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A RELATIVE SEIDEL MORPHISM AND THE ALBERS MAP

SHENGDA HU AND FRANÇOIS LALONDE

Abstract. In this note, we introduce a relative (or Lagrangian) version of
the Seidel homomorphism that assigns to each homotopy class of paths in

Ham(M), starting at the identity and ending on the subgroup that preserves
a given Lagrangian submanifold L, an element in the Floer homology of L.
We show that these elements are related to the absolute Seidel elements by
the Albers map. We also study, for later use, the effect of reversing the signs
of the symplectic structure as well as the orientations of the generators and of
the operations on the Floer homologies.
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1. Introduction

Let (M,ω) be a closed symplectic manifold. Seidel constructed in [16] a map
from a covering of π1Ham(M,ω) to the invertible elements of either QH∗(M,ω)
or FH∗(M). It has found many uses, for example, in the study of Hamiltonian
fibrations (Lalonde-McDuff-Polterovich [8]) and the quantum ring structure of toric
varieties (McDuff-Tolman [11]). In this article, we introduce a similar construction
when given a Lagrangian submanifold L in (M,ω). Instead of considering the loops
in Ham(M,ω), we consider the paths in Ham(M,ω) starting at the identity and
ending in the subgroup HamL(M,ω):

HamL(M,ω) := {ϕ ∈ Ham(M,ω)|ϕ(L) = L}.

Another natural subgroup to consider consists of Hamiltonian symplectomorphisms
that fix L pointwisely. It is easy to see that any diffeomorphism of L that is isotopic
to the identity can be extended to a Hamiltonian symplectomorphism in M that
preserves L. It follows that the two choices of subgroups essentially differ by Diff(L).
For the purpose of this paper, the reader can think of either choice.

Under the monotonicity assumption in the Lagrangian setting, one can define
the Seidel elements for the elements in a covering of π1(Ham(M,ω),HamL(M,ω)).
There is a homotopy exact sequence for the Hamiltonian groups, and we show that
the following diagram commutes (cf. Corollary 3.16):

(1.1) π̃1Ham(M,ω) ��

Ψ

��

π̃1(Ham(M,ω),HamL(M,ω))

ΨL

��

�� π̃0HamL(M,ω)

FH∗(M)
A �� FH∗(M,L)

where Ψ and ΨL denote the respective absolute and relative Seidel maps and A
denotes Albers’ comparison map between FH∗(M) and FH∗(M,L) [3].

We should explain the above diagram a little more. The Seidel maps are defined
for the extensions π̃1 of the respective π1’s by the corresponding period groups
Γω or ΓL. An element g̃ ∈ π̃1Ham(M,ω) can be viewed canonically as an ele-
ment in π̃1(Ham(M,ω),HamL(M,ω)) (cf. Lemma 3.13), and the corresponding
Seidel elements are related by A . The group π̃0HamL(M,ω) is an extension of
π0HamL(M,ω) so that the top sequence is exact. On the other hand, we may
adopt McDuff’s the point of view in [10] where the Seidel map is defined on π1’s
directly by choosing a preferred extension g̃ for each g ∈ π1. Then (1.1) holds with
the non-extended homotopy groups.

One of the original motivations for studying these Seidel elements and the above
diagram was to obtain information on the third term in the exact sequence, namely
π0HamL(M,ω). This is the most elementary question that one may ask about the
subgroup HamL(M,ω) of Hamiltonian transformations leaving a given Lagrangian
submanifold invariant.

If, say, one calls the elements in the image of A ◦Ψ the circular Seidel elements
in FH∗(M,L) and the elements in the image of ΨL the semi-circular ones, then by
the commutativity of the diagram, the latter ones contain the former ones. One
could try to find semi-circular, but not circular, elements by computing explicitly
the two Seidel morphisms. This would imply that

π1Ham(M,ω) → π1(Ham(M,ω),HamL(M,ω))
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is not onto, and therefore π0HamL(M,ω) is not trivial. Of course, if a given compo-
nent of HamL(M,ω) is made of Hamiltonian diffeomorphisms whose restrictions to
L is not isotopic to the identity, it is obviously not the identity component. Hence
our construction is useful when components are made of Hamiltonian diffeomor-
phisms whose restriction to L is isotopic to the identity (or cannot be easily shown
to be non-isotopic to the identity).

In presence of a real structure on M , i.e. of an anti-symplectic involution c
with fixed point set L, in every occurrence one could replace HamL(M,ω) by its
subgroup Hamc(M,ω) of Hamiltonian diffeomorphisms of M commuting with c.
Obviously the corresponding diagram (1.1) would still commute. In this paper, we
restrict ourselves to a detailed setting of the theory, postponing to a forthcoming
paper applications and computations of examples.

In §2, we review Lagrangian Floer homology in the setting of Hamiltonian paths;
cf. [3]. Other versions of Floer homology of a single Lagrangian already exist, e.g.
[12, 4, 5, 6] by Oh, Fukaya-Oh-Ohta-Ono and Biran-Cornea. Because we will be
working over R, we include a discussion of the coherent orientation for the Floer
trajectories, essentially following Fukaya-Oh-Ohta-Ono [6]. The necessary gluing is
similar to those found in Albers [3]. The half-pair-of-pants product is analogous to
the pair-of-pants product in the Hamiltonian Floer homology with some notorious
differences (say its non-commutativity). It should coincide with the product defined
from holomorphic triangles as in [6] or using the linear cluster complex as in [4]. For
later use, we also discuss the action of FH∗(M) as well as the Albers’ comparison
map. Other versions of the action of FH∗(M) has been described before, e.g. in
the context of the linear cluster complex (or pearl complex) [4] or in the context of
L∞-action on the A∞-algebra in [6].

In §3 we carry out Seidel’s construction for HF∗(M,L) and show that it has the
expected properties. It is also in this section that we show the commutativity of
diagram (1.1). Finally, for later use related to the computations in (X,ω)×(X,−ω),
we explain in §4 and in §5 the effect of reversing the orientations of the generators
of the symplectic and Lagrangian Floer homologies a well as the reversal of time in
operations on Floer homologies.

We would like to mention here that the possibility of defining a relative Seidel
morphism appears implicitly in the recent paper of Rémi Leclercq in [9]. Indeed, the
proof of his basic proposition 3.1, that he needs to define his Lagrangian spectral
invariants, contains the main ingredients of the construction of a relative Seidel
morphism, even though it is not presented in these terms.

2. Lagrangian Floer theory

Let (M,ω) be a symplectic manifold and let L be a Lagrangian submanifold.
Here we set up the Floer theory for (M,L) with a generic Hamiltonian perturbation.

2.1. Novikov rings. We think of ω, c1(TM) and µL as functions on π2(M) or
π2(M,L) and denote them as

Iω : π2(M) or π2(M,L) → R, Ic : π2(M) → R and Iµ : π2(M,L) → R.

Let

Γω =
π2(M)

ker Iω ∩ ker Ic
and ΓL =

π2(M,L)

ker Iω ∩ ker Iµ
,
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where one could as well replace π2(M) and π2(M,L) by their images under the re-
spective Hurewicz homomorphisms, namely, the spherical homology groups HS

2 (M)
and HS

2 (M,L), since the quotients are the same.1 Then the Novikov rings for quan-
tum (or Floer) homology are defined as follows:

Λω =

{ ∑
B∈Γω

aBe
B

∣∣∣∣∣ aB ∈ R and ∀K ∈ R,#{B|aB �= 0 and ω(B) < K} < ∞
}
,

ΛL =

{ ∑
B∈ΓL

aBe
B

∣∣∣∣∣ aB ∈ R and ∀K ∈ R,#{B|aB �= 0 and ω(B) < K} < ∞
}
.

Their degrees are defined by deg(eB) = −2Ic(B) and deg(eB) = −Iµ(B). The ho-
motopy exact sequence π2(L) → π2(M) → π2(M,L) → π1(L) induces an inclusion
on the quotients

i : Γω → ΓL,

since ker Iω ∩ ker Ic is mapped to ker Iω ∩ ker Iµ. It follows that there is a natural
inclusion of the Novikov rings:

i : Λω → ΛL.

We can then make a ΛL-module into a Λω-module via this inclusion.

2.2. The flow equation. LetH : [0, 1]×M → R be a time-dependent Hamiltonian
function and let J = {Jt}t∈[0,1] be a time-dependent ω-compatible almost complex
structure. The space of such pairs is

HJ = C∞([0, 1]×M)× J ,

where J is the space of one-parameter families of ω-compatible almost complex
structures. Let

D2
+ = {z ∈ C : |z|�1,�z�0},

∂+ denote the part of boundary of D2
+ on the unit circle, parametrized by t ∈ [0, 1]

as eiπt, and ∂0 denote the part on the real line, parametrized by t ∈ [0, 1] as 2t− 1.
We consider the path space

PLM = {l : ([0, 1], {0, 1}) → (M,L)|[l] = 0 ∈ π1(M,L)}
and the covering space P̃LM of PLM whose elements are the equivalence classes

[l, w], where l ∈ PLM and w : (D2
+; ∂+, ∂0) → (M ; l, L),

where

(l, w) ∼ (l′, w′) ⇐⇒ l = l′ and Iω(w#(−w′)) = Iµ(w#(−w′)) = 0.

