81� for L=768, �̃c

=0.221 654 582�62� for L=864, and �̃c=0.221 654 608�60�
for L=1024 agree well within one standard error with the
corresponding values of the serial simulations given in fourth
column of Table I. Apart from the pseudocritical coupling,
we have compared also some other quantities evaluated at
�=0.221 654 6. The simulation results obtained by the serial
and the parallel codes are given in Tables II and III, respec-
tively.

Here CV=N���2�− ���2� is the specific heat, �=N�m2�
is the susceptibility, and the other quantities are defined in
Sec. II. As we can see, the values in most of the cases agree
within the indicated error bars of one �. In relatively fewer
cases larger deviations are expected from the statistics, and
we observe them for CV and �U /�� at L=864. Note, how-
ever, that the standard errors ��� for the parallel simulation
have been estimated rather approximately from a few itera-
tion, i.e., only eight iterations in this case. More realistic
estimates of � correspond to 3� of the serial simulation,
since the latter contains 72 such iterations and �1 /�Nit
holds. Thus, we can see that the discrepancies always are
small enough and the overall agreement is good.

We have also tested the influence of the lattice sizes on
the estimation of the critical exponent �, describing the criti-
cal behavior of the two-point correlation function �19�, as
well as the finite-size scaling of the susceptibility at �=�c,

� L2−�:L → � . �10�

According to the finite-size scaling theory, the same
asymptotic scaling relation is true for any fixed ratio of L /�
�at L→��, where � is the correlation length. In particular, it
is true for ��L� determined at the psedocritical coupling �

= �̃c�L�. It reveals a possibility to estimate � without deter-
mination of �c. It might be a great advantage, since the result

TABLE II. A set of quantities for three different system sizes L, evaluated at �=0.221 654 6 from the
simulations with serial code.

L ��� CV � /L2 U 10−4�U /��

1024 −0.9907293�22� 107.52�76� 1.1985�40� 1.6036�31� −12.96�14�
864 −0.9907639�23� 104.41�53� 1.2099�35� 1.6040�27� −9.968�81�
768 −0.9907903�25� 100.92�51� 1.2111�33� 1.6056�24� −8.191�63�

TABLE III. A set of quantities for three different system sizes L, evaluated at �=0.221 654 6 from the
simulations with parallel code.

L ��� CV � /L2 U 10−4�U /��

1024 −0.9907291�46� 107.7�2.2� 1.201�10� 1.6010�78� −13.04�33�
864 −0.9907654�56� 102.12�66� 1.2137�92� 1.5983�59� −9.58�15�
768 −0.9907884�68� 101.7�1.3� 1.205�10� 1.6076�67� −8.19�15�

KAUPUŽS, RIMŠĀNS, AND MELNIK PHYSICAL REVIEW E 81, 026701 �2010�

026701-8

of estimation at �=�c is rather sensitive to the precise value
of �c. According to Eq. �10�, we can evaluate �, e.g., as

� = −
ln�f�2L�/f�L/2��

ln 4
, �11�

where f�L�=��L� /L2 at �= �̃c�L�. Such an estimation for
various L shows how the result depends on L. The conver-
gence to the true value of � is expected at L→�. Our results
for a set of sizes are collected in Table IV. These values of �
do not differ much from those usually reported in literature
�19�. Nevertheless, the value �=0.020 41�64� estimated
from relatively small sizes L=128 and L=32 is remarkably
smaller than that extracted from the largest sizes, i.e., �
=0.0356�19�. Although the latter value is quite close to the
estimate �=0.0366�8� obtained in �20� by an extrapolation
from much smaller lattice sizes, the asymptotic value could
be even larger according to the observed tendency of increas-
ing with L �see Table IV�. Hence, it would be very useful to
have simulation data for even larger than L=1024 lattice
sizes to make a reliable conclusion about the asymptotic
value of �.

VII. DISCUSSION

The developed parallel implementation of the Wolff
single-cluster algorithm for the 3D Ising model may prove to
be indispensable in the actual simulations of large lattices, as
it allows to speed up the simulation some 1.79 times on two
processors and 2.67 times on four processors for L=1024.
These values, however, can depend on the specific computer
used. Another advantage of the proposed parallelization is
that the parallel code can use a larger operative memory, i.e.,
that of several processors, which allows to simulate larger
lattices. For instance, L=1024 is almost the maximal linear
lattice size for the serial code run on one processor of the
actually used Opteron cluster, whereas the use of two pro-
cessors allows us to extend the simulations to L=1280.

