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Cigarette Smoke Suppresses Type I Interferon-Mediated
Antiviral Immunity in Lung Fibroblast and Epithelial Cells

CARLA M.T. BAUER,1 STEPHANIE J. DEWITTE-ORR,1 KYLE R. HORNBY,1 CALEB C.J. ZAVITZ,1

BRIAN D. LICHTY,1 MARTIN R. STÄMPFLI,1,2,* and KAREN L. MOSSMAN1,3,*

ABSTRACT

The objective of this study was to investigate the impact of cigarette smoke on innate antiviral defense mech-
anisms; specifically, we examined the effects of cigarette smoke on the induction of type I interferon (IFN).
We observed a dose-dependent decrease in the ability of human lung fibroblast and epithelial cells to elicit
an antiviral response against a viral double-strand RNA (dsRNA) mimic, polyI:C, in the presence of cigarette
smoke-conditioned medium (SCM). Mechanistically, SCM decreases the expression of IFN-stimulated gene
15 (ISG15) and IFN regulatory factor-7 (IRF-7) transcripts and suppresses the nuclear translocation of key
transcription factors, nuclear factor-�B (NF-�B) and IRF-3, after polyI:C stimulation. Furthermore, we pro-
vide evidence that the intercellular defense strategy against viral infection is also impaired. We observed a
decrease in the ability of fibroblasts to elicit an antiviral state in response to IFN-� stimulation. This was as-
sociated with decreased nuclear translocation of phosphorylated Stat1 in response to IFN-� treatment. The
effects elicited by SCM are reversible and are almost entirely abrogated in the presence of an antioxidant,
such as glutathione. Our findings suggest that cigarette smoke affects the immediate-early, inductive, and am-
plification phases of the type I IFN response.
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INTRODUCTION

ACOMPLEX AND MULTILAYERED DEFENSE system protects the
lungs against potentially harmful environmental agents

through a combination of physical barriers and innate and adap-
tive immune mechanisms (Reynolds 2002; Tamura and Kurata
2004; Toews 1994). Multiple cellular signaling pathways pro-
tect the host from viral infection (Ishii and Akira 2005; Jef-
feries and Fitzgerald 2005). At least two innate immune pattern
recognition receptors are responsible for sensing the production
and accumulation of viral nucleic acids in nonimmune cells,
such as fibroblasts and epithelial cells. Among these, toll-like
receptors (TLRs) play an integral role in the recognition of pat-
tern-associated molecular patterns and the subsequent activa-
tion of their respective signaling pathways. Of the four mam-
malian TLRs responsible for the identification of nucleic acids,
TLR3 recognizes dsRNA, an intermediate in the replication of
most, if not all, viruses (Alexopoulou and others 2001). Alter-
natively, cytoplasmic RNA helicases, such as retinoic acid-in-
ducible gene I (RIG-I), have also been shown to bind dsRNA
(Yoneyama and others 2004).

During viral infection, stimulation of TLR-3 and RIG-I ac-
tivates two cellular kinases, TANK-binding kinase-1 (TBK-1)
and IkappaB kinase (IKK)-�, leading to interferon (IFN) regu-
latory factor-3 (IRF-3) phosphorylation, homodimerization, and
translocation into the nucleus, where it associates with other
transcription factors, such as nuclear factor-�B (NF-�B), to
form a complex that binds to the IFN-stimulated response ele-
ment (ISRE) in the IFN-� promoter (Alexopoulou and others
2001; Fitzgerald and others 2003; Servant and others 2003;
Sharma and others 2003; Wathelet and others 1998; Yoneyama
and others 1998). IRF-3 is also able to directly bind to several
DNA-binding motifs, including the ISRE, causing the direct in-
duction of IFN-stimulated genes (ISGs) in the absence of IFN
production (Guo and others 2000; Mossman and others 2001).

The current model of the IFN-mediated antiviral response in
nonimmune cells is proposed to occur in a trimodal fashion
(Yoneyama and others 1998; Juang and others 1998; Sato and
others 2000; Stojdl and others 2003). In the immediate-early
phase, IFN-� is produced at low levels following the activation
of constitutively expressed transcription factors, such as IRF-3
and NF-�B, as outlined above. During the inductive phase, se-
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suppressing production of IFNs and several ISGs. Given the
importance of type I IFN in establishing effective innate and
adaptive antiviral immunity, our data have important implica-
tions for understanding the precise antiviral molecular mecha-
nisms altered by cigarette smoke, which may contribute to the
clinical manifestation of viral infections in smokers.

