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Article

The targeting of the atToc159 preprotein receptor to
the chloroplast outer membrane is mediated by its
GTPase domain and is regulated by GTP

Matthew D. Smith,' Andreas Hiltbrunner,® Felix Kessler,> and Danny J. Schnell

'Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003
“Institute of Plant Sciences, Plant Physiology and Biochemistry Group, ETH Ziirich, Universititstrasse 2, 8092 Ziirich, Switzerland

membrane of chloroplasts (Toc) initiates the recognition

and import of nuclear-encoded preproteins into
chloroplasts. Two Toc GTPases, Toc159 and Toc33/34,
mediate preprotein recognition and regulate preprotein
translocation. Although these two proteins account for
the requirement of GTP hydrolysis for import, the functional
significance of GTP binding and hydrolysis by either GTPase
has not been defined. A recent study indicates that Toc159
is equally distributed between a soluble cytoplasmic form
and a membrane-inserted form, raising the possibility that
it might cycle between the cytoplasm and chloroplast as
a soluble preprotein receptor. In the present study, we

The multimeric translocon at the outer envelope

examined the mechanism of targeting and insertion of the
Arabidopsis thaliana orthologue of Toc159, atToc159, to
chloroplasts. Targeting of atToc159 to the outer envelope
membrane is strictly dependent only on guanine nucle-
otides. Although GTP is not required for initial binding, the
productive insertion and assembly of atToc159 into the Toc
complex requires its intrinsic GTPase activity. Targeting is
mediated by direct binding between the GTPase domain
of atToc159 and the homologous GTPase domain of
atToc33, the Arabidopsis Toc33/34 orthologue. Our findings
demonstrate a role for the coordinate action of the Toc
GTPases in assembly of the functional Toc complex at the
chloroplast outer envelope membrane.

Introduction

The targeting and import of nuclear-encoded preproteins to
chloroplasts is mediated by the coordinated action of preprotein
translocons at the outer and inner envelope membranes
(Keegstra and Cline, 1999; Schleiff and Soll, 2000; Bauer et
al., 2001). The translocon of the outer envelope membrane
of chloroplasts (Toc)* mediates the initial recognition of
preproteins and initiates translocation across the membrane.
Preproteins are recognized by interactions of their intrinsic
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NH,-terminal transit peptides with receptor components of
the Toc complex, and translocation begins with the hydrolysis
of ATP and GTP at the chloroplast surface (Olsen and
Keegstra, 1992; Ma et al., 1996; Keegstra and Froehlich,
1999; Young et al., 1999). The Toc complex physically associ-
ates with the translocon at the inner envelope membrane of
chloroplasts (Tic) to provide a direct conduit for preproteins
from the cytoplasm to the internal stromal compartment
(Akita et al., 1997; Nielsen et al., 1997; Kouranov et al., 1998).

Three components of the Toc complex associate with
preproteins during the early stages of import. Toc33/34
(Gutensohn et al., 2000; Sveshnikova et al., 2000; Schleiff et
al., 2002) and Toc159 (Kessler et al., 1994; Perry and Keegstra,
1994; Kouranov and Schnell, 1997) are homologous,
membrane-associated GTPases that directly interact with
preproteins during preprotein binding. Direct crosslinking
of transit sequences to isolated pea chloroplasts suggests that
pea Tocl59 (psTocl59) functions as the primary preprotein
receptor at the chloroplast surface (Perry and Keegstra,
1994; Ma et al., 1996). Furthermore, analysis of an Arabidopsis-
null mutant, termed ppi2, that lacks the psToc159 orthologue,
atTocl59, indicates that this protein is essential for chloro-
plast biogenesis (Bauer et al., 2000). The in vitro and in vivo
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analysis of psToc34 and its Arabidopsis orthologue, atToc33,
indicates that it interacts with preproteins at the early stages of
import (Jarvis et al., 1998; Gutensohn et al., 2000; Sveshni-
kova et al., 2000; Schleiff et al., 2002) and that its GTPase ac-
tivity is required for the initiation of membrane translocation
(Kouranov and Schnell, 1997; Chen et al., 2000). The two
GTPases associate with Toc75, an integral membrane protein
that forms at least part of the channel through which prepro-
teins pass during translocation across the outer membrane
(Schnell et al., 1994; Ma et al., 1996; Hinnah et al., 1997).

psToc159 and atTocl59 are 159 and 160 kD, respectively
(Chen et al., 2000). Both have a distinct tripartite domain
structure consisting of an NH,-terminal acidic domain
(A-domain), a central GTPase domain (G-domain), and a
COOH-terminal membrane anchor domain (M-domain;
Bauer et al., 2000; Chen et al., 2000). Although the func-
tion of the A-domain is not known, the M-domain anchors
the membrane-bound form of the protein to the outer mem-
brane, exposing the A- and G-domains to the cytoplasm
(Hirsch et al., 1994). psToc159 has been shown to bind
GTP (Kessler et al., 1994); however, the role of the G-domain
and the functional significance of GTP binding and hydro-
lysis have not been determined.

Originally, Toc159 was described as an exclusively inte-
gral membrane protein. Although the 52-kD M-domain
clearly acts as a membrane anchor, the nature of the mem-
brane association is unclear. A recent study indicates that
atToc159 is equally distributed between a soluble cytoplas-
mic form and a membrane-bound form that is stably associ-
ated with atToc33 and atToc75 (Hiltbrunner et al., 2001).
This observation led to the proposal that atToc159 func-
tions as a mobile import receptor that cycles between the
cytoplasm and outer membrane in alternating soluble
and integral membrane states. Soluble atToc159 and the
atToc33 GTPase domain (atToc33G, corresponding to
amino acid residues 1-265) were shown to directly interact,
and inclusion of atToc33G in an in vitro targeting assay in-
hibited association of atToc159 with isolated chloroplasts
(Hiltbrunner et al., 2001). These data implicated atToc33
as a part of the receptor site for atToc159 at the chloroplast
surface (Hiltbrunner et al., 2001).

The recently determined x-ray crystal structure of the
GTPase domain of psToc34 demonstrated the capacity of
this domain to dimerize and thereby potentially regulate its
own GTPase activity (Sun et al., 2002). The high degree of
structural conservation between the GTPase domains of
Toc159 and Toc33/34 raised the possibility that the inter-
action between these two GTPases might be mediated by
the binding of their respective G-domains to each other.
Furthermore, it suggests that GTP binding and/or hydroly-
sis might regulate targeting of the receptor to the Toc com-
plex, providing at least a partial explanation for the GTP re-
quirement for protein import.

To explore these possibilities, we examined the role of
GTP and the atTocl59-atToc33 interaction in targeting
atToc159 to the outer envelope membrane. Our data indi-
cate that binding of the receptor to the chloroplast surface is
mediated by a homotypic interaction between the GTPase
domains of atToc159 and atToc33. Subsequent insertion of
atTocl59 into the outer membrane requires its intrinsic

GTPase activity. These data suggest that assembly of the
functional Toc complex is regulated directly by GTP bind-
ing at the Toc GTPases.