Also for the lattice size L=1024, actually simulated
mainly by the serial code, the parallel code would allow to
obtain the current results faster and even with slightly
smaller overhead. Actually, the trivial parallelization has
been used in the serial simulations. Namely, we have per-
formed eight runs, each including ten iterations, from which
the first four have been discarded. The total simulation took

about one year of real time. The result of the same accuracy
could be obtained by using hybrid parallelization with four
runs, each on two processors, discarding four, and keeping
12 iterations from each of the run. Thus, 16 iterations would
be performed by each run in about 0.9 years, in accordance
with the estimated speedup. Hence, the overhead also would
be decreased by a factor of 0.9. Since we have decided to
discard the first four iterations, it would be impossible to
obtain any result by the serial code in less than 0.4 years. The
already mentioned one-year calculation results of the serial
code could be obtained in about 0.38 years with only 1.5
times larger overhead by using the same number of parallel
�four processor� instead of serial runs. If only a very short
initial equilibration is used, then the application of the paral-
lel code gives smaller effect. However, even in this case the
parallel code helps to reduce the real simulation time. It is
necessary to perform at least few iterations to verify the con-
vergence of the pseudocritical coupling to certain value. In
our example, it would take about 3 months for only two
iterations. The parallel code would allow to reduce this time
to about 1.1 months.

As a continuation of this work, similar codes can be
elaborated for O�n� models �1,19�. These are the lattice spin
models, in which the local order parameter is an n compo-
nent vector, which can be rotated continuously. The same
principles of the parallelization can be used here. In this case,
the spin flips for any one of the Wolff clusters are reflections
with respect to a randomly chosen plane. As a result, the
acceptance probability for a spin flip needs to be recalculated
permanently. Due to these extra operations, one can expect
that the initialization times of the parallelization, as well as
the times spent for inefficiently parallelizable searching of
random addresses in shared arrays will be relatively smaller,
i.e., the speedup and efficiency higher than in the Ising case.

We have estimated this effect by using certain testing al-
gorithm. In principle, the adding of a spin to the cluster with
probability Padd=1−e−2� can be realized by means of two
random numbers as follows. First, a uniformly distributed
random variable �� �0,� /2� is generated, and then the spin

is added with the probability P̃add���=�� sin���e−2� cos �.

Since we have �P̃add��= Padd, it represents another method of
simulation of the Ising model, further called the testing algo-
rithm. It mimics essential simulation features of the n com-
ponent vector models, where the spin adding probability has
the form Padd=1−e��cos �1−cos �2� with �1 and �2 being the
angles between a reference spin and a neighboring spin be-
fore and after its flipping, respectively. Like this formula,

P̃add��� contains two trigonometric functions and the expo-
nent. However, an extra pseudorandom number now is
needed for the random variable �. We have used the Lewis
generator to produce it just when necessary. This procedure
is so fast that it does not essentially influence our time-
testing results. Although the Lewis generator is not appropri-
ate for accurate large scale MC simulations, it can be used
for the speedup estimation in our testing algorithm. Applying
our parallelization method, we have reached the speedup
about 3.03 times on four processors. It corresponds to 76%
efficiency, which is higher than 67% reached in the standard
simulation of the Ising model. Thus, the effect of recalcula-

TABLE IV. The susceptibility �, normalized to L2 and deter-

mined at �= �̃c�L�, and the critical exponent � estimated from �11�
depending on lattice sizes.

L � /L2 �

1024 1.2046�28�
512 1.2367�16� 0.0356�19�
256 1.2656�15� 0.0312�11�
128 1.2913�10� 0.02743�96�

64 1.31466�78� 0.02041�64�
32 1.32835�59�

PARALLELIZATION OF THE WOLFF SINGLE-CLUSTER … PHYSICAL REVIEW E 81, 026701 �2010�

026701-9

tion Padd at each step is evident: the speedup of paralleliza-
tion on four processors increases from �2.67 to �3.03. It is
relevant for the n component vector models �called also O�n�
models� with n�2, where such recalculation is required, and
therefore the speedup about 3 can be indeed reached. This
estimation most precisely corresponds to the XY�n=2�
model, where the spin state is given by an angle �. In other
cases, the effect from recalculation of Padd will be similar or
even larger, as in the case of large n, where the calculation of
the scalar products represented by cos �1 and cos �2 will
require many arithmetic operations.

VIII. CONCLUSIONS

A parallel �OpenMP� implementation of the Wolff single-
cluster algorithm for the 3D Ising model has been proposed
�Sec. V�. The parallel algorithm may prove to be indispens-
able in the simulations of large lattices with L�1024 near
the critical point. We have tested it within the discussed here
applications, using the iterative method described in Sec. II
and certain shuffling scheme �Sec. IV� as the generator of
pseudorandom numbers. According to the tests described in
Sec. IV, this shuffling scheme produces pseudorandom num-
bers of a high quality. Test simulations for the lattice with

linear size L=1024 have been performed, showing a speedup
about 1.79 times on two processors and 2.67 times on four
processors relative to the serial code. Based on the results of
certain testing algorithm, we argue �Sec. VII� that somewhat
larger speedups, about three times on four processors, can be
reached by our method applied to n component �n�2� vec-
tor models. Besides, the parallel code allows to simulate
larger lattices. The actual simulation results for L
=768,864,1024, provided by the parallel code, agree with
those of the serial code.