MATERIALS AND METHODS

Reagents

The dsRNA mimetic polyI:C (GE Healthcare, Piscataway,
NJ) was reconstituted in phosphate-buffered saline (PBS) at a
concentration of 5 mg/mL. Human tumor necrosis factor-�
(TNF-�) was harvested from supernatants of Vero cells in-
fected with an adenoviral construct expressing human TNF-�
(Ad�E1.E3HuTNF-�) (Marr and others 1998), and dose-re-
sponse assays were performed to delineate the optimal amount
of supernatant required (data not shown).

Generation of HuIFN-�

The human IFN-� gene was amplified from human fibro-
blasts by use of primers 5�-CAGAATTCGTTGTCAACAT-
GACCAACAA-3� (sense) and 5�-TGCTCGAGGTTTCGGAGG-
TAACCTGTAA-3� (antisense). The resulting PCR product was
cut with EcoRI/XhoI, cloned into pT7Blue3 and subcloned into
pMT/V5-HisA (Invitrogen, Carlsbad, CA). S2 Drosophila
melanogaster cells grown in Schneider’s Drosophila medium
(Invitrogen) were cotransfected with pMT/HuIFN�/V5-His or
pMT/EGFP/V5-His and pCO-BLAST (Invitrogen) by use of
Cell-fectin (Invitrogen) as per the manufacturer’s instructions.
Supernatants were prepared by culturing stable clones in serum-
free medium lacking antibiotics supplemented with 500 mM
copper sulfate to induce transgene expression. After 72 h, su-
pernatants were collected, filtered, and frozen. IFN-� biologic
activity was ascertained by plaque reduction assay on Vero cells
with vesicular stomatitis virus expressing green fluorescent pro-
tein (VSV-GFP). The supernatant dilution yielding a cytopathic
effect (CPE) of 50% was determined as containing 1 U IFN/mL.

Cell culture and viruses

Human embryonic lung (HEL) fibroblasts and Vero kidney
epithelial cells (American Type Culture Collection, Rockville,
MD) were maintained in Dulbecco’s modified Eagle medium
(DMEM) supplemented with 10% and 5% fetal bovine serum
(FBS), respectively. Beas-2B lung epithelial cells (obtained
from S. Erzurum, Lerner Research Institute) were maintained
in LHC-9 medium (Biosource, Camarillo, CA) with 10% FBS.
Culture flasks were prepared with coating medium (0.01 mg/mL
fibronectin, Calbiochem, La Jolla, CA; 0.03 mg/mL Vitrogen
100, Cohesion, Palo Alto, CA; and 0.01 mg/mL bovine serum
albumin [BSA] dissolved in LHC-9 basal medium). All media
were supplemented with 1% L-glutamine and 1% penicillin/
streptomycin. VSV-GFP was propagated on Vero cells.

VSV-GFP plaque reduction assays

Cells were seeded in 12-well dishes. Following the indicated
treatment, cells were washed with warm (37°C) PBS and in-

cubated with 4080 plaque-forming units (PFU)/well of VSV-
GFP for 40 min in serum-free medium. The viral inoculum was
removed and replaced with DMEM containing 1% methylcel-
lulose. GFP fluorescence intensity was measured 24 h later on
a Typhoon Trio (GE Healthcare) and quantified using the Im-
ageQuant TL software.

Generation of smoke-conditioned medium and
treatment of cells

Smoke-conditioned medium (SCM) was generated accord-
ing to a protocol that has been described in detail by Bernhard
and others (2004). Briefly, 2 cigarettes (1R3 reference ciga-
rettes, Tobacco and Health Research Institute, University of
Kentucky) were bubbled through 8 mL culture medium at a rate
of 35 mL in 2 sec, every 28 sec. The resultant SCM was filter-
sterilized and subsequently considered to have a concentration
of 100%. SCM was diluted to the desired concentration in cul-
ture medium. SCM was made fresh for each experiment, un-
less otherwise indicated.