The action functional on P̃LM is given by

aH([l, w]) = −
∫
D2

+

w∗ω +

∫
[0,1]

Ht(l(t))dt,

where we use the convention dH = −ιXH
ω for the Hamiltonian vector fields. An

element l̃ = [l, w] ∈ P̃LM is a critical point of aH if and only if l is a Hamiltonian
path connecting points on L.

1 If one adopts the point of view in [10] so that (1.1) holds for the non-extended groups, then
the π2’s are replaced by the respective spherical homology in R-coefficients, namely HS

2 (M ;R)

and HS
2 (M,L;R). The maps Iω , Ic and Iµ are well defined on these homology groups, and Γω

and ΓL are defined as the respective quotients.
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Definition 2.1. A critical point l̃ is non-degenerate if dφ1Tl(0)L � Tl(1)L, where
φt∈[0,1] is the Hamiltonian isotopy generated by Ht∈[0,1].

In a way similar to the case of Hamiltonian Floer homology on M , we have

Proposition 2.2. For a generic H, all critical points of aH are non-degenerate. �
Floer theory studies the negative gradient flow of aH . Let (, )J be the metric on

PLM defined by

(ξ, η)J =

∫
[0,1]

ω(ξ(t), Jtη(t))dt.

Then the equation of negative gradient flow for aH is the following perturbed J-
holomorphic equation for u : R× [0, 1] → M :

(2.1)

{
∂u
∂s + Jt(u)

(
∂u
∂t −XHt

(u)
)
= 0 for all (s, t) ∈ R× [0, 1],

u|R×{0,1} ⊂ L.

The energy E(u) of a solution u of (2.1) with respect to the metric induced by J
is defined as its s-energy

E(u) =

∫ ∣∣∣∣∂u∂s
∣∣∣∣2
t

dsdt,

where the t-metric on M is 〈ξ, η〉t = ω(ξ, Jtη). Suppose that all critical points of
aH are non-degenerate, and let u be a finite energy solution. Then ls(t) := u(s, t)
converges uniformly to Hamiltonian paths in C0-topology, i.e. ∃l± critical points
of aH so that lims→±∞ ls(t) = l±(t) uniformly in t.

2.3. Conley-Zehnder index. For each non-degenerate critical point l̃ = [l, w],

we can define a Conley-Zehnder index µH(l̃). Since D2
+ is contractible, we find a

symplectic trivialization Φ of the bundle w∗TM given by Φz : Tw(z)M → Cn with
standard symplectic structure ω0 on Cn. We require that Φr(Tw(r)L) = Rn for

r ∈ [−1, 1] ⊂ D2
+, which is possible since [−1, 1] is contractible. Then the linearized

Hamiltonian flow dφt along l defines a path of symplectic matrices

Et = Φeiπt ◦ dφt ◦ Φ−1
1 ∈ Sp(Cn).

The Conley-Zehnder index of l̃ is defined using the Maslov index of paths of La-
grangian subspaces introduced in Robbin-Salamon [14]:

Proposition (Definition) 2.3. The Conley-Zehnder index of l̃ is defined as

µH(l̃) = µ(EtR
n,Rn). It satisfies the following:

(1) µH(l̃) does not depend on the trivialization;

(2) µH(l̃) + n
2 ∈ Z;

(3) under the deck transformation by β ∈ ΓL, we have µH(l̃#β) = µH(l̃) +
Iµ(β).

Proof. For (2) see [14], Theorem 2.4. The rest can be shown similarly as in the case
of Hamiltonian loops in M . �

Definition 2.4. The Floer chain group is FC∗(H) =
⊕

k FCk(H), where

FCk(H) :=

⎧⎨⎩ ∑
µH(l̃)=k

al̃ l̃

∣∣∣∣∣∣ al̃ ∈ R and ∀K ∈ R,#{l̃|al̃ �= 0, aH(l̃) < K} < ∞

⎫⎬⎭ .
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It is easy to see that FC∗(H) is a graded module over the Novikov ring ΛL via

eB · l̃ = l̃#β,

and we have

eB · FC∗(H) ⊂ FC∗−deg(eB)(H).

We note that by the ring inclusion i : Λω → ΛL, FC∗(H) is also a Λω-module.

2.4. The linearized operator and moduli spaces of flows. Let’s suppose that
all critical points of aH are non-degenerate and consider the linearized operator of
(2.1) at a finite energy solution u:

(2.2) Duξ = ∇ ∂
∂s
ξ + Jt(u)∇ ∂

∂t
ξ +∇ξJt(u)∂tu−∇ξ (Jt(u)XHt

(u)) ,

where ξ ∈ Γ(u∗TM ;L) = {ξ ∈ Γ(u∗TM)|ξ|R×{0,1} ⊂ TL}. Under suitable Banach
completion, Du : Lp

k(u
∗TM ;L) → Lp

k−1(u
∗TM) is Fredholm whose index is the

expected dimension of the space of solutions near u.
By [15] (Theorem 7.1), the index can be identified as the difference of the Conley-

Zehnder indices of the two ends:

Proposition 2.5. Let M̃H,J(M,L; l̃−, l̃+) be the space of all solutions of the equa-

tion (2.1) connecting l̃− to l̃+ such that [l̃−#u#(−l̃+)] = 0 ∈ ΓL. Its expected
dimension is then given by

indDu = µH(l̃−)− µH(l̃+). �

The unparametrized moduli space is MH,J(M,L; l̃−, l̃+)=M̃H,J(M,L; l̃−, l̃+)/R
where the R action is the shifting of s. Thus we have in generic conditions:

dimMH,J(M,L; l̃−, l̃+) = µH(l̃−)− µH(l̃+)− 1.

2.5. Coherent orientations. We will work over Q or C instead of Z2. For this
reason, we impose the following assumption from now on:

Assumption 2.6. L is relatively spin, i.e. L is orientable and w2(L) ∈ H2(L;Z2)
extends to a class in H2(M).

The above assumption implies that the moduli spaces of holomorphic discs with
boundary on L can be canonically oriented with the choice of a relatively spin
structure on L, i.e.

• an orientation of L,
• an extension of w2(L) to H2(M) and
• a spin structure on TL ⊕ V |L(2)

, i.e. a trivialization of TL ⊕ V |L(1)
that

extends to L(2),

where L(2) is the 2-skeleton of some triangulation of L and V is an oriented real
vector bundle on the 3-skeleton M(3) of M so that w2(V ) extends w2(L). It follows
that TL⊕ V |L(2)

is indeed spin. Starting from these choices, we may assign to the

moduli spaces M̃H,J(M,L; l̃−, l̃+) a coherent orientation (see for example [6], §44)
in the following way.

First, in order to orient the moduli space of half-tubes M̃H,J(M,L; l̃−, l̃+), we
consider essentially an oriented version of the argument for the PSS [3]. It involves
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another type of moduli space M̃±
H±,J±(M,L; l̃) consisting of maps from either the

capped strip Z− or Z+ ([3]):

(2.3) C ⊃ Z± = D2
∓ ∪ (R± × [0, 1])

u±
−−→ M so that u(∂Z±) ⊂ L,

where this time D2
− denotes the closed left half part of the disk of raduis 1/2

centered at 1/2i ∈ C, while D2
+ denotes the closed right half part. The coordinates

in Z± is z = s + it. Choose and fix (H±,J±), a pair of smoothly z-dependent
Hamiltonian functions and almost complex structures so that

(H±,J±)|D2
∓
= (0, J) and (H±,J±)|1∓s<0 = (H,J),

where J is a generic almost complex structure on M . Consider the equation for
u± : Z± → M :

(2.4)

{
∂u±

∂s + J±
z (u±)

(
∂u±

∂t −XH±
z
(u±)

)
= 0 for all (s, t) ∈ Z±,

u|∂Z± ⊂ L.

The energy E(u±) is defined as the s-energy in the usual way, and finite energy
solutions u± converge uniformly to Hamiltonian paths of H when s → ±∞. Then
set

M̃H±,J±(M,L; l̃) :=

⎧⎨⎩u± : Z± → M

∣∣∣∣∣∣
u± satisfies (2.4),

lims→±∞ u± = l and

[l̃#(−u±)] = 0 ∈ ΓL

⎫⎬⎭ .

There are evaluation maps for these moduli spaces, at the points p± = ±1/2+1/2i ∈
D2

±:

ev± : M̃H±,J±(M,L; l̃) → L : u± �→ u±(p∓).

We argue that a choice of the orientations of all the moduli spaces of the

form M̃H+,J+(M,L; l̃+) induces the orientations of the moduli spaces of the form

M̃H−,J−(M,L; l̃−), where l+ = l−. We consider the gluing of equation (2.4) for the

moduli spaces M̃H+,J+(M,L; l̃+) and M̃H−,J−(M,L; l̃−) along l. That is, choose
and fix an appropriate cut-off function β and consider the domains

Z+,R = D2
− ∪ ([0, R+ 1]× [0, 1]) and Z−,R = D2

+ ∪ ([−R− 1, 0]× [0, 1]),

and use β to glue the two equations on Z± to define an equation on the glued
domain

ZR := Z+,R � Z−,R/(z ∼ z −R− 1 in the ends).