Results
Energetics of atToc159 targeting to chloroplasts

As a first step in our analysis, we examined the energetics of
atTocl59 targeting to the outer envelope membrane to in-
vestigate a potential role for GTP. Targeting was assayed in
an in vitro system using isolated Arabidopsis chloroplasts and
in vitro—translated [*>S]atToc159 in the presence of various
nucleotides and their derivatives. Endogenous nucleotides
were removed from the [?S]atTocl59 in vitro translation
mixture by EDTA treatment and gel filtration prior to the
targeting assay. In addition, the isolated chloroplasts were
preincubated in the dark to deplete endogenous nucleoside
triphosphates (N'TPs).

[*S]atToc159 that copurifies with chloroplasts after the
in vitro targeting assay represents the sum of two popula-
tions of envelope-associated molecules: atToc159 that is spe-
cifically bound, but not inserted into the outer membrane,
and atToc159 that is properly inserted in its native topology
(Muckel and Soll, 1996). To discriminate these two forms,
the total population of chloroplast-associated [*S]atToc159
was compared with the amount of 50-55 kD-[**S]atToc159
protease-protected fragments that were generated upon
treatment of chloroplasts with thermolysin. Previous studies
have shown that complete alkaline resistant insertion of
Tocl159 into the outer membrane protects the 52-kD M-domain
from proteolytic digestion (Hirsch et al., 1994; Chen et al.,
2000). Therefore, the 50-55-kD fragments represent prop-
erly inserted atTocl159, whereas the population that is com-
pletely protease sensitive corresponds to the peripherally
bound fraction.

Fig. 1 A shows that [*’S]atToc159 binds to isolated chlo-
roplasts in the absence of exogenous nucleotide (lanes 2 and
3). A portion of [*°S]atToc159 is converted to an 86-kD
fragment to varying degrees during the targeting assay (Fig.
1 A, lanes 2-6). This fragment has previously been shown
to correspond to the G- and M-domains of atTocl59
(atToc159GM) resulting from cleavage of the highly suscep-
tible A-domain by an unknown endogenous protease (Bolter
etal., 1998; Chen et al., 2000). A-domain cleavage does not
affect binding or insertion of the receptor (see Fig. 5). We
included both the full-length and 86-kD fragments in quan-
titating the levels of atToc159 binding to chloroplasts (Fig.
1 B). Treatment of the chloroplasts with thermolysin re-
sulted in the complete degradation of bound atToc159 and
conversion of inserted atToc159 to a set of proteolytic frag-
ments at 50-55 kD (Fig. 1 A, lanes 8-12), demonstrating
insertion of at least part of the full-length protein into iso-
lated chloroplasts. The inclusion of apyrase in the samples
lacking added nucleotides to insure complete depletion of
NTPs had no additional effect on the levels of atTocl59
binding and insertion (Fig. 1 B) although the enzyme treat-
ment resulted in nearly complete degradation of atToc159
to its 86 and 55-kD fragments (Fig. 1 A, compare lanes 2
and 3). Therefore, EDTA treatment and gel filtration were
sufficient to deplete free nucleotides from the assays. All
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Figure 1. Energetics of atToc159 targeting to isolated chloroplasts.
In vitro—translated [**S]atToc159 was incubated with isolated,
energy-depleted chloroplasts in the presence (+) or absence (—) of
GTP, ATP, or apyrase for 10 min at 21°C. After the incubation, the
reactions were divided equally and one-half was incubated in the
presence (+) and the other half in the absence (—) of thermolysin
(100 pg/ml) for 30 min on ice. The chloroplasts were reisolated,
lysed, and the total membrane fractions analyzed by SDS-PAGE and
phosphorimaging. (A) Phosphorimager analysis of SDS-PAGE-resolved
chloroplast membranes after the targeting reactions. The results
from a typical experiment are shown. Lanes 1 and 7 contain 10%
of the [**S]atToc159 in vitro translation product (IVT) added to
each reaction. (B) Quantitative analysis of the data from triplicate
experiments including those in A. [**S]atToc159 binding to
chloroplasts (Binding) was measured as the amount of both full-length
atToc159 (atToc159) and 86-kD fragment (159GM) that was
associated but not inserted into the outer membrane. The amount of
inserted [*°S]atToc159 (Insertion) was determined directly from the
amount of the 50-55-kD fragments (159M) present after thermolysin
treatment. Quantitation of binding and insertion were normalized
based on the methionine content of full-length [?*S]atToc159 and its
fragments. Error bars indicate standard deviation.

commercial preparations of apyrase and hexokinase tested
resulted in significant degradation of the atTocl59 transla-
tion product. For this reason, we opted to exclude an enzy-
matic NTP hydrolysis system from the targeting assays in
further studies.

The addition of GTP does not have a significant effect on
the binding of atTocl59 to chloroplasts when compared
with the controls lacking added nucleotide or containing
ATP (Fig. 1 B). The efficiency of binding in all cases typi-
cally corresponds to 10-15% of added [*S]atToc159. In
contrast, GTP specifically stimulates the productive inser-
tion of atToc159 twofold over the levels observed in the ab-
sence of added nucleotide (Fig. 1, A, compare lanes 9 and
10, and B). Insertion corresponds to 5-8% of added
[*S]atToc159 in the presence of GTP. These data suggest
that binding and insertion are distinct reactions. Although
binding does not appear to be strictly nucleotide-dependent,
GTP specifically stimulates insertion. ATP has no measur-
able effect on insertion above the no nucleotide control (Fig.
1, A, compare lanes 9 and 11, and B). Furthermore, the ad-

Targeting of atToc159 to chloroplasts | Smith etal. 835

A e
GMP-PNP
GoP
GOPpS
AMP-PNP
Thermolysin R Z g oo g, v i
NT NT T NT NT NT ()
aiToc15s—mw| s i SRS lp ) - | — i 25
e -
150GM —tf  —— ot ol i
150M—| P e - = 50
12 3 4 5 6 7 B8 9 10 11 1213141516 17 18 19 20 21 22
B Binding Insertion
120 | g 120
E.E‘mﬂf 1 'Taé:un
gE L = | EE 80
EE & | - } gé &0
E'; a0 E% a0
;ﬁ; x| - g 1 _;:; 20 |
e g &= 0
\
a‘ ééﬁ“ Qd‘# @“g & ﬁ‘s c?g‘? qe
& *‘ oe‘ .,_,«
Figure 2. Effect of nucleotide analogues on the targeting of

atToc159 to isolated chloroplasts. The targeting of in vitro translated
[*>SlatToc159 to isolated chloroplasts in the presence (+) or absence
(=) of GTP, GMP-PNP, GDP, GDPBS, or AMP-PNP was performed
as described in the legend to Fig. 1. (A) Phosphorimager analysis of
SDS-PAGE-resolved chloroplast membranes from the [*>S]atToc159
targeting reactions. Lanes 1 and 12 contain 10%, and lanes 6, 9, 17,
and 20 contain 20% of the [**S]atToc159 in vitro translation product
(IVT) added to each reaction. The positions of full-length atToc159
(atToc159), the 86-kD proteolytic fragment (159GM), and the 50-55
kD thermolysin-resistant fragments (159M) are indicated to the left
of the figure. (B) Quantitative analysis of the data from triplicate
experiments including those in A. [**S]atToc159 binding (Binding)
and insertion (Insertion) were measured as described in the legend to
Fig. 1. Error bars indicate standard deviation.

dition of both ATP and GTP had no additive effect on ei-
ther binding (Fig. 1 B) or insertion (Figs. 1 A, compare
lanes 10 and 12, and 2 B) when compared to GTP alone.
Therefore, ATP does not appear to play a direct role in
atTocl59 targeting.