For aged-SCM studies, SCM was prepared as described and
diluted to the desired concentrations in culture medium. Diluted
SCM was allowed to age at 4°C for 3 days. Following incuba-
tion of cells with varying concentrations of SCM for 2 h, cells
were carefully washed two times with warm (37°C) PBS, placed
in fresh medium, and treated with the indicated ligand for 6 h
(except for immunofluorescence studies, when treatment with
the indicated ligand was for 2 h).

RNA extraction and real-time quantitative reverse
transcriptase polymerase chain reaction (RT-PCR)

RNA was isolated from fibroblasts that were cultured with
varying concentrations of SCM for 2 h, followed by the addi-
tion of the indicated dose of polyI:C for 6 h, using Trizol reagent
(Invitrogen) according to the manufacturer’s protocol. RNA
was DNase treated using DNA-free as per the manufacturer’s
specifications (Ambion, Austin, TX). RNA was quantified us-
ing the Agilent 2100 Bio-Analyzer (Agilent, Santa Clara, CA).
Total RNA (150 ng) was reverse transcribed with 100 U Su-
perscript II (Invitrogen) in a total reaction volume of 20 �L. A
random hexamer primer was used to synthesize cDNA at 42°C
for 50 min, followed by 15 min incubation at 70°C. Real-time
quantitative PCR was performed in triplicate in a total volume
of 25 �L using Universal PCR Master Mix (Applied Biosys-
tems, Foster City, CA). Primers for ISG15, IRF-7, and 18s along
with FAM-labeled probes were purchased from Applied
Biosystems. PCR was run in the ABI PRISM 7900HT Sequence
Detection System using the Sequence Detector Software ver-
sion 2.2 (Applied Biosystems). Data were analyzed using the
delta, delta Ct (��Ct) method. Specifically, gene expression
was normalized to the housekeeping gene (18s) and expressed
as fold change over the control group (0% SCM, no polyI:C).

Immunofluorescence

Semiconfluent HEL fibroblasts or Beas-2B epithelial cells
were seeded on glass coverslips and treated as indicated. Cells
were fixed with 4% paraformaldehyde, permeabilized with
0.1% Triton X-100, and blocked overnight at 4°C in PBS-0.02%
Tween-20 containing 2% goat serum (NF-�B staining) or 3%
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goat serum/BSA (IRF-3 staining). NF-�B (p65) and IRF-3 were
detected using SC-372 (Santa Cruz, Santa Cruz, CA) at a dilu-
tion of 1:500 and 15-02 (a generous gift from M. David, UCSD)
at a dilution of 1:2500, respectively. For detecting phosphory-
lated Stat1 (Stat1P), HEL cells were rinsed in ice-cold PBS and
fixed in 4% paraformaldehyde, permeabilized with MeOH:ace-
tone (1:1) and blocked in 10% fish gelatin (Sigma, St. Louis,
MO) in Tris-buffered saline (TBS) with 0.1% Tween for 1 h at
ambient temperature. Stat1P was then detected using antihu-
man pTyr(701) Stat1 (Cell Signaling Technologies, Danvers,
MA) at a dilution of 1:100 overnight at 4°C. For all experi-
ments, a secondary antibody dilution of 1:500 (NF-�B), 1:400
(IRF-3), or 1:100 (Stat1P) of a Cy3-conjugated Affini Pure
F(ab�)2 fragment donkey antirabbit IgG was used (Jackson Im-
munoResearch Laboratories, West Grove, PA). The total num-
ber of cells was determined by staining with Hoechst 33342
(Sigma). Images were captured on a Leica DM-IRE2 inverted
microscope. Nuclear accumulation of p65 and Stat1P was cal-
culated from three independent experiments with a total of nine
random fields of view for each treatment, whereas nuclear ac-
cumulation of IRF-3 was calculated from one experiment, rep-
resentative of three independent experiments, with a total of
three random fields of view for each treatment.