We note that ZR is conformal to D2 and the equation on ZR is in fact a compact
perturbation of the ∂̄J -equation for discs with boundary on L. Because the moduli
space of discs is canonically oriented by the choice of a relatively spin structure,

we see that the moduli space M̃H±,J±(M,L; l̃, R) for the glued equation on ZR is
oriented. From the additivity of indices by standard gluing arguments, we see that
the orientations of the +-moduli spaces induce orientations of the −-moduli spaces.

Let B ∈ π2(M,L) and consider l̃B = l̃#B. When M̃H+,J+(M,L; l̃B) is not

empty, its orientation is defined from that of M̃H+,J+(M,L; l̃) and the ∂̄-equation
for discs with boundary on L representing class B. We note that the moduli space
of discs might be empty or the ∂̄-operator might be non-surjective. Nevertheless,
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an orientation can be assigned to the index of the ∂̄-operator. Summarizing, we
have

Proposition 2.7. The orientations of the moduli spaces M̃H±,J±(M,L; l̃) are de-

termined by the canonical orientations on the indices of the ∂̄-operators of discs

with boundaries on L as well as a choice of the orientations on M̃H+,J+(M,L; l̃j)

for a ΛL-basis {l̃j} of FC∗(H). �

Definition 2.8. The basis {l̃j} is called a preferred basis for the orientation of the
Floer complex FC∗(M,L;H,J).

To obtain the orientations for the moduli spaces M̃H,J(M,L; l̃−, l̃+), we no-
tice, for example, that gluing these latter moduli spaces with the moduli spaces

M̃H+,J+(M,L; l̃−) yields the moduli spaces M̃H+,J+(M,L; l̃+). Since both the
latter two have been given orientations, these orientations canonically determine
orientations on the moduli spaces of half-tubes. Considering the opposite gluing,

that is to say using M̃H−,J−(M,L; l̃+) instead of M̃H+,J+(M,L; l̃−), would give
the same induced orientations. It is now easy to see that the orientations intro-

duced on M̃H,J(M,L; l̃−, l̃+) are naturally coherent in the sense of Hofer-Salamon
[7].

2.6. Floer homology. From now on, we consider only monotone Lagrangians, i.e.
satisfies the following:

(2.5) there is λ > 0 such that Iω = λIµ on π2(M,L).

Together with Assumption 2.6, we see that the minimal Maslov number of L is
at least 2. The monotonicity condition also ensures that there are no non-trivial
holomorphic spheres with non-positive Chern numbers or non-trivial discs with
boundary on L with non-positive Maslov index.

Let Mk(J) denote the set of points of M lying on non-constant J-holomorphic
spheres with Chern number � k, Lk(J) the set of points of L lying on the boundary
of non-constant J-holomorphic discs with Maslov number � k and P (H) be the set
of points of M lying on connecting orbits of H. In the following, we will assume
that the pair (H,J) is regular in the sense that

• all J0/1-holomorphic discs with Maslov index 2 are regular,
• J is regular for pseudo-holomorphic spheres with Chern number 1,
• all connecting orbits of H are non-degenerate,
• Du is surjective for finite energy solutions u of (2.1) with index Du ≤ 2.
• P (H) ∩M1(J) = ∅ and P (H) ∩ L2(J) is empty or of dimension 0.

Standard arguments (cf. e.g. [7]) implies that generic pairs are regular.
The Floer chain complex FC∗(H,J) is given by the Floer chain group FC∗(H)

with the boundary map defined by counting the 0-dimensional moduli space of
solutions:

∂H,J l̃− =
∑

µH(l̃−)=µH(l̃+)+1

#MH,J(M,L; l̃−, l̃+)l̃+,

and extending linearly. We then show that

Proposition 2.9. With Assumption 2.6 and assuming that (H,J) is regular, then
∂2
H,J = 0.
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Proof. Writing

∂2
H,J l̃−=

∑
µH(l̃−)=µH(l̃0)+1

#MH,J(M,L; l̃−, l̃0)
∑

µH(l̃0)=µH(l̃+)+1

#MH,J(M,L; l̃0, l̃+)l̃+

we see that the proposition is equivalent to saying that for each pair of l̃− and l̃+,
we have∑

µH(l̃−)=µH(l̃0)+1

∑
µH(l̃0)=µH(l̃+)+1

#MH,J(M,L; l̃0, l̃+)#MH,J(M,L; l̃−, l̃0) = 0.

The summand above is the counting for the moduli space of the broken half-tubes

connecting l̃±. The moduli space of broken half-tubes is part of the boundary

components of the 1-dimensional moduli space MH,J(M,L; l̃−, l̃+).

Let C be a connected component of the (compactification) of MH,J(M,L; l̃−, l̃+).
A boundary point of C is of type I if it is a broken half-tube and is of type II if
it is a bubbling off of holomorphic discs. The counting in ∂2

H,J concerns type I
boundaries. We have the following 3 cases for ∂C:

• is empty or is of type II on both ends, or
• is of type I on both ends, or
• is of type I on one end and type II on the other.

Obviously, if no type II boundary occurs in the compactification, an argument
similar to the Hamiltonian Floer theory gives the proposition. In the following, we
assume that the type II boundary does occur. Then the type I boundary and type
II boundary are cobordant and the vanishing of counting for either type implies
the vanishing of the other. In the following we show the vanishing of counting for
the type II boundary points, which would then imply the proposition.

Assume that the type II boundary does occur. Then there exist critical points l̃±
and a holomorphic disc v with µL = 2 so that v is attached to a solution u of (2.1)

such that lims→±∞ u(s, t) = l±. It follows that µH(l̃−) = µH(l̃+). By regularity

assumptions we see that l̃− = l̃+ = l̃, where l is a connecting Hamiltonian orbit
of H and u(s, t) = l(t) for all s. Also by our assumption, L2(J) is compact of
dimension n. It follows that there are J0/1-holomorphic discs through each point
of L.

The orientations of the moduli spaces of J0/1-holomorphic discs with minimal
Maslov number are consistent in the sense that they are connected through cobor-

disms. On the other hand, the orientation of MH,J(M,L; l̃−, l̃+) �= ∅ is obtained
as in §2.5, by considering the gluing operations via the canonical orientation of the
moduli space of disc together with the choice of orientations on the moduli spaces

M̃+. The boundary components of MH,J(M,L; l̃−, l̃+) are oriented by considering
the gluing operations. To derive the orientation of the type II boundary points, we
need to consider the gluing of the following moduli spaces to the main component
l:

the moduli spaces M̃± of the capped strips and the moduli space
M1(M,L;B, J0/1) of 1-marked J0/1-holomorphic disc with µL(B)
= 2.

The ordering of the gluing operations is given by the orientation of the half-tube
R × [0, 1]. Namely, for the case of bubbling off of a disc at t = 0, the cyclic order

is M̃+, M1(M,L;B, J0) and then M̃−, and for bubbling off at t = 1, the order
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is M̃−, M1(M,L;B, J1), and then M̃+. Note that the orientations of the moduli
spaces of holomorphic discs are consistent, while the cyclic ordering of the gluing
operations are opposite. It follows that the counting of configuration of bubbling
off at t = 0 and t = 1 have opposite signs. It then follows that the counting of type
II boundary points vanishes, which implies ∂2

H,J = 0. �

Thus we define the Floer homology of (M,L) for the regular pair (H,J) to be

FH∗(M,L;H,J) = H∗(FC∗(H,J), ∂H,J).

The independence of FH∗(M,L;H,J) with respect to the choices of (regular)H and
J can be seen using the usual arguments of continuation principle and homotopy
of homotopies.

2.7. Half-pair-of-pants product. The product on FH∗(M,L) can be defined by
a “half-pair-of-pants”, perturbed similarly as in Seidel [16], as follows. Consider
the half-cylinder with a boundary puncture Σ0 = R × [0, 1] \ {(r, 0)}. The surface
Σ0 has three ends e± and e0:

e+ : [1,∞)× [0, 1] → Σ0 and e− : (−∞,−1]× [0, 1] → Σ0,

where e±(s, t) = (s, t), and

e0 : (−∞,−1]× [0, 1] → Σ0 : (b, θ) �→ s+ it = eb−1+πiθ,

which is holomorphic with respect to the standard complex structures on the do-
main and target, whose image lies completely in (− 1

2 ,
1
2 ) × (0, 1

4 ). The ends e−
and e0 are the “incoming” ends, and e+ is the “outgoing end”. We choose regular
pairs (H±,J±) and (H0,J0) for the corresponding ends. Consider the pair (H,J),
where H ∈ C∞(Σ×M) and J is a family of compatible almost complex structures
parametrized by Σ, such that the pull back of (H,J) by the maps e∗ is equal to
the corresponding pair (H∗,J∗). Furthermore, we require that H restricts to 0 over
e0([−2,−1]× [0, 1])×M .

Remark 2.10. Here and in the following, a region D ⊂ R × [0, 1] is provided with
cylindrical coordinates if there is a biholomorphic map e : I × S → D where
I ⊂ R is a (possibly infinite) interval and S = [0, 1] or R/Z. When we ask for
the regular pair (H,J) to pull back to a pair (H ′,J′) on a region provided with
cylindrical coordinates I × S, we mean that there is a sequence of (non-empty)
smaller intervals

I ′′ ⊂ Ī ′′ � (I ′)◦ ⊂ Ī ′ � I◦ ⊂ I,

so that (H,J) pulls back to (H ′,J′) on e(I ′′ × S) while it pulls back to (0, J0) on
e((I \ I ′)× S) for some fixed generic compatible almost complex structure J0.

