
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Theses and Dissertations (Comprehensive) 

2017 

THREE ESSAYS ON LIQUIDITY IN MODERN MARKETS THREE ESSAYS ON LIQUIDITY IN MODERN MARKETS 

Konstantin Sokolov 
kbsokolov@gmail.com 

Follow this and additional works at: https://scholars.wlu.ca/etd 

 Part of the Finance and Financial Management Commons 

Recommended Citation Recommended Citation 
Sokolov, Konstantin, "THREE ESSAYS ON LIQUIDITY IN MODERN MARKETS" (2017). Theses and 
Dissertations (Comprehensive). 1920. 
https://scholars.wlu.ca/etd/1920 

This Dissertation is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted 
for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ 
Laurier. For more information, please contact scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/631?utm_source=scholars.wlu.ca%2Fetd%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/1920?utm_source=scholars.wlu.ca%2Fetd%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


THREE ESSAYS ON LIQUIDITY IN MODERN MARKETS 

 

 

 

 

Author: 

Konstantin Sokolov 

 

 

 

 

DISSERTATION 

Submitted to the Department of Finance 

in partial fulfilment of the requirements for 

Doctor of Philosophy in Management – Finance 

Lazaridis School of Business and Economics 

Wilfrid Laurier University 

 

 

 

 

 

 

 

 

 

© Konstantin Sokolov 2017 



ii 
 

DECLARATION OF CO-AUTHORSHIP/PREVIOUS PUBLICATION 

I, Konstantin Sokolov, hereby declare that this thesis incorporates material that is a 

result of joint research as follows: This thesis incorporates the outcome of joint research 

undertaken in collaboration with Jonathan Brogaard, Allen Carrion, Thibaut Moyaert, Ryan 

Riordan and Andriy Shkilko. The collaboration is covered in Chapter 2 of the thesis. In 

addition, this thesis incorporates the outcome of joint research undertaken in collaboration 

with Andriy Shkilko. The collaboration is covered in Chapter 3 of the thesis. The key ideas, 

primary contributions and test designs are those of the author, and the data analysis was 

performed by the author. 

I certify that, with the above qualification, this thesis, and the research to which it 

refers, is the product of my own work. 

This thesis includes one original paper that has been accepted for publication to the 

Journal of Financial Economics. Contained in Chapter 2 of this thesis, the publication title of 

the paper is “HFT and Extreme Price Movements”. 

 

 

 

 

 

  



iii 
 

ABSTRACT 

Recent technological advancements have challenged financial markets. Academic 

researchers, regulators and market participants voice concerns that modern markets bear the 

negative externalities of such advancements. Specifically, they are concerned that today’s 

markets are becoming more fragile and unfair to less sophisticated traders. This work 

employs empirical methodology to test whether these concerns are justified. This thesis 

contains three essays: 

The first essay studies whether modern markets become less liquid during intraday 

extreme price movements (EPMs). When a price moves in a certain direction, liquidity 

providers face two opposing incentives. The first incentive is to stay in the market to 

accumulate more inventory in anticipation of a price reversal. The second incentive is to 

withdraw due to capital constraints, inventory and adverse selection risks. Using data from 

Canadian and U.S. markets, I find that the former incentive is stronger during intraday EPMs. 

This finding alleviates concerns that prices are subject to periods of extreme volatility due to 

systematic liquidity withdrawals. Contrary to these concerns, liquidity providers appear 

sufficiently incentivized to dampen intraday volatility. 

The second essay examines the activity of a specific type of modern liquidity providers 

– high frequency traders (HFTs) – around EPMs. I find that, on average, HFTs provide 

liquidity during EPMs by absorbing imbalances created by non-high frequency traders 

(nHFTs). Yet HFT liquidity provision is limited to EPMs in single stocks. When several 

stocks experience simultaneous EPMs, HFT liquidity demand dominates their supply. There 

is little evidence of HFTs causing EPMs. 

The third essay studies whether recent technological advancements result in higher 

costs for less sophisticated traders. In modern markets, trading firms spend generously to gain 

a speed advantage over their rivals. The marketplace that results from this rivalry is 

characterized by speed differentials whereby some traders are faster than others. Is such a 
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marketplace optimal? To answer this question, I study a series of exogenous weather-related 

episodes that temporarily remove the speed advantages of the fastest traders by disrupting 

their microwave networks. During these episodes, adverse selection declines accompanied by 

improved liquidity and reduced volatility. Liquidity improvement is larger than the decline in 

adverse selection consistent with the emergence of latent liquidity and enhanced competition 

among liquidity suppliers. The results are confirmed in an event-study setting, whereby a new 

business model adopted by one of the technology providers reduces speed differentials 

among traders, which results in liquidity improvements. 
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Chapter 1. DOES LIQUIDITY EVAPORATE? INTRADAY EVIDENCE 

1.1. Introduction 

Modern markets are often claimed to bear alarming levels of short-term and long-term 

volatility. Violent price movements pose especially high concern when they are not related to 

changes in fundamentals. According to Greenwood and Thesmar (2011) and Khan, Kogan and 

Serafeim (2012), uninformed liquidity demand can lead to non-fundamental price pressures that 

persist for a considerable time. Such price pressures can be observed not only in the long run. 

When liquidity demand is not absorbed by liquidity supply within a short time interval, it has the 

potential to trigger intraday price movements of large magnitude. Easley, López de Prado and 

O’Hara (2011, 2012) and Kirilenko, Kyle, Samadi and Tuzun (2016) show that, during one such 

price pressure episode – the flash crash of May 6, 2010 – electronic liquidity providers reduced 

their activity. The joint agency report
1
 on the October 15, 2014 U.S. Treasury Flash Crash also 

discusses a reduction in liquidity supply. Echoing an industry-wide concern, CFTC chair 

Timothy Massad recently noted that, during large intraday price movements, liquidity providers 

tend to cancel standing orders at the top of the book and then place the orders at deeper book 

layers.
2
 Because of this behavior, liquidity tends to evaporate when it is most needed. 

This concern often finds support in academic studies on evaporating liquidity. According 

to these studies, when prices are under pressure, market makers reposition liquidity to deeper 

layers of the book, as they look to benefit from the reversals that follow (e.g., Nagel, 2012; 

Hendershott and Menkveld, 2014; So and Wang, 2014). Due to such repositioning, liquidity 

demanders quickly consume thin layers of the book, leading to price overshooting and 

subsequent reversals.  

                                                           
1
 https://www.treasury.gov/press-center/press-releases/Documents/Joint_Staff_Report_Treasury_10-15-2015.pdf 

2
 http://www.cftc.gov/PressRoom/SpeechesTestimony/opamassad-30 

https://www.treasury.gov/press-center/press-releases/Documents/Joint_Staff_Report_Treasury_10-15-2015.pdf
http://www.cftc.gov/PressRoom/SpeechesTestimony/opamassad-30
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 The literature on contrarian trading suggests, however, that large price movements should 

be associated with improved liquidity supply. Instead of repositioning the limit orders to the 

deeper layers of the book, liquidity providers should quote more aggressively, because on 

average large price movements are likely to be driven by uninformed order flow leading to large 

reversals (Lehmann, 1990; Lo and MacKinlay, 1990; Gromb and Vayanos, 2002; Avramov, 

Chordia and Goyal, 2006). According to this view, liquidity demanders should find sufficient 

liquidity supply throughout the book during price pressure episodes.  

This paper tests whether limit order book depth and the price impacts of marketable orders 

point to the dominance of evaporating liquidity or competitive contrarian liquidity provision 

during intraday price movements. I design tests assuming the following model of liquidity 

provision: First, competitive liquidity providers choose how much depth to place at every level 

of the limit order book. Second, liquidity demanders begin submitting marketable orders that 

consume some of the depth thus moving the price. Third, liquidity providers choose to either 

keep the remaining limit orders or cancel them. If they cancel, liquidity evaporates as in Nagel 

(2012), and prices overshoot. Finally, prices reverse once liquidity demand has been exhausted 

and the book bounces back. 

My findings suggest that for intraday price pressures evaporating liquidity does not 

dominate modern markets. On average, the per share impact of marketable orders decreases and 

the limit order book depth increases in the magnitude of price movements. 

Although the data generally suggest that liquidity does not evaporate, I find some evidence 

for the existence of market making strategies suggested by Nagel (2012), Hendershott and 

Menkveld (2014) and So and Wang (2014). Specifically, I observe that limit order book depth is 
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net cancelled in the way of price movements and repositioned deeper in the book. The economic 

effect of this repositioning is however small and affects less than 6% of total depth. 

The literature on evaporating liquidity suggests that short-term price inefficiencies serve as 

a profit source for market makers. To support the existence of the contrarian trading incentive, I 

show that the profitability of limit order trading increases in the magnitude of intraday price 

inefficiencies. The aggregate profits from liquidity provision increase by $9-92 per price 

movement with one standard deviation increase in the transitory component of price volatility. 

This confirms that liquidity providers are willing to increase contrarian limit order placement 

when the expected transitory price component is large. 

The remainder of the paper is as follows: Section 1.2 describes how the paper fits into the 

extant literature, Section 1.3 describes the data and methodology, Section 1.4 reports summary 

statistics, Section 1.5 contains empirical findings on limit order book dynamics and contrarian 

profits, and Section 1.6 concludes. 

 

 1.2. Literature review 

The paper builds on three strands of literature. The first strand emphasizes the risks and 

constraints of liquidity provision, which implies that market makers should withdraw during 

price pressures. The second strand of literature discusses the profitability of contrarian strategies, 

which implies that contrarian traders should accumulate inventory against the direction of price 

pressures. The third strand combines the first two by suggesting that the size and frequency of 

price reversals are increasing when market makers scale back to earn higher compensation for 

the risks of liquidity provision through contrarian profits. The goal of this paper is to test whether 
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large intraday price pressures create significant risks so that liquidity providers will supply less 

liquidity consistent with the behaviour suggested by the third strand. 

The size of inventory that liquidity providers are willing to accumulate depends on 

multiple incentives and constraints. In the theory literature, severe instances of mispricing, such 

as stock market bubbles (Shleifer and Vishny, 1997) and downward liquidity spirals 

(Brunnermeier and Pedersen, 2009; Huang and Wang, 2009), are often attributed to the lack of 

funding liquidity available to contrarian traders. Comerton-Forde et al. (2010) support the 

abovementioned theoretical predictions by showing that NYSE market makers provide less 

liquidity when their balance sheet revenues decrease. Furthermore, the significant co-movement 

of stocks can drain the capital of liquidity providers and lead to illiquidity and large price 

reversals (Andrade, Chang and Seasholes, 2008; Hameed, Kang and Viswanathan, 2010; 

Hameed and Mian, 2015). 

Market makers may choose to limit their inventory exposure even if capital constraints are 

not binding. For example, it is in a liquidity provider’s interest to withdraw quotes in anticipation 

of incoming informed market orders. Bonart and Gould (2015) show that limit order traders 

successfully adjust their strategies to market order arrivals. Hendershott, Jones and Menkveld 

(2011) observe that, with the proliferation of algorithmic liquidity provision, quote cancellation 

and repositioning account for a higher proportion of price discovery than trades. Liquidity 

shortages due to increased anticipated informed trading may occasionally cause excessive price 

fluctuations (Easley, Lopez de Prado and O’Hara, 2011, 2012). Panayides (2007) shows that 

liquidity can be temporarily improved by affirmative obligations forcing market makers to 

accumulate informed order flow. When the obligations are not binding, liquidity deteriorates 
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because market makers have to compensate for the position losses incurred during mandatory 

participation. 

Finally, liquidity providers may fail to accommodate order flow if it creates significant 

dislocations in their preferred holding portfolios (Amihud and Mendelson, 1980). Large order 

flows may impede portfolio diversification and set the liquidity provider’s inventory risk above 

the acceptable level. According to Madhavan and Sofianos (1998), NYSE specialists maintain 

target inventory levels by selectively withdrawing from liquidity provision on either the buy or 

the sell side of the bid ask spread. Malinova and Park (2016) show that modern low-latency 

market makers continue to manage their inventory through quote withdrawal, which leads to 

lower liquidity and higher volatility. Market makers may be especially unwilling to hold highly 

risky portfolios because the stochastic nature of liquidity demand makes the portfolio holding 

period uncertain (Ho and Stoll, 1981). This effect may further aggravate the depletion of the 

limit order book during price pressures. 

However, price pressures incentivise liquidity providers and arbitrageurs to increase 

liquidity supply in anticipation of higher contrarian profits. Due to the execution uncertainty of 

non-marketable limit orders, liquidity providers are often assumed to be less informed than 

traders who require immediacy. Although liquidity providers may not know if a specific price 

pressure will result in a permanent or a transitory price dislocation, they may observe that most 

price movements revert over time and engage in contrarian trading (Gromb and Vayanos, 2002; 

Avramov, Chordia and Goyal, 2006; Hendershott and Seasholes, 2007; Biais, Declerck and 

Moinas, 2016). According to Lehmann (1990) and Lo and MacKinlay (1990), the expected 

reversible price component increases in the magnitude of the price movements. This finding 
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implies that large price movements should lead to high expected profits from contrarian trading 

and create strong incentives for contrarian liquidity provision. 

The literature suggesting that liquidity providers should withdraw during large price 

movements and the literature on the profitability of contrarian trading are generalized by papers 

proposing the risk-return trade-off of contrarian liquidity provision. The trade-off between the 

risks and contrarian profits of market making in volatile markets has been studied by Nagel 

(2012). He estimates that contrarian trading becomes more profitable during volatile daily and 

multiple-day intervals. He suggests that, when uncertainty is high, liquidity providers scale back 

and extract additional contrarian profits to compensate for risks and constraints. This leads to the 

evaporating liquidity effect when uninformed order flow creates large price movements that 

reverse over time. 

So and Wang (2014) show that, consistent with Nagel (2012), price reversals become more 

prevalent and contrarian trading strategies become more profitable during intervals of high 

uncertainty around earnings announcements. Hendershott and Menkveld (2014) develop a model 

predicting that the daily reversible price component may become larger when risk-averse market 

makers rebalance their inventory. Following Weill (2007), constrained market makers may 

refrain from liquidity provision at certain points during price reversals, which will lead to jumps 

and aggravate the magnitude of these reversals. As such, the literature on evaporating liquidity 

suggests that the market is often in equilibrium where market makers have incentives to 

withdraw from liquidity provision with the purpose of benefiting from resulting price reversals. 

A burgeoning literature on algorithmic and high-frequency trading takes the debate on 

whether the risk-return trade-off of liquidity provision results in an equilibrium with evaporating 
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liquidity to the intraday level. This literature divides microstructure researchers into two 

opposing camps. 

On the one hand, several papers find that algorithmic liquidity providers may mitigate 

intraday volatility spikes while making contrarian profits (Anand and Venkataraman, 2016; 

Subrahmanyam and Zheng, 2015; Brogaard et al., 2016). The mechanism for such mitigation has 

been discussed by Ahn, Bae and Chan (2001), who find that liquidity providers step in after 

periods of high intraday volatility and mitigate the magnitude of price movements. The finding 

that intraday algorithmic traders act as contrarians during intraday price movements is supported 

by the literature suggesting that algorithmic trading leads to more efficient intraday prices 

(Hendershott, Jones and Menkveld, 2011; Brogaard, Hendershott and Riordan, 2014; Conrad, 

Wahal and Xiang, 2015). Colliard (2015) shows that, although contrarian traders and market 

makers counteract short-term price reversals and make prices more efficient in the short run, they 

may impede price discovery in the long run. This camp, as a whole, suggests that the 

technological advancement of liquidity provision pushes markets to the equilibrium where 

intraday price movements are dominated by competitive contrarian liquidity provision.  

On the other hand, some studies show that algorithmic traders have incentive to reposition 

liquidity to the deeper layers of the limit order book and increase the magnitude of intraday price 

movements (Kirilenko, Kyle, Samadi and Tuzun, 2016; van Kervel, 2015). The finding that 

algorithmic traders have the potential to exacerbate price fluctuations is consistent with the 

results of Korajczyk and Murphy (2015) and Menkveld and van Kervel (2015) who show that 

high frequency traders switch from liquidity supply to liquidity demand during the execution of 

large institutional trades. As a whole, this camp as a whole suggests that the technological 
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advancement of liquidity provision pushes markets to the equilibrium where intraday price 

movements are dominated by evaporating liquidity. 

This paper takes one step further and tests whether intraday price movements in the 

modern Canadian and US equity markets are in equilibrium dominated by competitive contrarian 

liquidity provision or evaporating liquidity. Although the paper does not attempt to identify the 

impact of algorithmic and high-frequency trading activity per se, it provides empirical evidence 

that is generally consistent with the former equilibrium.  

 

1.3. Data and methodology 

The main results are obtained from two datasets. The first is order data from the Toronto 

Stock Exchange (TSX) for the full year of 2006, and the second is millisecond trade and quote 

DTAQ data for the full year of 2014. The TSX dataset is the same as that used by Anand and 

Venkataraman (2016). Reliable estimation of the reversible price component requires a sufficient 

number of observations, which are often not available in small stocks. To ensure reliability, I use 

the TSX60 index constituents, which are the most active stocks in the Canadian market.  

Although the Canadian market circa 2006 lacks some features of today’s markets, such as 

the dominance of high frequency trader (HFT) algorithms and the proliferation of dark pools, the 

TSX data have two advantages. First, the data contain all limit order placements and 

cancellations: thus, allowing an examination of the limit order book beyond the best quotes. 

Second, the TSX data allows exact identification regarding whether a particular trade was 

triggered by marketable ask or bid order while the trade direction is not identified in the DTAQ 

data. I use Lee and Ready (1991) trade classification algorithm to identify trade direction in the 

DTAQ sample. 
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To address the possibility that the 2006 sample is not representative of modern markets, I 

test my findings on a 2014 sample of U.S. stocks from the DTAQ database. Although the DTAQ 

data do not report orders, they are available for a recent time period when high frequency trading 

accounts for a substantial share of the trading volume. Moreover, the data allow me to confirm 

that the results are not unique to the Canadian market. Unlike the Canadian market circa 2006, 

trading activity in the modern U.S. market is significant outside of the major indices, allowing 

for proper estimation of a reversible price component for smaller stocks. A broad sample of 

stocks with different capitalizations will allow me to observe possible differences in limit order 

book depth dynamics around price reversals. I construct the sample of US stocks using a 

procedure similar to Chakrabarty, Jain, Shkilko and Sokolov (2016). This procedure involves 

two steps: First, I assign market capitalization and trading volume rank to all stocks in the CRSP 

database, and second, I select three groups of thirty stocks each as large, medium and small 

based on the sum of the market capitalization and trading volume ranks.  

The sample is constructed in tick time, where tick is an update of the midquote price. 

Calendar time sampling would lead to an incomparable number of intervals with zero activity 

across different samples. Another alternative could be trade time sampling. Trade time sampling 

does not have the shortcomings of calendar time sampling but, as shown by Aït-Sahalia, 

Mykland and Zhang (2011), leads to the overestimation of the reversible price component due to 

bid-ask bounce. As such, tick time sampling does not have either of the above shortcomings and 

appears to be the best alternative for the purpose of current analysis. 

The primary set of results is focused on the dynamics of depth and expected reversible 

price component over the series of consecutive same-directional midquote updates forming the 
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price movements. All price movements during the trading day are included in the sample. The 

typical price movement can be presented as follows: 

Return sign                     … 

Number of quote updates 

before pivot  

4 3 2 1 3 2 1 3 2 1  

Pivot point no no no yes no no yes no no yes 
 

 

I estimate the expected reversible price component as the signed difference between the 

current pivot price
3
 and forecasted pivot price at t+1. Price forecast could be obtained using an 

autoregressive model similar to the one used in Hasbrouck (1993). Although I confirm my 

findings with Hasbrouck methodology on a daily level, I choose a simplified approach for 

intraday estimation of the expected reversible price component.  

The intraday reversible price components are estimated using the following steps: First, I 

rank all pivot-to-pivot log returns for the same stock into twenty buckets by magnitude. Then I 

run the following AR(1) model for each stock: 

                     

where      and        are the current and lagged midquote returns for the stock  .  

The coefficients are used to obtain the expected future return estimate  ̂ . This estimate is 

the reversible price component at time    . For each interval, it shows the percentage of price 

that is expected to be corrected in the future conditioned on past return. This variable can be 

compared to the return at time     in sign and magnitude. Conditional on execution at the pivot 

points, the expected compensation for contrarian liquidity providers will be a sum of effective 

spread and reversible price component. 

                                                           
3
 Since most of the returns within the sequence of midquote-to-midquote updates have a magnitude bounded by the 

minimum tick size, it is more appropriate to estimate the reversible component of the total pivot-to-pivot return. The 

results, however, are robust to estimation with midquote-to-midquote returns and are available upon request.  
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 1.4. Summary statistics  

To capture the differences in liquidity provision during price movements of different 

magnitude, I split the sample into two subsamples. The first one includes only price movements 

with the magnitude below the 90
th

 percentile while the second one includes the price movements 

with the magnitude above 90
th

 percentile. Table 1.1 reports descriptive statistics. The average 

time between the two midquote updates ranges between 3 and 10 seconds for non-extreme price 

movements (non-EPMs) and between 22 and 33 seconds for extreme price movements (EPMs). 

Since modern quote-to-trade ratios tend to be high, the majority of non-EPM price movements 

happen without trading, with the median number of shares traded per price movement being as 

low as zero. This, however, does not imply that volume is trivial when trading takes place. Even 

for a subsample of non-EPMs, several hundreds of shares are demanded on average in the 

direction of return. The EPM sample contains intervals with much more intense trading activity 

ranging from a few thousand to more than ten thousand shares traded during the average EPM. 

When more shares are demanded on one side of the quotes than on the other, volume 

imbalance is created. Consistent with the literature on market making inventory management, 

prices yield to such volume imbalances. The ratio of shares demanded in the direction of return 

to those demanded against the direction of the return is about two. 

This volume imbalance ratio is consistent across the TSX and US samples. Unlike the TSX 

data, the data on US markets does not report whether each particular trade is initiated by buy or 

sell marketable order, and I use Lee and Ready (1991) trade classification algorithm to identify 

trade direction in the US data. The consistency of the volume imbalance ratio for both the TSX 
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and the US samples suggests that Lee and Ready (1991) algorithm provides a reasonable 

estimation of trade direction. 

Despite the differences in sample periods, the TSX sample is comparable to the US 

sample. Trading activity in TSX stocks most closely resembles trading activity in US medium-

sized stocks. Nonetheless, consistent with lower levels of algorithmic and high-frequency trading 

activity, price movements last longer in the TSX sample.  

In modern markets, liquidity is provided by a variety of market participants. Among them, 

high-frequency traders have the technological capacity to react to order flow exceptionally 

quickly. Therefore, they can withdraw limit orders with ease as EPMs develop. I note that high-

frequency traders are present only in the US sample. 

The behavior of liquidity demanders during negative price movements may be affected by 

short-selling restrictions. The TSX sample may therefore contain price declines of smaller 

magnitude. This said, the restrictions are unlikely to affect the US sample because they are 

triggered only after a 10% price decline. It is also possible that the magnitude of price 

movements is reduced by the routing software. Since order routers observe the state of the book 

in real time, they may opt out of demanding too much if the book is thin thereby mitigating the 

price movements. 

 

 1.5. Results 

1.5.1. The dominance of the contrarian trading incentive 

The success of contrarian trading implies that the magnitude of the pricing error is 

positively related to the probability of a price reversal. If it were not the case, then pricing errors 

would systematically increase over time, leading to losses for contrarian traders, and eventually 
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to market crashes. Pricing errors cannot be observed, which makes studies that use various 

techniques for pricing error estimation subject to criticism that the results depend on the choice 

of these techniques. However, price movements are observed, and according to Lehmann (1990) 

and Lo and MacKinlay (1990), larger price movements should contain a larger reversible 

component. 

I use probit analysis to test if the relation between the probability of a reversal and the 

magnitude of the pricing error proxied by the return magnitude is consistent with the profitability 

of contrarian trading. Specifically, I estimate the probability that the current midquote update is a 

pivot point conditional on accumulated return. According to the coefficients reported in the 

Table 1.2, the return magnitude is positively related to the probability of reversal. The result is 

consistent across all samples. On average, the probability of a price reversal increases by 14% 

with one basis point increase in cumulative EPM return for the most active stocks. Pricing errors 

do not systematically accumulate over time. This shows that contrarian traders have a stronger 

incentive to trade against the direction of return when the pricing error increases.  