To test whether GTP hydrolysis may be involved in the
targeting reaction, we examined the effects of GDP and the
nonhydrolyzable GTP analogue, GMP-PNP. Fig. 2 shows
that GMP-PNP has little effect on binding (Fig. 2 B), but re-
duced insertion threefold when compared with GTP (Fig. 2,
A, compare lanes 13 and 14, and B). Binding in the presence
of GDP is ~60% of the level observed in the presence of
GTP (Fig. 2 B), but GDP is equally as effective as GTP in
promoting insertion of atToc159 into the outer membrane
(Fig. 2, A, compare lanes 13 and 15, and B). To eliminate
the possibility that GDP is converted to GTP by the plastid
nucleotide diphosphate kinase during the targeting reaction,
we tested the ability of the GDP analogue, GDPS, to sup-
port targeting. GDPRS is equally as effective as GDP in sup-
porting atToc159 binding (Fig. 2 B) and insertion (Fig. 2, A,
compare lanes 15 and 16, and B). In addition, we included
the nonhydrolyzable ATP analogue, AMP-PNP, in samples
containing GDP to inhibit kinase activity. AMP-PNP had
no effect on GDP-dependent insertion of atTocl59 into the
outer membrane (Fig. 2, A, compare lanes 15 and 19, and
B). Therefore, the ability of GDP to support targeting is not
due to its conversion to GTP in the in vitro assay. Taken to-
gether, the data in Fig. 2 indicate that GTP binding alone is
not sufficient for proper insertion of atToc159. Hydrolysis of
GTP to GDP is required for insertion. However, hydrolysis
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as such does not appear to drive insertion because atToc159
inserts equally well in the presence of GTP, GDP, or
GDP@S. Rather, it appears that GDP, but not GTP, sup-
ports a conformation that is competent for insertion. In the
presence of GDP, atToc159 may bypass the binding step or
proceed from binding to insertion more efficiently resulting
in lower levels of steady state binding.

A previous study indicated that insertion of a 96-kDa
COOH-terminal fragment of psToc159 required ATP for in-
sertion into the outer membrane. Our data indicate a require-
ment for GTP and suggest that ATP alone is insufficient to
support insertion of the receptor (Fig. 1). Furthermore, AMP-
PNP has no effect on atToc159 targeting (Fig. 2, A, compare
lanes 10 and 11, and lanes 21 and 22, and B). Therefore, it
appears that guanine nucleotides and not ATP are specifically
required for atTocl59 targeting. The previous report of an
ATP requirement is likely the result of interconversion of the
two nucleotides during the in vitro targeting assay.

Effect of GTPase mutations on atToc159 targeting
The analysis of the energetics of atTocl159 targeting suggests
that GTP/GDP play a role in the binding and insertion of
the protein to the outer envelope membrane. To investigate
whether the GTPase activity of atToc159 is directly involved
in targeting, we generated two point mutations in the con-
sensus GTP binding motif of the atToc159 G-domain. Fig. 3
A shows an alignment of the motifs of atTocl59 and
atToc33 to human p21™ (Ras) and examples of mammalian
and prokaryotic signal recognition particle (SRP)54 and the
SRP receptor. The Toc GTPases define a distinct subfamily
of GTPases with limited but notable sequence similarity to
other GTPases, and we used this conservation to select point
mutations that could be predicted to affect either GTP bind-
ing or GTP hydrolysis specifically. The highest degree of se-
quence conservation among these GTPases is found within
the G1 motif (P-loop). Therefore, we generated two inde-
pendent point mutations in the G1 motif of atToc159, Aggy
to R (atToc159-A864R) and Kggs to R (atToc159-K868R),
that are predicted to affect GTP hydrolysis and binding, re-
spectively (Althoff et al., 1994; Chen and Schnell, 1997).
The size and characteristics of atT'oc159 prevented expres-
sion of sufficient amounts of native protein to confirm the
GTP-binding and hydrolytic activity of the full-length mu-
tants. As an alternative, we took advantage of the Escherichia
coli expression system to generate the corresponding
G-domains of each mutant in soluble, native form. The
wild-type G-domain (atToc159G, corresponding to residues
727-1092) and G-domains of the two GTPase mutants
(atToc159G-A864R and atToc159G-K868R) each with
COOH-terminal hexahistidine tags were purified by nickel-
nitrilotriacetic acid agarose (Ni-NTA) chromatography (Fig.
3 B) and assayed for their GTP binding (Fig. 3 C) and hy-
drolysis activities (Fig. 3 D). The GTP binding and hydroly-
sis activities of the three G-domain variants are consistent
with those predicted by the selected mutations. AtTocl159G
binds (Fig. 3 C) and hydrolyzes (Fig. 3 D) GTP as expected.
The GTPase activity of the atToc159 G-domain under sub-
strate saturation (unpublished data) is comparable to the in-
trinsic activity of isolated SRP receptor (Connolly and
Gilmore, 1993). The atToc159G-A864R mutant binds ap-
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Figure 3. Point mutations incorporated into the G-domain of
atToc159 and their effects on GTP binding and hydrolysis.

(A) Alignment of the GTP binding motifs (G1-G4) of atToc159 with
those of human ras (Hs Ras), canine SRP receptor « subunit (Can Srov),
E. coli FtsY protein (FtsYp), human SRP54 subunit (Hs SRP54p), and
E. coli Fth protein (Fthp). The consensus sequences of the G1 through
G4 motifs are shown at the top. J, hydrophilic; O, hydrophobic;

X, any amino acid. Highly conserved residues are shaded. Arrows
indicate the sites of the Aggs to R (159-A864R) and Kggs to R
(159-K868R) point mutations in atToc159. (B) Coomassie-stained
SDS-PAGE profile of atToc159G (159C), atToc159G-A864R
(159G-A864R), and atToc159G-K868R (159G-K868R) purified by
Ni-NTA chromatography from E. coli extracts. Each lane contains