As a result of our simulations, the critical coupling �c,
i.e., �c=0.221 654 636�20� �Sec. III� has been reliably esti-
mated with an unprecedented accuracy. The influence of lat-
tice sizes on the estimated value of the critical exponent �
has also been tested �Sec. VI�, showing that the simulation of
even larger than L=1024 lattices is desirable to obtain a re-
liable result here.

ACKNOWLEDGMENTS

This work was made possible by the facilities of the
Shared Hierarchical Academic Research Computing Net-
work �SHARCNET:www.sharcnet.ca�. R.V.N.M. acknowl-
edges the support from the NSERC and CRC program.

�1� U. Wolff, Phys. Rev. Lett. 62, 361 �1989�.
�2� J.-S. Wang and R. H. Swendsen, Physica A 167, 565 �1990�.
�3� M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in

Statistical Physics �Clarendon, Oxford, 1999�.
�4� S. Gündüç, M. Dilaver, M. Aydın, and Y. Gündüç, Comput.

Phys. Commun. 166, 1 �2005�.
�5� J. Du, B. Zheng, and J.-S. Wang, J. Stat. Mech. � 2006�,

P05004.
�6� D. Ivaneyko, J. Ilnytskyi, B. Berche, and Yu. Holovatch,

Physica A 370, 163 �2006�.
�7� U. K. Rößler, Phys. Rev. B 59, 13577 �1999�.
�8� B. Berche, C. Chatelain, C. Dhall, R. Kenna, R. Low, and J.-C.

Walter, J. Stat. Mech. �2008), P11010.
�9� Y. Deng, Phys. Rev. E 73, 056116 �2006�.

�10� J. L. Jacobsen, P. Le Doussal, M. Picco, R. Santachiara, and K.
J. Wiese, Phys. Rev. Lett. 102, 070601 �2009�.

�11� J. Kaupužs, R. V. N. Melnik, and J. Rimshans, Eur. Phys. J. B
55, 363 �2007�.

�12� J. Kaupužs, R. V. N. Melnik, and J. Rimšāns, Comm. Comp.
Phys. 4, 124 �2008�.

�13� F. W. S. Lima and D. Stauffer, Physica A 359, 423 �2006�.
�14� B. B. Beard, M. Pepe, S. Riederer, and U.-J. Wiese, Comput.

Phys. Commun. 175, 629 �2006�.
�15� S. Bae, S. H. Ko, and P. D. Coddington, Int. J. Mod. Phys. C

6, 197 �1995�.
�16� J. Machta, Y. S. Choi, A. Lucke, T. Schweizer, and L. V.

Chayes, Phys. Rev. Lett. 75, 2792 �1995�.
�17� J. Machta, Y. S. Choi, A. Lucke, T. Schweizer, and L. M.

Chayes, Phys. Rev. E 54, 1332 �1996�.
�18� E. Faraggi and D. T. Robb, Phys. Rev. B 78, 134416 �2008�.
�19� A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 �2002�.
�20� M. Hasenbusch, Int. J. Mod. Phys. C 12, 911 �2001�.
�21� G. T. Barkema and T. MacFarland, Phys. Rev. E 50, 1623

�1994�.
�22� Y. Deng and H. W. J. Blöte, Phys. Rev. E 68, 036125 �2003�.
�23� J. A. Plascak, A. M. Ferrenberg, and D. P. Landau, Phys. Rev.

E 65, 066702 �2002�.
�24� G. Marsaglia and A. Zaman, Ann. Appl. Probab. 1, 462

�1991�.
�25� M. Lüscher, Comput. Phys. Commun. 79, 100 �1994�.
�26� F. James, Comput. Phys. Commun. 79, 111 �1994�.
�27� L. N. Shchur and P. Butera, Int. J. Mod. Phys. C 9, 607 �1998�.
�28� L.-Y. Deng, R. Guo, D. K. J. Lin, and F. Bai, Comput. Phys.

Commun. 178, 401 �2008�.
�29� G. E. Forsytne, M. A. Malchom, and C. B. Moler, Computer

Methods for Mathematical Computations �Prentice-Hall,
Englewood Cliffs, NJ, 1977�.

�30� G. Ossola and A. D. Sokal, Phys. Rev. E 70, 027701 �2004�.
�31� A. M. Ferrenberg, D. P. Landau, and Y. J. Wong, Phys. Rev.

Lett. 69, 3382 �1992�.
�32� J. Kaupužs, Int. J. Mod. Phys. C 16, 1121 �2005�.

KAUPUŽS, RIMŠĀNS, AND MELNIK PHYSICAL REVIEW E 81, 026701 �2010�

026701-10

	Parallelization of the Wolff Single-Cluster Algorithm
	Recommended Citation

	tmp.1333652049.pdf.bSZT1