Contrarian trading incentive defines the shape of the limit order book before a price 

movement begins. Specifically, deeper layers of the book typically contain more shares. As such, 

available contrarian depth should increase as market orders consume first layers of the book 

unless substantial amount of depth is cancelled.  

I estimate contrarian depth as a share depth of the best bid (ask) quote for intervals with a 

negative (positive) midquote return weighted by the proportion of time the quote depth remained 

unchanged in the entire duration of the price movement. This variable represents instant liquidity 

that limit order traders are willing to provide at the best contrarian quote. Figure 1.1 plots 

contrarian depth and the reversible price component by return magnitude percentiles. According 
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to the figure, consistent with the dominance of contrarian trading incentive, contrarian limit order 

depth increases with an increase in return magnitude and the reversible price component. 

The depth of the best contrarian quotes suggests that intraday price movements do not 

typically accelerate because of a lack of contrarian liquidity provision. Notably, however, not all 

of the limit orders placed at the best quotes end up being executed. Some limit orders can be 

cancelled and repositioned, as the literature on constrained liquidity provision suggests. For 

example, according to van Kervel (2015), observed limit order book depth can be misleading as 

some liquidity providers may cancel limit orders when they observe substantial liquidity 

demand. To address this possibility, I construct additional measures of the willingness of an 

average liquidity provider to accumulate inventory against the direction of the price movements. 

The first measure is the elasticity of the best contrarian quotes. For a positive (negative) 

price movement, it captures the number of shares that liquidity providers supply to marketable 

buy (sell) orders per one-cent update of the best ask (bid) quote: 

           
         

                    
 

Although I focus on the elasticity of the contrarian quote in testing whether contrarian 

trading incentive dominates the incentive to reposition liquidity, I provide estimates of non-

contrarian elasticity, which is computed in a similar manner: 

              
           

                       
 

The second measure takes into account that marketable orders traded against the direction 

of price movements can decrease the inventory risks of liquidity providers. It is computed as the 
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inverse
4
 of Amihud (2002) illiquidity measure, except that the data allows me to use the net 

volume traded in the direction of return instead of the total volume: 

          
                     

|   |
 

Table 1.3 reports statistics for EPMs and non-EPMs. Consistent with the literature on 

contrarian trading, an average EPM contains a reversible price component of a magnitude that is 

several times higher than that of an average non-EPM. In line with Figure 1.1, the best contrarian 

depth is 12-50% higher during EPMs. This suggests that net liquidity supply during an intraday 

price movement is dominated by incentives of contrarian trading rather than by risk aversion and 

capital constraints. Contrarian limit order book depth is significantly higher during EPMs.  

The estimates of the elasticity of contrarian quotes point to the same direction as the 

estimates of the best limit order book depth. Specifically, in the TSX sample, the best contrarian 

quote yields by one cent after 826 shares are demanded during the EPM, while it yields to 

demand after 304 shares are demanded during non-EPMs. The result is consistent and 

statistically significant for all samples. Comparison of inverse Amihud measures for EPM and 

non-EPM intervals reveals that it takes a two times higher net volume imbalance to move the 

midquote price by one cent during EPMs than during non-EPMs. For example, in the TSX 

sample, it takes 913 shares of net volume to move the midquote by one cent during EPMs while 

it takes only 450 shares to achieve the same result during non-EPMs. The corresponding net 

volumes for the sample of the most active US stocks are 7,470 and 3,547 shares, respectively. 

The fact that both contrarian quote elasticity and inverse Amihud measure point to an 

increase in liquidity supply during EPMs suggests that evaporating liquidity is not a concern for 

an average intraday EPM. Even if some of the limit order book depth is repositioned from the 

                                                           
4
 By design, the sample does not contain zero-return intervals. This allows me to invert the original measure for 

more intuitive economic interpretation. 
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best quotes at the beginning of a price movement towards the end of a price movement, thus 

increasing its magnitude, the volume executed per one-cent price update ends up being higher 

during larger price movements than it is during smaller ones. 

 

1.5.2. Does liquidity evaporate at all on the intraday level?   

Contrarian incentive appears to be stronger than the incentive to scale back from liquidity 

provision on the intraday level. In this section, I use TSX data to examine if there is any evidence 

of evaporating liquidity. According to Nagel (2012), Hendershott and Menkveld (2014) and So 

and Wang (2014), liquidity providers have an incentive to reposition limit orders further from the 

best quotes so that larger pricing errors would compensate for risks and constraints. 

Figure 1.2 describes limit order book dynamics around the pivot points of intraday 

reversals. Intraday limit order book dynamics during price movements has three important 

features. First, the limit order book depth is net placed at the future best contrarian quote at the 

pivot point. Second, the depth is net cancelled at the limit order book layers between the current 

price and the future pivot point. Third, the amount of depth net cancelled is economically small 

for both EPMs and non-EPMs. 

The above observations suggest that the evaporating liquidity effect described by Nagel 

(2012), Hendershott and Menkveld (2014) and So and Wang (2014) for the daily and multiple-

day price reversals also exists for the intraday ones. That said, consistent with my earlier finding 

that the contrarian limit order book depth increases in the magnitude of the intraday price 

movements, the evaporating liquidity does not exacerbate the magnitude of these movements.
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Table 1.4 contains detailed analysis of the limit order book depth placement and 

cancellation dynamics during the five ticks before the pivot point.
5
 As the price moves in a 

certain direction, contrarian depth is withdrawn from the limit order book layers in the direction 

of the price updates and placed at the future best contrarian quote. For example, during non-

EPMs, one tick before the stock stops falling (raising) at the best contrarian quote            , 

there is, on average, 80 shares net cancelled at the quote above      (below     ) and 262 shares 

net placed at the quote            . One tick before the end of the EPMs, there is, on average, 53 

shares net cancelled in the way of the price movements and 83 shares placed at the future best 

pivot quotes. The number of shares cancelled represents 6.7% and 2.6% of the average best 

contrarian depth during non-EPMs and EPMs, respectively. As such, despite the existence of the 

evaporating liquidity effect during intraday price movements, this effect does not increase in the 

magnitude of price movements and has small economic significance. 

The contrarian depth placed at the layers that are less competitive than the future best pivot 

quote is not executed during the ongoing price movement. The decrease in contrarian depth 

placement at these layers suggests two non-exclusive explanations. First, the liquidity providers 

who engage in reversal trading strategies described by the literature on evaporating liquidity 

have a smaller incentive to assume inventory risk after a certain point. Second, such liquidity 

providers can successfully predict the pivot points of intraday EPMs and non-EPMs.  

The above results point to the existence of limit order repositioning on the intraday level 

that is consistent with the activity of liquidity providers described by Nagel (2012), Hendershott 

and Menkveld (2014) and So and Wang (2014) on the daily and multiple-day level. In line with 

the increasing information content of limit orders documented by Hendershott, Jones and 

                                                           
5
 Limit order book depth dynamics prior to the last five ticks before the pivot point continues the pattern observed 

during the last five ticks. The results are available upon request. 
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Menkveld (2011) and O’Hara (2015), the repositioned limit order book depth appears to be 

highly predictive of the price movement ending point. However, the economic effect of the 

repositioned liquidity is small, and it does not increase with the magnitude of price movements. 

 

1.5.3. Profitability of contrarian liquidity provision 

The positive relation between contrarian liquidity provision and return magnitude is 

consistent with liquidity providers extracting contrarian profits from price reversals, as suggested 

by Nagel (2012). However, an alternative explanation is especially pertinent to intraday price 

movements: the possibility that increased limit order book depth during large intraday price 

movements is due to limit orders being picked off by fast informed liquidity demanders rather 

than due to a significant pricing error component of the large price movements. If this is the case, 

then large intraday price movements and pricing errors would result in losses for aggregated 

limit order traders on average. 

Although the profitability of contrarian strategies and aggregated limit order trading has 

been documented by earlier studies, there is no empirical evidence for the relation between 

pricing errors and profits from liquidity provision. The goal of this section is to test whether 

aggregated profits of limit order trading are increasing consistent with contrarian trading 

incentive or decreasing consistent with informed liquidity demand by fast traders. 

I estimate aggregate profits from a limit order strategy using a methodology developed by 

Handa and Schwartz (1996). This methodology allows estimating the total daily profit from 

liquidity provision as a sum of two components: 

                       ̅                 
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where    and    are the average prices per share executed through non-marketable sell and buy 

limit orders,    and    are the numbers of shares traded against ask and bid quotes,      is the 

end-of-day midquote,
6
  ̅     if       and  ̅     if      .  

The first term corresponds to the aggregate realized profit from spread and reversals, and 

the second term corresponds to the unrealized profit from the end-of-day position. To make the 

data comparable across stock-days with different numbers of reversals, I scale the profits by the 

number of pivot points per day. Gross profit estimates are not affected by possible make-or-take 

fee structure discrepancies. Since liquidity provision rebates are independent of the positioning 

of non-marketable limit orders in the limit order book, I do not include them into profit 

calculations.  

The main independent variable for the current profit analysis is the pricing error ratio. The 

larger the ratio, the higher the proportion of a reversible component of the total daily volatility. I 

estimate the pricing error ratio following the methodology developed by Hasbrouck (1993). First, 

I estimate the vector autoregression (VAR) system with ten lags: 

                                        

                                         

where    is the difference in log midquotes;
7
    is the column vector of three signed trade-related 

variables (a signed trade indicator, signed trading volume, and signed square root of trading 

volume) that allows for a nonlinear relation between returns and trades, and      and      are 

                                                           
6
 Handa and Schwartz (1996) use trade data and benchmark EOD inventory against closing trade. I follow the 

approach of Brogaard, Hendershott and Riordan (2014) and use EOD midquote as a benchmark. 
7
 Using calendar time for price sampling could result in incomparable estimates of the pricing error, as liquid stocks 

have higher midquote update frequencies than the less liquid ones. To make empirical tests comparable across 

different stocks, I compute intraday returns in tick time. 
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zero-mean serially uncorrelated disturbances. I estimate the VAR on the day-by-day basis. Next, 

I invert the VAR to obtain the vector moving average (VMA) representation: 

     
        

              
        

          

     
        

              
        

          

Using the return equation from the VMA model, I estimate the transitory price component: 

                                          

where     ∑   
  

      and     ∑   
  

     .  

The estimate of    shows the sum of expected future price updates given current and past 

shocks to return and trading.  

The pricing error variance can be computed as: 

  
  ∑[     ]      [

  

  
]

 

   

 

I estimate the pricing error ratio as a square root of the pricing error variance scaled by the 

volatility of the log of midquote price: 

                  
  

       
 

It is important to note that the Hasbrouck (1993) methodology estimates the lower bound 

for the pricing error. It assumes that the public information set includes only past returns, volume 

and trading direction. I acknowledge that pricing errors of a higher magnitude may be obtained 

with a more sophisticated methodology.
8
 However, underestimating the magnitude of the pricing 

error is unlikely to lead to a different conclusion about the relation between the pricing error and 

                                                           
8
 For example, Brogaard, Hendershott and Riordan (2014) apply the Kalman filter to estimate the impact of high-

frequency traders on mispricing. 
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liquidity provision, as long as my estimate of the pricing error is increasing in the magnitude of 

the true pricing error. 

Table 1.5 reports the summary statistics for profit components and the pricing error ratio. 

Most aggregate limit order trading profit comes from reversals and spread. Profit estimates for 

the Canadian market are significantly larger than those obtained for the US market, which 

implies that the latter has lower execution costs for marketable orders. Estimated mean pricing 

error ratios are between 1.2 and 2.5%. This does not mean, however, that price inefficiencies 

have low economic significance. Hasbrouck’s (1993) methodology provides an estimate of the 

lower bound of the unobserved pricing error and the true economic significance of the pricing 

error is likely to be greater than estimated. 

I estimate the relation between the limit order trading profit and the pricing error ratio with 

the following linear model: 

                                                                             

where          is the total profit or one of the profit components;                     is the 

pricing error ratio;            is the average percentage effective spread;           is the 

average number of trades per price movement; and               is the total daily return 

magnitude. All variables are estimated on the stock-day level and standardized across stocks. 

The coefficient estimates are reported in Table 1.6. Consistent with the predictions of 

Nagel (2012), one standard deviation increase in the pricing error ratio corresponds to an 

increase in the total limit order trading profits of 4-17%. This translates into a $92.3 increase in 

profit per price movement in the Canadian sample and $76.5, $9.6 and $8.8 increases in the U.S. 

large, medium and small samples.
9
 These estimates are adjusted for volatility, volume and 

                                                           
9
 Although the profit estimates appear to be very large, they are associated with substantial risk. For instance, in the 

TSX sample, the ratio of the profit median to the standard deviation is less than 0.1. 
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spread. Since the pricing error ratio captures the reversible component of volatility, it is more 

closely related with the spread and reversal components than the end-of-day position component 

of the total profit. There is significant correlation between the end-of-day position profit and the 

pricing error ratio for the Canadian and US small stocks. This suggests that, consistent with the 

predictions of Hendershott and Menkveld (2014), liquidity providers may take advantage of 

price pressures to manage their inventories. 

1.6. Conclusions 

This paper studies contrarian liquidity provision during price fluctuations. Academic 

researchers and regulators often voice concerns that liquidity providers have incentives to scale 

back during large intraday price movements; thus, exacerbating them. These concerns are 

fostered by the literature on evaporating liquidity that suggests that the risks and constraints of 

market making lead to the equilibrium where liquidity providers scale back during daily and 

multiple-day price movements to benefit from resulting price reversals.  

I alleviate the above concerns for intraday price movements by showing that, during 

intraday price movements, contrarian incentive dominates the incentive to scale back from 

liquidity provision. Consistent with competitive contrarian trading, liquidity provision is 

increasing in the magnitude of intraday price movements. This result implies that the low-

liquidity equilibrium suggested by the literature on evaporating liquidity for daily and multiple-

day price fluctuations does not typically hold for intraday ones. Liquidity providers typically 

have enough capacity to intensify contrarian liquidity provision with the magnitude of intraday 

price movements. 

 Although contrarian liquidity provision increases in the magnitude of intraday price 

movements, I find some evidence consistent with the scaling back of liquidity providers 
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proposed by the literature on evaporating liquidity. Specifically, limit order depth is withdrawn 

as intraday price movements develop and are repositioned to the quotes that are closer to the 

pivot point. However, the economic significance of such repositioning is small and decreasing in 

the magnitude of price movements. This result suggests that some intraday traders engage in the 

reversal strategies described in the literature on evaporating liquidity. 

Enhanced liquidity provision during large price movements is consistent with the 

profitability of reversal trading strategies developed by several studies. These studies assume that 

price inefficiency serves as compensation for liquidity provision. I support this assumption by 

finding that the aggregate profits of limit order traders increase with the intraday pricing error. 

Moreover, I find some evidence that pricing errors assist limit order traders in managing end-of-

day positions.  

  



24 

 

 1.7. References 

Ahn, H.-J., Bae K.-H. and Chan K., 2001, Limit orders, depth, and volatility: Evidence 

from the stock exchange of Hong Kong, The Journal of Finance 56, 767–788. 

Aït-Sahalia, Y., Mykland P. and Zhang L., 2011, Ultra high frequency volatility estimation 

with dependent microstructure noise, Journal of Econometrics 160, 160–175. 

Amihud, Y., 2002, Illiquidity and stock returns: Cross-section and time-series effects, 

Journal of Financial Markets 5, 31–56. 

Amihud, Y. and Mendelson H., 1980, Dealership market: Market-making with inventory, 

Journal of Financial Economics 8, 31–53. 

Anand, A. and Venkataraman K., 2016, Market conditions, fragility and the economics of 

market making, Journal of Financial Economics, Forthcoming. 

Andrade, S., Chang C. and Seasholes M., 2008, Trading imbalances, predictable reversals, 

and cross-stock price pressure, Journal of Financial Economics 88, 406–423. 

Avramov, D., Chordia, T. and Goyal, A., 2006, Liquidity and autocorrelations in individual 

stock returns, The Journal of Finance 61, 2365–2394. 

Biais, B., Declerck, F. and Moinas, S., 2016, Who supplies liquidity, how and when? BIS 

working paper. 

Bonart, J. and Gould M., 2015, Strategic liquidity provision in a limit order book, Working 

paper. 

Brogaard, J., Carrion, A., Moyaert, T., Riordan, R., Shkilko, A. and Sokolov, K., 2016, 

High-frequency trading and extreme price movements, Journal of Financial Economics, 

Forthcoming. 

Brogaard, J., Hendershott, T. and Riordan, R., 2014, High frequency trading and price 

discovery, Review of Financial Studies 27, 2267–2306. 

Brunnermeier, M. and Pedersen L., 2009, Market liquidity and funding liquidity, Review of 

Financial Studies 22, 2201–2238. 

Chakrabarty, B., Jain, P., Shkilko, A. and Sokolov, K., 2016, Speed of market access and 

market quality: Evidence from the SEC naked access ban, Working paper. 

Colliard, J.-E., 2015, Catching falling knives: Speculating on market overreaction. 

Working paper. 

Comerton-Forde, C., Hendershott, T., Jones, C., Moulton, P. and Seasholes, M., 2010, 

Time variation in liquidity: The role of market-maker inventories and revenues, The Journal of 

Finance 65, 295–331. 



25 

 

Conrad, J., Wahal, S. and Xiang, J., 2015, High-frequency quoting, trading, and the 

efficiency of prices, Journal of Financial Economics 116, 271–291. 

Easley, D., Lopez De Prado, M. and O'Hara, M., 2011, The microstructure of the flash 

crash: Flow toxicity, liquidity crashes, and the probability of informed trading, Journal of 

Portfolio Management 37, 118. 

Easley, D., Lopez De Prado, M. and O'Hara, M., 2012, Flow toxicity and liquidity in a 

high-frequency world, Review of Financial Studies 25, 1457–1493. 

Greenwood, R. and Thesmar, D., 2011, Stock price fragility, Journal of Financial 

Economics 102, 471–490. 

Gromb, D. and Vayanos, D. 2002, Equilibrium and welfare in markets with financially 

constrained arbitrageurs, Journal of Financial Economics 66, 361–407. 

Hameed, A. and Mian, G., 2015, Industries and stock return reversals, Journal of Financial 

and Quantitative Analysis 50, 89–117. 

Hameed, A., Kang, W. and Viswanathan, S., 2010, Stock market declines and liquidity, 

The Journal of Finance 65, 257–293. 

Handa, P. and Schwartz, R., 1996, Limit order trading, The Journal of Finance 51, 1835–

1861. 

Hasbrouck, J., 1993, Assessing the quality of a security market: A new approach to 

transaction-cost measurement, Review of Financial Studies 6, 191–212. 

Hendershott, T., Jones, C. and Menkveld, A., 2011, Does algorithmic trading improve 

liquidity? The Journal of Finance 66, 1–33. 

Hendershott, T. and Menkveld, A., 2014, Price pressures, Journal of Financial Economics 

114, 405–423. 

Hendershott, T. and Seasholes, M., 2007, Market maker inventories and stock prices, 

American Economic Review 97, 210–214. 

Ho, T. and Stoll, H., 1981, Optimal dealer pricing under transactions and return 

uncertainty, Journal of Financial Economics 9, 47–73. 

Huang, J. and Wang, J., 2009, Liquidity and market crashes, Review of Financial Studies 

22, 2607–2643. 

Khan, M., Kogan, L. and Serafeim, G., 2012, Mutual fund trading pressure: Firm-level 

stock price impact and timing of SEOs, The Journal of Finance 67, 1371–1395. 

Kirilenko, A., Kyle, A., Samadi, M. and Tuzun, T., 2016, The flash crash: The impact of 

high-frequency trading on an electronic market, The Journal of Finance, forthcoming. 



26 

 

Korajczyk, R. and Murphy, D., 2015, High frequency market making to large institutional 

trades, Working paper. 

Lee, C. and Ready, M., 1991, Inferring trade direction from intraday data, The Journal of 

Finance 46, 733–746. 

Lehmann, B., 1990, Fads, martingales, and market efficiency, Quarterly Journal of 

Economics 105, 1–28. 

Lo, A. and MacKinlay, C., 1990, When are contrarian profits due to stock market 

overreaction? Review of Financial Studies 2, 175–205. 

Madhavan, A. and Sofianos, G., 1998, An empirical analysis of NYSE specialist trading, 

Journal of Financial Economics 48, 189–210. 

Malinova, E. and Park, A., 2016, “Modern” market makers, Working paper. 

Menkveld, A. and van Kervel, V., 2015, High-frequency trading around large institutional 

orders, Working paper. 

Nagel, S., 2012, Evaporating liquidity, Review of Financial Studies 25, 2005–2039. 

O’Hara, M., 2015, High frequency market microstructure, Journal of Financial Economics 

116, 257–270. 

Panayides, M., 2007, Affirmative obligations and market making with inventory, Journal 

of Financial Economics 86, 513–542. 

Shleifer, A. and Vishny, R., 1997, The limits of arbitrage, The Journal of Finance 52, 35–

55. 

So, E. and Wang, S., 2014, News-driven return reversals: Liquidity provision ahead of 

earnings announcements, Journal of Financial Economics 114, 20–35. 

Subrahmanyam, A. and Zheng, H., 2015, Limit order placement by high-frequency traders, 

Working paper. 

van Kervel, V., 2015, Competition for order flow with fast and slow traders, Review of 

Financial Studies 28, 2094–2127. 

Weill, P. O., 2007, Leaning against the wind, The Review of Economic Studies 74, 1329–

1354. 

  



27 

 

Figure 1.1. Expected price correction and depth 

The figure shows the expected price correction and contrarian best quote depth aggregated by return magnitude percentiles. The 

expected price correction is adjusted for the return direction, so it represents the transitory component of the contemporaneous price. 

Contrarian depth is the depth of the best quote in the direction of return. The first figure represents the Canadian TSX60 sample, while 

the second, third and fourth figures represent US large, medium and small stocks, respectively. 
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Figure 1.2. Limit order book dynamics during price movements 

The figure shows limit order book depth dynamics during five midquote updates before the pivot point. The top plots correspond to 

intervals with a return magnitude below the 90
th

 percentile, and the bottom plots correspond to the intervals with return above the 90
th

 

percentile. The left plots report depth dynamics exactly at the future best contrarian quote, and the right plots report aggregate depth 

dynamics at all limit order book layers that undercut the future best contrarian quote. 

 

 
Net depth placed at the future best contrarian pivot quote, 

non-EPMs 

 
Sum of net depth placed at the limit order book layers better than future best 

contrarian pivot quote, non-EPMs 

 
Net depth placed at the future best contrarian pivot quote, 

EPMs 

 
Sum of net depth placed at the limit order book layers better than future best 

contrarian pivot quote, EPMs 
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Table 1.1. Intraday summary statistics 

The table reports intraday summary statistics for the intraday price movements.        is the 

absolute return,       ,          is the number of shares traded in the direction and against the 

direction of return, accordingly.        is the difference between        and         . 
         is the time that the price moves in the same direction.                  is the 

number of midquote updates in the price movements. Panel A shows the coefficients for the 

price movements with absolute return below the 90
th

 percentile, and Panel B shows the 

coefficients for the sample of returns above the 90
th

 percentile. 

Panel A: Non-EPMs 

TSX60 Mean Median Std 

           2.444 1.652 2.427 

               308 0 7,295 

                 157 0 10,095 

               151 0 12,042 

                  10.159 0.960 42.897 

                  1.529 1 0.925 

                 24,303,780   

TAQ Large Mean Median Std 

           1.370 1.029 1.221 

               1,824 0 15,950 

                 795 0 10,548 

               1,029 0 12,134 

                  3.469 0.040 22.630 

                   1.572 1 0.895 

                 28,302,974   

TAQ Medium Mean Median Std 

           1.625 1.160 1.925 

               163 0 1,831 

                 65 0 1,431 

               98 0 1,772 

                  4.110 0.033 20.134 

                  1.534 1 0.980 

                 25,883,432   

TAQ Small Mean Median Std 

           2.074 1.468 2.480 

               100 0 1,607 

                 41 0 1,088 

               58 0 1,450 

                  5.369 0.051 35.423 

                  1.548 1 0.971 

                 20,602,427   
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Panel B: EPMs 

TSX60 Mean Median Std 

           13.057 10.775 9.214 

               2,362 300 30,426 

                 941 0 25,408 

               1,421 200 34,021 

                  33.549 6.500 117.748 

                  3.707 3 2.493 

                 2,703,496   

TAQ Large Mean Median Std 

           5.255 4.112 3.698 

               10,519 2,549 49,768 

                 5,047 700 30,699 

               5,472 1,400 33,129 

                  22.242 4.614 73.572 

                  5.114 5 2.496 

                 3,145,945   

TAQ Medium Mean Median Std 

           7.842 5.959 45.318 

               1,156 301 6,512 

                 424 0 5,873 

               732 203 6,680 

                  23.343 5.060 72.534 

                  4.913 4 3.363 

                 2,877,966   

TAQ Small Mean Median Std 

           9.586 7.110 27.496 

               638 100 5,022 

                 236 0 2,933 

               402 95 3,870 

                  27.286 4.023 111.422 

                  4.632 4 3.247 

                 2,291,077   
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Table 1.2. Probit regressions 

The table reports coefficients and marginal effects of a probit model described in Section 5.1. 

