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ABSTRACT

To test the hypothesis that internal ion imbalances at high pH
are caused by altered branchial ion transporting capacity and
permeability, radiotracers (24Na1 and 36Cl2) were used to mea-
sure ion movements across the gills of intact rainbow trout
(Oncorhynchus mykiss) during 3 d exposure to pH 9.5. At con-
trol pH (pH 8.0), the trout were in net ion balance, but by 8
h at high pH, 60%–70% reductions in Cl2 influx ( ) and Na1ClJin

influx ( ) led to net Cl2 and Na1 losses of 2200 mmol kg21NaJin

h21. Outflux (diffusive efflux plus renal ion losses) was not
initially altered. By 72 h, net Cl2 balance was reestablished
because of a restoration of . Although remained 50%Cl NaJ Jin in

lower at this time, counterbalancing reductions in Na1 outflux
restored net Na1 balance. One-substrate ion-uptake kinetics
analyses indicated that reduced ion influx after 8 h at pH 9.5
was caused by 50% decreases in Cl2 and Na1 maximal transport
rates ( , ), likely reflecting decreased numbers of func-Cl NaJ Jmax max

tional transport sites. Two-substrate kinetic analyses indicated
that reduced internal and H1 supply for respective bran-2HCO3

chial Cl2/base and Na1/acid transport systems also contributed
to lower and, to a lesser extent, lower at pH 9.5. RecoveryCl NaJ Jin in

of after 3 d accounted for restoration of Cl2 balance andClJmax

likely reflected increased numbers of transport sites. In contrast,
remained 33% lower after 3 d, but a lower affinity of theNaJmax

gills for Na1 (fourfold greater ) accounted for the chronicNaKm

reduction in Na1 influx at pH 9.5. Thus, reestablishment of
Cl2 uptake capacity and counterbalancing reductions in Na1
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outflux allows rainbow trout to reestablish net ion balance in
alkaline waters.

Introduction

The freshwater rainbow trout (Oncoryhnchus mykiss) does not
normally live in alkaline water, but it may be subject to tem-
porary upward pH surges caused by the photosynthetic pro-
cesses of aquatic plants and algae (e.g., Halstead and Tash 1982;
Murray and Zeibell 1984). The inability of rainbow trout to
readily cope with high pH has also complicated efforts to stock
this salmonid into saline-alkaline lakes scattered throughout
western North America (e.g., Kucera et al. 1985; Coleman and
Johnson 1988; Wagner et al. 1997). These problems may be
related to the pronounced, sometimes lethal reductions in
blood Na1 and Cl2 concentration experienced by salmonids at
high pH (Heming and Blumhagen 1988; Wilkie and Wood
1991; Yesaki and Iwama 1992; Wilkie et al. 1993; McGeer and
Eddy 1998). Although Wilkie and Wood (1994) suggested that
these disturbances may be related to lower Cl2 and Na1 influx
rates across the gills (Wilkie and Wood 1994), it is presently
unclear how these ionoregulatory disturbances are initiated at
high pH.

High-pH-induced reductions in gill-mediated Cl2 and Na1

influx may result from altered ion transporter numbers and/
or affinity. Traditionally, Na1 uptake was thought to occur by
electroneutral Na1/H1 or Na1/ exchange, both of which1NH4

represent Na1/acid coupling (Perry 1997). Recently, evidence
has accumulated that indicates that Na1 uptake across the apical
membranes of gill epithelia takes place by a different sort of
Na1/acid coupling, specifically by an electrochemical gradient
created by active H1 extrusion mediated by apically located
H1-ATPases on branchial pavement cells (Avella and Bornancin
1989; Goss et al. 1992; Lin et al. 1994; Sullivan et al. 1995,
1996). Chloride uptake likely takes place by electroneutral Cl2/

exchange across branchial chloride cells, possibly driven2HCO3

by outward movement down its electrochemical gra-2HCO3

dient (Marshall 1995; Perry 1997). Externally, highly alkaline
water may therefore interfere with ion transport by acting di-
rectly on the transporters, but it may also decrease internal H1

and availability for the respective Na1/acid coupling and2HCO3

Cl2/ (Cl2/base coupling) systems. At high pH, the ex-2HCO3
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tremely low of water would promote blood-to-water CO2Pco 2

diffusion, leading to reduced internal H1 and levels2HCO3

(respiratory alkalosis; Johansen et al. 1975; Lin and Randall
1990; Wilkie and Wood 1991).