1 pg of protein. The positions of molecular size markers (kD) are
indicated to the right of the Figure. (C) GTP binding to wild type and
mutant atToc159 G-domains. Purified proteins were bound to
nitrocellulose and incubated with 50 nM [a-*?P]GTP (3,000 Ci/mmol)
in the presence of 1 pM ATP. Bound [a-**P]GTP was quantitated
using a phosphorimager. (D) GTP hydrolysis by wild-type and mutant
atToc159 G-domains. 1 pM [a->?P]GTP (150 mCi/wmol) was
incubated with 0.5 pM atToc159G, atToc159G-A864R or atToc159G-
K868R in a 25 wl reaction for 20 min at 25°C. Radiolabeled GTP and
GDP were resolved by thin-layer chromatography and radioactivity
was quantitated using a phosphorimager. Error bars indicate standard
deviation. N.D., not detectable above background.
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Figure 4. The effects of GTPase mutations on the targeting of
atToc159 to isolated chloroplasts. The targeting of in vitro-translated
[**SlatToc159 (atToc159), [**SlatToc159-A864R (159-A864R), or
[**SlatToc159-K868R (159-K868R) to isolated chloroplasts in the
presence of GTP or GDP was performed as described in the legend of
Fig. 1. (A) Phosphorimager analysis of SDS-PAGE-resolved chloroplast
membranes from targeting reactions performed in the presence of GTP.
Lanes 1, 4, and 7 contain 10% of the [**S]atToc159, [**SlatToc159-
A864R, and [**S]atToc159-K868R in vitro translation products (IVT)
added to each reaction, respectively. (B) Quantitative analysis of the
data from triplicate experiments including those in A. [**S]atToc159
binding (Binding) and insertion (Insertion) were measured as described
in the legend to Fig. 1. (C) GDP binding to wild-type and mutant
atToc159-A864R G-domains. Binding of PHIGDP (32 Ci/mmol) to
purified atToc159G and atToc159G-A864R was measured in a filter
binding assay in the presence of ATP. Bound [’H]GDP was quantitated
by scintillation counting. (D) Phosphorimager analysis of SDS-PAGE-
resolved chloroplast membranes from time courses of atToc159 and
atToc159-A864R insertion performed in the presence of GTP or GDP.
Lanes 1 and 7 contain 20% of the [**S]atToc159 (top) and
[**SlatToc159-A864R (bottom) in vitro translation products (IVT) added
to each reaction. The results from a typical experiment are shown. (E)
Quantitative analysis of the data from duplicate experiments including
those in D. Insertion of [**S]atToc159 was measured as described in the
legend to Fig. 1. The positions of the atToc159 proteins, the 86-kD
proteolytic fragments (159GM) and the 50-55-kD thermolysin-
protected fragments (159M) are indicated to the left of the figures.
Error bars indicate standard deviation.
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proximately 1.3-fold more GTP than atToc159G (Fig. 3
C), but possesses <10% of the wild-type hydrolytic activity
(Fig. 3 D). In contrast, atToc159G-K868R exhibits a 4.5-
fold lower affinity for GTP than the wild-type protein (Fig.
3 C) and lacks detectable GTP hydrolysis activity (Fig. 3 D).

Full-length forms of the mutant proteins were tested for
their ability to bind and insert into chloroplast outer mem-
branes using the standard in vitro targeting assay. Both mu-
tants bind to chloroplasts at levels similar to wild-type pro-
tein (Fig. 4 B), consistent with the conclusion that binding
is not strictly nucleotide dependent. However, the inser-
tion of both mutants is significantly lower than wild-type
atTocl59 (Fig. 4, A, compare lanes 3, 6, and 9, and B). In-
sertion of atToc159-K868R is not detectable consistent with
the dependence of insertion on guanine nucleotide binding
(Fig. 4 B). The insertion of atToc159-A864R is 60% of
wild-type (Fig. 4 B). Thus, the effect of GTP/GDP on tar-
geting and insertion is intrinsic, at least in part, to atToc159.

The reduced insertion of atToc159-A864R is consistent
with its reduced GTP hydrolytic rate, resulting in slow con-
version to the insertion-competent, GDP-bound state. This
leads to the prediction that GDP could restore atTocl59-
AB8G64R insertion levels to those of wild type atToc159. To
test this directly, we first measured the ability of atToc159-
A864R to bind GDP and then examined its insertion in the
presence of this nucleotide. Fig. 4 C shows that atToc159-
A864R exhibits threefold higher levels of GDP binding
compared with wild-type, confirming the ability of the mu-
tant to bind GDP. A time course of insertion of atToc159
and atToc159-A864R (Fig. 4, D and E) confirms that the
rate of atToc159-A864R insertion in the presence of GTP is
lower than wild-type. In contrast, the rates of import of the
two forms are indistinguishable in the presence of GDP
(Fig. 4, D and E). These data are consistent with the conclu-
sion that the GDP-bound form of atToc159 is competent
for membrane insertion, and that GTP hydrolysis per se
does not drive the insertion reaction.

Deletion analysis of atToc159 targeting to chloroplasts
The direct role of atToc159 GTP/GDP binding activity in
targeting suggests that the G-domain might participate di-
rectly in the targeting reaction. To examine the domains
of atTocl59 that are required for targeting, we performed
the in vitro chloroplast targeting assay with a series of
mutants corresponding to deletions of the A-, G-, and
M-domains. Deletion of the 70-kD NH,-terminal A-domain
of atToc159 to generate a construct corresponding to the G-
and M-domains alone (atToc159GM) had no adverse effect
on association or insertion into the outer membrane as com-
pared to full-length atToc159 (Fig. 5 A, compare lanes 2
and 5, and lanes 3 and 6). Also, the A-domain itself
(atToc159A) did not bind or insert into isolated chloroplasts
(Fig. 5 A, lanes 8 and 9). Therefore, we conclude that the
A-domain does not participate in targeting of atTocl59 to
the chloroplast outer membrane. The construct correspond-
ing to the M-domain (atToc159M) bound to chloroplasts,
but was not protected from thermolysin treatment (Fig. 5 A,
lanes 11 and 12). This result is consistent with previous
studies indicating that the M-domain is necessary but not
sufficient for complete insertion of atToc159 into the outer
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Figure 5. The effects of deletion mutations on the targeting of
atToc159 to isolated chloroplasts. The targeting of in vitro translated
[**SlatToc159 (atToc159), [**SlatToc159GM (159GM), [**SlatToc159A
(159A), [**S]atToc159M (159M), or [*°S]atToc159G (159G) to isolated
chloroplasts in the presence of ATP and GTP was performed as
described in the legend to Fig. 1. (A) Phosphorimager analysis of
SDS-PAGE-resolved chloroplast membranes from the targeting
reactions. Lanes 1, 4, 7, 10, and 13 contain 10% of the [**S]atToc159,
[3°S]atToc159GM, [*°SlatToc159A, [**S]atToc159M, and
[**S]atToc159G in vitro translation products (IVT) added to each
reaction, respectively. The positions of atToc159, 159A, 159CGM,
159M, and 159G are indicated to the left of the figure. Results from
a typical experiments are shown. (B) Quantitative analysis of the
data from triplicate experiments including those in A. Binding and
insertion of the [**S]atToc159 deletion constructs were measured as
described in the legend to Fig. 1. Error bars indicate standard deviation.

membrane (Muckel and Soll, 1996). The G-domain of
atTocl59 (atTocl59G) bound to chloroplasts with effi-
ciency equivalent to atToc159GM and full-length atToc159
(Fig. 5 B). As expected, bound atToc159G was completely
sensitive to proteolysis indicating its inability to insert into
the outer membrane alone (Fig. 5, A, lane 15, and B).