The description is conveniently summarized in Figure 1. Let (R × [0, 1])0 =
(R× [0, 1]) \ e0((−∞,−1]× [0, 1]) and consider the equation
(2.6)⎧⎪⎨⎪⎩

∂u
∂s + Js,t(u)

(
∂u
∂t −XHs,t

(u)
)
= 0 for (s, t) ∈ (R× [0, 1])0,

∂u0

∂s + Je0(s,t)(u0)
(

∂u0

∂t −XHe0(s,t)
(u0)

)
= 0 for (s, t) ∈ (−∞,−1]× [0, 1],

u|(R×{0,1})\{(0,0)} ⊂ L,

where u0 = u ◦ e0. On the ends e∗, a solution u of finite energy again limits to

critical points l̃∗ for the Floer action functional aH∗ when s → ±∞. The half-pair-
of-pants product is then defined on the chain level by counting the 0-dimensional
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By this assumption, any (time-dependent) Hamiltonian function has a con-
tractible flow line connecting points on L.

3.1. Path group and action. Let HamL(M,ω) be the subgroup of Ham(M,ω)
that preserves L, i.e.

φ ∈ HamL(M,ω) ⇐⇒ φ ∈ Ham(M,ω) and φ(L) = L.

We consider the following path group in Ham(M,ω):

Definition 3.2. The path group

PLHam(M,ω) := {g : ([0, 1]; {0}, {1}) → (Ham(M,ω); id,HamL(M,ω))}
is a group with pointwise composition:

(g ◦ h)t = gtht.

For g ∈ PLHam(M,ω), the action of it on a path l : ([0, 1]; {0, 1}) → (M,L) is

(g ◦ l)(t) = gt ◦ l(t).

Suppose that g is generated by K : [0, 1]×M → R. Then we have g∗αH = αHg

and g∗(, )J = (, )Jg , where

Hg(t, x) = H(t, gtx)−K(t, gtx) and Jg
t (x) = dg−1

t ◦ Jt(gtx) ◦ dgt.
In particular, we have (Hg)h = Hgh and (Jg)h = Jgh. Let φt denote the Hamil-
tonian isotopy generated by Ht; then Hg

t generates g−1
t φt. It follows that the

connecting Hamiltonian flow lines of Ht and Hg
t are in one-to-one correspondence.

As in Lalonde-McDuff-Polterovich [8] where it is shown that Ham(M) acts triv-
ially on homology (and sends contractible loops in M to contractible loops), one
easily sees that the same argument shows that the action of PLHam(M,ω) on the
space of paths preserves the component PLM .

Most computations in the following are parallel to the corresponding ones in [16].

Proposition 3.3. The action of PLHam(M,ω) on PLM can be lifted to an action

of P̃LHam(M,ω) on the covering P̃LM , where

P̃LHam(M,ω) :=
{
(g, g̃) ∈ PLHam(M,ω)×Homeo(P̃LM)

∣∣∣ g̃ lifts the action of g
}
.

Proof. We only need to show that the action can be lifted. Suppose γ : S1 →
PLM is a loop that can be lifted to P̃LM . Then it is represented by a map
B :

(
S1 × [0, 1], S1 × {0, 1}

)
→ (M,L), such that ω(B) = µL(B) = 0. The

loop γg = {g(γs)}s∈S1 is represented by Bg(s, t) = gt ◦ B(s, t). Because dgt :
(B∗TM, ∂B∗TL) → ((Bg)∗TM, (∂Bg)∗TL) is an isomorphism of symplectic bun-
dles preserving the Lagrangian boundary conditions, it follows that µL(B

g) =

µL(B) = 0. We compute (Bg)∗ω = ω
(
∂Bg

∂s , ∂Bg

∂t

)
ds ∧ dt = B∗ω + dθ with

θ = K(t, Bg(s, t))dt. Since θ|∂(S1×[0,1]) = 0, we find that ω(Bg) = ω(B) = 0.

Thus, γg can again be lifted to P̃LM , which implies that the action of g can be
lifted. �

The groups fit into the exact sequence

0 → ΓL → P̃LHam(M,ω) → PLHam(M,ω) → 0,

and passing to homotopy, we get the exact sequence

ΓL → π̃1(Ham(M,ω),HamL(M,ω)) → π1(Ham(M,ω),HamL(M,ω)) → 0.
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Let l̃ = [l, w] ∈ P̃LM (not necessarily a critical point of any functional), and let
Φz : Tw(z)M → Cn be any trivialization satisfying Φr : Tw(r)L → Rn for r ∈ [−1, 1].

Let Φg̃
z be a similar trivialization defined for l̃g̃ = [lg, wg̃]. Now consider

Gt = Φg̃
eiπt ◦ dgt ◦ Φ−1

eiπt : C
n → Cn.

Then {GtR
n} is a loop of Lagrangian subspaces in Cn. Then the following definition

does not depend on either the trivialization or the choice of l̃.

Definition 3.4. The Maslov degree of g̃ is µ(g̃) = µ(GtR
n). �

Proposition 3.5. Let l̃ = [l, w] be a critical point of aHg ; then l̃g̃ is a critical point

of aH . Furthermore, l̃ is non-degenerate if and only if l̃g̃ is so. For such critical

points, we have µ(g̃) = µH(l̃g̃) − µHg (l̃). It follows that µ : g̃ �→ µ(g̃) defines a
group homomoprhism µ : π̃1(Ham(M,ω),HamL(M,ω)) → Z.

Proof. A direct computation from the definitions establish the first statement of the
proposition. Suppose l is non-degenerate. Then dg−1

1 ◦ dφ1(Tl(0)L) � Tl(1)L ⇐⇒
dφ1(Tl(0)L) � Tlg(1)L, since dg1 preserves TL, and so the second statement follows.

Let l̃g̃ = [lg, wg] and Φz : Twg(z)M → Cn be a trivialization that defines µH(l̃g̃).
Then

µH(l̃g̃) = µ(EtR
n,Rn), where Et = Φeiπt ◦ dφt ◦ Φ−1

1 : Cn → Cn.

Let Φg
z : Tw(z)M → Cn be the trivialization defining µHg(l̃). Then

µHg(l̃) = µ(Eg
t R

n,Rn), where Eg
t = Φg

eiπt ◦ dg−1
t ◦ dφt ◦ (Φg

1)
−1

: Cn → Cn.

Suppose Φg
1 = Φ1 and let G−1

t = Φg
eiπt ◦dg−1

t ◦Φ−1
eiπt . Then Et = Gt ◦Eg

t = Gt#Eg
t

because Gt is a loop. Thus the property of the Maslov index of Lagrangian paths
(see [14], Theorem 2.3) gives

µ(EtR
n,Rn) = µ(Gt) + µ(Eg

t R
n,Rn) ⇒ µ(g̃) = µH(l̃g̃)− µHg (l̃).

�
In a way entirely parallel to [16], we have

Proposition 3.6. For critical points l̃−, l̃+ of aHg , there is a bijection of moduli
spaces:

MHg ,Jg (M,L; l̃−, l̃+) → MH,J(M,L; l̃g−, l̃
g
+)

u �→ ug

where

(3.1) ug(s, t) := gt ◦ u(s, t).
Furthermore, (H,J) is regular iff (Hg,Jg) is regular. The map FC∗(g̃;H,J) defined

by 〈l̃〉 �→ 〈l̃g〉 passes to homology,

HF∗(g̃) : FH∗(H
g,Jg) → FH∗+µ(g̃)(H,J),

and defines an automorphism of FH∗(M,L) of degree µ(g̃). Furthermore the fol-
lowing hold:

(1) for (g, g̃) = (id, id), FH∗(g̃) = id,
(2) for (g, g̃) = (id, β) with β ∈ ΓL, we have FH∗(g̃) = β · id,
(3) FH∗(g̃) is a ΛL-module automorphism of degree µ(g̃),
(4) FH∗(g̃ ◦ g̃′) = FH∗(g̃) ◦ FH∗(g̃

′). �
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3.2. Homotopy invariance. We consider a smooth path {gr}r∈[0,1] starting from

the identity in PLHam(M,ω) and a lift {(gr, g̃r)} of it to P̃LHam(M,ω). Then
Proposition 3.5 implies that µ(g̃r) = 0 for all r ∈ [0, 1]. The path {gr} corresponds
to a smooth family {gr,t}(r,t)∈[0,1]2 of Hamiltonian diffeomorphisms in Ham(M,ω)
so that

g0,t = gr,0 = id and gr,1 ∈ HamL(M,ω) for all r ∈ [0, 1].

Choose a smooth family of Hamiltonians Kr : [0, 1]×M → R for r ∈ [0, 1] so that
Kr generates gr and K0 = 0. Let

Hgr(t, x) = H(t, gr,t(x))−Kr(t, gt,r(x)) and Jgr
t = dg−1

r,t ◦ Jt(gr,t(x)) ◦ dgr,t.

Let (H0,J0) = {(Ht, Jt)}t∈[0,1] and (H1,J1) = {(Hg1
t , Jg1

t )}t∈[0,1]. Then the
construction in the last subsection gives

FH∗(g̃1) : FH∗(H1,J1) → FH∗(H0,J0).