With this background, this investigation tested the hypothesis
that internal electrolyte imbalances in rainbow trout at high
pH are caused by both inhibited ion transport across the gill
and increased branchial ion permeability. Accordingly, radio-
tracers (24Na1, 36Cl2) were used to measure the influx and out-
flux of Cl2 and Na1 across the gills of rainbow trout exposed
to high pH (pH 9.5) for 72 h. The maximal ion transport
capacity ( ) and transporter affinity ( ) were also deter-ION IONJ Kmax m

mined in trout exposed to high pH by experimentally deter-
mining kinetic curves (i.e., external substrate dependence) for
Na1 and Cl2 uptake rates (influx). The blood acid-base status
of rainbow trout at high pH (taken from parallel experiments
by Wilkie and Wood 1991) was also used to predict how internal
H1 and supply influenced Na1 and Cl2 transport ki-2HCO3

netics, respectively.

Material and Methods

Experimental Animals and Setup

Domestic rainbow trout (Oncorhynchus mykiss; mean weight
g; ) of both sexes were acclimated to hard,229.0 5 5.7 N 5 40

dechlorinated Hamilton tap water (composition: ,1[Na ] 5 0.6
, , , titratable alkalinity 52 11 11[Cl ] 5 0.8 [Ca ] 5 0.9 [Mg ] 5 0.4

2.0 mmol L21) for a minimum of 6 wk. On the basis of total
carbon dioxide concentration ( )2 22T 5 CO 1 HCO 1 COCO 2 3 32

measurements, water titratable alkalinity was found to be
mainly (195%) caused by at pH 8.0.2HCO3

One wk before experiments, the fish were transferred in
batches of 10 from the 67–107C holding tank to a temperature-
acclimation tank that paralleled the experimental temperature
of 137–157C. Food was withheld at this time to minimize the
known effects that feeding has on metabolic processes (Brett
and Zala 1975). Fish were placed in individual, darkened Plexi-
glas flux boxes that received flowing water at 0.5 L min21 2 d
before experiments. The boxes were part of a “flow-through”
experimental system, fitted with a pH-stat, which has been
described in detail previously (Wilkie and Wood 1991). The
pH of water entering the system was independently monitored
and averaged . At pH 9.5, this could have229.56 5 0.02 CO3

accounted for up to 30% of the titratable alkalinity, but CaCO3

precipitate formation at high pH made it impossible to accu-
rately determine titratable alkalinity under these conditions. A
flow-through system was employed to minimize the unavoid-
able decreases in water Ca11 that occur as CaCO3 precipitates
out of solution at pH 9.5 when CO2 is added to the water by
the fish or simply because of aeration (Wilkie and Wood 1991,
1994). Water Ca11 concentrations were ca. 0.4–0.6 mmol L21

during the high pH exposure regime in this study.
When water flow was terminated to the boxes during high-

pH flux determinations, the continuous CO2 production by the
fish and aeration drove water pH down. This necessitated man-
ual monitoring of water pH at 30-min intervals; when water
pH dropped below 9.5, an appropriate amount (0.5–2.0 mL)
of 1 N KOH was added to the water. The flux boxes were
slightly modified versions of those described in detail by
McDonald and Rogano (1986) and comprised an aerated outer
chamber, thereby ensuring thorough mixing, and an inner
chamber containing each fish. Boxes used in Part 1 were ca.
3.0 L in volume, while those used in Part 2 were ca. 2.0 L. The
shorter flux determination periods in Part 2 necessitated the
use of smaller box volumes for more accurate resolution of
differences in water radioactivity and ion concentrations. The
boxes were fitted with a three-way stopcock valve to which a
syringe could be attached, connected to a 10-cm length of vinyl
tubing that led into the inner chamber of the box. Since the
boxes were covered and the syringes fitted on the externally
mounted valve, water samples were drawn without apparent
disturbance to the fish. Low plasma cortisol concentrations in
similarly confined trout (≤10 ng mL21; Wilkie et al. 1996)
indicate that this protocol causes minimal stress to these do-
mestic rainbow trout.