The dependent variable is the probability that the current midquote update is the last one in the 

sequence of same-directional midquote updates.         is the absolute cumulative return 

accumulated since the beginning of a price movement.        is the net number of shares 

traded in the direction of return, and          is the percentage effective spread. Panel A 

shows the coefficients for the price movements with absolute return below 90
th

 percentile and 

Panel B shows the coefficients for the sample of returns above 90
th

 percentile. P-values are 

given in parentheses. 

Panel A: Non-EPMs 

 TSX60 TAQ Large TAQ Medium TAQ Small 

           0.267 0.015 0.278 0.308 

 (0.00) (0.00) (0.00) (0.00) 

            0.060 0.210 0.054 0.025 

 0.022 0.080 0.020 0.009 

 (0.00) (0.00) (0.00) (0.00) 

                       -0.002 -0.034 -0.292 -0.340 

 -0.001 -0.013 -0.109 -0.127 

 (0.00) (0.00) (0.00) (0.00) 

             -0.022 -1.709 -0.053 -0.035 

 -0.008 -0.653 -0.020 -0.013 

 (0.00) (0.00) (0.00) (0.00) 

Pseudo R-Squared 0.007 0.020 0.003 0.002 

Panel B: EPMs    

 TSX60 TAQ Large TAQ Medium TAQ Small 

           -1.242 -1.287 -0.900 -0.880 

 (0.00) (0.00) (0.00) (0.00) 

            0.073 0.137 0.009 0.009 

 0.021 0.033 0.002 0.003 

 (0.00) (0.00) (0.00) (0.00) 

                       -0.004 -0.032 -0.071 -0.173 

 -0.001 -0.008 -0.020 -0.048 

 (0.00) (0.00) (0.00) (0.00) 

             -0.175 -4.716 -0.028 -0.068 

 -0.050 -1.146 -0.008 -0.019 

 (0.00) (0.00) (0.00) (0.00) 

Pseudo R-Squared 0.129 0.085 0.008 0.010 
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Table 1.3. Intraday price movements 

The table reports statistics for key variables of interest during price movements with the magnitude above 90
th

 

percentile (EPMs) and below 90
th

 percentile (non-EPMs).                   is the deviation of price from 

the expected underlying efficient price as estimated in the Data and Methodology section.            is the 

best ask(bid) depth if the return is positive(negative) and               is the depth of the opposite best 

quote.            is the number of shares traded through marketable buy(sell) orders per one-cent move of 

best ask(bid) quote during positive (negative) price movement and               is estimated accordingly the 

opposite best quote.           is the net volume imbalance divided by return in basis points. **, *** 

correspond to the statistical significance at 0.05% and 0.01%. 

TSX EPM non-EPM difference 

                      7.675 1.433 6.242*** 

                   2,034 1,238 796*** 

                      1,140 838 303*** 

                   826 304 523*** 

                      402 124 277*** 

                       913 450 463*** 

TAQ Large EPM non-EPM difference 

                      3.390 0.889 2.501*** 

                   1,216 870 346*** 

                      1,485 1,536 -51*** 

                   2,654 1,670 984*** 

                      1,276 688 588*** 

                       7,470 3,547 3,923*** 

            EPM non-EPM difference 

                      4.809 0.994 3.815*** 

                   271 221 50*** 

                      333 319 14*** 

                   353 175 178*** 

                      133 63 70*** 

                       832 364 468*** 

           EPM non-EPM difference 

                      5.894 1.276 4.618*** 

                   203 178 25*** 

                      239 240 -1** 

                   178 106 72*** 

                      69 38 30*** 

                       315 129 186*** 
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Table 1.4. Dynamics of limit order book depth 

The table reports net depth placement dynamics around the future best pivot quotes during five ticks before the 

price reaches the pivot point. The best contrarian quote at pivot is the best ask (bid) quote at the turning point 

of the positive (negative) price movement. The best non-contrarian quote at pivot is the best bid (ask) quote at 

the turning point of the positive (negative) price movement. Limit order book layers that are better or worse 

than the future best pivot quotes are identified accordingly. The net depth is estimated as non-marketable share 

volume placed minus cancelled at the given layer of the limit order book. Panel A shows the coefficients for 

the price movements with absolute return below 90
th

 percentile, and Panel B shows the coefficients for the 

sample of returns above the 90
th

 percentile. P-values are given in parentheses. 

Panel A: non-EPMs 

ticks 

to 

pivot 

best 

contrarian 

quote 

at pivot 

1  

cent 

better 

2 

cents 

better 

3 

cents 

better 

4 

cents 

better 

5 

cents 

better 

6 

cents 

better 

7 

cents 

better 

8 

cents 

better 

9 

cents 

better 

10 

cents 

better 

10+  

cents 

better 

0 261.6 -75.9 -8.0 -2.7 -0.2 -0.1 0.1 -3.3 0.0 0.0 0.1 0.3 

 (0.00) (0.00) (0.00) (0.00) (0.09) (0.20) (0.27) (0.00) (0.77) (0.15) (0.39) (0.00) 

1 168.0 -22.7 -8.8 -6.5 -2.0 -0.4 -0.6 -2.3 -0.1 -0.1 0.0 0.1 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.03) (0.90) (0.20) 

2 133.4 -17.4 -8.2 -7.0 -2.2 -0.5 -0.6 -2.4 0.0 -0.1 -0.1 0.2 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.63) (0.14) (0.03) (0.23) 

3 127.3 -14.1 -11.9 -7.4 -1.9 -0.4 -0.5 -2.1 0.5 0.0 0.0 0.9 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.05) (0.01) (0.00) (0.04) (0.71) (0.72) (0.00) 

4 128.4 -9.4 -11.7 -8.3 -1.6 -0.2 0.7 -2.0 0.2 0.0 0.1 2.2 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.53) (0.12) (0.00) (0.54) (0.96) (0.78) (0.00) 

5 132.1 -8.9 -6.3 -8.2 -2.1 -0.4 -0.1 -2.8 0.9 0.5 0.5 5.1 

 

(0.00) (0.00) (0.00) (0.00) (0.03) (0.27) (0.92) (0.00) (0.00) (0.10) (0.14) (0.00) 

 

 1  

cent 

worse 

2  

cents 

worse 

3  

cents 

worse 

4  

cents 

worse 

5 

cents 

worse 

6  

cents 

worse 

7  

cents 

worse 

8  

cents 

worse 

9  

cents 

worse 

10  

cents 

worse 

10+  

cents 

worse 

0  34.3 10.3 0.3 0.3 -1.8 -4.8 -5.9 -2.9 -2.8 -3.5 20.6 

  (0.00) (0.00) (0.13) (0.13) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

1  25.3 2.4 -2.7 -1.2 -2.6 -2.8 -4.4 -3.9 -2.9 -3.5 35.2 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

2  17.7 0.7 -2.9 -2.4 -2.5 -1.9 -4.5 -3.5 -2.9 -2.7 45.4 

  (0.00) (0.11) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

3  18.4 -0.2 -2.6 -2.2 -2.2 -2.5 -4.1 -3.5 -3.4 -2.9 54.5 

  (0.00) (0.76) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

4  17.4 0.2 -3.7 -2.6 -1.7 -2.2 -4.4 -2.9 -2.8 -1.7 50.3 

  (0.00) (0.80) (0.00) (0.00) (0.02) (0.00) (0.00) (0.00) (0.00) (0.08) (0.00) 

5  19.4 -0.5 -3.4 -2.1 -2.2 -2.4 -4.5 -3.7 -3.1 0.9 55.2 

  (0.00) (0.68) (0.00) (0.03) (0.04) (0.01) (0.00) (0.00) (0.00) (0.68) (0.00) 
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ticks 

to 

pivot 

best non-

contrarian 

quote 

at pivot 

1  

cent 

better 

2 

cents 

better 

3 

cents 

better 

4 

cents 

better 

5 

cents 

better 

6 

cents 

better 

7 

cents 

better 

8 

cents 

better 

9 

cents 

better 

10 

cents 

better 

10+  

cents 

better 

0 348.5 -27.4 -5.4 -3.6 -1.3 -0.1 -0.5 -1.0 -0.2 -0.1 0.0 -0.5 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.12) (0.00) (0.00) (0.00) (0.00) (0.89) (0.00) 

1 184.0 -26.1 -7.6 -4.7 -2.0 -0.5 -1.0 -1.6 -0.4 -0.3 0.1 -1.0 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.66) (0.00) 

2 105.4 -25.5 -8.8 -5.7 -2.0 -0.6 -1.0 -1.5 -0.5 -0.3 -0.2 -1.0 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.00) 

3 75.2 -23.9 -8.2 -5.3 -1.9 -0.8 -0.7 -1.4 -0.5 0.2 -0.1 -0.9 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.42) (0.43) (0.00) 

4 58.7 -21.7 -7.5 -5.8 -2.5 -0.7 -0.6 -1.7 -0.5 0.1 0.3 -1.8 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.33) (0.00) (0.00) (0.75) (0.19) (0.00) 

5 44.3 -16.6 -6.0 -5.1 -2.6 -1.0 -1.3 0.2 -0.8 -0.1 0.0 -2.7 

 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.78) (0.00) (0.87) (0.88) (0.00) 

 

 1  

cent 

worse 

2  

cents 

worse 

3  

cents 

worse 

4  

cents 

worse 

5 

cents 

worse 

6  

cents 

worse 

7  

cents 

worse 

8  

cents 

worse 

9  

cents 

worse 

10  

cents 

worse 

10+  

cents 

worse 

0  33.6 -3.2 -5.6 2.5 3.5 1.7 -1.6 1.2 1.7 -1.6 83.6 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

1  130.0 52.2 3.5 2.7 1.8 0.3 -2.3 -2.2 0.4 -1.5 67.8 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.21) (0.00) (0.00) (0.58) (0.00) (0.00) 

2  82.8 116.6 58.6 8.1 2.8 0.0 -1.5 -2.6 -2.9 -2.1 56.5 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.96) (0.00) (0.00) (0.00) (0.00) (0.00) 

3  25.2 96.4 125.1 47.0 6.3 -0.1 -1.9 -2.4 -2.5 -3.5 46.5 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.80) (0.00) (0.00) (0.00) (0.00) (0.00) 

4  -6.8 44.6 109.9 90.2 44.1 1.5 -1.9 -1.7 0.0 -4.1 30.6 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.07) (0.02) (0.02) (0.94) (0.00) (0.00) 

5  -21.0 9.0 60.1 68.4 91.9 52.9 -2.2 -5.1 0.1 -0.2 26.8 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.07) (0.00) (0.90) (0.80) (0.00) 
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Panel B: EPMs 

ticks 

to 

pivot 

best 

contrarian 

quote 

at pivot 

1  

cent 

better 

2 

cents 

better 

3 

cents 

better 

4 

cents 

better 

5 

cents 

better 

6 

cents 

better 

7 

cents 

better 

8 

cents 

better 

9 

cents 

better 

10 

cents 

better 

10+  

cents 

better 

0 83.0 4.2 1.0 -11.4 -5.6 -2.6 -5.0 -1.2 -3.4 -2.7 -2.2 -24.5 

 (0.00) (0.40) (0.77) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

1 65.2 -24.1 17.2 -3.3 -5.5 -1.3 -3.3 -2.2 -2.1 -1.8 -1.4 -17.9 

 (0.00) (0.00) (0.00) (0.03) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

2 45.9 -8.3 -11.8 1.7 1.0 -1.0 -1.9 -2.5 -1.7 -0.9 0.6 -11.8 

 (0.00) (0.00) (0.00) (0.42) (0.47) (0.00) (0.04) (0.00) (0.00) (0.00) (0.61) (0.00) 

3 52.6 -2.3 -24.8 -12.8 1.2 0.2 -2.5 -3.1 -1.3 -0.7 -1.7 -8.5 

 (0.00) (0.20) (0.00) (0.00) (0.56) (0.70) (0.00) (0.00) (0.00) (0.00) (0.35) (0.00) 

4 58.6 3.6 -18.6 -26.9 -6.6 0.7 -2.8 -2.9 -0.9 -0.1 -3.8 -6.3 

 (0.00) (0.02) (0.00) (0.00) (0.00) (0.33) (0.00) (0.00) (0.00) (0.62) (0.19) (0.00) 

5 59.4 5.5 -15.8 -28.2 -19.5 -1.2 -5.1 -3.5 -0.5 0.2 -2.2 -6.0 

 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.08) (0.00) (0.00) (0.25) (0.52) (0.29) (0.00) 

 

 1  

cent 

worse 

2  

cents 

worse 

3  

cents 

worse 

4  

cents 

worse 

5 

cents 

worse 

6  

cents 

worse 

7  

cents 

worse 

8  

cents 

worse 

9  

cents 

worse 

10  

cents 

worse 

10+  

cents 

worse 

0  9.9 33.5 5.9 12.9 5.5 -1.5 1.6 0.4 -0.8 -1.7 50.6 

  (0.05) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.40) (0.04) (0.00) (0.00) 

1  16.4 31.5 2.8 3.8 0.9 0.9 -2.3 -2.1 -1.7 -3.0 61.7 

  (0.00) (0.00) (0.01) (0.00) (0.18) (0.12) (0.00) (0.00) (0.00) (0.00) (0.00) 

2  22.2 17.1 1.5 -1.4 -0.2 0.2 -3.7 -3.8 -1.8 -3.6 62.8 

  (0.00) (0.00) (0.15) (0.24) (0.75) (0.76) (0.00) (0.00) (0.00) (0.00) (0.00) 

3  20.0 7.4 -2.0 -0.5 -0.4 -0.6 -3.7 -3.4 -2.3 -2.7 71.7 

  (0.00) (0.00) (0.02) (0.67) (0.54) (0.41) (0.00) (0.00) (0.00) (0.00) (0.00) 

4  20.4 2.8 -3.8 -3.7 0.1 -1.7 -3.4 -3.8 -0.7 -1.6 73.9 

  (0.00) (0.06) (0.00) (0.00) (0.88) (0.01) (0.00) (0.00) (0.26) (0.01) (0.00) 

5  20.5 2.9 -3.0 -4.0 0.7 -2.1 -3.7 -3.4 -1.6 -1.1 74.1 

  (0.00) (0.16) (0.11) (0.00) (0.45) (0.01) (0.00) (0.00) (0.04) (0.16) (0.00) 
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ticks 

to 

pivot 

best non-

contrarian 

quote 

at pivot 

1  

cent 

better 

2 

cents 

better 

3 

cents 

better 

4 

cents 

better 

5 

cents 

better 

6 

cents 

better 

7 

cents 

better 

8 

cents 

better 

9 

cents 

better 

10 

cents 

better 

10+  

cents 

better 

0 270.1 12.3 5.8 -1.1 -0.8 -0.3 -0.6 -9.1 -0.7 -0.6 -0.6 -10.5 

 (0.00) (0.00) (0.04) (0.19) (0.44) (0.01) (0.18) (0.00) (0.00) (0.00) (0.00) (0.00) 

1 126.4 2.5 3.9 -0.8 -0.1 -0.5 -1.4 -4.9 -1.0 -0.8 -0.6 -9.5 

 (0.00) (0.27) (0.07) (0.28) (0.86) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

2 38.7 -3.7 -0.8 -1.2 -0.1 -0.5 -1.3 -1.7 -0.7 -0.5 -1.7 -5.6 

 (0.00) (0.01) (0.67) (0.13) (0.95) (0.00) (0.00) (0.00) (0.00) (0.00) (0.16) (0.00) 

3 13.7 -8.5 -4.0 -2.6 -0.9 -0.6 -0.7 1.8 -0.2 -0.4 -2.2 -3.9 

 (0.00) (0.00) (0.00) (0.00) (0.13) (0.00) (0.00) (0.00) (0.47) (0.00) (0.22) (0.00) 

4 7.6 -14.6 -3.6 -3.1 -0.7 -0.6 -0.6 7.5 -0.1 -0.3 -0.2 -2.9 

 (0.00) (0.00) (0.00) (0.00) (0.36) (0.00) (0.00) (0.00) (0.84) (0.00) (0.03) (0.00) 

5 10.2 -15.4 -2.4 -3.2 -1.2 -0.8 -0.7 12.1 -0.4 -0.3 -0.1 -2.5 

 

(0.00) (0.00) (0.01) (0.00) (0.02) (0.03) (0.00) (0.00) (0.00) (0.01) (0.41) (0.00) 

 

 1  

cent 

worse 

2  

cents 

worse 

3  

cents 

worse 

4  

cents 

worse 

5 

cents 

worse 

6  

cents 

worse 

7  

cents 

worse 

8  

cents 

worse 

9  

cents 

worse 

10  

cents 

worse 

10+  

cents 

worse 

0  133.8 -4.0 -35.2 -2.9 -8.5 -6.0 -14.7 -9.6 -1.4 -7.2 -33.7 

  (0.00) (0.42) (0.00) (0.16) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) 

1  148.0 180.6 12.6 -13.5 -3.9 -5.1 -8.0 -8.9 -4.0 -3.7 -23.3 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

2  52.3 165.0 96.0 17.2 5.0 -0.3 -2.9 -5.1 -7.7 -2.4 -9.6 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.75) (0.00) (0.00) (0.00) (0.00) (0.00) 

3  0.4 116.0 148.3 72.7 21.2 5.1 2.2 -2.0 -7.9 -4.7 -9.2 

  (0.88) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.00) 

4  -31.3 51.0 146.7 125.7 52.2 19.9 9.6 3.8 -5.8 -5.6 -3.2 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.34) 

5  -42.7 14.6 100.9 137.8 83.0 40.7 18.3 9.9 -2.2 -5.1 -1.3 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.05) (0.00) (0.78) 
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Table 1.5. Profits summary statistics 

The table reports summary statistics for the estimated profits from liquidity provision and daily 

pricing errors.                is the liquidity providers’ profit component corresponding to 

spread and reversals.                 is the liquidity providers’ profit component 

corresponding to end-of-day position profits.              is the sum of the two components. 

All profit components are estimated in dollars and scaled by the number of reversals per day. 

                    is the proportion of intraday price variance attributable to the pricing 

error. 

TSX60 Mean Median Std 

              632.4 230.1 2186.4 

                438.1 153.0 1536.4 

                 194.4 30.2 1170.8 

                     2.45% 0.99% 5.46% 

TAQ Large Mean Median Std 

              65.9 15.6 801.3 

                69.1 15.1 559.8 

                 -4.1 0.0 361.5 

                     1.48% 0.88% 2.25% 

TAQ Medium Mean Median Std 

              2.7 1.0 61.3 

                3.1 1.1 44.9 

                 -0.5 0.0 21.6 

                     1.20% 0.63% 2.66% 

TAQ Small Mean Median Std 

              3.3 0.6 54.6 

                3.3 0.7 39.9 

                 -0.5 0.0 18.9 

                     2.26% 0.80% 7.87% 
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Table 1.6. Profits regression 

The table reports regression coefficients of the following model: 

                                                                             

where the dependent variable is the total profit of liquidity provision, profits from reversals and spread and 

profits from accumulated end of day position.                   is the proportion of intraday price 

variance attributable to the pricing error,          is the average percentage effective spread,         is 

the number of trades per day and             is the daily return magnitude. Regressions are estimated 

with fixed effects. All variables are standardized. P-values corresponding to double clustered standard errors 

are reported in parentheses. 

Panel A: Dependent – Total profits of limit order trading 

 TSX60 TAQ Large TAQ Medium TAQ Small 

                   0.0422 0.0955 0.1566 0.1619 

 (0.00) (0.00) (0.08) (0.00) 

          -0.0816 -0.0106 0.0108 -0.0218 

 (0.01) (0.60) (0.68) (0.46) 

         0.0754 0.0381 0.0472 0.0666 

 (0.00) (0.10) (0.19) (0.17) 

             0.0593 -0.0397 -0.1092 -0.0735 

 (0.01) (0.01) (0.08) (0.02) 

         0.01 0.01 0.02 0.03 

Panel B: Dependent – Profits from spread and reversals 

 TSX60 TAQ Large TAQ Medium TAQ Small 

                   0.0316 0.1528 0.0935 0.1113 

 (0.01) (0.00) (0.02) (0.00) 

          -0.0786 -0.0339 -0.0113 -0.0582 

 (0.00) (0.11) (0.63) (0.03) 

         0.0676 0.0739 0.0723 0.1179 

 (0.00) (0.00) (0.09) (0.02) 

             0.0555 -0.0473 -0.0484 -0.0688 

 (0.01) (0.00) (0.08) (0.01) 

        0.01 0.03 0.01 0.03 

Panel C: Dependent – Profits from end-of-day position 

 TSX60 TAQ Large TAQ Medium TAQ Small 

                   0.0533 -0.0269 0.0405 0.0643 

 (0.00) (0.13) (0.66) (0.00) 

          -0.0725 0.0298 0.0424 0.0290 

 (0.01) (0.13) (0.08) (0.28) 

         0.0607 -0.0304 -0.0156 -0.0389 

 (0.00) (0.23) (0.48) (0.36) 

             0.0592 -0.0146 -0.1487 -0.0442 

 (0.01) (0.16) (0.07) (0.03) 

         0.01 0.01 0.01 0.01 
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Chapter 2. HIGH FREQUENCY TRADING AND EXTREME PRICE 

MOVEMENTS 

2.1. Introduction 

In modern markets, high frequency traders (HFTs) play an important role in providing 

liquidity (Hasbrouck and Saar, 2013; Menkveld, 2013; Malinova, Park and Riordan, 2014, Conrad, 

Wahal and Xiang, 2015). Generally, the rise of HFT has been accompanied by a reduction in trading 

costs (Angel, Harris and Spatt, 2011; Jones, 2013; Harris, 2013) and an increase in price efficiency 

(Carrion, 2013; Brogaard, Hendershott and Riordan, 2014; Chaboud, Chiquoine, Hjalmarsson and 

Vega, 2014). Nevertheless, liquidity provision by HFTs is endogenous as they are typically not 

obligated to stabilize markets in periods of stress. A growing literature finds that endogenous 

liquidity providers (ELPs) often withdraw from the market during such periods (Raman, Robe and 

Yadav, 2014; Bongaerts and Van Achter, 2015; Cespa and Vives, 2015; Korajczyk and Murphy, 

2015; Anand and Venkataraman, 2016). The focus of this study is HFT behavior during stressful 

conditions. 

We define stressful periods as unexpected and rapidly developing extreme price movements 

(EPMs) that belong to the 99.9
th

 percentile of the return distribution. While a growing body of work 

examines HFT activity during normal conditions, less attention has been given to periods of market 

stress such as EPMs. Our main finding is that, on average, HFTs trade in the opposite direction of 

EPMs and supply liquidity to non-high frequency traders (nHFTs) by absorbing their trade 

imbalances. This result holds even during the largest EPMs and during the times when nHFTs 

demand substantial amounts of liquidity. Notably, HFTs supply liquidity both to the EPMs that 

eventually reverse and the EPMs that result in permanent price changes. This means that an average 

HFT trade during extreme price movements provides liquidity to aggressive, occasionally informed, 

nHFTs. 
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Even though EPMs occur quickly, they consist of multiple sequential trades. If HFT 

algorithms are designed to stop providing liquidity during EPMs, technology would allow them to 

withdraw limit orders as EPMs develop. Yet the results imply that the algorithms are designed to 

remain in the market, likely because doing so is profitable. Although revenue estimates are noisy, 

we find evidence that the revenues are greater on days when EPMs occur. Despite the enhanced 

revenue potential, the data show that HFTs do not cause EPMs. Our results complement those of 

Bessembinder, Carrion, Tuttle and Venkataraman (2016), who show that liquidity provision 

increases around large uninformed predictable trades. In our setting EPMs are generally 

unpredictable and are occasionally informed, yet the incentive to provide liquidity remains. Our 

findings expand the understanding of resiliency of modern markets in stressful times.  