Let (H̄, J̄) = {(Hs,t, Js,t)}(s,t)∈R×[0,1] be a regular homotopy connecting (H0,J0)
and (H1,J1):

(H̄s, J̄s) =

{
(H1,J1), s�− 1,
(H0,J0), s�1.

We consider the moduli spaces of the solutions of the following equation for maps
u : R× [0, 1] → M with ∂u : R× {0, 1} → L:

∂u

∂s
+ Js,t(u)

(
∂u

∂t
−XHs,t

(u)

)
= 0.

Here (H̄, J̄) being regular means that all solutions u are regular, i.e. their lineariza-

tions are surjective. The moduli space MH̄,J̄(M,L; l̃−, l̃+) denotes the space of
solutions u that converge to Hamiltonian paths when s → ±∞:

lim
s→−∞

= l̃
g−1
1

− and lim
s→+∞

= l̃+,

where l̃± are critical points of aH . The dimension of the moduli space is given by

µH(l̃−)− µH(l̃+),

since there is no R-action anymore. Then the continuation map on the chain level

ΦH̄,J̄ : FC∗(H1) → FC∗(H0)

is defined by counting dimension 0 moduli spaces:

ΦH̄,J̄(l̃
g−1
1

− ) =
∑
l̃+

#MH̄,J̄(M,L; l̃−, l̃+)l̃+.

That ΦH̄,J̄ is a chain map is shown by considering the dimension 1 moduli spaces.
Thus we have the continuation map for Floer homology, which is also denoted ΦH̄,J̄.
The homotopy invariance of FH∗(g̃) is equivalent to the following:

Proposition 3.7. With the above setup, we have FH∗(g̃1) = ΦH̄,J̄.

As in [16], we consider the deformation of homotopies, from the trivial homotopy
to (H̄, J̄) by the curve {(gr, g̃r)}, which is a family

(H̃, J̃) = {(Hr,s,t, Jr,s,t)}(r,s,t)∈[0,1]×R×[0,1],
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where

Hr,s,t(x) = Hgr
t (x), Jr,s,t(x) = Jgr

t (x) for s�− 1,

Hr,s,t(x) = Ht(x), Jr,s,t(x) = Jt(x) for s�1,

H0,s,t(x) = Ht(x), J0,s,t(x) = Jt(x) and

H1,s,t(x) = Hs,t(x) J1,s,t(x) = Js,t(x).

The equation that we are now concerned with is the following:

(3.2)
∂u

∂s
+ Jr,s,t(u)

(
∂u

∂t
−XHr,s,t

(u)

)
= 0

for the pair (r, u), where r ∈ [0, 1] and u : R× [0, 1] → M with ∂u : R×{0, 1} → L.

Let M
H̃,J̃

(M,L; l̃−, l̃+) denote the moduli space of solutions (r, u) so that u solves

the equation at the parameter r and converges to Hamiltonian paths as s → ±∞,
i.e.,

lim
s→−∞

= l̃
g−1
r

− and lim
s→+∞

= l̃+,

where l̃± are critical points of aH . Then the expected dimension of this moduli
space is

µH(l̃−)− µ(l̃+) + 1,

because of the extra parameter r. The deformation of homotopies is said to be
regular if the linearized operator for (3.2) is surjective for all (r, u) and no bubbling
off of either spheres or discs occurs for the moduli spaces with dimension �1. We
note that here the monotonicity guarantees the existence of regular deformation of
homotopies. �

3.3. Module property and Seidel element.

Proposition 3.8. The map FH∗(g̃) is a module map with respect to the half pair

of pants product on FH∗(M,L), i.e. for [l̃−], [l̃0] ∈ FH∗(M,L), we have

FH∗(g̃)([l̃−] ∗ [l̃0]) = FH∗(g̃)([l̃−]) ∗ [l̃0].

Proof. Because of the homotopy invariance, we may reparametrize g so that gt = id
for t ∈ [0, 1

2 ]. Consider the half pair of pants product defined by the punctured strip
as in Figure 1, §2.7. Let (H,J) be a regular pair which pulls back to the ends e±
and e0 respectively as (H±, J±) and (H0, J0). Then the pair (Hg,Jg) defined by

Hg(s, t, x) := H(s, t, gtx)−K(s, t, gtx) and Jg(s, t, x) := dg−1
t ◦ Js,t(x) ◦ dgt

pulls back to the ends e± and e0 respectively as (Hg
±,J

g
±) and (H0, J0). Let l̃g±

and l̃± be critical points of the action functionals aH± and aHg
±

respectively and

l̃0 a critical point of aH0
. We then have the isomorphism of moduli spaces as in

Proposition 3.6

MHg ,Jg (M,L; l̃−, l̃0, l̃+) ∼= MH,J(M,L; l̃g−, l̃0, l̃
g
+) : u �→ ug,

where ug(s, t) := gt ◦ u(s, t). The statement then follows. �

From the properties in Proposition 3.6 and the homotopy invariance, we may
define similarly the Seidel element for the Lagrangian Floer homology. Here we
have to assume more.
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Definition 3.9. Suppose that FH∗(M,L) is non-zero and has an identity element
with respect to the half-pair-of-pants product defined above, which is denoted �L.
Then

FΨg̃,L := FH∗(g̃)(�L) ∈ FH∗(M,L)

is the Seidel element for the class [g̃] ∈ π̃1(Ham(M,ω), HamL(M,ω)).

It follows that in this case, for [l̃] ∈ FH∗(M,L) we have

FH∗(g̃)([l̃]) = FΨg̃,L ∗ [l̃].
The assumption above is satisfied in many cases, for example the diagonal in

M ×M .

3.4. Hamiltonian fibrations over a disc. The unit discD2 in C can be paramet-
rized by the upper half-plane H̄ compactified by R and a point at ∞.

Notation 3.1. The following notation are only used in this section. They are NOT
compatible with the notation for the same objects used elsewhere in this paper. In
the parametrization by H, let

D2
± = {z ∈ H̄| ± (|z| − 1)�0}.

The two half-discs can be identified by the map

D2
+ → D2

− : z �→ z̄−1 or reiθ �→ r−1eiθ.

We consider the fibration over D2 defined from an element g ∈ PLHam(M,ω):

Pg = M ×D2
+ �M ×D2

−/ ∼: (x, eiπt) ∼ (gt(x), e
iπt) for t ∈ [0, 1].

Let π : Pg → D2 denote the projection. We note that along the S1-boundary, we
have the restricted bundle N that is obtained as the union of the copies of L in
each fiber; it is a Lagrangian submanifold of P . Note that N � L × S1 over S1

if the restriction of g1 to L is diffeotopic to the identity. A choice of the lifting

g̃ ∈ P̃LHam(M,ω) amounts again to the choice of a section class σg̃ in π2(Pg, N)

as follows. For x ∈ L, consider l̃ = [x, x] ∈ P̃L and let l̃g̃ = [gt(x), w] with

w : D2
+ → M : w(eiπt) = gt(x).

Via the identification of D2
±, we write

w− : D2
− → M : w−(z) = w(z̄−1);

in particular, w−(e
iπt) = gt(x) as well. Now the following section in Pg represents

σg̃:

{x} � {w−}/ ∼: (x, eiπt) ∼ (gt(x), e
iπt) for t ∈ [0, 1],

where, for example, {w−} denotes the graph of the map w−.

Definition 3.10. Let the smooth map u : D2 → Pg represent B ∈ π2(Pg, N). The
vertical Maslov index of B, denoted µv(B), is the Maslov index of the bundle pair
(u∗T vPg, (∂u)

∗T vN), where T v = ker dπ denotes the respective vertical tangent
bundles.

It’s not hard to show that the above is well defined and not dependent on the
choice of a smooth map u. We then have the following.

Proposition 3.11. µ(g̃) = µv([σg̃]).
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Proof. The trivial Lagrangian path T v
xN = TxL over D2

+ is isotopied to Gt(x)R
n

over D2
−, via any trivialization chosen for u∗T vPg. The proposition follows from

the definitions. �

Remark 3.12. Since we will not need it in this article, we leave it to the reader
to check that the definition of the action of the paths in PLHam(M,ω) on the
relative Floer homology can be interpreted in a geometric way on this bundle over
the 2-disc, exactly as the absolute Seidel morphism was interpreted in Lalonde-
McDuff-Polterovich [8] as a map from the quantum homology of the fiber at the
north pole to the quantum homology of the fiber at the south pole in a fibration
over the 2-sphere.

For this purpose, one considers the fibers (M±1, L±1) = π−1(±1). The natural
map from FH∗(M1, L1) to FH∗(M−1, L−1) can be defined by the pearl complex
(i.e. linear clusters). Namely, one flows inside M1 from a critical point of the Morse
function on L1 in a linear cluster until that cluster reaches a pseudo-holomorphic
section σ of P with boundary on N . It then flows along a linear cluster in the fiber
M−1, starting from the point σ ∩M−1 ∈ L−1, until it reaches some critical point
of the Morse function on L−1 ⊂ M−1.

3.5. Compatibility among the actions. We start by noting the obvious inclu-
sion:

Ω0Ham(M,ω) ⊂ PLHam(M,ω),

where Ω0Ham(M,ω) denotes the group of smooth loops in Ham(M,ω) based at

the identity. Recall that in [16] the covering Ω̃0Ham(M,ω) is defined as follows (cf.
Proposition 3.3):

Ω̃0Ham(M,ω) := { (g, g̃) ∈ Ω0Ham(M,ω)×Homeo(Ω̃M)
∣∣∣ g̃ lifts the action of g}.