Experimental Protocol

Part 1: Unidirectional Ion (Na1 and Cl2) Movements at High
pH. Flux rates were determined on seven rainbow trout initially
held at pH 8.0 and then exposed to pH 9.5 for 72 h. Meas-
urements of Na1 and Cl2 influx, outflux, and net flux were
measured at pH 8.0 (control) and after 0–3, 8–11, 24–27, 48–51,
and 72–75 h at pH 9.5. Flow to the boxes was cut off 20 min
before the initiation of flux determinations and 4 mCi of 24Na1

and 10 mCi of 36Cl2 was added to each box and allowed to
equilibrate for 15 min. A 10-mL water sample was then with-
drawn for pH determination, immediately followed by a 45-
mL water sample for determination of 24Na1 and 36Cl2 radio-
activity, plus total Na1 and Cl2 concentrations. The process
was repeated at 1 and 3 h, and flow was then reestablished to
the boxes. At the end of the final flux determination (72–75
h), the fish were killed with an overdose of buffered MS-222
solution (1.5 g L21; Syndel). Blood samples (1 mL) were then
drawn via caudal puncture, centrifuged at 10,000 g, and the
plasma frozen for determination of 24Na1and 36Cl2 radioactivity
and plasma total Na1 and Cl2 concentrations.

Part 2: High-pH Induced Changes in Ion-Uptake Kinetics. Sat-
uration kinetics analysis was performed using a protocol de-
veloped by Goss and Wood (1990a, 1990b) in which water Cl2

and Na1 concentrations were sequentially increased and the
Cl2 or Na1 influx rates measured at each respective concen-
tration. This allowed determination of the apparent maximal
transport rates ( ) and affinities ( ) for Cl2 and Na1ION IONJ Kmax m
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across trout gills at pH 8.0 or after exposure to pH 9.5 for
either 10 h, 1 d, or 3 d.

Accurate determination of ion-uptake kinetics necessitates
the use of water that lacks Na1 or Cl2 (so that external Na1

and Cl2 concentrations can be easily and accurately manipu-
lated; Shaw 1959), but that has a normal complement of hard-
ness cations (e.g., Mg11, Ca11) and alkalinity (Goss and Wood
1990a). Accordingly, NaCl-free water was prepared by passing
dechlorinated Hamilton tap water through a deionizing canister
and then adding back the appropriate amount of Ca11 (CaCO3

salt) and Mg11 ( salt) to mimic the4MgCO 7 Mg(OH) 7 4H O3 2 2

composition of Hamilton tap water (see Goss and Wood
[1990a] for additional details). The measured composition of
the NaCl-free water was: mmol L21; mmol1 2[Na ] 5 2 [Cl ] 5 1.5
L21; mmol L21; mmol L21; titratable11 11[Ca ] 5 0.9 [Mg ] 5 0.3

mmol L21.alkalinity 5 2.57
Ion-uptake kinetics experiments were performed on seven

fish at pH 8.0 (control) and on separate groups of six to seven
fish exposed to pH 9.5 for either 10 h, 1 d, or 3 d. Determi-
nations of Na1 and Cl2 influx were made over five 30-min
intervals with nominal water NaCl concentrations of 80, 200,
350, 600, and 1,200 mmol L21, respectively, in each experiment.
These fluxes were followed by a final 60-min flux period at
2,200 mmol L21 of NaCl, which was needed to detect small
changes in radioactivity against the high absolute activities of
24Na1and 36Cl2.

Each ion-uptake kinetics experiment was preceded by an
initial flushing of each box (3/4 ) with thereplacement# 7
NaCl-free water at the control (pH 8.0) or experimental pH
(pH 9.5). A known amount of a 1 mmol L21 NaCl solution
radiolabeled with 4 mCi 24Na1 mL21 and 2 mCi 36Cl2 mL21 was
then added to each box to yield the appropriate initial nominal
water NaCl concentration of 80 mmol L21. Water samples (10

mL, respectively) were then taken at the start and endmL 1 45
of this initial 30-min flux. An equal volume of NaCl-free water
(at the appropriate pH and temperature) and a suitable volume
of radiolabeled NaCl stock solution was then added back to
each box for the next flux determination. Following each ex-
periment, water flow was briefly reestablished to each box and
then the fish were killed and sampled as previously described.
Plasma was analyzed for 24Na1 and 36Cl2 radioactivity, plus total
Na1 and Cl2 concentrations.