Although HFTs stabilize prices during an average EPM, we find clear limits to HFT 

liquidity provision. HFT liquidity supply is outstripped by their liquidity demand when more than 

one stock simultaneously undergoes an EPM (we refer to these instances as co-EPMs). We show 

that during such periods, HFTs accumulate substantial position risk, which likely triggers risk 

controls, particularly for their liquidity supplying strategies. Focusing on one exceptionally large co-

EPM, the 2010 Flash Crash, Kirilenko, Kyle, Samadi and Tuzun (2016) find that HFTs withdrew 

from liquidity provision. Reflecting on the Crash, the regulators have expressed concern that 

incentives to provide liquidity are deficient during market-wide periods of stress (CFTC-SEC, 

2011). Our findings generalize these results and deepen our understanding of market-wide liquidity 

shortages and offer evidence in support of the regulators’ view. 

Theory suggests that ELPs may choose several ways of reacting to order imbalances. Traders 

described by Grossman and Miller (1988) choose to supply liquidity during order imbalances. On 

the contrary, the predatory traders of Brunnermeier and Pedersen (2005) opt to demand liquidity. 
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The back-runners of Yang and Zhu (2015) supply liquidity until they recognize an institutional 

trading pattern and then switch to demanding liquidity. In our setting, HFT behavior during an 

average EPM is more consistent with that described by Grossman and Miller (1988), although the 

data point to net HFT liquidity demand during co-EPMs and occasional back-running for long EPM 

sequences. 

 

2.2. Data, EPM detection and summary statistics 

2.2.1. HFT data 

The HFT data come from NASDAQ and span two years: 2008 and 2009. These data have 

been previously used by Carrion (2013), Brogaard, Hendershott and Riordan (2014), and O’Hara, 

Yao and Ye (2014), among others. For each trade the dataset contains an indicator for whether an 

HFT or an nHFT participates on the liquidity-supplying or the liquidity-demanding side of the trade. 

When preparing the data NASDAQ identified 26 firms that act as independent HFT proprietary 

trading firms based on its knowledge of the firm’s activity. A firm is identified by NASDAQ as an 

HFT if it trades frequently, holds small intraday inventory positions, and ends the day with a near 

zero inventory. HFTs on NASDAQ have no obligation to stabilize prices during stressful times 

(Bessembinder, Hao and Lemmon, 2011; Clark-Joseph, Ye and Zi, 2016) and so are ideal 

participants to study liquidity provision by ELPs. 

The data allow us to directly observe HFT liquidity provision and demand. We are subject to 

the same limitations as the abovementioned studies, mainly that we cannot observe individual HFT 

activity and that we only observe trading on NASDAQ. Although trades on NASDAQ make up 30-

40% of all trading activity in the sample stocks, it is a possible that during EPMs HFTs provide 

liquidity on NASDAQ while taking it from the other markets. We are unable to refute this 
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possibility. Nonetheless, we believe that such liquidity transfer is unlikely as liquidity provision on 

NASDAQ is not systematically more attractive than it is on other venues during the sample period. 

 

2.2.2. EPM identification 

We identify EPMs as extreme changes in the National Best Bid and Offer (NBBO) 

midquotes. The use of midquotes instead of trade prices allows us to reduce the effect of the bid-ask 

bounce. In untabulated results we find similar effects when using trade prices. We obtain the 

midquotes from the NYSE Trade and Quote database (TAQ) after adjusting the data according to 

the recommendations of Holden and Jacobsen (2014). Specifically, we (i) interpolate the times of 

trades and the times of NBBO quotes within a second, (ii) adjust for withdrawn quotes, (iii) delete 

locked and crossed NBBO quotes, and (iv) delete trades reported while the NBBO is locked or 

crossed. To avoid focusing on price dislocations that may be caused by market opening and closing 

procedures, we only consider trading activity between 9:35 a.m. and 3:55 p.m. 

Using the filtered TAQ midquotes, we compute 10-second absolute midquote returns. The 

choice of the 10-second sampling frequency is based on two offsetting considerations. On the one 

hand, detecting EPMs that result from brief liquidity dislocations requires a relatively short 

sampling interval. On the other hand, a sampling interval that is too short may split an EPM into 

several price changes that are not large enough to be captured by the identification procedure. The 

choice of 10-second intervals is a compromise between these two considerations. As a robustness 

check, we repeat the main analyses for several alternative interval lengths: 1 second, 5 seconds, 30 

seconds and 1 minute. The results are qualitatively similar. 

The NASDAQ HFT dataset contains 120 stocks divided into three size categories: large, 

medium and small. There are 40 stocks in each category. Medium and small stocks trade rather 
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infrequently, and there are usually insufficient observations to draw statistically robust conclusions 

about HFT and nHFT activity. The main analysis therefore focuses on the 40 largest stocks. In a 

similar application, and driven by similar considerations, Andersen, Bollerslev, Diebold and Ebens 

(2001) also focus on the largest stocks when detecting EPMs. The sample of 40 largest stocks 

contains 45.2 million 10-second intervals. 

We use three approaches to identify EPMs. The first approach is straightforward and simply 

labels all intervals that belong to the 99.9
th

 percentile of 10-second absolute midpoint returns for 

each stock as EPMs. The second approach is more sophisticated and accounts for predictable return 

correlations in time and across firms. First, for each day we estimate a short-term market model of 

the following form: 

                                                               ,  (1) 

 

where       is stock  ’s return over the ten-second interval  , and      is the return on the S&P 500 

ETF (SPRD). Second, we use the coefficients from the previous day’s regressions to compute 

residuals of the current day’s model. Third, we label all intervals with residuals that belong to the 

99.9
th

 percentile as EPMs. As a robustness check, we use in-sample residuals, with the model 

estimated over the full sample. The results are similar. 

Both approaches select intervals with the largest absolute returns out of 45.2 million 10-

second intervals, and define them as EPMs. The intuitive nature of these techniques is appealing, yet 

they come with two limitations. First, the 99.9 cutoffs are stock-specific and therefore implicitly 

assume that each stock is equally likely to undergo an EPM. Consequently, the 99.9 technique may 

(over-) under-sample stocks that are (less) more prone to EPMs. The second limitation is that the 

techniques (especially the first one) are agnostic to volatility conditions and therefore tend to 

oversample periods of high volatility. We suggest that understanding HFT behavior is relevant 
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regardless of accompanying volatility. Nevertheless, to formally address this limitation, we repeat 

the analysis using a third EPM detection technique, the Lee and Mykland’s (2012) methodology, 

which accounts for contemporaneous (local) volatility.  

Throughout the main manuscript, we use the results obtained from the second identification 

technique where EPMs are based on the residuals from Equation (1). A summary of results obtained 

using the first and the third techniques is reported in the robustness section. The results obtained 

from these techniques are in line with those reported in the paper. 

Finally, in unreported results, we find that the 99.9
th

 percentile returns closely correspond to 

the 99.9
th

 percentile of trade imbalances. An EPM identification that focuses on the largest 

imbalances rather than the largest returns produces a similar sample.  

 

2.2.3. Summary statistics  

Table 2.1 reports the descriptive statistics for the sample of 45,200 EPMs in Panel A and, for 

comparison, the full sample of 10-second intervals in Panel B. The statistics expectedly show that 

returns, trading activity, and bid-ask spreads are considerably larger during the EPMs than during an 

average 10-second period. The average absolute EPM return is 0.478%, which is more than 17 times 

(or about 10 standard deviations) larger than the full-sample return. Trading activity is also 

substantially higher; increasing from 18 trades per 10 seconds to 72 trades. Dollar trading volume 

increases from $76,076 to $462,950, and share volume increases by a similar magnitude. Finally, 

the quoted and relative spreads nearly double during EPMs suggesting that liquidity is impaired 

during these events.  
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The number of positive EPMs is approximately equal to the number of negative EPMs. In 

unreported results, we find that EPM characteristics such as the absolute return magnitude, trading 

volume, and quoted spreads are similar for positive and negative EPMs. HFT and nHFT behavior is 

also similar across these different types of events. The results reported in the remainder of the paper 

report combined positive and negative EPMs. 

Figures 2.1 and 2.2 report the EPM time series. In both figures, the scale of the vertical axis 

is logarithmic. Figure 2.1 reports the intraday frequency of EPMs, with 50.3% of the events 

occurring in the first hour of trading. This pattern is consistent with studies that document high price 

volatility and information uncertainly in the morning hours (Chan, Christie and Schultz, 1995; 

Egginton, 2014). The remaining EPMs are distributed relatively evenly throughout the day, with a 

moderate increase near the end of the day.
10

 Figure 2.2 plots the daily frequency of EPMs during the 

2008-2009 sample period. Most EPMs (66.3%) occur during the months of September, October and 

November of 2008, the height of the financial crisis. 

 

2.3. HFT and nHFT activity around EPMs 

In this section, we show that HFTs provide liquidity to nHFTs during a typical EPM, even 

when the EPM is very large and even when the price change is permanent. We also show that HFT 

liquidity supply is overshadowed by their demand when several stocks undergo simultaneous EPMs 

and also during long sequences of EPMs. We also show that liquidity provision during an average 

EPM is profitable, yet we find no evidence that HFTs trigger EPMs to benefit from this profitability. 

 

                                                           
10

 Aitken, Cumming and Zhan (2015) find that proliferation of HFT has reduced instances of end-of-day price 

manipulation. 
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 2.3.1. A typical EPM 

To measure HFT activity during EPMs, we use directional trade imbalances computed as the 

difference between trading activity in the direction of the EPM and trading activity in the opposite 

direction:                  and                 , where      is HFT 

liquidity demand,      is HFT liquidity supply, and the superscripts + (-) indicate activity in the 

same (opposite) direction of the EPM return. For example, if HFTs demand 20 shares of liquidity in 

the direction of the price movement and demand 1 share in the opposite direction, HFT
D
 is +19. 

Similarly, if HFTs supply 20 shares of liquidity against the direction of the EPM and supply 4 

shares in the direction of the EPM, HFT
S
 is -16. We compute similar metrics for nHFTs. 

 In addition, we introduce two net imbalance metrics, HFT
NET

 (nHFT
NET

) computed as the 

sum of HFT
D
 and HFT

S
 (nHFT

D
 and nHFT

S
). Since liquidity is typically provided against the 

direction of return, (n)HFT
S
 usually has a negative value, and the sum of (n)HFT

D
 and (n)HFT

S
 is in 

effect the difference between liquidity demanding and liquidity providing volume. Net imbalances 

indicate the direction in which net trading activity by a particular trader type is occurring relative to 

the EPM direction. For example, a positive (negative) net HFT imbalance indicates overall trading 

in the direction (opposite) of the EPM.  

To begin the discussion of HFT and nHFT activity around EPMs Figure 2.3 reports the 

cumulative return (CRET) as well as HFT
D
, nHFT

D
 and HFT

NET
 starting 100 seconds prior to an 

average EPM and up to 100 seconds afterwards. We make the following expositional choices. First, 

the figure includes both positive and negative EPMs, and we invert the statistics for the latter. 

Second, we benchmark the signs for HFT and nHFT activity to the EPM return. For example, if the 

EPM return is positive, a negative HFT
D 

ten seconds after the EPM means that HFTs sell the stock 
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via liquidity demanding orders, effectively counteracting the effects of the positive EPM that 

occurred ten seconds earlier. 

Figure 2.3 shows that prices change significantly during the EPM interval, and then revert 

somewhat during the remaining 100 seconds (10 intervals).
11

 There is a large increase in nHFT
D
 

during the EPM, with a share imbalance of more than 5,300. In the meantime, HFT
D
 is about 2,300 

shares. More importantly, HFT
NET

 is negative, indicating that HFT liquidity supply offsets HFT 

liquidity demand and that HFTs absorb volume imbalances created by nHFTs.
12

 

The results in Figure 2.3 provide first evidence on HFT and nHFT behavior around EPMs. 

In Table 2.2, we examine EPM event windows in more detail. Specifically, we focus on event 

windows that span 20 seconds before and after the EPM interval and report liquidity demand and 

supply statistics for HFTs and nHFTs. We find that HFT
NET

 is statistically significant in the 

direction opposite of returns during interval t (the EPM interval) and the two following intervals. 

Statistical significance is preserved when we cluster the standard errors in time. Further, upon 

splitting HFT activity into demand and supply, we observe that HFTs trade in the direction of the 

EPM with their liquidity demanding trades (HFT
D
 is 2,296 shares) and in the opposite direction with 

their liquidity supplying trades (HFT
S
 is 2,539 shares). HFTs provide 243 shares of net liquidity 

against the direction of an average EPM. This finding is contrary to the belief held by some market 

observers that HFTs trade large amounts in the direction of EPMs.  

Is 243 shares too small a quantity to claim that HFTs stabilize prices? The results in Table 

2.2 are simple averages and therefore do not suggest that HFT liquidity provision is limited to 243 

shares per EPM. Rather, 243 is the number of shares that nHFTs demand during an average EPM.  

                                                           
11

 Our reliance on quote midpoints aims to focus the analysis on the permanent component of the security price. This 

said, some non-permanent components remain. Specifically in Figure 2.3, the return slopes downward up to t=0, then 

jumps, and then partly reverses after the EPM. This process is best described as a combination of random walk and 

stationary noise processes.  
12

 The net imbalance metrics are designed so that HFT
NET

=-nHFT
NET

. 
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Beyond being liquidity providers during EPMs, do HFTs trigger EPMs? In the 10-second 

interval starting 20 seconds prior to an EPM (t-20), HFT
NET

 and nHFT
NET

 do not show any 

directionality. However, in t-10 HFTs trade against the direction of the future EPM return.
13

 As 

such, it appears that HFTs do not trigger EPMs. We examine this issue in more detail in a 

subsequent section. 

Following an EPM, HFTs continue to trade in the opposite direction of the EPM return, but 

unlike in interval t they primarily use liquidity demanding trades. Specifically, HFTs demand a net 

of 113 shares against the direction of the preceding EPM return in interval t+10. This suggests that 

HFTs may speed up the reversal process. We study reversals in more detail in the following section.  

 

2.3.2. EPM types: reversals and permanent price changes 

The literature suggests that large price movements can be triggered by at least two types of 

events: information arrival and trade imbalances. A news arrival, for instance, often results in prices 

adjusting rapidly to incorporate information. In an efficient market, such price movements will be 

permanent. Alternatively, trade imbalances usually arise because impatient traders submit large 

volumes of buy or sell orders and push prices away from the fundamental values. Price movements 

arising from such pressures are transitory and are followed by reversals. Figure 2.4 presents an 

illustration. 

Do HFTs provide liquidity to both EPM types? To answer this question, we divide the 

sample into transitory and permanent EPMs. The former are characterized by significant, yet 

temporary, price changes followed by reversals. We identify these as EPMs that revert by more than 

2/3 by the end of a 30-minute period. The latter, permanent, EPMs do not revert by more than 1/3 

                                                           
13

 In Table 2.2, as in Figure 2.3, we benchmark the signs of HFT and nHFT volume to the EPM return. 
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by the end of this period. To allow for a clean separation of the two EPM types, we exclude the 

EPMs that revert by more than 1/3 and less than 2/3; these are 14.2% of the sample. The results are 

robust to using alternative reversal thresholds (e.g., reversals of more than 1/2 of the EPM return), 

time thresholds of 1, 10 and 20 minutes, and allowing reversals to occur by the end of the trading 

day. 

In Table 2.3, we examine the characteristics of the two EPM types and HFT activity around 

them. Despite a significant difference in post-EPM price patterns, other EPM characteristics (i.e., 

returns, trading activity, HFT participation and spreads) are similar across the two types (Panel A). 

For instance, the average absolute return is 0.481% during both a typical transitory and a typical 

permanent EPM. In Panel B, we describe HFT activity around the two EPM types. Consistent with 

the full sample results, HFTs provide liquidity to both types during interval t.  

 

2.3.3. EPM magnitude 

 Although the EPMs in the sample represent the 99.9
th

 percentile of all price movements, the 

setup may obscure the picture for the largest EPMs, during which HFT activity may differ from 

what has been discussed so far. Kirilenko, Kyle, Samadi and Tuzun (2016) show that when prices 

reached extraordinary lows during the 2010 flash crash, HFTs withdrew from liquidity provision. So 

far, the results suggest that EPMs are not accompanied by similar withdrawals. But what about the 

largest EPMs? In Table 2.4, we examine if HFT liquidity provision varies in EPM magnitude, and 

particularly if HFTs provide liquidity to the largest of the extreme price movements. 

Table 2.4 reports summary statistics and HFT
NET 

results for EPMs divided into four 

magnitude quartiles, from the relatively small (Q1) to the largest (Q4). As expected, trading volume 

and spreads increase in return magnitude (Panel A). HFT liquidity provision also increases, going 
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from 116 shares in Q1 to 546 shares in Q4 (Panel B). Insofar as these results are generalizable to 

events like the 2010 Flash Crash, they suggest that it was probably not the magnitude of the crash 

that triggered HFT withdrawal. 

 

2.3.4. EPM types: standalone and co-EPMs 

The 2010 Flash Crash was characterized not only by the magnitude of price movements, but 

also by the large number of stocks that were affected. It is possible that liquidity withdrawals during 

the crash were due to the HFT firms’ risk controls that were triggered when accumulated inventories 

reached high levels. The Flash Crash was a uniquely large and rare event, and it is not clear if it 

should be viewed as typical of HFT behavior in instances of multi-stock price movements. To 

examine this issue, we define co-EPMs as those that occur in two or more stocks during the same 

10-second time interval and repeat earlier analyses. 

Panel A of Table 2.5 reports that co-EPMs comprise 57% of the sample. The prevalence of 

co-EPMs should not be surprising given the exceptionally high EPM occurrence during the 2008 

financial crisis when prices of multiple assets experienced large simultaneous movements (Figure 

2.2). An average co-EPM includes 3.5 stocks. The average return is 0.487% during a standalone 

EPM and 0.471% during a co-EPM. Trading activity metrics are noticeably different between the 

two types, with dollar volume during the standalone EPMs being about 74% higher than that during 

the co-EPMs. 

Panel B shows that HFTs supply 1,296 shares of net liquidity during the standalone EPMs. 

In the meantime, they demand 549 shares of net liquidity during the co-EPMs. This reversal in HFT 

behavior is striking. In Figure 2.5, we examine its evolution. To do so, we plot HFT
D
 and HFT

S
 for 

standalone and co-EPMs. As previously, the metrics are computed on a per-stock basis. HFT
D
 and 
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HFT
S
 decline rapidly when more than one stock undergoes simultaneous EPMs. Notably, the 

decline is more pronounced for supply than demand. As such, the risk controls triggered during co-

EPMs appear to affect liquidity supplying strategies more than they affect liquidity demanding 

strategies, giving rise to positive HFT
NET

 during co-EPMs.  

Note that even though HFT activity per stock declines, total inventory accumulated during 

co-EPMs may increase. For instance, inventory accumulated during the 10-stock co-EPM is 7,960 

(= 796   10) shares, more than 6 times the inventory accumulated during the standalone EPMs. As 

such, even though HFTs reduce activity on the per-share basis, the risk of their total positions may 

increase. This risk may be further exacerbated if, in addition to the co-EPM stocks, other stocks in 

the HFT portfolios are experiencing large price movements. Such movements, even if they do not 

qualify as EPMs, may affect total HFT position risk. We examine this issue next.  

 

2.3.5. Co-EPMs and position risk 

To gain a better understanding of the risks assumed by HFTs during co-EPMs, we turn to the 

concept of value at risk (VaR). We caution that our data do not contain capital positions or 

inventories of individual HFTs, so we are unable to estimate the true VaR. Rather, we follow the 

general intuition of VaR analyses and refer to the results as quasi-VaR (QVaR). Specifically, we 

rely on the non-parametric method of Allen, Bali and Tang (2012) and begin by estimating, on a 

daily basis, the 99
th

 percentile of the 10-second absolute returns for the portfolio of sample stocks. 

Note that constituent returns vary during instances of tail portfolio returns. To account for this, we 

estimate average stock returns for each sample stock   during the instances of portfolio tail returns 

on each day  ,      
    . The contribution of individual stocks to the portfolio tail return varies 



52 
 

slowly. As such, the composition of portfolio tail returns on day     is a sufficient proxy for the 

expected composition on day  . With this in mind, we compute intraday QVaR as follows: 

          (∑       
           

  

 

 ∑        
           

  

 

)                               

 

where        is the dollar inventory in stock   accumulated by the HFTs during the interval   

valued at the last midquote of the interval. The first term captures potential portfolio losses if the 

EPM is followed by a positive tail return, and the second term captures potential losses if the EPM 

is followed by a negative tail return. We then select the minimum of the two terms to estimate the 

maximum loss. In a nutshell, QVaR estimates the expected dollar loss during the following 10-

second interval if the HFT portfolio experiences an unfavorable 99th percentile return. 

Figure 2.6 shows that QVaR increases steadily in the number of stocks experiencing a co-

EPM. Specifically, it increases from $287 during intervals without EPMs to $936 for standalone 

EPMs, and further to over $5,000 for intervals with more than 10 EPMs. This increase is driven by 

the inventory accumulation in both the stocks undergoing EPMs and in the rest of the portfolio and 

likely explains the HFTs’ tendency to reduce risk exposure on a per-stock basis.  

 

2.3.6. EPM sequences 

Earlier results show that HFTs provide substantial liquidity to the standalone EPMs, yet 

demand liquidity during co-EPMs. In Panel A of Table 2.6, which serves as a companion to Figure 

2.5, we examine HFT sensitivity to the number of stocks in a co-EPM. The sensitivity is high; 

HFT
NET

 switches from being negative during the standalone EPMs to zero for the two-stock co-

EPMs and to being positive for co-EPMs that involve three and more stocks. The results suggest 
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HFT liquidity supply is sensitive to inventory risk. This is consistent with Amihud and Mendelson 

(1980) and Comerton-Forde et al. (2010), who show that market maker strategies depend on 

inventories.  

 Given this fragility, it is possible that HFTs also remain on the sidelines on days with long 

sequences of EPMs, especially if these EPMs have the same return direction. In Panel B of Table 

2.6, we examine if this occurs. The data show that HFTs usually provide net liquidity to the first 

four EPMs in the sequence and reduce net liquidity provision to zero if the sequence continues. 

There is some evidence of positive HFT
NET

 for very long sequences.  

 

2.3.7. Does HFT activity during EPMs differ from their usual behavior? 

Research shows that HFTs usually demand liquidity in the direction of returns (e.g., 

Brogaard, Hendershott and Riordan, 2014). If this pattern persisted during EPMs, we would observe 

significantly positive and large HFT
NET

. On the contrary, we find that the pattern reverses for 

standalone EPMs. Although the pattern does not reverse for co-EPMs, it is possible that the positive 

HFT-return relation is reduced even for these EPMs. Accounting for return magnitude, HFTs may 

demand less liquidity during the times when multiple stocks undergo EPMs than they normally 

would. To examine this issue, we turn to the following multivariate setting: 

      
              

                                              (3) 

 

where        
is the difference between HFT

D
 and HFT

S 
as discussed earlier;         is a dummy 

variable equal to one if the 10-second interval   in stock   is identified as an EPM and is equal to 

zero otherwise,       is the absolute return,       is the traded share volume,       is the percentage 

quoted spread, and           is a vector of lags for the dependent and each of the independent 
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variables, with             . The variables in the vector are indexed with a subscript  . All 

variables are standardized at the stock level. 

Because the coefficients on the 1EPM dummy are related to returns, they should be interpreted 

jointly with those on the Ret variable. For example in column 1 of Table 2.7, the estimated 

coefficient on the Ret variable confirms that HFTs usually demand liquidity in the direction of 

return. In the meantime, the 1EPM dummy shows that HFTs reduce liquidity demand during EPMs, 

with the incremental effect of -0.798 standard deviations. Having established the basic result, we 

next turn to HFT activity during the previously identified EPM types. Column 2 shows that during 

both transitory and permanent EPMs the normally positive HFT-return relation is significantly 

reduced. In column 3, we find the same result for the standalone and co-EPMs, yet the decline is 

much greater for the standalone EPMs. Similar results emerge in column 4 that accounts for EPM 

magnitude; the normally positive relation between HFT behavior and returns is reduced, more so 

during the largest EPMs. Overall, even in cases when they demand liquidity during the EPM 

episodes (the co-EPM case), HFTs demand considerably less than they normally would.  