The efficient binding of atTocl159G to isolated chloro-
plasts suggests that this domain participates directly in
receptor targeting. To explore this possibility, we first
examined the specificity of atToc159G binding with a com-
petition assay. The inclusion of unlabeled atTocl159G
inhibited the binding of [*’S]atToc159G to isolated chloro-
plasts in a dose-dependent manner with ~80% inhibition
observed with 0.25 wM competitor (Fig. 6, A and B). Sec-
ond, we examined whether atToc159G binding represents a
productive step in the targeting of full-length atToc159 by
testing the ability of atToc159G to compete with full-length
atTocl59 targeting. The binding and insertion of full-
length [*°S]atToc159 is reduced by ~80% in the presence
0f 0.25 uM atTocl59G (Fig. 6, C, compare lanes 2 and 5,
and 3 and 6, and D), indicating that the atToc159G bind-
ing site represents a component of the receptor docking site
at the chloroplast surface. These data also confirm that the
fraction of [*°S]atToc159 that is bound but not completely
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Figure 6. Binding of atToc159G to isolated chloroplasts. (A) In vitro—
translated [**S]atToc159G (159G) was incubated with isolated
chloroplasts in a standard targeting assay (Fig. 1, legend) in either the
absence or presence of increasing concentrations of purified, unlabeled
atToc159G. The total membrane fraction from each targeting reaction
was resolved by SDS-PAGE and analyzed using a phosphorimager.
20% of the [**S]atToc159G in vitro translation product (IVT) added to
each reaction is shown in lane 1. (B) Quantitative analysis of the data
from triplicate experiments including those in A. (C) Competition of
purified atToc159G (159C) with atToc159 for targeting to chloroplasts.
[**S]atToc159 was incubated with isolated, intact chloroplasts in a
standard targeting assay (Fig. 1, legend) in the absence (—) or
presence (+) of 0.25 pM purified atToc159G. Total membrane
fractions were separated by SDS-PAGE and analyzed using a
phosphorimager as described in the legend to Fig. 1. Lanes 1 and 4
contain 10% of the [**S]atToc159 in vitro translation product (IVT)
added to each reaction. The positions of full-length atToc159
(atToc159), the 86-kD proteolytic fragment (159GM), and the
50-55-kD thermolysin-resistant fragments (159M) are indicated to
the left of the figure. (D) Quantitative analysis of the data from
triplicate experiments including those in C. [**S]atToc159 binding
(Bound) and insertion (Inserted) were measured as described in the
legend to Fig. 1. Error bars indicate standard deviation.

inserted into chloroplasts represents a specific association
with the outer membrane and not nonspecific binding to
the chloroplast surface. On the basis of these data, we con-
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Figure 7. Binding of wild-type and mutant atToc159 G-domains to
chloroplasts in vitro. (A) In vitro-translated [**S]atToc159G (159G),
[**SlatToc159G-A864R (159G-A864R), or [**S]atToc159G-K868R
(159G-K868R) was incubated with isolated chloroplasts in a
standard targeting assay (Fig. 1, legend). The total membrane fraction
from each targeting reaction (lanes 2, 4, and 6) was resolved by
SDS-PAGE and analyzed using a phosphorimager. 10% of the
[**SlatToc159G, [**SlatToc159G-A864R, or [**SlatToc159G-K868R
in vitro translation product (IVT) added to each reaction is shown in
lanes 1, 3, and 5, respectively. (B) Quantitative analysis of the data
from triplicate experiments including those in A. (C) Competition of
purified atToc159G-A864R and atToc159G-K868R with atToc159
for targeting to chloroplasts. [**S]atToc159 was incubated with
isolated, intact chloroplasts in a standard targeting assay (Fig. 1,
legend) in the absence (—) or presence (+) of 0.25 pM purified
159G-A864R or 159G-K868R. Total membrane fractions were
separated by SDS-PAGE and analyzed using a phosphorimager as
described in the legend to Fig. 1. Lane 1 contains 10% of the
[**SlatToc159 in vitro translation product (IVT) added to each reaction.
(D) Quantitative analysis of the data from triplicate experiments
including those in C. Error bars indicate standard deviation.

clude that the G-domain directly participates in atTocl59
targeting to chloroplasts.

To determine whether GTP binding/hydrolysis partici-
pates in the binding of atTocl59G, we examined the
binding of the mutant G-domains to chloroplasts. Both
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Figure 8. Direct binding of atToc33G to atToc159G.

(A) [**SlatToc33G was incubated in the presence of GTP with the
indicated amounts of hexahistidine-tagged atToc159G (159G) or
cellular retinoic acid binding protein (CRABP) that had been
immobilized on Ni-NTA resin. Bound proteins were eluted and
separated by SDS-PAGE and analyzed using a phosphorimager.
Lane 1 contains 20% of the [**S]atToc33G added to each reaction.
(B) Quantitation of the data presented in A. Error bars represent
standard deviation. (C) Competition of soluble atToc159G with
immobilized atToc159G for binding to atToc33G. [**S]atToc33G
was incubated with immobilized hexahistidine-tagged atToc159G
in the absence or presence of increasing concentrations of soluble
atToc159G. (D) Quantitation of the data presented in C.

atToc159G-A864R and atTocl159G-K868R associate with
chloroplasts at levels ~50% that of control atToc159G
(Fig. 7, A and B). Furthermore, their presence inhibits
the targeting of full-length [*S]atToc159 to chloroplasts
(Fig. 7, C and D). Specifically, atToc159G-A864R and
atToc159G-K868R reduce atTocl59 binding by 40-45%.
Insertion is reduced by 70-80% in both cases (Fig. 7 D).
Therefore, it appears that wild-type and mutant G-domains
productively interact with the atToc159 docking site. The
capacity of wild-type G-domain to bind at higher levels
than the mutants (Fig. 7 B) could be explained by the abil-
ity of this construct to convert to a conformation with a
higher relative affinity for the docking site upon hydrolyses
of its bound GTP to GDP (see Fig. 9). These data are con-
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Figure 9. Energetics of atToc33G-atToc159G binding. Nucleotide-
depleted in vitro—translated ?*S]atToc33G was incubated with
immobilized hexahistidine-tagged atToc159G (159G) in the
absence (—) or presence (+) of 0.1 mM GTP, GMP-PNP, ATP,
AMP-PNP, GDP, or GDPBS. The bound proteins were eluted and
separated by SDS-PAGE and analyzed using a phosphorimager.
(A) Phosphorimager analysis of bound [**S]atToc33G. 10% of the
in vitro—translated [**S]atToc33G (IVT) that was added to each
reaction is shown in lane 1. Lane 2 contains the [**S]atToc33G
that bound to the Ni-NTA matrix in the absence of atToc159G.
(B) Quantitation of the data presented in A.

sistent with the hypothesis that the initial binding of
atTocl59 via its G-domains does not require bound nucle-
otide; however, the stable insertion of the full-length pro-
tein requires GTP/GDP.