Analytical Techniques and Calculations

Unidirectional Flux Rates. Unidirectional fluxes of Na1 and Cl2

were determined using well-established protocols (e.g., Wood
1988; Wilkie and Wood 1994). Briefly, Na1 and Cl2 influx rates
( , ) were based on decreases in water radioactivity duringCl NaJ Jin in

each flux period, the known box volume, and the fish’s weight.
Net ion fluxes ( , ) were based on changes in the externalNa ClJ Jnet net

total ion concentrations, not radioactivity, and outward ion

movements (outflux; , ) were calculated by subtractingCl NaJ Jout out

ion influx from net ion flux rates.
Since 24Na1 emits both gamma and beta rays and 36Cl2 is a

pure beta emitter, samples (5 mL) were first analyzed (in trip-
licate) for total gamma counts on a Packard 5000 series gamma
counter. After the samples decayed for 40 24Na1 half-lives
( h), 10 mL ACS (Amersham) fluor was added to eacht 5 151/2

vial for measurements of 36Cl2 activity on a LKB 1217 Rackbeta
scintillation counter. Concentrations of Na1, in water and
plasma, were determined by atomic absorption (Varian 1275
AA). Water and plasma Cl2 concentrations were measured us-
ing the mercuric thiocyanate assay (Zall et al. 1956) and cou-
lometric titration (Radiometer CMT10 chloridometer),
respectively.

Saturation Kinetics. Detailed calculations used to describe the
saturation kinetics for Cl2 and Na1 across trout gills are pre-
sented in Goss and Wood (1990a, 1990b) and are summarized
here. Briefly, data generated in Part 2 indicated that Na1 and
Cl2 influx both followed first-order saturation kinetics and
could therefore be described by the Michaelis-Menten
relationship,

ION [ ]J # IONmax e
IONJ 5 ,in ION [ ]K 1 IONm e

where is the apparent maximal Na1 or Cl2 uptake rate,IONJmax

[ION]e is the external Na1 or Cl2 concentration, and isIONKm

an inverse index of the affinity of each respective transporter
for Na1 or Cl2. Specifically, represents the external ionIONKm

concentration at which is exactly equal to 50% of .ION IONJ Jin max

The curves displayed in Figure 2 were fitted using the Michaelis-
Menten equation. Estimates of and were determinedION IONJ Kmax m

on individual fish by Eadie-Hofstee regression analysis (Michal
1983), where was plotted against /[ION]e. The y-ION IONJ Jin in

intercept and the negative slope of the relationship yielded
respective and estimates.ION IONJ Kmax m

Statistics

All data are expressed as SEM (N). Data generatedmeans 5 1
in Part 1 were analyzed by repeated-measures ANOVA; if sig-
nificant differences were detected, a Bonferroni post-test fol-
lowed. Data generated in Part 2 were tested by a simple one-
way ANOVA and the Tukey-Kramer post-test. The level of sta-
tistical significance was at .P ! 0.05

Results

Unidirectional Ion Movements at High pH

At control pH (8.0), Cl2 and Na1 influx rates ( , ) wereCl NaJ Jin in

both ca. 220 mmol kg21 h21. Since Cl2 and Na1 outflux ( ,ClJout
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Figure 1. Influx ( , upward facing bars), outflux ( , downwardION IONJ Jin out

facing bars), and net movements ( , shaded bars) of (A) Cl2 andIONJnet

(B) Na1 by rainbow trout during exposure to pH 9.5 for 72 h.
SEM; . Asterisks demonstrate statistical significanceMeans 5 1 N 5 7

( ) from control measurements at pH 8.0.P ! 0.05

Figure 2. Saturation kinetic curves of (A) Cl2 influx ( ) and (B) Na1ClJin

influx ( ) for rainbow trout at sequentially higher external Cl2 orNaJin

Na1 concentrations under control pH conditions (circles; pH 8.0;
) or after 10 h (solid triangles; ), 1 d (diamonds; ),N 5 7 N 5 7 N 5 6

and 3 d (stars and broken line; ) exposure to pH 9.5. DataN 5 7
expressed as SEM.means 5 1

) counterbalanced influx, the fish were in net ion balanceNaJout

(Fig. 1). Over the first 8 h of exposure to pH 9.5, wasClJin

reduced by 60% but was unaltered, leading to net Cl2 lossesClJout

of 2200 mmol kg21 h21 (Fig. 1A). Although had partiallyClJin

recovered at 24 h, net Cl2 losses persisted because of a twofold
elevation of (Fig. 1A). By 72 h, the return of and toCl Cl ClJ J Jout in out

control values accounted for a reestablishment of net Cl2 bal-
ance (Fig. 1A).