 

2.3.8. HFT-return relation within the 10-second intervals 

The 10-second event windows are quite long given the speed of modern trading and may 

conceal nefarious aspects of HFT behavior. Yang and Zhu (2015) propose and van Kervel and 

Menkveld (2015) show that HFTs are able to recognize trading patterns after a period of time and 

switch from supplying liquidity to demanding it. Although van Kervel and Menkveld (2015) focus 

on time horizons that are much longer than ours, even one second is a long enough time for HFT 

algorithms to re-evaluate a trading strategy. It is therefore possible that HFTs supply liquidity at the 

beginning of EPMs yet exacerbate their tail ends. 
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To examine this possibility, in Figure 2.7 we plot second by second cumulative returns, 

HFT, and nHFT activity centered on the largest one-second return during an average EPM. The 

figure shows that prices continue to move in the direction of the largest return for several seconds 

afterwards. If HFT algorithms had been designed to quickly switch from liquidity supply to demand 

after observing large price changes, they would have had sufficient time to do so. The figure 

contains no evidence of HFT
NET

 switching to positive values. If anything, it remains slightly 

negative.
14

 

Although the time aggregation period in Figure 2.7 is finer than that used in the remainder of 

the study, it is still long relative to the usual timing of HFT interactions. It is therefore possible that 

HFT
NET

 is positive at the very beginning of some EPMs, perhaps for a few micro- or milliseconds. 

Because pinpointing the exact time when an EPM begins is next to impossible, we are unable to 

examine this issue. This said, even if short-lived HFT liquidity demand exists at early EPM stages, 

the economic effect of such demand is economically small and does not register in the data. 

 

2.3.9. Profitability of liquidity provision during EPMs 

The data show that HFTs usually provide liquidity to nHFTs during both transitory and 

permanent EPMs. Since HFTs choose to do so, liquidity provision should be profitable. How are 

these profits derived? During positive permanent EPMs as described in Figure 2.4, if a trader limits 

liquidity provision to the size of his existing long inventory, he will have bought low and sold high. 

If however he provides liquidity indiscriminately, in the amount larger than the existing long 

inventory, he may accumulate a money-losing short position. The same logic, but in reverse, applies 

to negative permanent EPMs. 

                                                           
14

 As in Figure 2.3, non-permanent return components are evident, suggesting lagged adjustment in prices. In addition to 

generating momentum after t=0, thus adjustment may generate smoothing prior to t=0. 
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During transitory price movements, when the price first moves up and then down (Figure 

2.4), a skilled trader may profit by initially selling high to the impatient buyers and then buying low 

when the price reverses. The literature shows that providing liquidity during such reversals is 

profitable (Hendershott and Seasholes, 2007; Nagel, 2012; So and Wang, 2014). This strategy does 

not require pre-existing inventory as profits are derived from the inventory accumulated during the 

EPM. In summary, it is possible that HFTs profit from both permanent and transitory EPMs. Next, 

we examine the data for evidence of such profits. 

 Specifically, we estimate HFT trading revenues on EPM days and compare them to the days 

without EPMs. We follow the approach used by Sofianos (1995), Menkveld (2013), and Brogaard, 

Hendershott and Riordan (2014) and assume that for each sample stock and each day HFTs start and 

end the day with zero inventory, and that all inventory accumulated by the end of the day is sold at 

the closing midpoint. We compute HFT revenue for each stock and each day as: 

      ∑           

 

   

                                             

 

where      is the number of shares traded by HFTs during the  th
 transaction,   is the indicator 

equal to 1 for buy trades and -1 for sell trades,    is the trade price,         is the inventory 

accumulated by HFTs before the end of the day, and    is the end of day midquote. Following 

Brogaard, Hendershott and Riordan (2014), we adjust transaction prices by the taker fee of 

$0.00295 and the maker rebate of $0.0028, although the results are robust to other levels of maker-

taker fees and to omitting the fees. The first term of Equation 4 represents cash flows to HFTs 

throughout the day, and the second term assigns a value to the end-of-day inventory. 

To assess the impact of EPMs on daily HFT revenues, we estimate the following panel 

regression for each stock   on day  : 



57 
 

                                                                           

 

where      captures the number of EPMs. The results are simple, and we report them here rather 

than in a separate table. The   estimate suggests than HFTs capture $3,834 in revenue per stock on 

an average day; whereas the   estimate indicates that the revenue becomes $219 greater with each 

EPM. As such, HFT activities during EPMs are potentially profitable. In addition to the general case 

in Equation 5, we compute the   estimates for all EPM breakdowns (i.e., permanent, transitory, 

standalone, co-EPMs, and for four magnitude quartiles). Due to the noisiness of profit calculations, 

the   estimates for the breakdowns are statistically insignificant. The revenue results should 

therefore be interpreted with caution. A conservative interpretation would suggest that there is no 

evidence of HFT losses on average due to EPMs and some evidence of profits. 

 

2.3.10. HFT activity and future EPMs 

Other research has suggested that HFTs trigger EPMs. Golub, Keane and Poon (2013) report 

that mini-crashes in individual stocks have increased in recent years and suggest a link between 

these crashes and HFT. Leal, Napoletano, Roventini and Fagiolo (2014) model a market in which 

HFTs play a fundamental role in generating flash crashes. To shed light on this issue, we use probit 

regressions to model the probability of an EPM as a function of lagged values of HFT
NET

, return, 

volume and spread: 

                          
                                           (6) 

 

where all variables are as previously defined and are lagged by one interval. 
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The results are in Table 2.8 and show no evidence of HFT being associated with a higher 

probability of future EPMs. On the contrary, HFT is associated with a lower EPM probability. For 

instance in column 1, the marginal effect of the HFT
NET

 variable implies that the probability of an 

EPM decreases by 0.6% of the unconditional probability with every standard deviation increase in 

the pre-EPM HFT
NET

. 

 

2.4. Robustness 

2.4.1. Alternative EPM identification techniques 

 Earlier, we discuss two alternative methods of EPM identification. The first method 

identifies EPMs as the 99.9
th

 percentile of raw returns, and the second method uses the Lee and 

Mykland (2012) methodology. In Table 2.9, we report a brief summary of results arising from these 

two methodologies. The results are qualitatively similar to those obtained from the main sample. 

 

2.4.2. Alternative return distributions 

Figure 2.1 points to a significant intraday pattern in the number of EPMs, which is consistent 

with the well-known phenomenon whereby returns are large in the early morning and then level off. 

It therefore may be useful to check if conditioning the EPM definition on return distributions that 

are allowed to vary intraday affects our conclusions. Put differently, an early morning return may 

look extreme with respect to the afternoon returns, but unremarkable with respect to a distribution of 

price changes in the first half-hour of trading.  

To examine this issue, we split the sample into seven intervals: 9:35-10:00, 10:00-11:00, 

11:00-12:00, 12:00-13:00, 13:00-14:00, 14:00-15:00 and 15:00-15:55. We then define EPMs as the 
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99.9
th

 percentile of Equation 1 residuals in each interval. This approach produces a more even 

distribution of EPMs throughout the day than that in Figure 2.1. We then examine HFT behavior for 

these newly defined EPMs. The results are in Table 2.10 and support those obtained for the original 

sample; HFTs provide liquidity during an average EPM. We obtain similar results when we use two 

instead of seven intervals (i.e., 9:35-10:00 and 10:00-15:55).  

 

2.5. Conclusion 

We provide novel evidence on the stability of liquidity supply by high frequency traders 

(HFTs), a dominant subset of liquidity providers in modern markets. HFTs are endogenous liquidity 

providers (ELPs) and do not have the obligation to supply liquidity during stressful times. We show 

that HFTs are net suppliers of liquidity to non-HFTs (nHFTs) during extreme price movements 

(EPMs). HFTs supply liquidity even during the most extreme EPMs and the EPMs that result in 

permanent price changes.  

However, HFT liquidity supply is sensitive to multiple EPMs, as HFTs on average switch to 

demanding liquidity when multiple stocks simultaneously undergo EPMs and when EPMs persist 

throughout the day. The switch is due to the liquidity supplying strategies being more risk averse 

than the liquidity demanding strategies. During episodes of multiple simultaneous EPMs, position 

risk accumulated by HFTs is significantly higher than normal, likely leading to the reduction in their 

activity, particularly on the supply side. We find some evidence of HFTs’ earning positive revenues 

on days with EPMs. Despite this, the results show that HFTs do not appear to cause EPMs. 

While beyond the scope of this paper, more research can help generalize or qualify the 

findings. For instance, it will be important to know whether the practice of HFT evolved in a way 

whereby what was true in the late 2000s is no longer the case. Also, it is important to understand 
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how changes in market structure, such as the introduction of limit-up limit-down trading rules or the 

arrival of a new venue that provides protection to liquidity providers impacted ELPs. 
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Table 2.1. Summary statistics 
 

The table reports summary statistics for the sample of extreme price movements (EPMs) (Panel A) 

and for the full sample of 10-second intervals (Panel B).                 is the absolute value of 

the 10-second midpoint return.                    is the number of (HFT) trades during the 

interval.               and               are the total dollar and share volume traded during 

the interval.               and                 are quoted and relative quoted NBBO spreads, 

respectively in dollars and percentage points. All statistics are averaged over the 10-second 

sampling intervals. 

 

Panel A: Extreme price movements 

 Mean Median Std. Dev. 

Absolute Return, % 0.478 0.436 0.188 

Total Trades 72.19 42.00 88.33 

Total HFT Trades 57.29 32.00 72.89 

Dollar Volume 462,950 166,929 998,832 

Share Volume 15,361 5,300 31,778 

Quoted Spread, $ 0.044 0.015 0.138 

Relative Spread, % 0.076 0.063 0.154 

N 45,200   

 

Panel B: Full sample 

Absolute Return, % 0.028 0.009 0.048 

Total Trades 18.1 11.0 18.7 

Total HFT Trades 15.8 10.0 15.4 

Dollar Volume 76,076 11,701 230,661 

Share Volume 1,987 292 6,045 

Quoted Spread, $ 0.026 0.010 0.057 

Relative Spread, % 0.046 0.041 0.032 

N 45.2 M   
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Table 2.2. Liquidity supply and demand around EPMs 

 

The table reports directional trading volume around extreme price movements (EPMs). Time 

interval t is the 10-second EPM interval. In addition, we report the results for the two time intervals 

preceding the EPM and two subsequent time intervals. HFT
D
 (nHFT

D
) is the difference in liquidity-

demanding HFT (nHFT) volume in the direction of the EPM and liquidity-demanding volume 

against the direction of the EPM. HFT
S
 (nHFT

S
) is the difference in liquidity-providing volume 

against the direction of the EPM and liquidity-providing volume in the direction of the EPM. 

HFT
NET

 (nHFT
NET

) is the difference between HFT
D
 and HFT

S
 (nHFT

D
 and nHFT

S
).  -values are in 

parentheses. *** and ** indicate statistical significance at the 1% and 5% levels. 

 

 
t-20 t-10 t t+10 t+20 

HFT
NET

 -20.2 -73.9*** -242.7*** -112.8*** -33.7 

 

(0.32) (0.00) (0.00) (0.00) (0.11) 

HFT
D
 -76.5*** -143.5*** 2296.3*** -273.6*** -63.1*** 

 

(0.00) (0.00) (0.00) (0.00) (0.00) 

HFT
S
 56.3*** 69.6*** -2539.0*** 160.8*** 29.4 

 

(0.00) (0.00) (0.00) (0.00) (0.12) 

nHFT
NET

 20.2 73.9*** 242.7*** 112.8*** 33.7 

 

(0.32) (0.00) (0.00) (0.00) (0.11) 

nHFT
D
 -64.6* -63.6 5369.0*** 613.6*** 296.0*** 

 

(0.05) (0.13) (0.00) (0.00) (0.00) 

nHFT
S
 84.8** 137.5*** -5126.4*** -500.8*** -262.3*** 

 

(0.01) (0.00) (0.00) (0.00) (0.00) 
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Table 2.3. Transitory and permanent EPMs 
 

The table reports summary statistics for transitory and permanent EPMs. Transitory EPMs revert by 

more than 2/3 of the EPM return in the following 30 minutes. Permanent EPMs do not revert by 

more than 1/3 in the same interval. Because we exclude EPMs that revert by the amount between 

1/3 and 2/3, the total number of EPMs in this table is 85.8% of that reported in Panel A of Table 1. 

Panel B reports HFT
NET

 around the two EPM types. 

 
 

Panel A: Summary statistics
 

 transitory permanent 

 mean std. dev. mean std. dev. 

Absolute Return, % 0.481 0.188 0.481 0.187 

Total Trades 70.90 87.79 69.78 85.64 

Total HFT Trades 55.97 71.35 55.54 71.90 

Dollar Volume 456,326 1,022,813 434,572 947,261 

Share Volume 14,576 29,516 14,470 29,250 

Quoted Spread, $ 0.047 0.147 0.046 0.140 

Relative Spr., % 0.079 0.144 0.080 0.157 

N 17,915  20,848  
 

 

Panel B: HFT
NET 

 
t-20 t-10 t t+10 t+20 

transitory -72.0** -144.2*** -363.0*** -121.6*** -92.5*** 

permanent 35.5 -3.0 -303.5*** -110.8*** 12.0 
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Table 2.4. EPM magnitude quartiles 
 

Panel A divides EPMs into quartiles by return magnitude, from smallest to largest. Panel B contains 

HFT
NET

 statistics. 
 

Panel A: Summary statistics
 

 Q1 (small) Q2 

 mean std. dev. mean std. dev. 

Absolute Return, % 0.385 0.094 0.415 0.102 

Total Trades 59.96 67.79 63.77 72.67 

Total HFT Trades 48.29 57.05 51.09 60.33 

Dollar Volume 365,702 764,091 390,139 819,044 

Share Volume 12,191 24,783 12,947 25,700 

Quoted Spread, $ 0.040 0.114 0.041 0.118 

Relative Spr., % 0.071 0.090 0.073 0.095 

N 11,280  11,320  

 Q3 Q4 (large) 

Absolute Return, % 0.465 0.116 0.645 0.261 

Total Trades 70.69 81.24 94.28 118.37 

Total HFT Trades 56.08 67.08 73.67 97.28 

Dollar Volume 455,307 977,999 640,282 1,316,028 

Share Volume 14,806 29,864 21,488 42,633 

Quoted Spread, $ 0.044 0.119 0.051 0.188 

Relative Spr., % 0.077 0.107 0.082 0.258 

N 11,280  11,320  
 

Panel B: HFT
NET 

 
t-20 t-10 t t+10 t+20 

Q1 -4.9 -106.2** -115.7** -102.2** -6.9 

Q2 -8.5 -90.3** -60.3 -108.4*** -7.1 

Q3 -70.9** -65.5 -248.7*** -89.8** -44.7 

Q4 3.4 -33.6 -545.5*** -150.6*** -76.0 
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Table 2.5. Standalone and co-EPMs 
 

Panel A divides EPMs into standalone and co-EPMs, with the latter group capturing EPMs that 

occur simultaneously in several stocks. Panel B contains HFT
NET

 statistics. 
 

Panel A: Summary statistics
 

 standalone co-EPMs 

 mean std. dev. mean std. dev. 

Absolute Return, % 0.487 0.198 0.471 0.181 

Total Trades 88.34 106.18 60.04 69.64 

Total HFT Trades 68.13 87.24 49.15 58.58 

Dollar Volume 611,337 1,237,578 351,352 753,084 

Share Volume 21,109 40,462 11,038 22,238 

Quoted Spread, $ 0.049 0.124 0.040 0.148 

Relative Spr., % 0.084 0.147 0.069 0.159 

# stocks   3.5 2.78 

N 19,402  25,798  
 

Panel B: HFT
NET 

 
t-20 t-10 t t+10 t+20 

standalone 25.5 -31.4 -1295.7*** -101.2** -37.1 

co-EPMs -54.5*** -105.8*** 549.3*** -121.5*** -31.1 
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Table 2.6. Standalone and Co-EPMs, EPM sequences 

 

The table reports HFT
NET

 for standalone and co-EPMs (Panel A) and for EPM sequences (Panel B). 

EPM sequences are strings of same-directional EPMs during the trading day, with column (4) 

identifying the position of a particular EPM in the sequence.  -values are in parentheses. Asterisks 

*** and ** indicate statistical significance at the 1% and 5% levels. 
 

Panel A: Standalone and co-EPMs  Panel B: EPM sequences 

 HFT
NET

 # obs.   HFT
NET

 # obs. 

(1) (2) (3)  (4) (5) (6) 

  1 -1,295*** 19,402  1
st
 -717*** 10,221 

  2 -55 7,326  2
nd

  -526*** 5,679 

  3  389*** 4,353  3
rd

  -419*** 3,931 

  4  542*** 2,980  4
th
  -315** 2,982 

  5  288*** 2,210  5
th
  -209 2,379 

  6  698*** 1,602  6
th
 -229 2,001 

  7  630*** 1,274  7
th
  316 1,710 

  8  973*** 888  8
th
 -21 1,483 

  9  1,411*** 891  9
th
  91 1,303 

  10  796*** 690  10
th
  69 1,145 

  11+  1,684*** 3,584  11
th
+   177*** 12,366 
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Table 2.7. Net HFT activity and EPMs  
 

The table reports estimated coefficients from the following regression: 

 

      
                                                        

 

where HFT
NET

 is the difference between HFT
D
 and HFT

S
; the dummy 1EPM is equal to one if a 10-second 

interval t is identified to contain an EPM and is equal to zero otherwise; 1EPM-TRANSITORY and 1EPM-PERMANENT 

are dummies that capture the two EPM types; 1EPM-STANDALONE captures the standalone EPMs; 1CO-EPM 

captures EPMs that occur simultaneously in two or more sample stocks; 1EPM-Q1 through 1EPM-Q4 identify four 

EPM quartiles by magnitude, from the smallest to the largest; Ret is the absolute return; Vol is the total 

trading volume; Spr is the percentage quoted spread; and           is a vector of   lags of the dependent 

variable and each of the independent variables, with              and the variables indexed with a 

subscript  . All non-dummy variables are standardized on the stock level. Regressions are estimated with 

stock fixed effects.  -Values associated with the double-clustered standard errors are in parentheses. *** and 

** denote statistical significance at the 1% and 5% levels. 
 

 (1) (2) (3) (4) 

1EPM -0.798***    
 (0.00)    

1EPM-TRANSITORY  -0.783***   

  (0.00)   

1EPM-PERMANENT  -0.816***   

  (0.00)   

1EPM-STANDALONE   -1.437***  

   (0.00)  

1CO-EPM   -0.305***  

   (0.00)  

1EPM-Q1    -0.487*** 

    (0.00) 

1EPM-Q2    -0.561*** 

    (0.00) 

1EPM-Q3    -0.799*** 

    (0.00) 

1EPM-Q4    -1.397*** 

    (0.00) 

Ret 0.080*** 0.080*** 0.080*** 0.081*** 

 
(0.00) (0.00) (0.00) (0.00) 

Vol 0.065*** 0.065*** 0.066*** 0.065*** 

 
(0.00) (0.00) (0.00) (0.00) 

Spr -0.009*** -0.009*** -0.009*** -0.009*** 

 (0.00) (0.00) (0.00) (0.00) 

Adj. R
2
 0.01 0.01 0.01 0.01 
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Table 2.8. EPM determinants 
 

The table reports the coefficients and the marginal effects from a probit model of EPM occurrence: 

 

                          
                                       

 

where the dependent variable is equal to one if an interval   contains an extreme price movement and zero 

otherwise. All independent variables are lagged by one interval. HFT
NET

 is the share volume traded in the 

direction of the price movement minus the share volume traded against the direction of the price movement 

for all HFT trades,     is the absolute return,     is total traded volume,     is the percentage quoted 

spread. All variables are standardized on the stock level. The marginal effects are scaled by a factor of 1,000. 

 -Values are in parentheses. *** and ** indicate statistical significance at the 1% and 5% levels. 

 
 

 All Standalone Co-EPMs Permanent Transitory 

 (1) (2) (3) (4) (5) 

Intercept -3.237*** -3.446*** -3.382*** -3.430*** -3.469*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) 

HFT
NET

t-1 -0.002*** -0.002** -0.004*** -0.001 -0.005*** 

Marginal Effect -0.006 -0.003 -0.008 -0.002 -0.006 

 (0.00) (0.03) (0.00) (0.23) (0.00) 

Controls Yes Yes Yes Yes Yes 

Pseudo-R
2
 0.15 0.12 0.14 0.13 0.12 
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Table 2.9. EPMs defined using alternative methodologies 

 

Panel A reports HFT
NET 

for the sample of EPMs defined using the 99.9
th

 percentile of raw returns. 

Panel B reports HFT
NET 

for the sample defined using the Lee and Mykland (2012) methodology. 

 

Panel A: 99
th

 percentile of raw returns
 

 HFT
NET 

all -299.3*** 

transitory -457.6*** 

permanent -323.2*** 

Q1 -110.8* 

Q2 -145.5*** 

Q3 -293.7*** 

Q4 -655.5*** 

standalone -1296.9*** 

co-EPMs   446.4*** 
 

Panel B: Lee-Mykland (2012) 

 HFT
NET 

all -892.6*** 

transitory -973.2*** 

permanent -1063.9*** 

Q1 -648.8*** 

Q2 -748.6*** 

Q3 -859.2*** 

Q4 -1312.5*** 

standalone -1811.9*** 

co-EPMs   850.7*** 
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Table 2.10. EPMs defined intraday  

 

The table examines HFT behavior around EPMs defined for different time-of-the-day distributional 

cutoffs. First, we split the day into the following seven intervals: 9:35-10:00, 10:00-11:00, 11:00-

12:00, 12:00-13:00, 13:00-14:00, 14:00-15:00 and 15:00-15:55. For each interval, we select returns 

above the 99.9
th

 percentile. This definition allows EPMs to be evenly distributed within an average 

day. For the newly defined EPMs, we report the average HFT
NET 

statistics as in the previous tables. 

We also report the statistics for the 9:35-10:00 and 10:00-15:55 intervals. Asterisks *** and ** 

indicate statistical significance at the 1% and 5% levels. 

 

 
t-20 t-10 t t+10 t+20 

Seven intervals 9.9 47.3** -267.3*** -130.6*** -61.2*** 
      

9:35-10:00 -20.1 114.4 -607.4*** -236.3** -98.3 

10:00-15:55 12.1 42.6** -243.4*** -123.0*** -59.0*** 
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Figure 2.1. Intraday distribution of EPMs  

 

The figure contains a minute-by-minute intraday distribution of EPMs. The scale of the vertical axis 

is logarithmic. 
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Figure 2.2. Daily distribution of EPMs 

 

The figure contains the daily distribution of sample EPMs identified during the 2008-2009 period. 

The scale of the vertical axis is logarithmic. 
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Figure 2.3. HFT and nHFT activity around EPMs 

 

The figure displays the average return path and trading activity around the sample EPMs. HFT
D
 

(nHFT
D
) is liquidity demanded by HFTs (nHFTs) in the direction of the EPM (in # shares) minus 

liquidity demanded against the direction of the EPM. HFT
NET

 is the net effect of HFT liquidity 

demand and supply. CRET is the cumulative return. The figure includes both positive and negative 

EPMs, and for exposition purposes we invert the statistics for the latter. 
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Figure 2.4. EPM types, an illustration 

 

The figure describes two EPM types according to the associated price patterns: (a) a transitory EPM 

that reverses after a period of time and (b) a permanent EPM that does not reverse.  

  

(a) transitory 

price

(b) permanent 

price
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Figure 2.5. HFT
D 

and HFT
S
 during co-EPMs 

The figure reports per stock HFT
D and HFT

S 
during the standalone EPMs and co-EPMs. 
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Figure 2.6. QVaR 

The figure reports the quasi-value at risk (QVaR) accumulated by HFTs during 0, 1, 2, … and 10+ 

simultaneous EPMs. We begin by estimating the 99
th

 percentile of the 10-second absolute return of 

the portfolio of sample stocks. Then, we estimate average returns for each stock  ,     
    , during 

the instances of portfolio tail returns. The contribution of individual stocks to the portfolio tail 

returns varies slowly. With this in mind, we use the previous day’s composition of portfolio tail 

returns as a proxy for the expected composition on day  . We then compute intraday QVaR as 

follows: 

 

          (∑       
           

 

 

 ∑        
           

 

 

)  

 

where        is the dollar inventory in stock   accumulated by HFTs during the interval   valued at 

the last midquote of the interval. 
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Figure 2.7. HFT and nHFT activity during EPMs, a second by second view 

 

The figure displays the average second by second price path and trading activity during [-10; +10]-

second windows centered on the largest one-second EPM return. HFT
D
 (nHFT

D
) is liquidity 

demanded by HFTs (nHFTs) in the direction of the EPM (in # shares) minus liquidity demanded 

against the direction of the EPM. HFT
NET

 is the net effect of HFT liquidity demand and supply. 