Direct binding of atToc159 and atToc33 G-domains
We wished to further examine the role of GTP/GDP and
the G-domain in atTocl59 targeting and extend the recent
study that indicated atToc33 might form part of an
atTocl59 receptor at the surface of chloroplasts (Hiltbrun-
ner et al., 2001). To this end, we investigated the ability of
the atToc159 G-domain and atToc33 G-domain to inter-
act directly. The 29-kD cytoplasmic GTPase domain of
atToc33 was in vitro translated and incubated with hexahis-
tidine-tagged atToc159G that had been immobilized on an
Ni-NTA matrix. As shown in Fig. 8 A, [*SlatToc33G
bound to immobilized atToc159G but did not bind to the
Ni-NTA matrix alone (compare lanes 2 and 6) or to an un-
related immobilized protein, cellular retinoic acid binding
protein (CRABP; lane 7). The interaction is dose dependent
as [*°S]atToc33G binding increased in parallel with increas-
ing amounts of immobilized atToc159G (Fig. 8, A and B).
In addition, binding of [*°S]atToc33G to immobi-
lized atTocl159G could be competed with excess soluble
atToc159G (Fig. 8, C and D), indicating that binding of the
two G-domains is specific. These data in conjunction with
previously published data (Hiltbrunner et al., 2001) indicate
that a homotypic interaction between the GTPase domains
of the two Toc components participates in targeting of the
Tocl59 receptor to the Toc complex.

To examine the nucleotide dependence of atToc159G-
atToc33G binding, immobilized atToc159G was incubated
with [*°S]atToc33G in the presence or absence of various
nucleotides and nucleotide analogs. As shown in Fig. 9, the
levels of binding in the presence of GTP (lane 4), ATP (lane
6), or their nonhydrolyzable analogues (lanes 5 and 7) was
not considerably different than in the absence of nucleotides
(lane 3). However, inclusion of GDP (lane 8) or GDPRS
(lane 9) had a stimulatory effect on atToc33G-atTocl59G
binding, increasing binding 2.5-3-fold compared with other
nucleotides (Fig. 9 B). Therefore, the interaction between
the G-domains appears to be stabilized by GDP. This corre-
lates with the effect of GDP on the insertion of full-length
atTocl59 into chloroplasts. On this basis, we propose
that the GDP-stabilized atToc159G—atToc33G interaction
observed in the solid phase binding assay corresponds to
the conformational state resulting in stable insertion of
atToc159 at the outer membrane and association of the re-
ceptor with the Toc complex.

Discussion

Tocl59 is a major component of the Toc complex of chlo-
roplasts and is proposed to function as the primary prepro-
tein receptor of the complex. It has recently been demon-
strated that this protein is equally distributed between the
chloroplast surface and the cytoplasm, and may be a mobile
component of the Toc complex, perhaps involved in target-
ing chloroplast preproteins to their site of import (Hiltbrun-
ner et al., 2001). In this study, we focused on the mecha-
nism by which soluble Tocl59 is targeted to the Toc
complex. An earlier study indicated that targeting and inser-
tion of a 96-kD COOH-terminal fragment of psTocl59
relied on proteinaceous components of the chloroplast
(Muckel and Soll, 1996), and it has been suggested more re-
cently that this putative receptor may include atToc33/
psToc34 (Hiltbrunner et al., 2001). We have extended these
studies, and present evidence that atToc159 is targeted to
Arabidopsis chloroplasts in a guanine nucleotide-dependent
manner via a direct interaction between the homologous
G-domains of atToc159 and atToc33.

Analysis of the energetics of atTocl59 targeting demon-
strated that binding of the receptor to the outer membrane
was not nucleotide-dependent. However, proper insertion of
atTocl59 into the outer membrane required GTP or GDP
(Fig. 2). The nonhydrolyzable GTP analogue, GMP-PNP, in-
hibited insertion of atToc159 (Fig. 2), suggesting that the
ability of GTP to support insertion required hydrolysis to
GDP. These findings were confirmed by the analysis of two
GTPase mutants of atTocl59 with reduced GTP binding
(atToc159-K868R) or hydrolysis (atToc159-A864R) proper-
ties (Fig. 3). The binding of both mutants to chloroplasts was
similar to wild-type atToc159 (Fig. 4), whereas insertion was
observed only with atToc159-A864R. These data support the
hypothesis that the GDP-bound state promotes membrane in-
sertion. GTP hydrolysis does not appear to provide the driving
force for insertion because GDP binding alone is sufficient for
stable insertion into the outer membrane (Fig. 2). Therefore,
it is likely that the conformation of the GDP-bound state pro-
motes insertion and association with the Toc complex.



A previous study demonstrated that ATP stimulated the
targeting of a 96-kD COOH-terminal fragment (G- +
M-domains) of psToc159 to isolated chloroplasts (Muckel and
Soll, 1996). We did not observe a significant effect of ATP
on targeting of atTocl59 when compared with the control
lacking added nucleotide or an NTP hydrolysis trap (Fig. 1).
Likewise, ATP and GTP together had no additive effect on
targeting, nor did the nonhydrolyzable ATP analogue AMP-
PNP affect targeting in the presence or absence of GTP or
GDP (Fig. 2). We conclude that ATP does not play a direct
role in the atTocl59 targeting reaction. The authors in the
previous study used a hexokinase/glucose trap to eliminate
ATP from the targeting reaction. We discovered that com-
mercial preparations of hexokinase and another hydrolase,
apyrase, degraded the full-length atToc159 translation prod-
uct. This degradation could account for the apparent de-
crease in binding observed with the hexokinase trap in the
previous study. Alternatively, generation of GTP from ATP
and GDP by the plastid nucleoside diphosphate kinase
(Lubeck and Soll, 1995) could account for the apparent
ATP requirement.

Muckel and Soll (1996) used a series of deletion mutants
and fusion proteins of the 96-kD COOH-terminal fragment
of psTocl59 to investigate targeting. Their studies indicated
that portions of the M-domain bound to chloroplasts,
but that only the 86-kD construct consisting of the G- +
M-domains was capable of productively inserting into the
outer membrane (Muckel and Soll, 1996). In the present study,
we wished to more precisely determine which domains of
the protein mediate the targeting of full-length atToc159,
with the knowledge that the protein has a distinct tripartite
domain structure and that GTP plays an important role
(Fig. 5). Binding and insertion assays using isolated intact
chloroplasts and a series of deletion mutants indicated that
the G-domain on its own was able to efficiently and specifi-
cally bind chloroplasts (Fig. 6), but in the absence of the
M-domain, wasn’t able to insert. The M-domain on its own
bound to chloroplasts with very low efficiency but could not
insert into the outer membrane, consistent with the previous
findings. The A-domain apparently plays no role in binding
or insertion of the protein. Together, these data suggest that
the G-domain participates directly in the targeting of
atTocl59 to chloroplasts, and that the presence of the
G-domain is required for the M-domain to productively in-
sert into the outer membrane.