In contrast to , was chronically depressed at pH 9.5Cl NaJ Jin in

(Fig. 1B). In the absence of any significant change in , re-NaJout

duced Na1 influx led to net losses of 2150 to 2200 mmol kg21

h21 during the first 24 h of high pH exposure (Fig. 1B). By 48
h, however, the fish had reestablished net Na1 balance because
of 50% decreases in , which counterbalanced persistentlyNaJout

reduced (Fig. 1B).NaJin

High-pH Induced Changes in Ion-Uptake Kinetics

At pH 8.0 and 9.5, Cl2 and Na1 uptake closely followed first-
order saturation kinetics (Fig. 2). High pH exposure resulted
in a temporary downward shift in the Cl2 kinetics curve after
10 h, which was characterized by Cl2 uptake rates that were
ca. 50%–60% lower than the respective control measurements
at pH 8.0 (Fig. 2A). Subsequent recovery was evident after 1
d and 3 d of pH 9.5 exposure, when the kinetics curve of ClJin

was not significantly different from control estimates (Fig. 2A).
Control was ca. 360 mmol kg21 h21, whereas was 50%Cl ClJ Jmax max

lower in fish held at pH 9.5 for 10 h (Fig. 3A). After 1 and 3
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Figure 3. (A) The apparent maximal Cl2 transport rate ( ) and (B)ClJmax

inverse of Cl2 transporter affinity ( ) of rainbow trout sampled atClKm

control pH ( ) or after 10 h ( ), 1 d ( ), and 3 dN 5 7 N 5 7 N 5 6
( ) at pH 9.5. Data are expressed as SEM. AsterisksN 5 7 means 5 1
indicate statistically significant differences from pH 8.0 values (P !

).0.05

Figure 4. (A) The apparent maximal Na1 transport rate ( ) and (B)NaJmax

inverse of Na1 transporter affinity ( ) for rainbow trout sampled atNaKm

control pH (pH 8.0; ) or after 10 h ( ), 1 d ( ), andN 5 7 N 5 7 N 5 6
3 d ( ) at pH 9.5. Data expressed as SEM. AsterisksN 5 7 means 5 1
indicate statistically significant differences from pH 8.0 values (P !

), while daggers represent significant differences from measure-0.05
ments made after 10 h.

d at high pH, approached control values (Fig. 3A), butClJmax

remained unaltered (Fig. 3B).ClKm

After 10 h at pH 9.5, the Na1 kinetics curve shifted downward
and was characterized by 60%–70% lower Na1 influx rates.
After 1 and 3 d, the kinetic curves were shifted back toward
the control curve, but was still 50% lower than the controlNaJin

measurements (Fig. 2B). At pH 8.0, was ca. 480 mmol kg21NaJmax

h21, but it was 70% lower after 10 h at pH 9.5 and remained
46% and 33% below control levels after 1 and 3 d, respectively
(Fig. 4A). The at pH 8.0 was 88 mmol L21 and was unalteredNaKm

after 10 h, but by 3 d it was fourfold greater than pH 8.0 values
(Fig. 4B).

Plasma Cl2 concentrations were significantly reduced in trout
subjected to pH 9.5 for 1 d and 3 d, while Na1 concentrations
were not significantly different from measurements made in
control trout sampled at pH 8.0 (Table 1).

Discussion

The whole-body unidirectional fluxes measured here largely
represent branchial fluxes because the majority of ion uptake
and ion loss takes place across the gill epithelium in freshwater-
adapted rainbow trout (e.g., McDonald and Wood 1981). Sig-
nificant (≈10%) ion loss also occurs via renal routes (e.g.,
McDonald and Wood 1981), however, and these were not sep-
arated from branchial routes of diffusive ion efflux in the pre-
sent study. Accordingly, outward ion movements across the
fish’s body surface are termed “outflux” rather than “diffusive
efflux” throughout this article.