Lemma 3.13. We have the inclusion of groups

Ω̃0Ham(M,ω) ⊂ P̃LHam(M,ω),

extending the inclusion Γω
i→ ΓL in §2.1.

Proof. We show that

Ω̃0Ham(M,ω) ⊂ P̃0
LHam(M,ω),

where

P̃0
LHam(M,ω) :=

{
(g, g̃) ∈ P̃LHam(M,ω)

∣∣∣ g1|L = id ∈ Diff(L)
}
.

Let

ΩLM = ΩM ∩ PLM

be the space of loops inM starting at points in L. Then an element of Ω0Ham(M,ω)
or PLHam(M,ω) is determined by how it acts on ΩLM . This fact gives a definition
of the inclusion Ω0Ham(M,ω) ↪→ PLHam(M,ω).

Let π : Ω̃M → ΩM and πL : P̃LM → PLM be the covering projections. Con-
sider

Ω̃LM := π−1(ΩLM) and P̃0
LM := π−1

L (ΩLM).
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Then by definition, we have

Ω̃LM = {(l, wΩ)|l ∈ ΩLM and wΩ : (D2, S1) → (M, l)}/ ∼Ω,

P̃0
LM = {(l, wP)|l ∈ ΩLM and wP : (D2

+; ∂+, ∂0) → (M ; l, L)}/ ∼P ,

where

wΩ ∼Ω w′
Ω ⇐⇒ Iω(vΩ) = Ic(vΩ) = 0 for vΩ = wΩ#(−w′

Ω),

wP ∼P w′
P ⇐⇒ Iω(vP) = Iµ(vP) = 0 for vP = wP#(−w′

P).

Let’s choose and fix a smooth map

ι : (D2
+; ∂+, ∂0) → (D2;S1, {1})

which contracts ∂0 to {1} and is an isomorphism otherwise. We have for wΩ

w̃Ω := wΩ ◦ ι : (D2
+; ∂+, ∂0) → (M ; l, L),

as well as

wΩ ∼Ω w′
Ω ⇐⇒ w̃Ω ∼P w̃′

Ω.

The “⇒” above is obvious. The “⇐” is because Iµ = 2Ic on the maps of the form

w̃Ω#(−w̃′
Ω). In particular, ι induces an inclusion ι∗ : Ω̃LM → P̃0

LM .
On the other hand, for wP as above, we define ∂0wP by

wP |∂0
: ([−1, 1], {±1}) → ([−1, 1]/{±1}, {[1]}) ∂0wP−−−→ (L, l(0) = l(1)).

We then see that ∂0 : wP �→ ∂0wP defines a map

∂∗
0 : P̃0

LM → π1(L)/K,

where K is the image of ker Iω ∩ker Iµ under the map π2(M,L) → π1(L) and there
is the exact sequence

0 → Ω̃LM
ι∗−→ P̃0

LM
∂∗
0−→ π1(L)/K.

It follows that P̃0
LM is a disjoint union of copies of Ω̃LM .

Now an element in Ω̃0Ham(M,ω) is determined by its action on Ω̃LM and one in

P̃0
LHam(M,ω) by its action on P̃0

LM . It follows that Ω̃0Ham(M,ω) is the subgroup

of P̃0
LHam(M,ω) preserving each copy of Ω̃LM in P̃0

LM . The rest of the statement
is obvious. �

Remark 3.14. From the lemma, we obtain the exact sequence described in (1.1):

π̃1Ham(M,ω) → π̃1(Ham(M,ω),HamL(M,ω)) → π̃0HamL(M,ω) → 0,

where the third term is the quotient. From the extension sequences of the first two
groups and from the triviality of π0Ham(M,ω), we have the following extension
sequence:

0 → Γ′ → π̃0HamL(M,ω) → π0HamL(M,ω) → 0,

where Γ′ is a quotient of ΓL.
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Proof. Recall that Proposition 2.15 states that A (�) = �L, where � and �L are
the respective identity elements in FH∗(M) and FH∗(M,L). Now replace [γ̃] in
Theorem 3.15 by � ∈ FH∗(M), and we obtain the proposition. �

Remark 3.17. The above corollary completes the commutative diagram (1.1), where
the maps Ψ and ΨL are defined respectively as

Ψ(g̃) := FΨg̃ and ΨL(g̃) := FΨg̃,L.

4. Reversing the sign of the symplectic structure

We consider here the effects of reversing the symplectic structure on M , i.e. the
relations between the structures defined on (M,ω) and (M,−ω).

Fix a Lagrangian submanifold L ⊂ (M,ω). Let ω′ = −ω and c′1 and µ′ denote
respectively the Chern class and Maslov class for the reversed symplectic structure
and L. Then we obviously have

Iω′ = −Iω, Ic′ = −Ic and Iµ′ = −Iµ.

Correspondingly, we have the Novikov rings Λω′ and ΛL′ . Let τ : π2(M) → π2(M)
and π2(M,L) → π2(M,L) be the respective involution induced by reversing the
signs. Then it induces involutions τ of the groups Γω and ΓL as well as isomorphisms
of the Novikov rings as graded rings:

(4.1) τ : Λω → Λω′ and τ : ΛL → ΛL′ : aBe
B �→ (−1)

1
2 deg eBaBe

τ(B).

Under our assumption, we see that deg eB is always even for either of the two
Novikov rings, and thus the above is an isomorphism over R.

4.1. Quantum ring structure on QH∗(M). Let 2m = dimR M ; then the orien-
tation of (M,ω′) is the (−1)m-multiple of that of (M,ω).

Lemma 4.1. Let � and �′ denote the intersection products on H∗(M,ω) and
H∗(M,ω′) respectively. Then we have

τ (α � β) = τ (α) �′ τ (β),

where α, β ∈ H∗(M) = H∗(M,ω) = H∗(M,ω′) and

τ : H∗(M,ω) → H∗(M,ω′) : α �→ (−1)mα.

Proof. Let {γj} be a base of H∗(M) and {γ∗
j } its dual base with respect to the

product �, and let {γ∗′

j } be that with respect to �′. Thus we have

γ∗′

j = (−1)mγ∗
j .

Let a, b, cj and c∗j be generic cycles representing α, β, γj and γ∗
j . The intersection

product � (respectively �′) is alternatively written as

α � β =
∑
j

〈α, β, γ∗
j 〉γj (respectively α �′ β =

∑
j

〈α, β, γ∗′

j 〉′γj),

where 〈α, β, γ∗
j 〉 is the intersection number of a×b×c∗j with�, the minimal diagonal,

in M3, oriented by ω. We only need to compare the coefficients in front of the γj ’s.
The orientations of the cycle � in (M,ω)3 and (M,−ω)3, as well as the orien-

tations of M3 in either case, differ by (−1)m, while the orientations of γ∗
j and γ∗′

j

also differ by (−1)m. The lemma then follows. �
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We consider the effect on QH∗(M). Since

QH∗(M,ω) = H∗(M)⊗ Λω and τ : Λω → Λω′ ,

we naturally define the induced map by

(4.2) τ∗ : QH∗(M,ω) → QH∗(M,ω′) : α⊗ f �→ τ (α)⊗ τ (f).

Proposition 4.2. The map τ∗ defined in (4.2) is a ring isomorphism of quantum
homologies over the isomorphism τ of the Novikov rings in (4.1).

Proof. The quantum intersection product on QH∗(M,ω) (resp. QH∗(M,ω′)) is
denoted ∗ (resp. ∗′). Choose and fix a base {γj} of H∗(M) and denote {γ∗

j }
(resp. {γ∗′

j }) the dual base with respect to the intersection product on (M,ω)
(resp. (M,−ω)). Then for α, β ∈ H∗(M),

α ∗ β =
∑
j,B

〈α, β, γ∗
j 〉Bγje

−B and α ∗′ β =
∑
j,B

〈α, β, γ∗′

j 〉′Bγje
−B.

We need to check that τ∗{(αeA) ∗ (βeB)} = τ∗(αe
A) ∗′ τ∗(βeB), where we dropped

the ⊗ in the expressions. It follows from Lemma 4.3 below, which compares the
coefficients of the two quantum intersection products. Given the lemma, we have

LHS = τ∗{(α ∗ β)eA+B} = τ∗

⎧⎨⎩∑
j,C

〈α, β, γ∗
j 〉Cγje

A+B−C

⎫⎬⎭
=

∑
j,C

(−1)m+Ic(A+B−C)〈α, β, γ∗
j 〉Cγjeτ(A+B−C)

♦ =
∑
j,C

(−1)Ic(A+B)〈α, β, γ∗′

j 〉′τ(C)γje
τ(A+B−C)

=
∑
j,C

〈(−1)mα, (−1)mβ, γ∗′

j 〉′τ(C)γje
−τ(C)

{
(−1)Ic(A)eτ(A)

}{
(−1)Ic(B)eτ(B)

}
= RHS,

where ♦ is Lemma 4.3. �

Lemma 4.3. For all B ∈ Γω and j, we have

〈α, β, γ∗
j 〉B = (−1)m+Ic(B)〈α, β, γ∗′

j 〉′τ(B).