Preparation of nuclear and cytosolic proteins

Nuclear and cytosolic proteins were extracted using a mod-
ification of previously described methods (Schreiber and oth-
ers 1990; Andrews and Faller 1991). Briefly, treated cells were
washed twice in ice-cold 1 � PBS and once in ice-cold 0.2 �
PBS before the addition of 225 �L hypotonic buffer A (10 mM
HEPES, pH 7.3, 10 mM KCl, 1.5 mM MgCl2, 5 mM NaF, 0.5
mM DTT, 1 mM PMSF, 1 � protease inhibitor cocktail, 1 mM
Na3VO4). The cells were scraped gently and transferred to a
1.5-mL tube, vortexed briefly at half speed, and incubated on
ice for 10 min. Buffer A supplemented with 5% Triton X-100
(50 �L) was added, and cells were vortexed for 10 sec at half
speed. Tubes were centrifuged at 12,000 � g for 3 min at 4°C.
The supernatant containing cytoplasmic proteins was trans-
ferred to a fresh tube. The pellet was washed once in buffer A
prior to resuspension in 50 �L high salt buffer C (20 mM
HEPES, pH 7.3, 25% glycerol, 420 mM NaCl, 1.5 mM MgCl2,
0.2 mM EDTA, pH 8.0, 5 mM NaF, 0.5 mM DTT, 1 mM PMSF,
1 � protease inhibitor cocktail, 1 mM Na3VO4) for 30 min on
ice. The nuclear extracts were cleared by centrifugation for 
15 min at 12,000 � g at 4°C. Protein quantification was per-
formed with the Bradford assay kit (Bio-Rad Laboratories, 
Hercules, CA).

Western blot analysis and quantification

Cytosolic or nuclear protein (20 �g) was electrophoresed on
a 10% denaturing SDS gel and transferred onto nitrocellulose
membranes (Amersham, Arlington Heights, IL) using a semi-
dry transfer apparatus at 300 mA for 1 h. All blots were blocked
in 5% skim milk in TBS at ambient temperature for 1 h. Anti-
human pTyr(701) Stat1 (Cell Signaling Technologies) and an-
tihuman actin (Santa Cruz) primary antibodies were used at a
dilution of 1:1000 in 5% BSA in TBS-Tween (0.1%). Blots
were then incubated with the corresponding horseradish per-
oxidase (HRP)-conjugated secondary antibody and visualized
using an enhanced chemiluminescence system (ECLplus kit,

Amersham). For quantification, blots were scanned using the
Typhoon Trio, and band intensities were quantified using 
ImageQuant TL software. Actin was used as an internal con-
trol, and Stat1P band intensities were standardized to the cor-
responding actin band for each lane. Stat1P actin ratios from
treated samples were compared to untreated samples and re-
ported as a % of untreated control, with cytoplasmic treated
samples compared to cytoplasmic untreated controls and nu-
clear treated samples compared to nuclear untreated controls.

Glutathione treatment

Glutathione (Sigma) was added to cell cultures 30 min prior
to the experiment at a concentration of 1 mM. During SCM ex-
posure, as well as treatment with polyI:C or IFN-�, the glu-
tathione was also present at 1 mM.

Data analysis

Data were expressed as means � standard error of the mean
(SEM) unless otherwise indicated. Statistical analysis was per-
formed using a one-way analysis of variance (ANOVA) with a
Tukey’s post hoc test with Sigma Stat 2.03.

RESULTS

SCM compromises polyI:C-mediated intracellular
antiviral defense mechanisms in HEL fibroblasts 
and Beas-2B epithelial cells

To investigate the impact of cigarette smoke on polyI:C-me-
diated antiviral intracellular signaling events (Fig. 1A), HEL fi-
broblasts were cultured with varying concentrations of SCM,
followed by the addition of a minimal dose of polyI:C (Fig.
2A). To exclude the possibility that SCM affected the entry of
polyI:C, cells were washed extensively before polyI:C treat-
ment. In these experiments, an antiviral state is defined as a cel-
lular environment that restricts viral replication and spread, and
is determined by a standard plaque reduction assay using VSV-
GFP. Because an endogenous viral promoter drives GFP ex-
pression, fluorescence intensity is a direct measure of viral repli-
cation. Treating HEL fibroblasts with 15 �g/mL polyI:C is able
to induce an antiviral state capable of preventing VSV-GFP
replication (� polyI:C, 0% SCM) (Fig. 2B; data not shown).
When cultured in the presence of increasing concentrations of
SCM, polyI:C-treated HEL fibroblasts were no longer protected
against VSV-GFP infection in a dose-dependent manner. SCM
alone did not affect the infectivity of VSV-GFP at any of the
concentrations tested (data not shown).