Initial exposure of rainbow trout to pH 9.5 clearly interfered
with Na1 and Cl2 influx but had surprisingly little influence
on respective outfluxes. Thus, previously observed high-
pH-induced reductions in plasma Cl2 and Na1 concentrations
(cf. Wilkie and Wood 1991) likely resulted from reduced bran-
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Table 1: Plasma ion concentrations following high pH (pH 9.5) exposure in Part 2

pH 9.5

pH 8.0 (Control) 10 h 1 d 3 d

[Na1] (mmol L21) . . . . . . 150.5 5 .8 144.1 5 2.3 146.8 5 3.0 144.1 5 1.6
[Cl2] (mmol L21) . . . . . . . 136.6 5 1.2 128.3 5 1.9 123.1 5 5.7a 122.9 5 3.3a

a Significantly lower than corresponding values measured at pH 8.0 ( ).P ! 0.05

chial Cl2 and Na1 influx, not greater diffusive or renal ion
losses. Indeed, model calculations, using and measure-Cl NaJ Jnet net

ments over the first 24 h of pH 9.5 exposure, indicate that the
observed fluxes were sufficient to explain the plasma ion re-
ductions reported in the present and earlier articles (Wilkie and
Wood 1991). For instance, the present fish would have lost ca.
4.8 and 4.4 mmol kg21 body weight of Cl2 and Na1. Assuming
these losses constitute 14.6% and 10.5% decreases in the ani-
mals’ total exchangeable Cl2 pool (32.9 mmol kg21) and Na1

pool (42.05 mmol kg21), respectively (Wood 1988), plasma Cl2

and Na1 concentrations would have been ca. 116.7 and 134.6
mmol L21 after 24 h. These predicted concentrations are in the
range of previous measurements made in rainbow trout after
24 h at high pH in moderately hard water (e.g., Wilkie and
Wood 1991, 1995; Yesaki and Iwama 1992) but are slightly lower
than the plasma Cl2 and Na1 concentrations measured in the
present study (Table 1).

Complete restoration of branchial Cl2 influx to control rates,
after 48 h at pH 9.5, likely accounted for the reestablishment
of Cl2 balance previously reported in rainbow trout at high
pH (Wilkie and Wood 1991, 1995; Yesaki and Iwama 1992).
However, recovery of Na1 balance ( ) was caused byNaJ . 0net

reduced Na1 outflux, which counterbalanced chronically low-
ered by 48–72 h. Similar reductions in Na1 outflux help toNaJin

restore Na1 balance in acid-exposed trout (McDonald et al.
1983; Audet et al. 1988).

Although rainbow trout readily survived in alkaline water, it
is noteworthy that water Ca11 levels were relatively high (0.4
to 0.6 mmol L21), and this likely prevented more severe ionic
disturbances. As in acidic water (Reid 1995), water Ca11 con-
centration (hardness) is important for maintaining internal
electrolyte balance at high pH (Yesaki and Iwama 1992). In soft
alkaline water ( mmol L21; ), chronic11[Ca ] 5 0.03 pH 5 10.1
declines in plasma Na1 and Cl2 are associated with low rainbow
trout survival, but at higher Ca11 concentrations ion losses are
less and survival enhanced (Yesaki and Iwama 1992).

The significant decrease in after 10 h at pH 9.5 suggestsClJmax

initial reductions in were caused by decreases in Cl2 trans-ClJin

port site number. The return of to control values by 3 dClJmax

demonstrated that reduced Cl2 transport capacity was transient,
however, and likely accounted for the complete recovery of

observed at 72 h (Fig. 1A). The stable indicates thereCl ClJ Kin m

was no change in transporter affinity for Cl2, precluding com-

petitive inhibition of Cl2 transport by or the inherently2HCO3

higher OH2 ion concentrations at pH 9.5.
The greatest reduction in occurred at 10 h of pH 9.5NaJmax

exposure, which corresponds with the time of lowest Na1 influx
in Part 1 (Fig. 1B). Although gradually recovered, a markedNaJmax

fourfold increase in was observed after 3 d at pH 9.5. Thus,NaKm

reduced Na1 influx at high pH initially resulted from a rapid
decrease in Na1 transport capacity, but reduced transporter
affinity for Na1 after 3 d prevented complete recovery of Na1

influx, despite the partial recovery of maximal Na1 transport
capacity. Overall, these observations support the hypothesis that
alkaline water causes transient decreases in ion transport system
capacity by directly acting on the gill’s respective Cl2 and Na1

transport sites.
Internal acid-base disturbances at high pH could also influ-

ence Na1 and Cl2 uptake rates. Specifically, a lack of internal
counterions for the respective Cl2/base (Cl2/ exchange)2HCO3

and the Na1/acid (Na1 influx coupled to H1-ATPase H1 ex-
cretion) transport systems could directly reduce Cl2 and Na1

influx rates (Goss and Wood 1991). Indeed, using a very similar
experimental protocol, we have demonstrated that a respiratory
alkalosis, characterized by 70% decreases in arterial blood