Proof. We first recall the definition of the triple intersection 〈α, β, γ∗
j 〉B . Consider

the moduli space M̄0,3(M,ω, J ;B) of J-holomophic spheres in M with 3-marked
points, representing B ∈ Γω. The marked points fix the parametrization of the
principle components in the domain, and we assume that they correspond to 0, 1
and ∞ (in that order) respectively. Let ev denote the evaluation map

ev : M̄0,3(M,ω, J ;B) → M3.

Choose and fix generic cycles a, b and c∗ in M representing the classes α, β and γ∗
j ,

so that ev is transversal to a× b× c∗. Then the triple intersection is defined to be
the cardinality of the following intersection when the resulting dimension is 0:

〈α, β, γ∗
j 〉B = ev∗([M̄]) � a× b× c∗.

Let ρ : CP1 → CP1 denote the standard complex conjugation on CP1 = S2; in
particular, it fixes the 3 marked points 0, 1 and ∞. We note that u : S2 → (M,ω, J)
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is J-holomorphic and represents B ∈ Γω iff ρ(u) : S2 ρ→ S2 → (M,ω′, J ′) is
J ′-holomorphic and represents τ (B) ∈ Γω′ . We can in fact establish an explicit
identification of the moduli spaces:

ρ : M̄0,3(M,ω, J ;B) → M̄0,3(M,ω′, J ′; τ (B)) : u �→ ρ(u),

where slightly more care is taken in case of the nodal domains. Furthermore, the
evaluation maps coincide, i.e.

ev = ev′ ◦ ρ̄, where ev′ : M̄0,3(M,ω′, J ′; τ (B)) → M3.

It then follows that the two triple intersections coincide up to a sign.
The sign comes from two sources, the manifold M and the moduli spaces M.

The orientation of (M,−ω) implies that

γ∗′

j = (−1)mγ∗
j and �′= (−1)3m � .

It follows that the overall sign only comes from M and the identification ρ. We
check this sign in the following. Fix u ∈ M0,3(M,ω, J ;B). Then the tangent space
at u is given by the linearized operator D∂̄J :

D∂̄J (ξ)(z) = ∇ξ(z) + J(u(z)) ◦ ∇ξ(z) ◦ jz + l.o.t., for ξ ∈ Ω0(u∗TM), z ∈ S2,

where ∇ is the induced connection on u∗TM from a Hermitian connection on
TM , compatible with (ω, J). The operator D∂̄J can be homotopied through
Fredholm operators to the standard ∂̄ operator on the holomorphic vector bundle
u∗T 1,0

J M . Under this homotopy, we obtain an identification of the solution space

to H0(CP1, u∗T 1,0
J M). The orientation of M0,3(M,ω, J ;B) at u is then defined by

the canonical orientation of the complex vector space H0(CP1, u∗T 1,0
J M).

For v := ρ(u) ∈ M0,3(M,ω′, J ′; τ (B)), we have similarly the linearized operator

D∂̄J′(ζ)(z) = ∇′ζ(z) + J ′(v(z)) ◦ ∇′ζ(z) ◦ jz + l.o.t, for ζ ∈ Ω0(v∗TM),

where ∇′ is the induced connection on v∗TM from the same Hermitian connection
on TM . The following in fact holds:

D∂̄J′ = ρ∗D∂̄J ,

and thus the homotopy to ∂̄ is pulled back via ρ. The orientation of the moduli
space M0,3(M,ω′, J ′; τ (B)) at v is thus defined by the canonical orientation of the

complex vector space H0(CP1, v∗T 1,0
J′ (M)).

The tangent map dρ at u is

dρ : ξ �→ ρ∗ξ, where (ρ∗ξ)(z) = ξ(ρ(z)),

which induces the following indentification as real vector spaces:

dρ : H0(CP1, E) → H0(CP1, ρ∗Ē),

where E = u∗T 0,1
J M is a rank n holomorphic vector bundle over CP1. We check

that dρ is complex anti-linear by evaluating ξ and dρ(ξ) at respective points in CP1.
Since the fibers Ez and (ρ∗Ē)ρ(z) are identical with opposite complex structures,
we have for λ ∈ C:

(ρ∗(λξ)E)(z) = (λξ)E(ρ(z)) = (λ̄ξ)Ē(ρ(z)) = (λ̄ρ∗ξ)Ē(z).

It follows that the orientation of the map ρ is given by

(−1)dimM0,3(M,B) = (−1)m+Ic(B),

and the lemma follows. �
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4.2. Seidel elements in QH∗(M). The group Ham(M,ω) is naturally a subgroup
of Diff(M). Suppose that {Ht}t∈[0,1] generates gt∈[0,1] ∈ Ham(M,ω). Then, re-
garded as an element in Ham(M,−ω), it is alternatively generated by {−Ht}t∈[0,1].
We see that

Ham(M,ω) = Ham(M,−ω) ⊂ Diff(M).

We define a reversion map τ on the group of loops:

(4.3) τ : Ω0Ham(M,ω) → Ω0Ham(M,−ω) : g := {gt} �→ g− := {g1−t}.

The following lemma is obvious:

Lemma 4.4. Suppose K = Kt generates the loop g ∈ Ω0Ham(M,ω). Then K :=
{K1−t} generates the loop g− ∈ Ω0(M,−ω). �

We note that the loop g− is homotopic to g−1 in Ham(M,±ω), viewed as an
identical subgroup in Diff(M).

The reversion map τ on ΩM can be extended to Ω̃M via

τ ([γ, v]) = [τ (γ), τ (v)], where τ (v) : D2 → M : z �→ v(z̄).

Then τ : Ω̃0Ham(M,ω) → Ω̃0Ham(M,−ω) is defined by

τ (g, g̃)(τ (γ̃)) = τ ◦ (g, g̃) ◦ τ (γ̃) for γ̃ ∈ Ω̃M.

In the following, we will use the description of the Seidel element Ψ[g] for [g] ∈
π1Ham(M,ω) in terms of Gromov-Witten invariants in the Hamiltonian fibration
P[g] → S2 defined from [g] as in Lalonde-McDuff-Polterovich [8].

Proposition 4.5.

Ψτ([g]) = τ∗(Ψ[g]) ∈ QH∗(M,−ω).

Proof. Let (g, g̃) ∈ Ω̃0Ham(M,ω) and let Ψg̃ be the corresponding Seidel element.

Let Pg
π−→ S2 be the fibration defined by g:

Pg = D2
1 ×M ∪g D

2
2 ×M, where D2

1 ×M � (e2πit, x) ∼ (e2πit, gt(x)) ∈ D2
2 ×M,

and κ the coupling form on Pg, extending ω on the fibers. Then, for appropriate ε >
0, ωg = π∗ω0 + εκ is a symplectic form on Pg, where ω0 is the standard symplectic
form on S2 inducing the positive orientation on D2

1 (thus negative orientation on
D2

2). Then Ψg̃ is defined by looking at the section classes in Pg.
The corresponding bundle Pg− can be defined similarly. We give an alternative

construction below. Let r : D2 → D2 be the standard conjugation as the unit
disc in C, and use the same letter r to denote the induced conjugation map on
S2 = D2

1 ∪∂ D2
2. Then

Pg− = r∗Pg, κ
− = −r∗κ, Pg = r∗Pg− , κ = −r∗κ− and r∗ω0 = −ω0,

where, of course, r is also used to denote the pull-back maps between the Hamil-
tonian fibrations in the above. The symplectic form on Pg− is then

ωg− = π∗ω0 + εκ− ⇒ r∗ωg− = −ωg,

i.e. r : (Pg− , ωg−)
�−→ (Pg,−ωg) symplectically. The two sides will be used inter-

changeably.
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Let σ0 ∈ H2(Pg) be the standard reference section class (cf. [10], Lemma 3.2).
For example, when c1(TM) and [ω] are not proportional on spherical classes in M ,
we require that

cv1(σ0) = κ(σ0) = 0.

Then we have Ψg̃ = eσg̃Ψ[g] for some σg̃ ∈ H2(M ;R) and

Ψ[g] =
∑
B,j

〈[M ], [M ], ι∗(γ
∗
j )〉σ0+ι∗(B)γje

−B ∈ QH∗(M,ω),

where ι : M → Pg is the inclusion of a fiber, B ∈ H2(M ;R) so that σ0 + ι∗(B) ∈
H2(Pg;Z) is represented by a section and {γj}, {γ∗

j } are dual bases of H∗(M) under
�, and 〈 . . . 〉... denotes the Gromov-Witten invariants in (Pg, ωg). It follows that

τ∗(Ψ[g]) =
∑
B,j

(−1)m+Ic(B)〈[M ], [M ], ι∗(γ
∗
j )〉σ0+ι∗(B)γje

−τ(B) ∈ QH∗(M,−ω).

Let σ be a section class in (Pg, ωg), i.e. π∗σ = [(S2, ω0)] in the natural ori-
entation. Then τ (σ) := −σ is a section class in (Pg,−ωg), because π∗(−σ) =
[(S2,−ω0)]. On the other hand, σ−

0 := τ (σ0) is a standard reference section class
as well. We may write the Seidel element for τ (g̃) in QH∗(M,−ω) as Ψτ(g̃) =

eτ(σg̃)Ψτ([g]), where

Ψτ([g]) =
∑
B,j

〈[M ], [M ], ι∗(γ
∗′

j )〉′σ−
0 +ι∗(τ(B))γje

−τ(B),

and we have to show that

〈[M ], [M ], ι∗(γ
∗′

j )〉′σ−
0 +ι∗(τ(B)) = (−1)m+Ic(B)〈[M ], [M ], ι∗(γ

∗
j )〉σ0+ι∗(B).