We examined the possibility that a direct interaction be-
tween the G-domains of atToc159 and atToc33 may be re-
quired for targeting and insertion. Using a solid phase pull-
down assay, we demonstrated that atToc33G bound directly
and specifically to purified atToc159G (Fig. 8). These re-
sults confirm that atToc33 acts as the cognate receptor for
atTocl59 at the chloroplast surface. In addition, binding
was stimulated three-fold in the presence of GDP as com-
pared to GTP (Fig. 9). We propose that the GDP-stabilized
association of atToc159G and atToc33G corresponds to
the nucleotide-bound state of the fully inserted form of
atTocl59. This hypothesis is consistent with a recent study
showing that the soluble G-domain of atToc33 can compete
for targeting and insertion of atToc159 to Arabidopsis chlo-
roplasts in vitro (Hiltbrunner et al., 2001).
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On the basis of these results, we propose a model depict-
ing a multistep mechanism of atToc159 targeting to chloro-
plasts. The initial docking of atTocl59 at the chloroplast
surface is mediated by a cognate interaction between the
G-domains of atTocl159 and atToc33. The docking step
does not require bound nucleotide, but does not result in ef-
ficient, stable association of atToc159 with the membrane.
Our results and those of a previous study suggest that the
M-domain also interacts with the outer membrane independent
of the G-domain (Muckel and Soll, 1996). This interaction
in conjunction with G-domain binding is likely to contrib-
ute to the initial binding of the full-length receptor. Subse-
quent to its initial docking, atToc159 inserts into the outer
membrane and stably associates with the other Toc compo-
nents. Insertion of the M-domain is likely to involve other
envelope components (e.g., atToc75). This reaction requires
nucleotide binding directly at the receptor. GTP or GDP
function at this stage, but it is the GDP-bound state that is
competent for insertion. Therefore, bound GTP must be
hydrolyzed to GDP to allow insertion. In this scenario, the
G-domain would function as a GTP-dependent switch that
controls integration of atTocl59 into the outer membrane.
GDP also promotes tight binding of the G-domains of
atTocl59 and atToc33, thereby stabilizing the association of
atTocl59 with the Toc complex. The net result of the GTP-
dependent insertion reaction is the unidirectional targeting
of the recepror to the Toc complex, resulting in the assembly
of the functional translocon.

The recently determined three-dimensional structure of
the psToc34 G-domain demonstrates the capacity of the
protein to form dimers (Sun et al., 2002). Interestingly,
the subunits of each dimer appear to act as reciprocal GTP-
ase activating proteins. The key residues involved in
both GTP binding/hydrolysis and dimer formation in
psToc34 are conserved in all Tocl59 variants (Kessler and
Schnell, 2002). This observation, in conjunction with the
atToc159G-atToc33G binding data presented in this re-
port, suggests that Toc159 and Toc34/33 might interact in
a similar manner during Toc159 targeting and during their
stable association in the Toc complex. It is interesting to
speculate that the interaction between Toc34 and Tocl59
may stimulate GTP binding or hydrolysis at one or both
GTPases promoting the insertion of the receptor into the
membrane. Furthermore, nucleotide binding and hydrolysis
at Toc34/33 also may be involved in the targeting reac-
tion. Although the dynamics of the Toc159-Toc34/33 asso-
ciation are not completely understood, it is clear that the
G-domains of these proteins play a direct role in regulating
their interactions.

The presence of a significant pool of soluble, cytoplasmic
Tocl59 raises the possibility that the GTP-dependent tar-
geting reaction participates in the delivery of preproteins to
the chloroplast surface. The membrane-bound form of
Tocl59 is known to interact with preproteins. Although it
remains to be demonstrated directly that the soluble form of
the receptor binds preproteins, it is intriguing to hypothesize
that the GTP-dependent insertion and assembly of Toc159
with the Toc complex is coupled to the productive associa-
tion of preproteins with the translocon and the initiation of
membrane translocation.
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Materials and methods

Toc159 mutations and deletion constructs

Point mutations were introduced into the G1 GTP binding motif of the
atToc159 G-domain using the PCR-based overlap extension technique (Ling
and Robinson, 1997) and pET21d-atToc159 (Bauer et al., 2000) as a tem-
plate. To generate the atToc159-A864R mutant, PCR primers were used that
changed codon GCC to CGC resulting in an Ala to Arg mutation at amino
acid 864. For the atToc159-K868R mutant, PCR primers were used that
changed codon AAA to AGA resulting in a Lys to Arg mutation at amino
acid 868. Both mutant forms of atToc159 were inserted into the Ncol and
Xhol sites of pET21d to generate pET21d-atToc159-A864R and pET21d-
atToc159-K868R. Neither construct contained a 6-histidine tag fusion.

DNA fragments corresponding to atToc159GM (amino acids 727-
1503), atToc159G (amino acids 727-1092), and atToc159M (amino acids
1092-1503) were amplified by PCR using pET21d-atToc159 as a template.
The atToc159GM and atToc159G fragments were inserted into the Ncol/
Xhol sites of pET21d (Novagen, Inc.) to generate pET21d-atToc159GM and
pET21d-atToc159G, respectively. The atToc159M fragment was cloned
into the Ndel/Hindlll sites of pET21a (Novagen, Inc.) to generate pET21a-
atToc159M. Construction of pET21d-atToc159A, encoding a fragment cor-
responding to 159A (amino acids 1-740) was previously described (Bauer
et al., 2000). All constructs resulted in in-frame fusions with a 6-histidine
tag at their COOH-termini.

DNA fragments encoding atToc159G-A864R and atToc159G-K868R
were generated by PCR using pET21d-atToc159-A864R and pET21d-
atToc159-K868R, respectively as templates. The fragments were cloned
into the Ncol/Xhol sites of pET21d to generate pET21d-atToc159G-A864R
and pET21d-atToc159G-K868R. The G-domain of atToc33 without a
COOH-terminal 6-histidine tag (atToc33G) was amplified by PCR from
pET21d-atToc331 565 (Hiltbrunner et al., 2001), and cloned into the Xbal/
Sall sites of pET21d, to form pET21d-atToc33G.

In vitro translation and expression in E. coli

All [**S]methionine-labeled in vitro translation products were generated in
a coupled transcription-translation system containing reticulocyte lysate
according to the manufacturer’s recommendations (Promega). Where indi-
cated, the mixture was depleted of free nucleotides by gel filtration as pre-
viously described (Chen and Schnell, 1997).

For bacterial overexpression, pET21d-atToc159G, pET21d-atToc159G-
A864R, and pET21d-atToc159G-K868R were transformed into E. coli
BL21(DE3). Expression of atToc159G and atToc159G-A864R was
achieved by induction with 0.4 mM IPTG for 2 h at 37°C. Expression of
atToc159G-K868R was achieved by induction with 0.25 mM IPTG for
2.5 h at 30°C. The overexpressed hexahistidine-tagged G-domains were then
purified from the soluble fraction of E. coli lysates under nondenaturing
conditions using Ni-NTA chromatography (Novagen, Inc.). Wild-type and
mutant G-domains bound to the Ni-NTA matrix were washed with 50 mM
Hepes-KOH, pH 7.5, 2 mM MgCl,, 40 mM KOAc (HMK buffer) and eluted
with HMK buffer containing 250 mM imidazole. Glycerol was added to a
final concentration of 10% (vol/vol), and the proteins were stored at —-80°C.

Chloroplast isolation and Toc159 chloroplast targeting assays
Arabidopsis thaliana seedlings (ecotype Wassilewskija) were grown on
0.8% (wt/vol) phytagar plates containing Murashige and Skoog growth me-
dium and 1% (wt/vol) sucrose under long day conditions. Intact chloro-
plasts were isolated from 2- to 3-wk-old plate-grown seedlings as de-
scribed (Fitzpatrick and Keegstra, 2001), with the following changes (Smith
et al., 2002). The plant tissue was treated with 4% (wt/vol) cellulase and
0.8% (wt/vol) macerozyme (Yakult Honsha, Inc.) for 4 h at room tempera-
ture under moderate light to generate protoplasts. Intact chloroplasts were
isolated and purified from lysed protoplasts on a percoll step gradient (Ma
et al., 1996) and finally resuspended in 50 mM Hepes-KOH, pH 8.0, 330
mM Sorbitol (HS buffer). Chlorophyll content of intact chloroplast was
measured as described (Arnon, 1949).