, takes place in rainbow trout (Table 2; Wilkie and WoodPco2

1991). Further, a simultaneous metabolic acidosis (production
of metabolic protons) exacerbates the decline in plasma
[ ] but helps stabilize blood pH as decreases (Table2HCO Pco 23

2; Wilkie and Wood 1991). Since these observed changes in
plasma [H1] and [ ] (Table 2) likely extend to the intra-2HCO3

cellular space of the gills (Goss and Wood 1991), inward Na1

and Cl2 movement would be curtailed under these conditions.
The two-substrate model developed in our lab by Goss and

Wood (1991), using rainbow trout of the same genetic stock
under similar control conditions, can be used to illustrate how
changes in internal substrate influence Cl2 and Na1 influx. Goss
and Wood (1991) plotted changes in against 1/plasmaCl1/Jmax

[ ], and against 1/plasma [H1] when trout were2 NaHCO 1/J3 max

subjected to a variety of acid-base disturbances in order to
determine the true values, or transporting capacities, forIONJmax

the Na1 or Cl2 uptake systems (see Goss and Wood 1991 for
detailed analysis and calculations). These “true” estimatesIONJmax

are the y-intercepts of the corresponding regression lines and
incorporate both the internal ( , H1) and external sub-2HCO3

strate concentrations (Na1, Cl2) that influence ion transport
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Table 2: Arterial blood acid-base status of rainbow trout at high pH
(pH 9.5)

Water pH

Blood Acid-Base Statusa

Blood pH
[H1]
(nmol L21)

PCO2

(Torr)
[ ]2HCO3

(mmol L21)

pH 8.0 ... . . . . 7.83 5 .01 14.8 5 .3 3.07 5 .09 7.50 5 .30
pH 9.5:

8 h ... . . . . 7.97 5 .01b 10.7 5 .3b 1.43 5 .08b 5.04 5 .34b

24 h ... . . . 7.99 5 .01b 10.2 5 .2b 1.12 5 .14b 4.08 5 .40b

72 h ... . . . 7.98 5 .03b 10.5 5 .7b .68 5 .07b 2.58 5 .37b

Note. at pH 8.0 and after 8 h at pH 9.5; and after 24 h and 72 hN 5 42 N 5 28 N 5 9

at pH 9.5, respectively.
a Data taken from Wilkie and Wood (1991).
b Significantly lower than corresponding values measured at pH 8.0 ( ).P ! 0.05

rates. The present graphical analyses use the regression lines
constructed from the earlier work of Goss and Wood (Fig. 5),
making it possible to qualitatively separate altered internal
counterion availability from changes in transport site density
on the gills of trout at high pH. Note that external substrate
(Na1, Cl2) availability is a constant in these experiments. Al-
tered internal counterion availability only, without changes in
transport site numbers, lead to shifts along the regression lines.
Decreases in transport site number alone lead to upward ver-
tical deviations away from the regression line and vice versa
(i.e., altered y-intercepts).

In the present two-substrate kinetic analysis, we used the
arterial plasma acid-base data from the earlier, virtually iden-
tical high pH exposure experiments by Wilkie and Wood (1991;
Table 2) and the present kinetic data (Figs. 3, 4) to plot

against 1/plasma [ ], and against 1/plasmaCl 2 Na1/J HCO 1/Jmax 3 max

[H1]. These data points were then compared with the regression
lines originally developed and calibrated by Goss and Wood
(1991) in Figure 5. The present control points agreed closely
with the control data of Goss and Wood (1991). The upward
shift of the 10 h data point away form the regression lines for
both the Cl2 and Na1 transport systems indicates alkaline water
lead to decreased ion transport capacity. The pronounced right-
ward shift of the Cl2 uptake point in parallel to the regression
line (Fig. 5A) also illustrates that internal supply to the2HCO3

Cl2/ transporter was limiting after 10 h. The further shift2HCO3

to the right suggests supply became increasingly limiting2HCO3

after 1 d. Thus, the continual drops in plasma and thePco 2

simultaneous metabolic acidosis at high pH (Table 2) likely led
to steady decreases in intracellular in the gill and thereby2HCO3

limited Cl2/ exchange. The marked vertical displacement2HCO3

of the points down below the regression line by 3 d, however,
suggests complete recovery of Cl2 influx after 72 h was caused
by greater transporter number.