Similar to the studies done in fibroblasts, we also assessed
whether SCM suppresses induction of an antiviral state in an-
other biologically relevant cell type. We observed that Beas-2B
epithelial cells were more sensitive than fibroblasts to polyI:C
and entered an antiviral state at a markedly lower concentra-
tion of polyI:C (0.1 �g/ml) (data not shown). At this minimal
concentration of polyI:C, SCM suppressed induction of an anti-
viral state in Beas-2B cells, allowing VSV replication (Fig. 2C).
Although the effect of SCM on induction of an antiviral state
in Beas-2B appeared to be less pronounced than in fibroblasts,
the full effect of cigarette smoke on epithelial cells may have
been masked by an observed decrease in VSV-GFP fluores-
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other series of studies, when only 8 h recovery time was al-
lowed, cells did not regain the ability to enter an antiviral state
(data not shown). These findings are encouraging and may sup-
port the many beneficial effects achieved by smoking cessa-
tion, the most effective therapy in decreasing the occurrence of
many different types of smoking-related diseases. The link be-
tween increased viral infections and cigarette smoking has been
firmly established in the literature (Arcavi and Benowitz 2004;
Aronson and others 1982; Nicholson and others 1999). Studies
have conclusively found that there is an increased burden of
common colds and influenza infection in smokers compared
with nonsmokers (Nicholson and others 1999). It is clear that
cessation is effective in the prevention of many smoking-re-
lated diseases, and we have provided evidence that smoking
cessation may also reverse any inhibitory effects cigarette
smoke has on IFN-mediated antiviral immunity.

Glutathione is a ubiquitous tripeptide, which protects cells
against oxidants (Rahman and MacNee 1999). Within the lung,
the glutathione redox system is one of the most important anti-
oxidant systems (Rahman and others 2006), and cigarette smoke
has been well documented to cause changes in oxidant defense
responses (MacNee 2000).We show that treatment of cells with
glutathione reverses the inability of cells to enter an antiviral state
in response to polyI:C and IFN-� in the presence of SCM. This
finding has important implications, as antioxidant therapy has
been suggested as a candidate potential new therapy in the treat-
ment of COPD (Barnes 2005), and a number of antioxidants, in-
cluding stable glutathione compounds, are now in development
for clinical use (Cuzzocrea and others 2001; Chang and others
2003). Collectively, these data suggest a role for unstable free
oxygen radicals in the inability of cells to mount an antiviral re-
sponse to polyI:C and IFN-� stimulation in the presence of smoke.

Our data indicate that SCM compromised production of type
I IFN and suppressed induction of an antiviral state. These
mechanisms may contribute to the increased risk of viral in-
fections often observed in smokers. It is noteworthy that cells
were still able to enter an antiviral state at higher concentra-
tions of polyI:C, suggesting that cigarette smoke does not en-
tirely abrogate antiviral responses but rather alters the thresh-
old of activation. This may ultimately lead to delayed immune
activation, allowing the virus to replicate and spread. Similar
to what we have established with polyI:C, Laan and others
(2004) showed that responses to lipopolysaccharide (LPS) in
epithelial cells are also impaired in the context of cigarette
smoke, indicating that cigarette smoke compromises the sens-
ing of both viral and bacterial agents.

In summary, we have shown that the immediate-early and
inductive phases of the type I IFN response to viral stimulus
are impaired in cells that have been exposed to cigarette SCM.
Moreover, since Jak-Stat signaling is paramount to the ampli-
fication phase following production of IFN-� species, cigarette
smoke likely affects this phase of the IFN response as well.
Thus, our results indicate that the increased burden of viral in-
fection found in smokers compared with nonsmokers may be a
result of impaired IFN production by smokers’ nonimmune cells
within the lung. Furthermore, smoking cessation may contrib-
ute to restoring function to those cells that are affected by cig-
arette smoke. The data suggest a role for unstable free oxygen
radicals in mediating the mechanism of impaired type I IFN
antiviral response in the context of cigarette smoke. Thus, anti-
oxidant therapy may prove important for overcoming the ef-

fects of cigarette smoke-induced defects in IFN-mediated anti-
viral signaling. This study clearly indicates that cigarette smoke
impairs innate antiviral defense mechanisms in vitro, and fur-
ther studies are being pursued to determine if similar observa-
tions can be made in vivo. Because of the persistence of the
cigarette smoking habit, understanding the mechanisms by
which cigarette smoke alters innate immune function is of para-
mount importance to developing intervention strategies to re-
store the early defense mechanisms that are aimed at control-
ling the spread of infection.
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