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DYNAMICAL SYSTEMS
Supplement Volume 2005 pp. 642–651
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Abstract.
Nonlinear mathematical models are becoming increasingly important for new ap-

plications of low-dimensional semiconductor structures. Examples of such struc-
tures include quasi-zero-dimensional quantum dots that have potential applications
ranging from quantum computing to nano-biological devices. In this contribution,
we analyze presently dominating linear models for bandstructure calculations and
demonstrate why nonlinear models are required for characterizing adequately opto-
electronic properties of self-assembled quantum dots.

1. Introduction. The process of the formation of quantum dots (QD), and more
generally, low-dimensional semiconductor nanostructures (LDSN), is complex and,
in its essence, it is a competition between the surface energy in the structure and
strain energy. Most of the currently used technologies are based on self-assembly
where we obtain many self-assembled dots sitting on the wetting layer and distrib-
uted over it in a highly non-uniform manner. They have different size, shape, and
properties. Nonlinear effects may become important in such structures, but most
mathematical models discussed in the literature up to date are linear models. This
applies also to the models for strain effects in such structures. Strain effects may
substantially influence overall nanostructure properties and their accurate calcula-
tion is becoming increasingly important for current and potential applications of
LDSNs (e.g., [5]).

Mathematical models for semiconductors to study electronic properties of sin-
gle charge carriers in the context of optical properties of semiconductor quantum
structures have achieved a high degree of maturity. Nevertheless, new applica-
tions of LDSN (e.g., [6, 13, 14] and references therein) led to a situation where the
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Figure 2. Doped semiconductors: (a) n-type, (b) p-type.

of the position-velocity probability density f(x, v, t) (e.g., [7]):
∂f

∂t
+ v · gradxf + 1/mF · gradvf = 0, (1)

t > 0, x ∈ R3M , v ∈ R3M ,

f(x, v, t = 0) ≥ 0,

∫ ∫
f(x, v, t = 0)dxdv = 1,

F = −qE or F = −q(E + v ×Bind).
There are two limiting situations of this model that play a special role. An

idealized collisionless situation is modelled with the Vlasov equation

∂tF + v · gradxF + 1/mFeff · gradvF = 0,

t > 0, x ∈ R3, v ∈ R3, (2)

where the function F (x, v, t) is the existence probability of a particle at the state
(x, v) at time t and

Eeff (x, t) = Eext(x, t) +∫
n(x̃, t)Eint(x, x̃)dx̃, F = −qEeff ,

or F = −q(Eeff + v × Beff ) (supplemented by the Maxwell system). The nature
of nonlinearity in this model is defined only by the effective field equation. In
particular, note that for the Coulomb force

Eint = − q

4πεs

x− y

|x− y|3
under the assumption Eeff = −gradxVeff the effective field equation is reducible
to the Poisson equation

−εs4Veff = ρ.

In this case, the integration of the Vlasov equation leads to a macroscopic conser-
vation law:

q∂tn− divJ = 0,

where J = −q
∫

vFdv is the current density. However, in general this model is not
appropriate in large-time scale modelling.

For sufficiently large time scales, the motion of particles depends decisively on
scattering that is on the short-range forces:

∂tF + v · gradxF + 1/mFeff · gradvF = Q(F ). (3)
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where F (x, v, t) is the number density. In this case, nonlinearity is defined by the
effective field model and by the model for collisions. Mathematically speaking, the
situation where 4v → ∞ ∧ 4x → 0 is not excluded, but in applications this
situation is prohibited by allowing for non-zero relaxation time which requires that
the Pauli principle be satisfied.

The Collision operator in (3) can be introduced as in [7]

Q(F ) =
∫ {

s(x, v′, v)F (x, v′, t)[1− F (x, v, t)]−
s(x, v, v′)F (x, v, t)[1− F (x, v′t)]

}
dv′,

where s is the scattering (or transition) rate which is highly non-regular function.
The average time between two consecutive collisions at (x, k) (the relaxation time)
can be introduced as follows

τ(x, k) = 1/λ(x, k), k ∈ B,

where the collision frequency is defined as

λ =
∫

s(x, k, k′)dk′

with integral taken over the Brillouin zone B of the lattice.
Hydrodynamic models for semiconductors provide a computationally efficient

approximations to (3). In particular, if magnetic field is ignored the hydrodynamic
(more precisely, electro-hydrodynamic) model has the following form:





∂tn + ∂x(nv) = (∂tn)col,
∂tp + ∂x(pv + nT ) = −qnE + (∂tp)col,

∂tW + ∂x(vW + vnT ) = −qnvE − ∂xnQ̃ + (∂tW )col,
(4)

where it is assumed

p = mnv, W = 3nT/2 + mnv2/2,

Q̃ = −∂x(kT ).