Greater branchial chloride cell surface area at pH 9.5 would
provide an increased abundance of Cl2/ exchangers,2HCO3

thereby countering decreased internal supply. Indeed,2HCO3

chloride cell fractional surface area increased fourfold in rain-
bow trout held under identical pH 9.5 conditions for 72 h
(Wilkie and Wood 1994). The Lahontan cutthroat trout also
responds to the alkaline waters (pH 9.4) of Pyramid Lake,
Nevada, by greatly elevating chloride cell surface area (Wilkie
et al. 1994). The convincing evidence that chloride cells are the
site of Cl2 uptake in freshwater teleosts (Sullivan et al. 1996)
further supports this hypothesis.

The transport capacity of the Na1/acid system was markedly
reduced in the initial stages (10 h) of high pH exposure, as
illustrated using the two-substrate analysis where the data point
representing Na1 influx shifted up and away from the regression
line (Fig. 5B). The influence of limited internal H1 supply was
slight, however (Fig. 5B), as initial H1 reductions were relatively
small and then stabilized (Table 2). The slight rightward shift
along the regression line illustrates this point (Fig. 5B). Thus,
decreased H1-ATPase and/or Na1 channel populations likely
accounted for most of the initial reductions in Na1 influx at
high pH.

In agreement with the one-substrate analysis, two-sub-
strate analysis also indicated a substantial recovery of Na1

transport capacity by 3 d at pH 9.5 (Fig. 5B). This recovery
may have been related to changes in H1-ATPase activity,
Na1 channel numbers, or both. The partial recovery of Na1

transport capacity was counteracted by the fourfold higher
(Fig. 4B), however, which explains the chronic reductionNaKm

of seen in Part 1. Such chronically lowered Na1 influxNaJin

at high pH might also benefit the trout, however, by per-
mitting it to retain more H1, which would help offset the
chronic respiratory alkalosis.

In conclusion, disturbances to internal electrolyte balance in
rainbow trout at high pH primarily resulted from reduced Na1

and Cl2 influx caused by initial reductions in gill ion-
transporting capacity. In addition to direct effects on transport
sites, high-pH-induced reductions in ion influx were probably
caused by lowered in the blood and gills, which limitedPco2

supply to apical Cl2/ exchangers. Similarly, H12 2HCO HCO3 3
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Figure 5. Two-substrate kinetic analysis of ion uptake across rainbow
trout gills at pH 8.0 or pH 9.5, employing the framework of Goss and
Wood (1991). The analyses demonstrate the relative roles that internal
substrate (counterion) availability and transporter number play in al-
tering the respective apparent and apparent for (A) Cl2 andCl NaJ Jmax max

(B) Na1 uptake by rainbow trout. Respective arterial plasma 2HCO3

([ ]a ) and H1 ([H1]a) concentrations were taken from trout2HCO3

exposed to identical conditions in a previous study (Wilkie and Wood
1991). The regression lines represent data collected by Goss and Wood
(1991) following imposition of various internal acid-base disturbances
to rainbow trout in Hamilton tap water. The control data points of
Goss and Wood (1991; diamonds) are indicated. Circles are the inverse
of the apparent and estimates presented in Figures 3 and 4,Cl NaJ Jmax max

plotted against corresponding inverse measurements of [ ]a and2HCO3

[H1]a. Upward or downward deviations (vertical arrows) away from
the regression line represent true changes in transporter number, while
changes in internal substrate availability are reflected by movements
along or in parallel to the regression line (diagonal arrows).

supply to H1-ATPases was also likely lower and, therefore, lim-

ited Na1 influx. Greater apical exposure of branchial chloride

cells (cf. Wilkie and Wood 1994) likely led to restoration of

Cl2 influx at high pH, while net Na1 losses were mitigated by

reduced Na1 outflux.
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