CRET is the cumulative return. The figure includes both positive and negative EPMs, and for 

exposition purposes we invert the statistics for the latter. 
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Chapter 3. EVERY CLOUD HAS A SILVER LINING: FAST TRADING, 

MICROWAVE CONNECTIVITY AND TRADING COSTS 

3.1. Introduction 

Competition on relative speed is a defining characteristic of modern markets, where trading 

firms spend generously to gain sub-second speed advantages over their rivals. Speed-improving 

technology is expensive and sometimes only available to a select few, leading to speed differentials. 

A rich theory literature suggests two possible effects of such differentials on liquidity.
15

 On the one 

hand, being faster may allow liquidity providers to avoid adverse selection and to manage inventory 

more efficiently. As a result, liquidity may improve. Alternatively, the differentials may allow some 

traders to pick off stale limit orders, impairing liquidity. To shed new light on these possibilities, we 

examine a multi-year time series of exogenous shocks to speed differentials. The results show that 

when the differentials exist liquidity is impaired.  

We examine information transmission between financial markets in Chicago and New York, 

where signals are sent via two channels: a fiber-optic cable and several microwave networks. 

Microwave networks are about 30% faster than cable, and have two important characteristics. First, 

in 2011-2012 (the first two years of our four-year sample period) they are only accessible by a select 

group of traders. Second, precipitation (i.e., rain and snow) disrupts them. The first characteristic 

creates a two-tiered market, where some traders are faster than others. The second characteristic 

intermittently eliminates the speed advantage of the fastest tier. We show that when the microwave 

networks are functional, the speed advantage is used primarily to pick off stale limit orders in the 

course of latency arbitrage. When precipitation eliminates the speed advantage adverse selection 

and trading costs decline by more than 7%, while volatility declines by about 6%. 

                                                           
15

 See Hoffmann (2014), Biais, Foucault and Moinas (2015), Foucault, Hombert and Roşu (2016), Foucault, Kozhan and 
Tham (2016), Menkveld and Zoican (2016), Aït-Sahalia and Saǧlam (2017). 
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The liquidity improvements have two explanations. The first is mechanical: when the 

microwave users lose speed advantage they stop picking off standing limit orders, and the remaining 

liquidity takers receive better executions. The second explanation allows for improvements in 

liquidity supply, whereby limit orders are priced more aggressively when adverse selection is low. 

The data support both explanations. First, both trade price impacts and trading volume decline, and 

second, realized spreads decline and limit order aggressiveness increases during microwave 

disruptions. 

On balance, the results suggest that microwave users prefer to take liquidity rather than 

supply it. Many theory models recognize this preference, yet some empirical studies find that fast 

traders often trade via limit orders.
16

 There are two possible explanations for liquidity taking in our 

setting. First, the execution probability of limit orders is relatively low, especially for the short-lived 

latency arbitrage opportunities. Second, in many liquid stocks spreads are narrow and order queues 

are long, further reducing execution chances. Corroborating the latter explanation, the largest 

reductions in adverse selection during microwave disruptions occur in assets with narrow spreads. 

In addition to posting new orders, speed advantages should allow traders to timely cancel 

stale limit orders. The data however suggest that an average limit order trader does not possess such 

advantages, likely because the microwave connections are available only to a select few in 2011-

2012. Notably, the status quo changes in winter of 2012-2013, when a technology provider McKay 

Brothers democratizes microwave transmissions. Instead of selling microwave bandwidth that 

traders use to outpace others, the firm begins to use its network to transmit the latest price updates 

and sell them to anyone on a subscription basis. As a result, the speed advantages previously 

enjoyed by select firms are diminished. We find that once information transmission is democratized 

                                                           
16

 See for instance, O’Hara (2015), Yao and Ye (2015), Brogaard, Hendershott and Riordan (2016), Chordia, Green and 
Kottimukkalur (2016). 
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in this manner precipitation stops having an effect on trading costs, suggesting an elimination of the 

speed differential between an average liquidity taker and an average supplier. Furthermore, 

democratization leads to a one-time reduction in adverse selection and trading costs. 

Our results point to a negative relation between speed differentials and liquidity. As such, 

they provide a complementary perspective to that of Brogaard, Hagströmer, Nordén and Riordan 

(2015), who show that in the Swedish market speed differentials resulting from colocation are 

mainly sought by market makers and therefore benefit liquidity. The authors suggest that although 

colocation is most attractive to market makers, technology that increases information transmission 

speeds between markets may be sought by other traders, such as latency arbitragers, leading to 

negative liquidity effects. Our study also corroborates the findings of Baron, Brogaard, Hagströmer 

and Kirilenko (2016) and Foucault, Kozhan and Tham (2016), who suggest that modern arbitragers 

often use marketable orders, thus increasing order flow toxicity and impairing liquidity.  

Although the financial economics literature has previously explored the effects of weather 

on trader behavior, these effects have been mainly ascribed to investor mood. Although we examine 

a different weather-induced regularity, a technological one, it is important that we address the 

possibility that our results come from slower information processing attributed to weather-induced 

moods of traders in Chicago and New York (deHaan, Madsen and Piotroski, 2015). To do so, we 

show that our results are robust to focusing exclusively on precipitation in Ohio, a state that hosts all 

microwave network paths yet has a relatively low concentration of financial firms. We also confirm 

the robustness of the results to various sample selection procedures and to alternative precipitation 

variables. 

Our contribution to the literature is as follows. First, we shed new light on the predictions of 

theory models that examine speed differentials and provide empirical evidence on the models’ 
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insights into (i) order choices of the fastest traders and (ii) the liquidity suppliers’ response to lower 

adverse selection risk. Second, we offer evidence complementary to existing empirical research that 

examines the relation between speed differentials and liquidity. Some market participants claim that 

faster markets are unconditionally better; our results suggest that the benefits are conditional on how 

speed advancements are used. Finally, we describe a new approach to measuring exogenous 

variation in relative speed in modern markets that, to our knowledge, has not been previously 

examined.
17

 

The remainder of the paper is as follows. Section 2 discusses the history and physics of 

information transmission, the state of the trading speed literature, and latency arbitrage between the 

futures and equity markets. Section 3 describes the data and sample. Section 4 discusses the main 

empirical tests. Section 5 reports robustness tests. Section 6 concludes. 

 

3.2. Institutional background and related literature 

3.2.1. History and physics of information transmission between Chicago and New York 

In the world of ultra-fast trading, the physics of signal transmission plays an important role. 

The most common way to transmit information over long distances is via a fiber-optic cable. The 

first such cable between Chicago and New York was laid in the mid-1980s; however, its path was 

not optimal for ultra-fast communications. The cable was placed along the existing rail lines, 

making multiple detours from a straight line, going south to Pittsburgh and thereby exceeding the 

straight-line distance between Chicago and New York by about 300 miles. Realizing potential 

latency reduction from a more linear setup, a technology company Spread Networks laid another 

                                                           
17

 Koudijs (2015, 2016) uses adverse weather events to study information transmission between London and 
Amsterdam in the 18

th
 century. 
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cable in 2010. The new cable had significantly fewer detours, went through the Appalachian 

Mountains and shaved valuable milliseconds off the signal transmission time. 

Although fiber is a very fast transmission medium, it is not the fastest. Because microwaves 

travel faster through air than photons do through fiber, a network of microwave towers placed in a 

straight line can shave additional milliseconds off the signal transmission time. At the time of this 

study, microwave networks advertise round-trip information transmission speeds that are about 30% 

faster than their fiber-optic competitors. Specifically, during the sample period, microwave 

networks transmit information from Chicago to New York in about 4.5 ms, whereas fiber 

transmission takes about 6.5 ms. 

Although faster than cable, microwaves have a disadvantage – they are relatively easily 

disrupted. Among the disruptors are rain droplets and snowflakes, especially when rainfall/snowfall 

is substantial. During such disruptions, traders who use microwave links lose their speed advantage 

and must either stop trading or transition from microwave to fiber transmissions. Industry insiders 

suggest that mainly the former happens; certain strategies are switched off when firms realize that 

their speed advantage is temporarily lost. The switch is automatic and does not require human 

involvement. 

The first microwave network that linked Chicago and New York was operational at the end 

of 2010, with several additional networks built in 2011 and 2012. During this period, access to 

microwave transmission speeds was limited to a small group of trading firms, because the Federal 

Communications Commission restricted the number of network licenses citing airwave congestion. 

As such, the 2011-2012 period provides us with a unique opportunity to examine a two-tiered 

marketplace where some traders have access to the fastest speeds and others do not. Our results 

linking precipitation episodes to lower adverse selection and trading costs come from this period. 
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3.2.2. Information transmission speed and market quality 

The speed-related effects have been extensively modeled in recent literature; Menkveld 

(2016) provides a comprehensive review. Bernales (2014), Biais, Foucault and Moinas (2015), 

Foucault, Hombert and Roşu (2016) and Foucault, Kozhan and Tham (2016) model a market where 

speed differentials result in fast traders’ generating adverse selection for slower limit order traders. 

Limit order traders in turn seek higher compensation for providing liquidity, thereby increasing 

liquidity costs for all market participants. Budish, Cramton and Shim (2015) and Menkveld and 

Zoican (2016) show that, even in absence of speed differentials between the fast traders, sequential 

order processing and increases in exchange engine speeds lead to adverse selection of liquidity 

providers, increasing transaction costs. 

Hoffmann (2014) and Jovanovic and Menkveld (2015) show that when some market makers 

become fast they avoid being adversely selected and increase liquidity supply. In Hoffmann (2014) 

however, slower market makers become more exposed to adverse selection and widen their quotes. 

Depending on the relative size and competitiveness of the two groups, speeding up of select market 

makers may have both positive and negative consequences. Bongaerts, Kong and Van Achter 

(2016) show that both liquidity takers and liquidity makers will engage in speed competition. Roşu 

(2015) and Du and Zhu (2016) suggest that when some traders are faster than others, volatility may 

increase. 

 

3.2.3. Information flow between futures and equities 

We focus on information transmission between Chicago and New York. In the U.S., most 

futures contracts trade on the Chicago Mercantile Exchange (CME), particularly in its data center in 

Aurora, IL. Meanwhile, equities mainly trade at data centers that are located in New Jersey, close to 



87 
 

New York City. During our sample period, the NYSE data center is in Mahwah, NJ; Nasdaq data 

center is in Carteret, NJ; BATS is in Weehawken, NJ; and Direct Edge is in Secaucus, NJ. To 

continue with academic tradition, throughout the paper we refer to the two locales as Chicago and 

New York. 

Information transmission between the two market centers is driven by fast arbitrageurs. Our 

data show that when microwave technology allows these arbitrageurs to speed up, both price 

impacts and trading costs increase. This result may appear counterintuitive because arbitrageurs are 

often viewed as liquidity providers who enhance market efficiency. Several theory models suggest 

that arbitrageurs may respond to supply and demand shocks faster and more effectively than 

traditional market makers thereby improving liquidity (Holden, 1995; Gromb and Vayanos, 2002, 

2010). Guided by the insights of Grossman and Stiglitz (1980), these models assume that 

arbitrageurs are passive and provide liquidity when it is required by noise traders. 

Recent theory relaxes this assumption and allows arbitrageurs to demand liquidity when it is 

profitable. Foucault, Kozhan and Tham (2016) model a market in which arbitrageurs are faster than 

market makers. When arbitrageurs trade to enforce the law of one price, they often expose market 

makers to adverse selection risk. As in Copeland and Galai (1983), market makers require 

compensation for the risk of being adversely selected, and liquidity becomes more expensive. 

Foucault, Kozhan and Tham (2016) conclude that although arbitrage makes prices more efficient, it 

may hurt liquidity. This conclusion echoes the result in Roll, Schwartz and Subrahmanyam (2007), 

who find that arbitrage opportunities Granger-cause illiquidity. 
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3.3. Data and sample 

 Our main analysis is based on the millisecond DTAQ data. The sample period spans four 

years, from January 2011 through December 2014. The first two years (2011-2012) are 

characterised by limited access to microwave technology. The latter period (2013-2014) captures 

the time after the technology was democratized. 

 To achieve the fastest speeds, microwave networks follow paths that are as straight as 

possible and therefore rather similar. For illustration, Figure 3.1 reports tower locations of three 

select networks connecting Chicago to the New York data centers. The data on tower locations are 

obtained from the Federal Communications Commission (https://www.fcc.gov). Going east from 

the CME data center, the networks pass through Illinois, Indiana, Ohio, western Pennsylvania and 

then split in eastern Pennsylvania, with the southern branches going to Nasdaq’s data center in 

Carteret and the northern branches going to the NYSE in Mahwah. To avoid clutter, Figure 3.1 

maps three microwave networks; FCC data show that all networks follow similar paths. 

 

3.3.1. Precipitation data 

We obtain precipitation data from the National Oceanic and Atmospheric Administration 

(http://www.noaa.gov). The data contain precipitation statistics collected by weather stations across 

the U.S., in 15-minute intervals. The data also contain precise station locations. The stations report 

in local time, so for stations in Illinois and northwestern Indiana located in the Central time zone we 

add one hour to report times to match DTAQ time stamps. A standard piece of equipment at every 

station is a precipitation tank equipped with an automatic gauge that measures accumulated 

https://www.fcc.gov/
http://www.noaa.gov/
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precipitation. We focus on data collected by 83 stations located along the Chicago-New York 

corridor (Figure 3.2). In the robustness section, we examine station samples of different sizes. 

We note that although it may only rain over Indiana or Ohio, the entire microwave network 

will be disrupted. A relatively narrow weather front like the one in Figure 3.3 will result in weather 

stations located within the front reporting high levels of precipitation. In the meantime, stations 

located outside the front will report no precipitation. To capture relatively narrow bands of intense 

precipitation, our main independent variable        is computed as the sum of precipitation 

amounts reported by all stations. We examine alternative specifications in the robustness section. 

Statistics reported in Panel A of Table 3.1 indicate that an average 15-minute sampling 

interval sees 0.155 mm of precipitation. The distribution is rather skewed, with a median of 0.07, 

indicating that periods of low precipitation are occasionally interrupted by significant rain or snow. 

We note that microwave networks are only disrupted when precipitation is substantial. We therefore 

focus on high levels of precipitation and compute two additional metrics,         and        , 

that capture intervals when precipitation is 0.5 and 1 standard deviations above the mean. The two 

groups contain, respectively, 17% and 10.5% of all intervals, and         and         events 

last on average 54 and 49 minutes. As such, significant precipitation is observed rather frequently 

but ends quickly, forming a time series with sufficient variability. 

 

3.3.2 Asset samples 

The importance of information flows between the futures markets in Chicago and the equity 

markets in New York is well recognized in the literature. Some studies find that futures markets 

lead price discovery (Kawaller, Koch, and Koch, 1987; Chan, 1992). Others suggest that 

information may flow both ways (Chan, Chan and Karolyi, 1991; Roll, Schwartz and 
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Subrahmanyam, 2007). Hasbrouck (2003) shows that the direction of information flow depends on 

the futures trading activity; for the most active contracts, futures dominate price discovery. Given 

that the most active futures contracts track baskets of securities, our focus in the equity market is on 

the ETFs. As long as price discovery via futures is non-trivial, the speed of information transmission 

between Chicago and New York should matter for trading costs in ETFs. In a later section, we 

examine the direction of price discovery between the two markets in more detail. 

We use millisecond DTAQ data for a sample of 100 most actively traded ETFs. Among 

these, 50 ETFs track U.S. equity indexes; 22 – international indexes; 20 – corporate or treasury 

interest rate indexes; 4 – metals (i.e., gold and silver); 1 – a real estate portfolio; and 3 – other assets 

(Panel B of Table 3.1). Many ETFs in our sample track the same baskets of securities as the CME 

futures contracts (e.g., the QQQ ETF and the E-mini Nasdaq-100 futures). Others track baskets 

similar to those of major CME contracts. For example, the iShares Russell 1000 ETF does not have 

a corresponding CME futures contract; however, a portion of price discovery in this ETF comes 

from futures on other indexes such as the S&P 500.
18

 

 

3.3.3. DTAQ data and summary statistics 

Following Holden and Jacobsen (2014), we combine the DTAQ NBBO and Quote files to 

obtain the complete NBBO record and merge the resulting dataset with the Trade file. We sign 

trades using the Lee and Ready (1991) algorithm and exclude the first and the last five minutes of 

each trading day to avoid the influence of the opening and closing procedures. Panel A of Table 3.2 

reports market activity statistics. Precipitation data are in 15-minute intervals, and we aggregate the 

statistics accordingly. An average ETF has 5,305 NBBO updates every 15 minutes, equivalent to 

                                                           
18

 The CME delisted E-mini Russell 1000 futures contract in 2007 and relisted it in 2015. 
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about 6 updates per second. In addition, this ETF trades 500 times every 15 minutes, for a total 

volume of 190,522 shares.  

 

3.3.4. Precipitation and information transmission speed 

Our empirical tests are based on the premise that precipitation disrupts microwave networks 

and slows down the fastest traders. In Figure 3.4, we illustrate such disruptions. The figure reports 

the number of equity trades that follow a futures trade when precipitation is zero or very low 

(       <0, orange bars), and when it is high (       >1, blue bars). The number of trades is 

standardized for each asset to allow for cross-sectional comparability. To reduce serial correlation 

effects, we focus on the standalone futures trades, those not preceded by another futures or equity 

trade in the previous 100 milliseconds. Futures trades come from a 2012 CME dataset that contains 

four E-mini contracts: S&P 500, S&P MidCap 400, Nasdaq 100 and Financial Sector Select. 

Intraday data for these contracts are sold by the CME as a bundle. ETF trades are from DTAQ. 

Figure 3.4 shows that when precipitation is low, trading activity in the equity market picks 

up 5 ms after a futures trade. Meanwhile, when precipitation is heavy, equity trading begins 7 ms 

after a futures trade. During the sample period, microwave networks transmit information from 

Chicago to New York in about 4.5 ms, whereas fiber transmission takes about 6.5 ms. As such, the 

results corroborate the notion that precipitation slows traders by the 2-ms difference between the 

microwave and fiber speeds. 

Until mid-2015, U.S. exchanges are not required to synchronize their clocks (Bartlett and 

McCrary, 2016). During our sample period, the CME clock lags DTAQ by about one millisecond, 

and we adjust for this lag. Without the adjustment, it appears that equity trading during periods of 

zero precipitation picks up 4 ms after a futures trade, which is not possible as it would require 
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microwave speed to be equal to or faster than the speed of light. Importantly, the adjustment does 

not affect the evidence of the 2-ms speed advantage of the fastest traders. This is because the 

adjustment affects both       2<0 and        >1 equally, and therefore the difference between 

them remains the same.  

 

3.3.5. Picking-off risk 

Recent literature suggests that fast informed traders often trade via limit orders. Brogaard, 

Hendershott and Riordan (2016) show that limit orders submitted by fast traders play a significant 

role in price discovery. O’Hara (2015) also suggests that fast informed traders often prefer limit to 

marketable orders. Both studies however point out that most traders do not resort to one order type 

exclusively, but rather use them interchangeably depending on the circumstances.  

One of such circumstances is the constraint introduced by the minimum tick size. A binding 

tick size provides a strong incentive for fast traders to use marketable orders. Assume that a fast 

trader learns that an asset is underpriced. She wants to buy, but if the tick size is binding she cannot 

raise the outstanding bid without locking or crossing the market. Given these considerations, and if 

her signal is sufficiently strong, she may choose to consume liquidity (pick off the outstanding ask 

quote) despite having to pay the spread. As such, picking-off risk may be higher in assets with 

binding tick sizes. 

The very active ETFs in our sample are quite liquid and therefore are likely to be constrained 

by the minimum tick size. Panel B of Table 3.2 shows that the average NBBO is 1.9 cents, with a 

median of 1.2 cents. Given these constraints, trade-related price discovery and the associated 

picking-off risk may be important. In subsequent tests, we subdivide assets into two categories: 
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most and least constrained. To do so, we divide the assets into terciles according to the average 

NBBO. An average (median) NBBO in the first tercile is 1.0 (1.0) cent, whereas it is 3.6 (1.8) cents 

in the third tercile. We define the first tercile as the most tick constrained and the third tercile as the 

least constrained. 

To further examine the issue of picking-off risk, we compute two metrics. First, we estimate 

a share of price discovery attributable to trades. Second, we compute trade price impacts. The 

former metric follows Hasbrouck’s (1991 a,b) and decomposes the efficient price variance into the 

trade-related and trade-unrelated components. The details of this calculation are in the Appendix. 

Panel B of Table 3.2 shows that the trade-related component is 29.6%. As such, new information is 

incorporated into prices through trades rather frequently, and therefore concerns with the picking-

off risk are warranted. 

Our second proxy for the picking-off risk is the conventional price impact metric, computed 

on a round-trip basis as twice the signed difference between the midquote at a time after the trade 

and the midquote at the time of the trade:           (           ), where    is the Lee and 

Ready (1991) trade direction indicator,      is the midquote computed as 

                      ⁄ , and   indicates the time elapsed since the trade. Recent research 

uses  s of just a few seconds. For instance, O’Hara (2015) suggests that 5- to 15-second intervals 

may be the most useful, whereas Conrad, Wahal and Xiang (2015) use price impacts up to 20 

seconds. 

To check if intervals of these lengths are practical in our setting, Figure 3.5 traces price 

impacts for 60 seconds after a trade. The results clarify our understanding of price dynamics on two 

levels. First, the data show that price impacts are greater than zero, corroborating the earlier 

assertion that non-trivial amounts of information are incorporated into prices through trades. 
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Second, although a significant proportion of information is incorporated into quotes within a second 

after the trade, incorporation continues at a slower pace up to 60 seconds. In the remainder of the 

tests, we focus on 15-second intervals, with robustness checks examining intervals between 1 and 

60 seconds. 

It may not be immediately obvious that there is enough adverse selection in ETFs to warrant 

non-zero price impacts. We suggest that as long as sufficient amounts of macro information are 

present, price impacts in ETFs may be quite sizeable. In a study that examines a recent sample of 

large U.S. equities, Chakrabarty, Jain, Shkilko and Sokolov (2016) report price impacts that are 

35% of the effective spread. In Table 3.2, the ETF price impacts are 31% of the effective spread. As 

such, adverse selection is a non-trivial component of ETF trading costs and is comparable to the 

levels found in equities. 

 

3.3.6. Trading costs and liquidity provider revenues 

Table 3.2 also reports liquidity costs and liquidity provider revenues proxied by effective 

spreads,     , and realized spreads,     .     is computed as twice the signed difference between 

the prevailing midquote and the trade price,   :                  .      is computed as the 

difference between the effective spread and the price impact. We volume-weight effective and 

realized spreads. The average (median) effective spread is 1.9 (1.0) cents and the average (median) 

realized spread is 1.3 (0.7) cents.  
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3.4. Empirical findings 

3.4.1. Connectivity disruptions and picking-off risk 

When the microwave networks are fully functional, their users have a speed advantage. 

Theory models make several assumptions as to how this advantage may be used. Some models 

assume that the fastest traders can better manage adverse selection risk. Others suggest that speed 

advantages are used to generate such risk by picking off slower traders. In this section, we aim to 

better understand which of these assumptions prevails. 

If speed advantages allow fast traders to pick off outstanding limit orders, connectivity 

disruptions should result in lower price impacts. Alternatively, if fast connections are used to 

incorporate the latest information into quotes, the disruptions may be accompanied by larger price 

impacts. Certainly, it is possible that both explanations have merit, and our data allow us to gauge 

which of them prevails. We focus on the 2011-2012 period when the microwave networks allowed 

for speed differentials among traders. The post-democratization period (2013-2014) is examined in 

a later section. Chung and Chuwonganant (2014) and Malinova, Park and Riordan (2014) argue that 

VIX is a first-order determinant of trading activity and liquidity, and we use their insight in a 

regression setup as follows: 

                                ,                          (1) 

where        is the price impact;        is total precipitation in the Chicago-New York 

corridor; and     is the intraday volatility index proxied by the iPath S&P500 VIX ST Futures ETF 

that tracks VIX. As discussed earlier, we also use         and         to identify the most 

significant precipitation events. All asset-specific variables are standardized (by demeaning and 
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scaling by the standard deviation for each stock), so regression models control for asset fixed 

effects. Additionally, the standard errors are double-clustered along the asset and time dimensions. 