Chloroplast targeting reactions were carried out using intact chloro-
plasts containing 25 g of chlorophyll in 100 pl of HS buffer containing 50
mM KOAc and 4 mM MgOAc (import buffer; Smith et al., 2002). Where
indicated, chloroplasts were depleted of exogenous energy by incubating
for 15 min at 26°C in the dark in import buffer before the targeting assay.
The 15 min dark incubation was followed by incubation with apyrase (30
U/ml) for 5 min at 26°C in the dark, where indicated. ATP, AMP-PNP,
GTP, GMP-PNP, GDP, or GDPBS was added to a final concentration of 2
mM and the targeting reactions were started with the addition of [**SJme-
thionine-labeled in vitro translation products. Where indicated, the in vitro
translation products were depleted of nucleotide triphosphates as de-

scribed above. The reactions were incubated for 10 min at 21°C in the
dark. After the targeting reaction, the chloroplasts were incubated in the
presence or absence of 100 pg/mL thermolysin on ice for 30 min. The re-
actions were stopped by dilution with ice-cold HS buffer containing 5 mM
EDTA, and the chloroplasts were reisolated by centrifugation at 2,500 g for
5 min through a 40% Percoll cushion. Chloroplasts were hypotonically
lysed in 10 mM Tris-HCI, pH 8.0, T mM EDTA and the total chloroplast
membrane fraction was recovered by centrifugation at 50,000 g for 20
min. The membrane fractions were resolved by SDS-PAGE and radioactive
signals in dried gels were detected and quantitated using a Storm 840
phosphorimager and ImageQuant v. 1.2 software. Counts from proteolytic
fragments (atToc159GM and atToc159M) of atToc159 were normalized to
reflect the number of methionine residues lost due to proteolysis. Quanti-
tative chloroplast targeting data are presented as the percent of maximal
binding, the percent of maximal insertion or as the percent of added in
vitro translation product.

Guanine nucleotide binding and hydrolysis assays

GTP binding to atToc159G, atToc159G-A864R, and atToc159G-K868R
was measured using a solid phase GTP overlay assay. Purified atToc159G,
atToc159G-A864R, and atToc159G-K868R were diluted to 25 pug/ml in 50
mM Hepes-KOH, pH 7.5, 40 mM KOAc (HK buffer) containing 2 mM
EDTA and 200 pl of each sample was spotted onto nitrocellulose mem-
brane. An equivalent sample corresponding to the eluate from Ni-NTA
chromatography of an E. coli strain expressing preSSU (Ma et al., 1996)
was used as a background reference. The nitrocellulose filter was incu-
bated for 30 min at room temperature in 20 mM Tris-HCI, pH 7.5, 50 pM
MgCl,, 0.3% Tween-20 (GTP binding buffer). The blot was transferred to
GTP binding buffer containing 50 nM [a-*’P]GTP (3,000 Ci/mmol; PE Life
Sciences) and 1T wM ATP, and incubated for 1 h at 4°C. The blot was
washed five times with 50 mM Tris-HCI, pH 7.5, 5 mM MgCl,, 0.3%
Tween-20, and binding of [a-*?PIGTP was measured using a Storm 840
phosphorimager and ImageQuant v. 1.2 software. Data are presented as
fmol of [a-*2P]GTP bound per pg of protein.

GTP hydrolysis was measured using a method adapted from (Liang
et al.,, 2000). Briefly, purified atToc159G, atToc159G-A864R, and
atToc159G-K868R were diluted to 0.5 pM with HK buffer containing 2
mM EDTA and 1T pM [a-*?P]GTP (150 mCi/wmol) in a final volume of 25
wl, and incubated for 5 min at 25°C. The hydrolysis reaction was initiated
by the addition of MgCl, to a final concentration of 5 mM. GTP hydrolysis
was linear over a 60 min incubation period (unpublished data). Therefore,
samples were removed after 0 min and 20 min of hydrolysis and the reac-
tions immediately stopped by heating at 65°C for 5 min in 0.2% SDS, 10
mM EDTA, 4 mM GTP, 4 mM GDP. The samples were spotted onto PEI-
cellulose F TLC plates (EM Science), and GTP and GDP were resolved us-
ing a 1 M LiCl solvent. The plates were dried and radiolabeled spots of
GTP and GDP were quantified using a Storm 840 phosphorimager. Data
are presented as fmol [a-**P]GTP hydrolyzed min~' pmol protein™'. Hy-
drolysis of GTP by soluble E. coli proteins that nonspecifically bound to
Ni-NTA resin was used as a background reference.

GDP binding by purified atToc159G and atToc159G-A864R was mea-
sured using a filter-binding assay. The wild-type and mutant proteins (1
uM) were diluted with HK buffer containing 5 mM EDTA and incubated 5
min at 25°C. Binding was initiated with the addition of 2 uM [PH]GDP (32
Ci/mmol) and 10 mM MgCl, in the presence of 2 M ATP. The 50 pl reac-
tions were incubated for 1 h at 25°C, rapidly diluted with 500 wl of ice-
cold HMK buffer and filtered through a nitrocellulose membrane using a
vacuum manifold. After washing twice with 500 wl of ice-cold HMK
buffer, the radioactivity retained on the membrane was quantitated by lig-
uid scintillation counting. Data are presented as fmol [PH]GDP bound per
ug protein. GDP binding to cellular retinoic acid binding protein (CRABP;
Clark et al., 1998) was used as a background reference.

Solid phase binding assays

Direct interaction between atToc159G and atToc33G was measured using
a solid phase binding assay. Varying concentrations of purified hexahisti-
dine-tagged atToc159G or CRABP were diluted in Hepes-KOH, pH 7.5, 2
mM MgCl,, 40 mM KOAc, 0.1% Triton X-100 (binding buffer) to give a fi-
nal concentration of 40 mM imidazole. The samples were bound to 10 .l
of packed Ni-NTA resin at 4°C for 30 min under constant mixing. The resin
was washed twice with 400 pl of binding buffer containing 40 mM imida-
zole and GTP, GMP-PNP, ATP, AMP-PNP, GDP, GDPBS, or GMP, as indi-
cated. The resin was then incubated with 5-10 ! of [**S]atToc33G in vitro
translation product in binding buffer containing 40 mM imidazole and the
appropriate nucleotide in a final volume of 100 pl, for 1 h at 22°C, under
constant mixing. The resin was washed three times with 400 pl of ice-cold



binding buffer containing 40 mM imidazole and the appropriate nucle-
otide. Proteins were eluted from the resin with SDS-PAGE sample buffer
containing 0.9 M imidazole and resolved by SDS-PAGE. Gels were stained
with coomassie blue to detect atToc159G (unpublished data), and
[**S]atToc33G was detected in dried gels using a Storm 840 phosphorim-
ager. Bound [**S]atToc33G is presented as the percent of maximal binding
in each experiment.
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