The system is supplemented by the field equation, for example, by the Poisson
equation:

∂xx(ε0εϕ) = −q(ND −NA − n).

Note that the hierarchy of the models for semiconductors can be classified based
on relaxation times. Observe first that in the general case, due to the presence of
collision terms the type of the differential equations changes with respect to the
functional dependency between (∂tn)col, (∂tp)col, and (∂tW )col and the form of this
dependency can be established only through experiments. Since in applications it
is reasonable to approximate the collision terms by relaxation time approximations,
the hierarchy of the mathematical models with respect to the dependencies between
τ , τω (relaxation of energy) and τp (relaxation of momentum) is the most natural.

In many practically important cases, we use the following (quasi-)hydrodynamic
model [8]:





∂xxϕ = q(n− p−N)/εε0
∂tn− ∂tJn/q = F,
∂tp + ∂tJp/q = F,
∂tĒn + ∂xQn = −Jn∂xϕ + Pn,
∂tĒp + ∂xQp = Jp∂xϕ + Pp,

(5)
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where expressions for densities of carrier currents, Jn, Jp and flux energies, Qn and
Qp have the following form

Jn = −qnµn∂xϕ + ∂x(Tnµnn), Jp = −qpµp∂xϕ− ∂x(Tpµpp),

Qn = βnTnnµn∂xϕ− βn∂x[TnDnn]/q,

Qp = −βpTppµp∂xϕ− βp∂x[TpDpp]/q.

Now, we are in a position to introduce also quantum effects into the model.
Indeed, the smooth quantum hydrodynamic approximation has the same form as
above, but constitutive relations for the stress tensor, energy density, and the heat
flux incorporate both classical and quantum effects. Compared to the classical
Schrodinger’s model, this approach offers a substantial computational speed-up.
Note that the above hierarchy of the models has been constructed based on a trans-
formation of continuum (fluid dynamics like) models into a new model in order to
account for discretness of the problem. At the same time, we can approach the
problem in a different way, moving from discrete models to continuum-based mod-
els. Such a fundamental approach to modelling quantum semiconductor devices is
based on the mixed-state Schrodinger equation coupled to Poisson’s equation for
the electrostatic potential. The complexity of the problem becomes clear if we no-
tice that, in its generality, the problem has to be considered in 6 dimensions (for
position and momentum).

4. Models for bandstructure calculations of LDSN. Full energy spectrum
of even a single symmetric quantum dot, including Coulomb interactions between
charges and other effects, is a very complex task in itself. Moreover, self-assembled
semiconductor QD nanostructure is an array (or a molecule) of many individual
quantum dots sitting on the same “substrate” (the wetting layer). As AFM im-
ages reveal, the distribution of such quantum dots on this substrate is highly non-
uniform. Each such a dot contains several hundred thousand atoms. If we attempt
to apply to this problem ab initio or atomistic methodologies in order to account
for quantum effects, we will get a task of enormous computational complexity in
solving such a large-scale many-body problem. Surely, taken each quantum dot in
isolation, the task can be managed as computational runs with over 20 million atom
simulations have been reported in the literature (e.g., [12]. However, accounting for
the wetting layer (even in the individual quantum dot model [9] would increase the
computational complexity of the problem in several times. Even if we would do
such large scale atomic simulations, in calculating atomic positions the definitions
of atomic forces that enter the Hamiltonian in such large scale atomic simulations
are approximate. In addition, in a number of cases we have to be able to incorporate
into the model other effects such as piezoelectric.

What is needed in this situation is to apply an averaging procedure over atomic
scales. Such procedures are available, including those based on empirical tight-
binding, pseudopotential, and k · p approximations. The k · p approximation rep-
resents the electronic structure in a continuum-like manner and is well suited for
incorporating additional effects into the model such as strain and piezoelectric ef-
fects.