Table 3.3 shows that price impacts decline during network disruptions. Significant amounts 

of precipitation captured by         are associated with a 0.047 standard deviations, or 7.1%, 

decline in price impacts (Panel A). It therefore appears that microwave users prefer marketable 

orders to limit orders. 

 Per our earlier suggestion, marketable orders may be the only choice when the tick size is 

binding. If this is so, microwave network disruptions will have a larger effect on price impacts in the 

most constrained assets. The results in Panel B are consistent with this expectation. Price impacts in 

the most constrained ETFs decline by 0.051 standard deviations, whereas they decline by only 0.039 

standard deviations in the least constrained ETFs. It therefore appears that fast traders use more 

limit orders when the tick size allows. This said, even in the least constrained ETFs liquidity taking 

is preferred by microwave users as evident from the decline in price impacts.  

 

3.4.2. Trading costs and liquidity provider revenues 

To the extent that liquidity providers use speed advantages to avoid being adversely selected, 

microwave connectivity disruptions should cause them to widen spreads. If however speed 

advantages are used mainly to pick off standing orders, precipitation should result in reduced 

adverse selection, and spreads may narrow. The tests discussed earlier provide support to the 

picking-off story, so we expect trading costs to decline during precipitation episodes. We however 

note that it is not clear how quickly liquidity providers adjust to lower adverse selection, and if they 

adjust at all given that precipitation episodes are relatively short. Easley and O’Hara (1992) describe 

price adjustment as gradual learning. In their model, market makers do not immediately know if 
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informed traders are active, but learn over time. Whether such learning happens in our setting is an 

empirical question. 

In Table 3.3, we report eq. 1 coefficient estimates for effective and realized spreads. 

Effective spreads decline by 0.043 standard deviations, or 7.2%, during heavy precipitation episodes 

(        in Panel A). Expectedly, this result is more pronounced for the least constrained assets 

(Panel B), where the spreads have room to decline. The results are consistent with predictions of the 

models that emphasize the picking-off risk and are also informative about the speed of adjustment to 

changing levels of adverse selection. Specifically, the length of an average precipitation episode 

appears sufficient for liquidity providers to adjust. It is however unclear if this adjustment reflects 

an equilibrium. In a later section, we report results based on an exogenous shock that resulted in the 

long-term reduction in speed differentials. This shock further improves our understanding of the 

equilibrium effects. 

We note that there is an alternative, mechanical, explanation to the decline in effective 

spreads. Aggressively priced limit orders may be added to the book equally often when the 

microwaves are up and when they are down. Since such orders are consumed less when the 

arbitrage strategies are switched off, they are more readily available to the remaining liquidity 

takers, who obtain better prices. In a later section, we examine trades and limit order book data to 

show that both explanations have merit. 

Realized spreads also decline, by 0.021 standard deviations, or 5.3%, during         

events. As such, network disruptions not only reduce liquidity costs, but also reduce liquidity 

provider revenues. Similarly to the effective spread result, there are two possible explanations. On 

the one hand, liquidity supply may become more competitive when picking-off risk is reduced. 

Chakrabarty, Jain, Shkilko and Sokolov (2016) show that when the adverse selection risk declines, 
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liquidity providers reposition orders from the deeper layers of the book to the inside. On the other 

hand, the effect may be mechanical. When microwaves allow latency arbitrageurs to pick off inside 

quotes, the spread increases by at least one tick. Given the coarseness of this change, the resulting 

realized spreads may be unduly large. 

 

3.4.3. Trading activity and volatility 

The literature often assumes that lower trading costs attract additional trading interest and 

therefore result in higher trading volume. In our setting, this assumption will not necessarily hold. 

This is because aside from lower costs, network disruptions lead to a reduction in the number of 

picking-off opportunities and consequently the volume generated by latency arbitrage. The 

regression results in Panel A of Table 3.4 are consistent with this notion. The number of trades 

declines by 0.072 standard deviations during         events. Trading volume also declines; by 

0.042 standard deviations. 

The finance literature has not yet come to a consensus on the relation between electronic 

trading and volatility. While some studies report that the relation is negative (Hasbrouck and Saar, 

2013; Brogaard, Hendershott and Riordan, 2014), others find it to be positive (Boehmer, Fong and 

Wu, 2015). Closest to our setting, a theory model by Roşu (2015) suggests that as fast traders pick 

off market makers’ quotes, volatility may increase. Du and Zhu (2016) also show that when some 

traders are faster than others, liquidity shocks result in greater volatility. Our results are consistent 

with these insights; volatility, which we define as the difference between the high and low prices 

during an interval scaled by the average price, declines by 0.118 standard deviations, or 5.8%, 

during         events. 

In assets with wider spreads new information may be incorporated into prices through both 
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marketable and aggressive limit orders. Meanwhile, in assets whose spreads are constrained by the 

minimum tick size, fast traders must rely on marketable orders. Naturally, these considerations 

should affect changes in trading activity during network disruptions. Panel B shows that the number 

of trades and trading volume decline in the most constrained assets, yet remain unchanged in the 

least constrained assets. These results corroborate two of our earlier conjectures: (i) fast traders use 

fewer marketable orders in the least constrained ETFs, and (ii) trading volume may increase in 

response to lower trading costs compensating for some of the volume lost when the arbitrage 

strategies are switched off. 

Overall, the results suggest that even though lower spreads may attract additional trading 

interest, trading volume generated by this interest is smaller or equal to the lost arbitrage volume. 

One possibility is that the disruptions are not long enough or not sufficiently predictable for 

additional trading interest to emerge. A trading strategy that is highly sensitive to transaction costs 

may not be viable in a high cost environment, even if high cost periods are occasionally interrupted 

by low cost periods. This said, an extended period of lower spreads may make the strategy viable, 

thus generating new trading interest. In a later section, we examine this possibility by studying an 

event that resulted in a long-lasting loss of speed advantage by the network users. 

 

3.4.4. Limit order aggressiveness 

 Earlier, we suggested that the reduction in trading costs may have two explanations: (i) the 

mechanical one, whereby standing orders are not picked off as frequently during microwave 

disruptions and (ii) the one based on the emergence of latent liquidity. The results in the previous 

section corroborate the first explanation. In this section, we use ITCH limit order book data 

provided by Nasdaq to examine the second explanation. 
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 Specifically, we ask if the proportion of aggressively priced limit orders increases during 

microwave disruptions. We compute two metrics: the number of orders that (i) match the prevailing 

NBBO and (ii) the number of orders that match or improve the NBBO. We scale both metrics by the 

number of total order submissions. Eq. 1 coefficient estimates reported in Table 3.5 confirm that the 

number of aggressively priced limit orders increases during precipitation episodes. For orders that 

match the NBBO, the increase is seen in the full sample as well as the most and the least constrained 

subsamples (Panel A). For orders that match or improve the NBBO, the coefficients are 

insignificant for the most constrained ETFs. This result is not surprising given that improving the 

NBBO in such ETFs is often impossible given the constraints of the tick size. 

 

3.4.5. Information asymmetry in the futures market 

Do speed differentials also affect the picking-off risk in futures contracts? On the one hand, 

fast traders may carry information both from futures to equities and in the opposite direction. On the 

other hand, prior research suggests that futures provide the lion’s share of price discovery in index 

instruments. If so, using limited microwave bandwidth to transmit information from ETFs to futures 

may be wasteful. If this is the case, speed differentials may not have much of an effect on the CME. 

To examine this issue, we use the 2012 CME data described in Section 3.4 and compute 

information shares as in Hasbrouck (1995) for the four futures-ETF pairs. The details of the 

methodology are in the Appendix. The results are consistent with earlier studies, in that price 

discovery occurs mainly on the CME; the CME information shares are in the [0.64; 0.82] range. 

Second, in Panel A of Table 3.6 we examine the price impacts in futures during precipitation 

episodes and find no relation. 
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 Statistical power is a concern in the analysis above given the small size of the cross-section. 

To address this concern, in Panel B we replicate the results for the sample of four corresponding 

ETFs. Similarly to the main sample, precipitation is associated with reductions in price impacts. 

 

3.4.6. Democratization of MWN access 

In late December 2012 – early January 2013, a microwave technology provider McKay 

Brothers, disrupted the business model used by the microwave firms. Instead of selling bandwidth 

on its network to select traders, McKay Brothers began selling information transmitted by the 

network to everyone who was willing to pay a nominal fee. Subscribers to this service obtained 

access to an affordable and non-exclusive channel of information transmission that was among the 

fastest in the industry. The offer was soon replicated by other providers, and the market for 

microwave transmissions was democratized. Put differently, microwave users lost the speed 

advantage they enjoyed in 2011-2012. 

Democratization of access to microwave transmission speeds may lead to two outcomes. 

First, the relation between precipitation and market quality observed in 2011-2012 may diminish 

because access to superior speeds is no longer limited to a small group of traders. Second, 

democratization may result in market quality changes similar to those observed during precipitation 

events. In this sense, precipitation episodes in 2011-2012 may be viewed as periods of short-term 

democratization, whereas the 2012-2013 event may be viewed as long-term democratization. 

In Table 3.7, we report the coefficients of the         variable obtained from estimating 

eq. 1 during the post-democratization period. The results confirm expectations. Precipitation 

episodes no longer have an effect on price impacts, effective spreads, realized spreads, volatility and 

trading activity. The change is observed for the full sample and for the most and least constrained 
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subsamples. As such, democratization appears to be a significant market disruptor. 

Given the significance of democratization, the liquidity effects associated with the loss of the 

speed advantage may reappear around the event. To examine if this is the case, we estimate an event 

study regression model that compares market quality and activity variables in a three-month pre-

event window (September – November 2012) and a three-month post-event window (February – 

April 2013). We exclude December 2012 and January 2013 to allow for a transition period, however 

the results are similar when these months are included. The regression is set up as follows: 

                                                                                

where          is one of the following variables (price impacts, effective spreads, realized 

spreads, the number of trades, traded volume, volatility and stock price) in asset   on day  ,    

denotes a time trend,      is a dummy variable that equals to one in February-April 2013, and     

is the volatility index. All variables are standardized. The model controls for asset fixed effects, and 

the standard errors (in parentheses) are double-clustered along the asset and time dimensions.  

The main variable of interest in eq. 2 is      as it captures the difference between the pre- 

and post-democratization periods. Consistent with expectations, the results for the full sample in 

Table 3.8 indicate that price impacts, effective spreads, realized spreads and volatility decline post-

democratization. We must however note an important caveat. Democratization was a single event 

that affected all assets at the same time. As such, we are unable to eliminate the possibility that the 

results are driven by a confounding event(s) unrelated to democratization. Although we are unaware 

of any such events, the event study results should be interpreted with due caution. 

A notable difference between the event study and the panel findings discussed earlier comes 

from the trade-related variables: the number of trades and volume. Recall that in the full sample 

these variables decline during precipitation events (Table 3.4), likely because latency arbitrage is 
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diminished. In Table 3.8, these variables do not change post-democratization in the full sample, 

corroborating our earlier suggestion that lower trading costs may encourage new trading interest 

over long periods of time. The new interest offsets the loss of arbitrage volume. The results pointing 

to new trading interest are observed even in the sample of the most constrained ETFs where trade 

and volume losses during precipitation-related disruptions are the largest. Although Table 3.8 shows 

a declining number of trades in the most constrained assets, the change in volume is statistically 

insignificant, suggesting that new trading interest arises even in these assets. 

The market structure literature often suggests that lower trading costs translate into higher 

stock prices (e.g., Amihud and Mendelson, 1986; Easley, Hendershott and Ramadorai, 2014). If so, 

liquidity improvements caused by democratization may result in price appreciations. Table 3.8 

indicates that such appreciations indeed occur. 

Given the private benefits from exclusive network access that accrued to the select few 

trading firms in 2011-2012, democratization is a curious case of the market fixing itself. It is 

however not immediately clear why McKay Brothers chose to disrupt the status quo. Cespa and 

Foucault (2014) note that it is in a data provider’s best interest to restrict dissemination of pricing 

data only to select traders. Their model shows that if information is accessible to many, it is less 

valuable to the few who may be willing to pay a premium for the exclusive use. It is our 

understanding that McKay Brothers was driven by the following two motives. First, the firm 

believed that even if others were to replicate its offering, there would be enough pricing information 

for everyone to transmit given the large numbers of traded instruments and the low bandwidth of 

microwave links. Second, the firm argued that growing its customer base was more profitable than 

providing restricted access to a small group of clients. As long as the firm maintained its latency 

advantage, it expected to always retain its customers. Many other connectivity providers launched 
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similar offerings in the months after the democratization, possibly driving down the price of the 

service. This said, McKay Brothers continues to offer the service to this day and has expanded it to 

several continents. 

 

3.5. Robustness 

A rich literature examines the effects of weather on the behavior of market participants and 

finds that poor weather is associated with investor pessimism, which is reflected in stock returns 

(Hirshleifer and Shumway, 2003). The pessimism affects even the sophisticated investors 

(Goetzmann, Kim, Kumar and Wang, 2015). Furthermore, deHaan, Madsen and Piotroski (2015) 

show that pessimistic moods induced by poor weather often delay equilibrium price adjustments. As 

such, the reduction in adverse selection during precipitation episodes may be attributed (at least in 

part) to slower price discovery caused by the poor weather in Chicago and/or New York rather than 

to the microwave disruptions. 

To examine this possibility, we recalculate the         variable to capture periods when 

the networks are disrupted, yet the moods of traders in Chicago and New York are not affected. 

Specifically, we compute         that satisfies the following two conditions: (i) only weather 

stations in Ohio indicate high levels of precipitation, and (ii) weather stations in the western and 

eastern parts of the Chicago-New York corridor indicate near-zero precipitation. We then re-

estimate eq. 1 for the 2011-2012 sample and report the results in the mood control specification in 

Panel A of Table 3.9. The effects are consistent with those reported in the earlier tables. As such, 

trader moods do not seem to be the source of our findings. 
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Our sample of weather stations is selected to capture the area closely surrounding the 

microwave paths. As with any such selection procedure, it is important to show that the results are 

not driven by the specific set of stations. The mood control specification takes the first step in this 

direction by restricting the sample to the Ohio stations. In two additional Table 3.9 specifications, 

we show that using information from an expanded area surrounding the MWN paths leads to similar 

conclusions, while precipitation in the placebo area over Colorado, Utah and Wyoming (far 

removed from the Chicago-New York corridor) has no effect on the variables of interest. 

Information asymmetry, trading costs and trading activity vary throughout the day. For 

instance, effective spreads follow an intraday J-pattern, with wider spreads in the morning that 

become narrower in the afternoon (Figure 3.6). Notably, intraday precipitation too follows a reverse 

J-pattern, with precipitation amounts being lower in the morning hours. Since the results in the 

previous section point to a negative relation between precipitation and spreads, we need to establish 

that the findings are not due to these intraday patterns. 

We examine this possibility in two additional specifications in Panel A of Table 3.9. First, 

we focus on the afternoon period, when spreads and precipitation are relatively flat. Our results hold 

for every variable of interest. Second, the results continue to hold when we add intraday fixed 

effects to eq. 1. As such, the relations between precipitation and spreads observed in the earlier 

sections are independent of intraday patterns.  

Recall that the        variable estimates total precipitation in the Chicago-New York 

corridor. This variable is well-suited to capture periods of high precipitation over small areas, but 

may occasionally acquire high values if relatively minor precipitation extends over the entire 

corridor. This possibility is the reason for our focus on         that captures very high 

precipitation totals not likely to be achieved through anything other than significant precipitation. 
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To provide another alternative to       , in Panel B of Table 3.9 we report the results using the 

average precipitation per station,        , and its variations,          and         , that 

capture periods when average precipitation is 0.5 and 1 standard deviations above the mean. We 

note that although these variables mitigate the abovementioned concern, they potentially reduce our 

ability to detect relatively narrow bands of strong precipitation, especially those accompanied by 

near-zero precipitation in the rest of the corridor (Figure 3.3). Corroborating this reasoning, the 

results for         are weaker than those reported earlier for       , yet the results for 

         and          are equally as strong as those for their counterparts computed using 

total precipitation. 

In the main analysis, we compute the effective spreads and their components on a volume-

weighted basis. As such, large trades have a stronger effect on the estimates than small trades. To 

shed more light on the effects of network disruptions on small trades, in Table 3.10 we report eq. 1 

regression results for the equally-weighted variables (specifications    ). The results reported 

earlier hold.  

The results for the volume-weighted effective spreads and their components reported in 

earlier tables use raw dollar metrics. Naturally, raw spreads may vary in the price of the asset. 

Although our regressions account for the overall price levels by using asset fixed effects, intraday 

price changes remain unaccounted for. The      specifications in Table 3.10 address this issue 

using effective spreads, price impacts and realized spreads scaled by the midquote at the time of 

trade. The results corroborate those reported in the earlier tables. 

In the previous sections, we discuss the effects of network disruptions on effective spreads. 

We also show that the effects differ between the assets most and least constrained by the minimum 

tick size. In Table 3.11, we estimate eq. 1 for two additional variables – the quoted NBBO spread 
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and quoted depth. Whereas effective spreads capture the realized trading costs, the quoted spreads 

summarize liquidity that is available at all times. As long as investors choose to trade when costs are 

low, effective spreads may not be fully indicative of changes in available liquidity. Table 3.11 

shows that quoted spreads decline when the networks are down across all sample groups. The 

coefficients repeat the patterns reported for effective spreads, with quoted spreads declining more 

for the least constrained ETFs, in which more price improvement is possible. 

Table 3.11 also reports the results for quoted NBBO depth, which increases during network 

disruptions, but only for the most constrained ETFs. This finding is consistent with the earlier 

discussion. In the most constrained ETFs, there is not always room to improve the spread, so 

liquidity improvements are reflected in quoted depth. There is certainly an alternative mechanical 

explanation in that less depth is consumed by arbitrage strategies during precipitation episodes, 

therefore allowing for larger depth averages. Notably, depth does not increase in the least 

constrained ETFs. 

 

3.6. Conclusions 

 This study examines the effects of speed differentials on liquidity. During our sample period, 

microwave networks located between Chicago and New York allow for the fastest information 

transmission and are only available to select trading firms. When it rains or snows in the area 

between the two cities, the networks are disrupted because rain droplets and snowflakes block the 

microwave paths. With the networks temporarily down, information transmission falls back onto the 

fiber-optic cable – a more reliable, yet slower transmission medium – effectively eliminating the 

speed advantages of the fastest traders. We show that when this happens, adverse selection and 
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trading costs decline. This result is consistent with predictions of theory models that show that speed 

differentials among traders may be associated with lower liquidity. 

 Our results also shed new light on traders’ order choices. Recent research suggests that 

informed fast traders may prefer to trade via limit orders. Our results confirm that this is the case, 

yet this preference varies in the cross-section. Specifically, in assets with binding tick sizes, trading 

on short-lived information through limit orders is difficult due to long queues. In such assets, traders 

prefer marketable orders.  

 Our results are confirmed in an event-study setting. In winter of 2012-2013, a technology 

firm, McKay Brothers, democratized microwave transmissions by introducing a new business 

model. Instead of selling bandwidth on its network, the firm began selling information on both sides 

of the Chicago-New York corridor. This event had positive liquidity consequences similar to 

precipitation-related network disruptions. 

The technological race continues to drive spending in the trading industry. Recent examples 

include new data transmission towers to connect the U.K. and European markets. The towers will be 

among the tallest structures in the U.K. and will rival the Eiffel Tower. They will provide trading 

firms with a completely unobstructed optical and radio line of sight, never previously offered in 

Europe, increasing signal transmission speed. In the meantime, traders in the U.S. have been 

switching from microwave transmissions to more reliable, yet costly, laser links. Our findings shed 

light on the possible consequences of these developments.  



109 
 

3.7. References 

Aït-Sahalia, Y. and Saǧlam, M., 2017, High frequency market making: Optimal quoting, 

Working paper. 

Amihud, Y. and Mendelson, H., 1986, Asset pricing with liquidity risk, Journal of Financial 

Economics 77, 375-410. 

Baron, M., Brogaard, J., Hagströmer, B. and Kirilenko, A., 2016, Risk and return in high-

frequency trading, Working paper.  

Bartlett, R. and McCrary, J., 2016, How rigged are stock markets? Evidence from 

microsecond timestamps, Working paper. 

Bernales, A., 2014, Algorithmic and high frequency trading in dynamic limit order markets, 

Working paper. 

Biais, B., Foucault, T. and Moinas, S., 2015, Equilibrium fast trading, Journal of Financial 

Economics 116, 292-313. 

Boehmer, E., Fong, K. and Wu, J., 2015, International evidence on algorithmic trading, 

Working paper. 

Bongaerts, D., Kong, L. and Van Achter, M., 2016, Trading speed competition: Can the arms 

race go too far? Working paper. 

Brogaard, J., Hagströmer, B., Nordén, L. and Riordan, R., 2015, Trading fast and slow: 

Colocation and liquidity, Review of Financial Studies 28, 3407-3443. 

Brogaard, J., Hendershott, T. and Riordan, R., 2014, High-frequency trading and price 

discovery, Review of Financial Studies 27, 2267-2306. 

Brogaard, J., Hendershott, T. and Riordan, R., 2016, Price discovery without trading: 

Evidence from limit orders, Working paper. 

Budish, E., Cramton, P. and Shim, J., 2015, The high-frequency trading arms race: Frequent 

batch auctions as a market design response, Quarterly Journal of Economics 130, 1547-1621. 

Carrion, A., 2013, Very fast money: High-frequency trading on the NASDAQ, Journal of 

Financial Markets 16, 680-711. 

Cespa, G. and Foucault, T., 2014, Sale of price information by exchanges: Does it promote 

price discovery? Management Science 60, 148-165. 

Chakrabarty, B., Jain, P., Shkilko, A. and Sokolov, K., 2016, Speed of market access and 

market quality: Evidence from the SEC naked access ban, Working paper. 

Chordia, T., Green, C. and Kottimukkalur, B., 2016, Do high frequency traders need to be 

regulated? Evidence from trading on macroeconomic announcements, Working paper. 



110 
 

Conrad, J., Wahal, S. and Xiang, J., 2015, High-frequency quoting, trading, and the efficiency 

of prices, Journal of Financial Economics 116, 271-291. 

Copeland, T. and Galai, D., 1983, Information effects on the bid-ask spread, Journal of 

Finance 38, 1457-1469. 

Chan, K., Chan, K.C. and Karolyi, A., 1991, Intraday volatility in the stock index and stock 

index futures markets, Review of Financial Studies 4, 657-684.  

Chan, K., 1992, A further analysis of the lead-lag relationship between the cash market and 

stock index futures market, Review of Financial Studies 5, 123-151.  

Chung, K. and Chuwonganant, C., 2014, Uncertainty, market structure, and liquidity, Journal 

of Financial Economics 113, 476-499. 

deHaan, E., Madsen, J. and Piotroski, J., 2015, Do weather-induced moods affect the 

processing of earnings news? Working paper. 

Du, S., and Zhu, H., 2016, What is the optimal trading frequency in financial markets? Review 

of Economic Studies, forthcoming. 

Easley, D., Hendershott, T. and Ramadorai, T., 2014, Leveling the trading field, Journal of 

Financial Markets 17, 65-93. 

Easley, D. and O’Hara, M., 1992, Time and process of security price adjustment, Journal of 

Finance 47, 577-605. 

Foucault, T., Hombert, J. and Roşu, I., 2016, News trading and speed, Journal of Finance 71, 

335-382. 

Foucault, T., Kozhan, R. and Tham, W., 2016, Toxic arbitrage, Review of Financial Studies, 

forthcoming. 

Goetzmann, W., Kim, D., Kumar, A. and Wang, Q., 2015, Weather-induced mood, 

institutional investors, and stock returns, Working paper. 

Gromb, D. and Vayanos, D., 2002, Equilibrium and welfare in markets with financially 

constrained arbitrageurs, Journal of Financial Economics 66, 361-407. 

Gromb, D. and Vayanos, D., 2010, Limits of arbitrage: The state of the theory, Annual Review 

of Financial Economics 2, 251-275. 