The dimension of the relevant moduli spaces is m+1+ c1(TP )(σ0+ ι∗(B)). Let
[Pg, ωg] be the fundamental class of Pg with orientation given by ωg. Then

[Pg, ωg] = (−1)m+1[Pg,−ωg] and

[M,ω] = (−1)m[M,−ω].

We also have γ∗′

j = (−1)mγ∗
j . It follows from the same argument as in Lemma 4.3

that the overall sign for the Gromov-Witten invariants is given by

(−1)3m+3+3m+m+1+c1(TP )(σ0+ι∗(B)) = (−1)m+c1(TS2)([S2])+cv1(B) = (−1)m+Ic(B).

�

5. Reversing operations in Lagrangian Floer homology

We first define a reversion map on P̃LM that we denote by τ . Let l̃ = [l, w]

denote a typical element of P̃LM , i.e.

l : ([0, 1], {0, 1}) → (M,L) and w : (D2
+; ∂+, ∂0) → (M ; l, L).

Then we define l̃ := τ (l̃) by

l : [0, 1] → M : t �→ l(1− t) and w : D2
+ → M : z �→ w(−z̄).
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It’s obvious that τ is an involution, i.e. τ2 = id. We note that the action of

π2(M,L) on P̃LM as deck transformations are intertwined by τ :

(B ◦ l̃) = τ([l, w#B]) = [l, w#B] = [l, w#τ (B)] = τ (B) ◦ l̃.

It follows that τ defines an involution on P̃LM .
Now let (H,J) be a regular pair for defining the Floer homology of (M,L;ω).

We consider the reversed pair (H,J):

Ht = H1−t and J t = −J1−t.

Then it’s easy to check that the corresponding action functionals satisfy

aH(l̃) = aH(l̃).

In fact, the involution τ identifies the metric (, )J with (, )J as well. We show that
the Floer homologies are identified by τ .

The next three lemmas are obvious.

Lemma 5.1. l is a Hamiltonian path of H in (M,ω) ⇐⇒ l is a Hamiltonian path

for H in (M,ω′ = −ω). Furthermore, l̃ is non-degenerate ⇐⇒ l̃ is non-degenerate.

Proof. Let Xt = ω(dHt) be the Hamiltonian vector field of Ht. Then Xt=
− ω(dH1−t) = −X1−t is the Hamiltonian vector field of Ht. Let φt and φ

t
be the

Hamiltonian isotopies generated by Xt and Xt respectively; then φ
t
= φ1−t ◦ φ−1

1 .

Thus φ
1
= φ−1

1 , and the lemma follows. �

Next we compute the Conley-Zehnder index.

Lemma 5.2. µH(l̃) = µH(l̃).

Proof. We recall the notation in §2.3. Let Φz : (Tw(z)M,ω) → (Cn, ω0) be the
trivialization of w∗TM so that Φr(Tw(r)L) = Rn for all r ∈ [−1, 1], and let

Et = Φeiπt ◦ dφt ◦ Φ−1
1 ∈ Sp(Cn, ω0)

be the path of symplectic matrices. Then

µH(l̃) = µ(EtR
n ⊕ Rn,�),

where the symplectic structure on Cn⊕Cn is given by (ω0⊕−ω0). For l̃, a symplectic
trivialization of w∗TM is given by

Φz := Φ−z̄ : (Tw(z)M,−ω) → (Cn,−ω0),

and we have
Et := Φeiπt ◦ dφ

t
◦ Φ−1

1 = E1−t ◦ E−1
1 .

Now the index we need is

µH(l̃) = µ(EtR
n ⊕ Rn,�) in (Cn ⊕ Cn,−ω0 ⊕ ω0).

Comparing it with the expression for µH(l̃), this reverses both the symplectic struc-
ture and the path of symplectic matrices. The property of the Maslov index of pairs
as defined in [15] implies the lemma. �

Lemma 5.3. The pair (H,J) is regular iff (H,J) is regular.

Proof. It is straightforward to check that the defining equations for the various
objects involved in either case are identified by transformations induced from τ . �



1166 SHENGDA HU AND FRANÇOIS LALONDE

By §2.5, the orientations of the trajectories are given by those of the moduli
spaces of discs (canonically given by the choice of relative spin structure) and the
moduli spaces of capped strips. Here, we discuss first the effect of reversion on the
moduli spaces of discs. We consider the parametrized disc D2. Let ρ : D2 → D2

be the complex conjugation on D2 ⊂ C. Obviously u : (D2, S1) → (M,L;ω, J)
is a holomorphic disc with boundary on L representing B ∈ π2(M,L) iff ρ(u) :

(D2, S1)
ρ→ (D2, S1)

u→ (M,L;−ω,−J) is holomorphic and represents τ (B) ∈ ΓL′ .

Let M̃(M,L;ω, J ;B) denote the moduli space of parametrized J-holomorphic discs
representing the class B.

Lemma 5.4. With the same choice of the relative spin structure of L in M , the
orientation of the map

ρ : M̃(M,L;ω, J ;B) → M̃(M,L;−ω,−J ; τ (B)) : u �→ ρ(u)

is given by (−1)
1
2 degB.

Proof. Recall that the orientation of the moduli space of discs is given by the
identification (cf. [6, 4]):

kerD∂̄J � ker(HolJ (D
2, S1;Cn,Rn)×HolJ (S

2;E)
ev−→ Cn).

The three items on the right are oriented respectively by the following. The first
item is oriented by the choice of the relative spin structure, while independent of
the structure J . With the choice of the relative spin structure, the second item is
oriented by the structure J . The last item is oriented by J while independent of
the relative spin structure. Under the map ρ, the first item is canonically identified,
while the rest follows similarly as in Lemma 4.3. Thus, if we fix the relative spin
structure of L and reverse J , the orientation of the moduli space is changed by

(−1)
1
2µL(B), which by definition is (−1)−

1
2 degB = (−1)

1
2 degB. �

The reversing map τ on P̃LM induces the correspondence between the respective
caps (cf. (2.3)) via the complex conjugation ρ of Z± ⊂ C. We see that u± is a solu-
tion of equation (2.4) for (ω,J, J,H) iff u± = u± ◦ ρ is a solution for (−ω,J, J,H).
It follows that the corresponding moduli spaces of caps are isomorphic via the map

ρ : u �→ ρ(u) = u.

We assign the orientations for the reversed moduli spaces so that the map ρ pre-
serves the orientations for the preferred basis. The orientations of the reversed caps
given by the reversed preferred basis are related by

(−1)ρ(l̃#B) = (−1)ρ(l̃)+
1
2 degB.

Proposition 5.5. τ induces an isomorphism of Floer homologies, intertwining as
well the isomorphism of Novikov rings (4.1),

τ∗ : FH∗(M,L, ω;H,J) → FH∗(M,L,−ω;H,J).
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Proof. The map τ induces natural transformation taking equation (2.1) for the left
side to the one for the right side:

v(s, t) := τ (u)(s, t) = u(s, 1− t) so that

∂v

∂s
+ J t(v)

(
∂v

∂t
−XHt

(v)

)
=

∂u

∂s

∣∣∣∣
1−t

+ J1−t(u(s, 1− t))

(
∂u

∂t

∣∣∣∣
1−t

−XH1−t
(u(s, 1− t))

)
= 0.

Together with the last three lemmas, we see that the moduli spaces, as well
as the compactifications, correspond via τ and τ . We then have an isomorphism
at the chain level (where the orientations of the moduli spaces identified by τ are
defined to be the same), and thus the proposition follows. The intertwining of the
isomorphism (4.1) is automatic. �
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MR1362838 (97f:57032)

[8] F. Lalonde, D. McDuff and L. Polterovich, Topological rigidity of Hamiltonian loops and

quantum homology, Invent. Math. 135 (1999), 369–385. MR1666763 (2000b:53118)
[9] R. Leclercq, Spectral invariants in Lagrangian Floer theory, J. of Modern Dynamics 2 (2008),

249–286. MR2383268
[10] D. McDuff, Quantum homology of fibrations over S2, International Journal of Mathematics

11 (2000), 665–721. MR1780735 (2001i:53157)
[11] D. McDuff and S. Tolman, Topological properties of Hamiltonian circle actions, International

Mathematics Research Papers (2006), 1–77. MR2210662 (2007e:53115)
[12] Y.-G. Oh, Relative Floer and quantum cohomology and the symplectic topology of Lagrangian

sub-manifolds, in C. B. Thomas, editor, Contact and symplectic geometry, volume 8, Pub-
lications of the Newton Institute, pages 201–267, Cambridge Univ. Press, Cambridge, 1996.
MR1432465 (98a:58032)

[13] S. Piunikhin, D. Salamon and M. Schwarz, Symplectic Floer-Donaldson theory and quantum
cohomology, Contact and symplectic geometry in C. B. Thomas, editor, Contact and sym-
plectic geometry, volume 8, Publications of the Newton Institute, pages 171–200, Cambridge
Univ. Press, Cambridge, 1996. MR1432464 (97m:57053)



1168 SHENGDA HU AND FRANÇOIS LALONDE
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