In what follows we focus on WZ materials. These materials are hexagonal and the
resulting problem is mathematically more challenging compared to ZB materials.
From an application point of view, strain and piezoelectric effects are substantially
more pronounced in such structures as compared to cubic materials.
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Next we note that the accuracy of the k · p (the envelope function) approxima-
tion depends on the choice of the functional space where the envelope function is
considered. Hence, our next step would be to explain the choice of subbands for our
WZ materials models. The basis functions that span such a space correspond to
subbands within conduction and valence bands of the semiconductor material. The
number of basis functions that is typically chosen in approximations ranges from 1
to 8. This choice is a balance between the accuracy of the model and computational
feasibility of its solution. Physical effects for the WZ materials that are desirable to
include into the model are spin-orbit and crystal-field splitting, as well as valence
and conduction band mixing (due to a large band gap typical for these materials).
Hence, we use 6 valence subbands and 2 conduction subbands (accounting for spin
up and down situations) and will be solving the following PDE eigenvalue problem
with respect to eigenpair (Ψ, E):

HΨ = EΨ, Ψ = (ψ↑S , ψ↑X , ψ↑Y , ψ↑Z , ψ↓S , ψ↓X , ψ↓Y , ψ↓Z)T (6)

where

• ψ↑X ≡ (|X > | ↑) denotes the wave function component that corresponds to
the X Bloch function of the valence band with the spin function of the missing
electron “up”,

• the subindex “S” denotes the wave function component of the conduction
band, etc,

• E is the electron/hole energy.

The Hamiltonian in (6) is taken in the form of k · p theory

H ≡ H(α,β)(~r) = − ~2

2m0
∇iH(α,β)

ij (~r)∇j , (7)

where H is the energy functional defined either by the standard Kohn-Luttinger
Hamiltonian, or as its Burt-Foreman correction. It represents the kinetic energy
plus a nonuniform potential field and other effects contributing to the total potential
energy of the system. The superindeces (α, β) denote a basis for the wave function
of the charge carrier, so that in our case we have an 8× 8 matrix Hamiltonian.

5. Strain effects in LDSN and associated nonlinearities. Accounting for
strain effects in this model provides a link between a microscopic (quasi-atomistic)
description of the system with the effects that are pronounced at a larger-than-
atomistic scale level as a result of interacting atoms. Atomic displacements collec-
tively induce strain in our finite structure and this happens at the stage of growing
the quantum dot from the crystal substrate wetting layer. This fact leads to a modi-
fication of the bandstructures obtainable for idealized situations without accounting
for strain effects.

Early developments by Pikus & Bir and Rashba & Sheka led to what is now
known as the Rashba-Sheka-Pikus (RSP) Hamiltonian. This Hamiltonian is ap-
plied here in the context of WZ materials in a way similar to [11, 3]. The question
remains, however, on how to resolve adequately physical effects at edges, corners,
and interfaces, including strain nonhomogeneities. We emphasize that all current
models for bandstructure calculations we are aware of are based, in one way or
another, on the original representation of [2] where strain is treated on the basis of
infinitesimal theory with Cauchy relationships between strain and displacements.
Geometric irregularities make this approximation inadequate. Since the LDSN is
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initially stressed, the finite strain representation can be given by Eulerian compo-
nents of the strain if we use the second order approximation:

εij =
1
2

(
∂ui/∂xj + ∂uj/∂xi +

∂uk

∂xi

∂uk

∂xj

)
. (8)

Material nonlinearities (stress-strain relationships) may also influence on the nanosys-
tem properties. However, since strain remains of orders of magnitudes smaller of
the elastic limits we use in this paper the linear relationship. In particular, for
hexagonal WZ materials these relationships have the form:

σxx = c11εxx + c12εyy + c13εzz − e13Ez,

σyy = c12εxx + c11εyy + c13εzz − e31Ez,

σzz = c13(εxx + εyy) + c33εzz − e33Ez,

σyz = c44εyz − e15Ey, σzx = c44εzx − e15Ex, σxy =
1
2
(c11 − c12)εxy, (9)

where the coordinate subindeces (Timoshenko-Karman notations) are 1 → x, 2 →
y, z → 3. These relationships couple together steady-state equations of motion:

∂σij

∂xj
+ ρFi(ξl) = 0 (10)

and the Maxwell equation for the piezoelectric potential (assuming the external
charge distribution, including ionic and free charges, negligible)

∇ ·D(r) = 0. (11)

Here, D is the vector of electric displacement and other notations are standard (e.g.,
[10]). Finally, constitutive relationships for D are:

Dx = e15εzx + ε11Ex, Dy = e15εyz + ε11Ey, (12)
Dz = e31(εxx + εyy) + e33εzz + ε33Ez + Psp,

where Psp is the spontaneous polarization, and E = −∇ϕ. In all computational
experiments, the LDSN was embedded in a larger matrix material where Dirichlet
boundary conditions for displacements are assumed.

The above problem is reformulated variationally and solved as a fully coupled
problem. Known results obtained so far in the context of bandstructure calculations
are based on the minimization of elastic energy only (e.g., [1, 3]), rather than on
the solution of a coupled problem. Even in the linear approximation, the coupling
between the field of deformation and the piezoelectric field is of fundamental im-
portance. Indeed, neglecting coupling in strain calculations could lead to as high
as a 30% error (e.g., [4]).

The above model is coupled with Schrodinger’s model by noting that the weak
form of the Schrodinger equation is equivalent to finding stationarity conditions for
the following functional (e.g., [5]):

Φ(Ψ) = − ~2

2m0

∫

Ṽ

(∇Ψ)TH(α,β)∇Ψdv − E

∫

Ṽ

ΨT Ψdv (13)

with respect to the wave function vector field Ψ defined in (6). Our final com-
ment goes to the Hamiltonian approximation, in particular valence subbands. The
Hamiltonian is represented as a sum of constant and k-dependent energies:

H = H0 + H̃, H̃ = H1 + H2 + H3, (14)



MATHEMATICAL MODELS FOR QUANTUM DOT MOLECULES 649

where H0 (which is usually derived from the standard Kane Hamiltonian at k = 0)
accounts for the spin-splitting effects. For the corresponding spin-orbit coupling
matrix for the WZ materials we followed the ideas of [11, 3] and by noting also that
the associated (with k = 0) matrix elements for the conduction band in (14) are
zero. The second term, H̃, consists of contributions of

• the kinetic part of the microscopic Hamiltonian unit cell averaged by the
respective Bloch function (S, X, Y, or Z), denoted as H1;

• the strain-dependent part of the Hamiltonian, denoted as H2, and
• the energy of unstrained conduction/valence band edges, denoted as H3.
Conduction subbands were approximated in the standard manner.

6. Computational experiments. Our first group of experiments was related to
the modelling of a single truncated conical quantum dot. As expected, all of the six
calculated states are clearly localized within the dot topology. Two representative
plots are given in Figs. 3 and 4.

Figure 3. Quantum dot eigenstate that corresponds to the first eigenvalue

The situation becomes more complicated in the case of interacting quantum
dots. In Fig. 5 we present the x component of displacement. As per eigenstates
in this quantum dot molecule, we observe a subsequent localization of eigenstates
in different dots of the structure. As optical properties of dense quantum dot
arrays differ substantially from those of low-density structures and isolated idealized
quantum dots, these models should contribute further to studying the effects of
strain on bandstructures in such low dimensional semiconductors.



650 R.V.N. MELNIK, B. LASSEN, L. C LEW YAN VOON, ET AL

Figure 4. Quantum dot eigenstate that corresponds to the fifth eigenvalue

Figure 5. Five-dot quantum dot molecule: the x-component of displacement
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7. Concluding remarks. Although there is a range of new effects that are fun-
damental to optoelectromechanical properties of LDSN, their influence is typically
analyzed with simplified linear models based on the minimization of uncoupled,
purely elastic energy functionals with respect to displacements. The applicability
of such models is limited to the study of isolated idealized quantum dots, and both
coupled and nonlinear effects need to be accounted for in the analysis of more real-
istic structures. Here, we have proposed generalizations of the existing models for
bandstructure calculations in the context of strain effects and show how nonlinear-
ities can be incorporated in the existing models. Examplifications have been given
for hexagonal WZ semiconductor nanostructures.
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