Grossman, S. and Stiglitz, J., 1980, On the impossibility of informationally efficient markets, 

American Economic Review 70, 393-408. 

Hagströmer, B. and Nordén, L., 2013, The diversity of high-frequency traders, Journal of 

Financial Markets 16, 741-770. 

Hasbrouck, J., 1991a, Measuring the information content of stock trades, Journal of Finance 

46, 179-207. 



111 
 

Hasbrouck, J., 1991b, The summary informativeness of stock trades: An economic analysis, 

Review of Financial Studies 4, 571-595. 

Hasbrouck, J., 1995, One security, many markets: Determining the contributions to price 

discovery, Journal of Finance 50, 1175-1199. 

Hasbrouck, J., 2003, Intraday price formation in the U.S. equity index markets, Journal of 

Finance 58, 2375-2399. 

Hasbrouck, J. and Saar, G., 2013, Low-latency trading, Journal of Financial Markets 16, 646-

679. 

Hendershott, T. and Riordan, R., 2013, Algorithmic trading and the market for liquidity, 

Journal of Financial and Quantitative Analysis 48, 1001-1024. 

Hirshleifer, D. and Shumway, T., 2003, Good day sunshine: Stock returns and the weather, 

Journal of Finance 58, 1009-1032. 

Hoffmann, P., 2014, A dynamic limit order market with fast and slow traders, Journal of 

Financial Economics 113, 156-169. 

Holden, C., 1995, Index arbitrage as cross-sectional market making, Journal of Futures 

Markets 15, 423-455. 

Holden, C. and Jacobsen, S., 2014, Liquidity measurement problems in fast, competitive 

markets: Expensive and cheap solutions, Journal of Finance 69, 1747-1785. 

Jovanovic, B. and Menkveld, A., 2015, Middlemen in limit order markets, Working paper. 

Kawaller, I., Koch, P. and Koch, T., 1987, The temporal price relationship between S&P 500 

futures and the S&P 500 index, Journal of Finance 5, 1309-1329. 

Koudijs, P., 2015, Those who know most: Insider trading in 18
th

 century Amsterdan, Journal 

of Political Economy 123, 1356-1409. 

Koudijs, P., 2016, The boats that did not sail: Asset price volatility in a natural experiment, 

Journal of Finance 71, 1185-1226. 

Lee, C. and Ready, M., 1991, Inferring trade direction from intraday data, Journal of Finance 

46, 733–746. 

Malinova, K., Park, A. and Riordan, R., 2014, Do retail traders suffer from high frequency 

traders, Working paper. 

Menkveld, A., 2016, The economics of high-frequency trading: Taking stock, Annual Review 

of Financial Economics, forthcoming. 

Menkveld, A. and Zoican, M., 2016, Need for speed? Exchange latency and liquidity, Review 

of Financial Studies, forthcoming. 

O’Hara, M., 2015, High frequency market microstructure, Journal of Financial Economics 

116, 257-270. 



112 
 

Roll, R., Schwartz, E. and Subrahmanyam, A., 2007, Liquidity and the law of one price: The 

case of the futures-cash basis, Journal of Finance 62, 2201-2234. 

Roşu, I., 2015, Fast and slow informed trading, Working paper. 

Yao, C. and Ye, M., 2015, Why trading speed matters: A tale of queue rationing under price 

controls, Working paper.  



113 
 

Table 3.1. Descriptive statistics 

The table reports descriptive statistics for precipitation and for the sample of 100 ETFs. In Panel 

A,        is the variable that captures total precipitation recorded by the weather stations along 

the Chicago-New York corridor. Along with precipitation statistics (in mm per a 15-minute 

sampling interval), we report the percent share of intervals with        greater than 0.5 

standard deviations (       ) and with        greater than 1 standard deviation (       ). 

Finally, we report the length of an average period with consecutive         and         as 

well as the percent share of days with episodes of         or        . Panel B classifies 100 

sample ETFs into categories according to the underlying asset basket. 

Panel A: Precipitation   

      , mm/interval  

mean 0.155 

median 0.070 

std. dev. 0.218 

% intervals with         17.0 

% intervals with         10.5 

length        , min 54.2 

length        , min 49.1 

  

Panel B: ETF sample  

Equities 

 US index 50 

International index 22 

Interest rate products 20 

Metals 4 

Real estate 1 

Other 3 
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Table 3.2. Market activity statistics 

The table contains summary statistics for the sample of 100 ETFs. Statistics are derived from the 

millisecond DTAQ data and aggregated into 15-minute intervals to match precipitation data. 

Volatility is defined as the difference between the high and low price in a 15-minute interval 

scaled by the average price. Trade price discovery is the percentage of efficient price variance 

that may be attributed to trades (Hasbrouck, 1991). The National Best Bid and Offer (NBBO) is 

defined as the difference between the lowest offer quote and the highest bid quote across all 

markets. We divide the assets into terciles by their average NBBO. Assets with the smallest 

(largest) NBBOs are considered the most (least) tick-constrained. Price impact is defined as 

twice the signed difference between the NBBO midquote 15 seconds after the trade and the 

midquote at the time of the trade. Effective spread is twice the signed difference between the 

trade price and the corresponding midquote. Realized spread is the difference between the 

effective spread and the corresponding price impact. 

  mean std. dev. 25% median 75% 

Panel A: Activity statistics 

# NBBO 

updates 5,305 8,169 608 2,470 6,953 

# trades 500 1,233 39 113 432 

volume, sh. 190,522 485,076 13,438 32,171 120,444 

price, $ 71.69 36.67 42.08 69.61 92.06 

trade size, sh. 448 852 246 311 425 

volatility, % 0.154 0.076 0.111 0.158 0.195 
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Panel B: Trading cost statistics 

NBBO, $ 0.019 0.024 0.010 0.012 0.019 

most constrained 0.010 0.003 0.010 0.010 0.010 

least constrained 0.036 0.037 0.018 0.028 0.042 

      

trade price disc., % 0.296 0.159 0.194 0.261 0.350 

price impact, $ 0.006 0.009 0.000 0.004 0.009 

effective spread, $ 0.019 0.032 0.010 0.011 0.018 

realized spread, $ 0.013 0.033 0.002 0.007 0.014 
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Table 3.3. Microwave connectivity and trading costs 

The table contains coefficient estimates from the following panel regression: 

                                  

where          is one of the following variables: the price impact,     , the effective spread,    , or the realized spread,    , in 

asset  ;        is total precipitation in the Chicago-New York corridor; and     is the volatility index. We also use         and 

        to identify the most significant precipitation events. All variables are standardized (by demeaning and scaling by the 

standard deviation for each stock) and as such the regression models control for asset fixed effects, and the standard errors (in 

parentheses) are double-clustered along the asset and time dimensions. The data are from the 2011-2012 period. Panel A examines the 

full sample of 100 ETFs, and Panel B examines the assets for which the minimum tick size is the most (least) binding. For this test, we 

separate the assets into terciles by their average NBBO on the previous day. Assets with the smallest (largest) NBBOs are considered 

the most (least) tick-constrained. Asterisks ***, ** and * denote statistical significance at the 1%, 5% and 10% levels. 

 

               

 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

Panel A: Full sample 

       -.010***    -.010***    -.005**   

 

(.004)    (.003)    (.002)   

         -.035***    -.041***    -.024***  

 

 (.012)    (.010)    (.007)  

          -.047***    -.043***    -.021*** 

 

  (.013)    (.011)    (.008) 

    .035*** .035*** .035***  .057*** .058*** .057***  .036*** .036*** .036*** 

 

(.009) (.009) (.009)  (.008) (.008) (.008)  (.006) (.006) (.006) 
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Panel B: Effects of         for assets that are the most (least) constrained by the minimum tick size (large sample) 

                

 most  least  most  least  most  least 

        -.051***  -.039***  -.023***  -.079***  -.006  -.058*** 

 

(.017)  (.010)  (.008)  (.020)  (.007)  (.017) 
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Table 3.4. Microwave connectivity, trading activity and volatility 

The table contains coefficient estimates from the following panel regression: 

                                  

where          is one of the following three variables (the number of trades, traded volume, or volatility) in asset   during a 15-

minute interval  ;        is total precipitation in the Chicago-New York corridor; and     is the volatility index. We also use 

        and         to identify the most significant precipitation events. All variables are standardized and as such the regression 

models control for asset fixed effects, and the standard errors (in parentheses) are double-clustered along the asset and time 

dimensions. The data are from the 2011-2012 period. Panel A examines the full sample of 100 ETFs, Panel B examines the assets for 

which the minimum tick size is the least (most) binding. For this test, we separate the assets into terciles by their average NBBO on 

the previous day. Assets with the smallest (largest) NBBOs are considered the most (least) tick-constrained. Asterisks ***, ** and * 

denote statistical significance at the 1%, 5% and 10% levels. 

 

trades  volume  volatility 

 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

Panel A: Full sample 

       -.010***    -.012***    -.025**   

 

(.006)    (.004)    (.010)   

         -.070***    -.044***    -.103***  

 

 (.020)    (.013)    (.032)  

          -.072***    -.042***    -.118*** 

 

  (.023)    (.015)    (.036) 

    .079*** .079*** .079***  .049*** .050*** .049***  .185*** .186*** .185*** 

 

(.015) (.015) (.015)  (.009) (.009) (.009)  (.024) (.024) (.024) 
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Panel B: Effects of         for assets that are the most (least) constrained by the minimum tick size (large sample) 

 trades  volume  volatility 

 most  least  most  least  most  least 

        -.111***  -.015  -.064***  -.010  -.119***  -.109*** 

 

(.034)  (.021)  (.025)  (.013)  (.038)  (.032) 
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Table 3.5. Limit order aggressiveness: ITCH sample 

The table contains coefficient estimates    from the following panel regression estimated using 

ITCH limit order book data: 

                                  

where          is one of the following two variables: (i) the number of limit orders that match 

the NBBO in ETF   during period   (Panel A), and (ii) the number of orders that match or 

improve the NBBO (Panel B). Both variables are scaled by the number of order submissions. 

       is total precipitation in the Chicago-New York corridor; and     is the volatility index. 

We also use         and         to identify the most significant precipitation events. All 

variables are standardized and as such the regression models control for asset fixed effects, and 

the standard errors (in parentheses) are double-clustered along the asset and time dimensions. 

Asterisks ***, ** and * denote statistical significance at the 1%, 5% and 10% levels. Note: 

results reported here are derived from 2012; we are in the process of adding the results from 

2011. 

 

Panel A: NBBO match  Panel B: NBBO match or improve 

 full sample most constr. least constr.  full sample most constr. least constr. 

 (1) (2) (3)  (4) (5) (6) 

       .017*** .025*** .038***  .006 .008 .041*** 

 

(.004) (.004) (.006)  (.004) (.005) (.006) 

        .054*** .080*** .095***  .028*** .006 .107*** 

 

(.007) (.008) (.011)  (.006) (.010) (.010) 

        .040*** .068*** .113***  .063*** .010 .126*** 

 

(.012) (.013) (.013)  (.012) (.015) (.013) 
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Table 3.6. Microwave connectivity and information asymmetries in futures and equities: 

small sample 

The table contains coefficient estimates from the following panel regression: 

                                

where        is the price impact;        is total precipitation in the Chicago-New York 

corridor; and     is the volatility index. We also use         and         to identify the 

most significant precipitation events. All variables are standardized, and as such the regression 

models control for asset fixed effects, and the standard errors (in parentheses) are time-clustered. 

The futures sample (Panel A) is from 2012 and includes four e-mini contracts: S&P 500, S&P 

MidCap 400, Nasdaq 100 and Financial Sector Select. The equities sample (Panel B) is from the 

same time period and includes the four corresponding ETFs. Asterisks ***, ** and * denote 

statistical significance at the 1%, 5% and 10% levels. 

 

Panel A: futures  Panel B: equities 

 (1) (2) (3)  (4) (5) (6) 

       -.004    -.037***   

 

(.009)    (.006)   

         -.003    -.078***  

 

 (.022)    (.018)  

          -.014    -.079*** 

 

  (.031)    (.022) 
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Table 3.7. Post-democratization period 

The table reports the    coefficient estimates from the following panel regression: 

                                   

where          is one of the following four variables (price impacts, effective spreads, 

realized spreads, number of trades, traded volume, or volatility) in asset   during a 15-minute 

interval  ;         is a dummy variable that captures periods when total precipitation in the 

Chicago-New York corridor exceeds one standard deviation; and     is the volatility index. All 

variables are standardized and as such the regression models control for asset fixed effects, and 

the standard errors (in parentheses) are double-clustered along the asset and time dimensions. 

The data are from the 2013-2014 period. We examine three groups of assets: (i) 100 ETFs in the 

full sample, and (ii/iii) the ETF terciles for which the tick size is the most (least) binding. 

Asterisks ***, ** and * denote statistical significance at the 1%, 5% and 10% levels. 

              trades volume volatility 

 (1) (2) (3) (4) (5) (6) 

full sample .007 .001 -.003 .027 .007 .016 

 (.013) (.012) (.009) (.018) (.012) (.033) 

most constr. -.016 .003 .010 .024 .009 .001 

 (.015) (.008) (.007) (.023) (.018) (.031) 

least constr. .014 .002 -.006 .031 .005 .023 

 (.012) (.021) (.016) (.021) (.009) (.032) 
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Table 3.8. Democratization: Event study 

The event window spans the months of September 2012 to April 2013. In this window, the 

months of September, October and November capture the period prior to the democratization, 

and the months of February, March and April capture the post-democratization period. We report 

the coefficient estimates    from the following panel regression: 

                                   

where          is one of the following variables (price impacts, effective spreads, realized 

spreads, number of trades, traded volume, volatility or stock price) in asset   on day  ;    denotes 

a time trend,      is a dummy variable that equals to one in February-April 2013; and     is 

the volatility index. All variables are standardized and as such the regression models control for 

asset fixed effects, and the standard errors are double-clustered along the asset and time 

dimensions. We examine three groups of assets: (i) 100 ETFs in the full sample, and (ii/iii) the 

ETF terciles for which the tick size is the most (least) binding. Asterisks ***, ** and * denote 

statistical significance at the 1%, 5% and 10% levels. 

              trades volume volatility price 

 (1) (2) (3) (4) (5) (6) (7) 

full sample -.484*** -.711*** -.546*** -.071 .045 -.836*** .319*** 

 (.122) (.127) (.125) (.129) (.125) (.244) (.083) 

most constr. -.590*** -.454** -.190 -.475*** -.174 -1.09*** .496*** 

 (.185) (.179) (.184) (.171) (.177) (.254) (.135) 

least constr. -.448*** -.965*** -.905*** .084 .095 -.542** .284** 

 (.100) (.181) (.178) (.120) (.123) (.222) (.129) 
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Table 3.9. Robustness: alternative sampling and regression setup 

The table reports the    coefficient estimates from the following panel regression: 

                                   

where          is one of the following variables (price impacts, effective spreads, realized 

spreads, number of trades, traded volume, or volatility) in asset   during a 15-minute interval  ; 

        is a dummy variable that captures periods when total precipitation in the Chicago-New 

York corridor exceeds one standard deviation (Panel A); and     is the volatility index. We 

examine several specifications of the model. The mood control specification restricts 

precipitation episodes to those occurring in Ohio when precipitation is near-zero in the eastern 

and western parts of the Chicago-New York corridor. The expanded area specification uses 

additional weather stations, forming a wider area around the corridor. The placebo area 

specification uses data from the weather stations located in Colorado, Utah and Wyoming, away 

from the corridor. The afternoon only specification uses data between noon and the market close. 

The intraday FE specification adds intraday fixed effects. Finally, Panel B replaces total 

precipitation across all stations with the average precipitation per station        , and its two 

variations,          and         , which are dummies that capture episodes when the 

average precipitation is more than 0.5 and 1 standard deviation removed from the mean. All 

variables are standardized and as such the regression models control for asset fixed effects, and 

the standard errors (in parentheses) are double-clustered along the asset and time dimensions. 

The data are from the 2011-2012 period, and we examine the full sample of 100 ETFs. Asterisks 

***, ** and * denote statistical significance at the 1%, 5% and 10% levels. 

              trades volume volatility 

 (1) (2) (3) (4) (5) (6) 

Panel A:         =         

mood control -.060*** -.061*** -.026*** -.094*** -.053*** -.166*** 

 (.013) (.012) (.009) (.024) (.016) (.035) 

expanded area -.034*** -.040*** -.020** -.055** -.032** -.087** 

 (.013) (.012) (.008) (.023) (.015) (.039) 

placebo area .006 -.012 -.001 .015 .003 -.036 

 (.016) (.025) (.019) (.024) (.016) (.038) 

afternoon only -.061*** -.063*** -.028*** -.080*** -.048*** -.147*** 

 (.015) (.014) (.010) (.026) (.018) (.040) 

intraday FE -.054*** -.060*** -.028*** -.067*** -.043*** -.141*** 

 (.012) (.012) (.008) (.021) (.014) (.035) 

       

Panel B:                                      
        -.007* -.006* -.003 -.014** -.009** -.013 

 (.004) (.004) (.002) (.006) (.004) (.011) 

         -.024** -.027** -.013* -.051*** -.030** -.057* 

 (.012) (.011) (.007) (.020) (.013) (.034) 

         -.043*** -.039*** -.014* -.067*** -.037*** -.096*** 

 (.012) (.011) (.008) (.021) (.014) (.035) 
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Table 3.10. Robustness: alternative variables of interest 

The table reports the    coefficient estimates from the following panel regression: 

                                   

where          is one of the following three variables: price impacts (     ), effective 

spreads (   ) and realized spreads (   ). Each variable is computed as equally-weighted 

(   ) or volume-weighted scaled by the corresponding midquote (    );         is a 

dummy variable that captures periods when total precipitation in the Chicago-New York corridor 

exceeds one standard deviation; and     is the volatility index. All variables are standardized 

and as such the regression models control for asset fixed effects, and the standard errors (in 

parentheses) are double-clustered along the asset and time dimensions. The data are from the 

2011-2012 period. We examine three groups of assets: (i) 100 ETFs in the full sample, and (ii/iii) 

the ETF terciles for which the tick size is the most (least) binding. Asterisks ***, ** and * denote 

statistical significance at the 1%, 5% and 10% levels. 

                         VW                     

 (1) (2) (3) (4) (5) (6) 

full sample -.064*** -.059*** -.089*** -.067*** -.008 -.032*** 

 (.018) (.014) (.021) (.015) (.012) (.010) 

most constr. -.079*** -.069*** -.086*** -.035*** .030* -.005 

 (.026) (.020) (.020) (.010) (.018) (.008) 

least constr. -.046*** -.047*** -.105*** -.109*** -.067*** -.077*** 

 (.014) (.011) (.030) (.027) (.026) (.022) 
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Table 3.11. Quoted spread and inside depth 

The table reports the    coefficient estimates from the following panel regression: 

                                   

where          is one of the following four variables (NBBO spread or NBBO inside depth) 

in asset   during a 15-minute interval  ;         is a dummy variable that captures periods 

when total precipitation in the Chicago-New York corridor exceeds one standard deviation; and 

    is the volatility index. All variables are standardized and as such the regression models 

control for asset fixed effects, and the standard errors (in parentheses) are double-clustered along 

the asset and time dimensions. The data are from the 2011-2012 period. We examine three 

groups of assets: (i) 100 ETFs in the full sample, and (ii/iii) the ETF terciles for which the tick 

size is the most (least) binding. Asterisks ***, ** and * denote statistical significance at the 1%, 

5% and 10% levels. 

           

 (1) (2) 

full sample -.065*** .014 

 (.020) (.029) 

most constr. -.026** .118*** 

 (.012) (.045) 

least constr. -.105*** -.013 

 (.034) (.034) 
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Figure 3.1. Microwave network paths 

The figure maps tower locations of three microwave networks (blue, yellow and purple icons) 

obtained from the Federal Communications Commission. There are more than three 

microwave networks between Chicago and New York during our sample period; however, 

we plot only three to avoid clutter. The remaining networks follow very similar paths. The 

red markers indicate locations of the CME’s data center in Aurora, IL (marker A); the NYSE 

data center in Mahwah, NJ (marker M); Nasdaq data center in Carteret, NJ (marker C); 

BATS data center in Weehawken, NJ (marker W); and Direct Edge data center in Secaucus, 

NJ (marker S). 
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Figure 3.2. Locations of microwave networks and weather stations 

The figure maps the weather stations (green icons) located near the microwave network 

paths. Station data are obtained from the National Oceanic and Atmospheric Administration. 

The red markers indicate locations of the CME’s data center in Aurora, IL (marker A); the 

NYSE data center in Mahwah, NJ (marker M); Nasdaq data center in Carteret, NJ (marker 

C); BATS data center in Weehawken, NJ (marker W); and Direct Edge data center in 

Secaucus, NJ (marker S). 
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Figure 3.3. A typical weather front 

As a weather front moves over the microwave paths, it disrupts data transmission forcing 

trading firms to fall back on the fiber-optic cable. 
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Figure 3.4. Equity trades after a futures trade during low and heavy precipitation 

episodes 

The figure reports a timeline of equity trades that follow a futures trade. Orange bars 

represent periods of zero or very low precipitation (       <0), and blue bars represent 

periods of heavy precipitation (       >1) when the microwave networks are disrupted. 

The number of trades is standardized on an asset by asset basis to allow for cross-sectional 

comparability. We focus on the standalone futures trades (  = 0), those not preceded by 

another futures or equity trade in the previous 100 milliseconds. Note: light covers the 

distance from Chicago to New York in 4 milliseconds (ms), the microwave signal covers this 

distance in about 4.5 ms, and the same signal takes 6.5 ms to cover the distance through fiber. 

During our sample period, the CME clock lags DTAQ by about one millisecond, and we 

adjust for this lag. The 2-ms advantage of the fastest traders is evident even without the 

adjustment. 
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Figure 3.5. Price impacts 

The figure reports price impacts computed as the signed difference between a midquote at a 

certain time after the trade and the midquote at the time of the trade:        

   (           ), where    is the trade direction indicator,      is the midquote 

computed as                       ⁄ , and   indicates the time elapsed since the 

trade, with                      . 
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Figure 3.6. Intraday patterns 

The figure reports intraday patterns for        (in mm average per intraday period, left 

axis),         and         (both in number of occasions per intraday period, right axis), 

and     (scaled by 10000 for display purposes, right axis). 
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Appendix to Every cloud has a silver lining: Fast trading, microwave 

connectivity and trading costs 

A1. Price discovery via trades and quotes 

To examine price discovery via trades and quotes, we use the methodology described in 

Hasbrouck (1991 a,b) to decompose the efficient price variance into the trade-related and trade-

unrelated components. We begin with an assumption that the observed midquotes    follow a random 

walk with two components: 

        , 

where    is the efficient price (the expectation of price conditioned on all available information at 

time  ), and    is a deviation of the price from the efficient price. We then estimate the VAR with ten 

lags as follows: 

                                                

                                         , 

where    is the difference in log-midquotes, and    is a vector of three trade-related variables, 

including a trade direction indicator, signed volume and signed square root of volume. The VAR is 

then converted into the VMA model: 

     
          

            
        

          
          

     
          

            
          

          , 

and the total variance of the random walk component is given by: 

  
     ∑   

  
       

   ∑   
  

      ∑   
   

    , 

where the first term corresponds to the trade-unrelated component of the efficient price innovation, 

and the second term corresponds to the trade-related component of this innovation. The model is 

estimated in event time, with  s indexing every new midquote. 
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A2. Information share estimation 

To compute information shares using the methodology in Hasbrouck (1995), we first estimate 

the following vector error correction model (VECM) for each futures-ETF pair: 

                                                    (               )      

                                                    (               )       
 

where       (     ) is the difference between the current and lagged prices of the futures (ETF), and   

is the mean difference between the price of the futures and the ETF. 

In the second step, we obtain the VMA representation of the above model: 

                                         

                                         
 

and add the coefficients   ∑   
 
  and   ∑    

 
  Next we obtain the covariance matrix of the 

residuals: 

  [
  

    

     
 ], 

and finally, the information share (IS) of the futures market is calculated as:  

    
    

 

  
 , where   

  [
 
 
]
 

[
  

    

     
 ] [

 
 
]. 

Since some price innovations happen in both markets within the same millisecond,      . To 

address this, we follow Hasbrouck (1995) and orthogonalize  . Orthogonalization maximises 

(minimises) the variance of the futures market and gives the upper (lower) bound of the true variance. 
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