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ABSTRACT 

Ranavirus infections are on the rise and have been implicated in numerous species die-offs 

across the globe. Frog virus 3 (FV3) is the type-species of the genus, yet the immune mechanisms 

governing susceptibility remain poorly understood. Arguably the most important immune response 

to infection is the type I interferon (IFN) response. Type I IFNs trigger an “antiviral state” in host 

cells via the production of numerous interferon-stimulated genes (ISGs) that act to inhibit virus 

replication in various way, including the induction of apoptosis. Apoptosis is an important antiviral 

defense mechanism to limit virus replication within infected cells. This study employed the use of 

two rainbow trout cell lines, RTgutGC (intestinal origin) and RTG-2 (gonadal origin), previously 

shown to differ in susceptibility to FV3, thereby providing an excellent model to study innate anti-

FV3 immune responses. Time-lapse infection videos and cell viability assays were used to quantify 

differences in the extent of cell death over time. RTG-2 exhibited greater cell death at a lower virus 

titre, compared with RTgutGC. The mechanism of cell death was investigated via DAPI staining 

and DNA laddering to observe nuclear condensation and intranucleosomal fragmentation, 

respectively, both hallmarks of apoptosis. Both cells underwent apoptosis in response to FV3. 

Moreover, UV-inactivated FV3 exhibited similar apoptotic cell death, suggesting that FV3-

induced apoptosis is independent of productive virus replication. Likewise, poly I:C induction of 

IFN and ISGs inhibited virus replication, but had no effect on FV3-induced cell death. Using real-

time RT-PCR IFN, ISG, and viral transcript expression was examined in both cell lines. 

Surprisingly FV3 elicited an equally poor IFN and ISG response in both cell lines, and was only 

detectable at 72h post-infection. Even when UV-inactivated, FV3 did not elicit a significant IFN 

response. However, viral transcript expression appears to be greater in the highly susceptible RTG-

2 cell line. Further investigation into this difference in susceptibility between cell lines revealed 
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that RTG-2 exhibited greater viral entry and cellular metabolism, which may account for the 

enhanced level of infection. Thus, FV3 appears to exhibit virulence factors that are independent of 

replication, yet the mechanisms governing susceptibility appear to be the result of intrinsic cellular 

features that are IFN-independent.   
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INTRODUCTION 

1.1. Innate Antiviral Immunity 

The ability to detect foreign invaders and mount an effective immune response is essential for 

the survival of any host organism. The immune system of jawed vertebrates is divided into adaptive 

and innate responses. Adaptive immunity develops after the innate response and is antigen-

specific. Innate immunity, on the other hand, involves the rapid activation of the body’s inherent 

and relatively non-specific defense mechanisms. Innate immunity represents the body’s first line 

of defense against infection and is responsible for priming the adaptive response. Thus, the innate 

branch of immunity represents the cornerstone of any immune response. While adaptive immunity 

is unique to jawed vertebrates, innate immune mechanisms are present in nearly every 

multicellular organism, further emphasizing their important role in immune defense (Medzhitov 

and Janeway, 2000).     

Innate immunity is based on the detection of pathogen-associated molecular patterns (PAMPs) 

via host-expressed pattern recognition receptors (PRRs; DeWitte-Orr and Mossman, 2010). 

PAMPs are simple molecules or molecular patterns exclusively associated with specific microbial 

groups, and are often essential for microbial survival (Medzhitov and Janeway, 2000). These serve 

as the primary targets of innate immune recognition. Common viral-associated PAMPs include 

viral proteins, genomic DNA, 5’ triphosphate RNA, single-stranded RNA (ssRNA), and double-

stranded RNA (dsRNA; Takeuchi and Akira, 2009). During genomic replication and transcription, 

viruses produce nucleic acids, most of which are foreign to the host cell (Poynter et al., 2015). 

These viral nucleic acids reside in the endosome or cytoplasm of infected cells, or may be released 

into the extracellular space following lysis, where they may be sensed by neighbouring cells. 

Double-stranded RNA (dsRNA) is by far the most important PAMP, as it is exclusively expressed 
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by virtually all viral species at some point during their replication (DeWitte-Orr and Mossman, 

2010). For all viral genome types: dsRNA is generated as genome fragments from dsRNA viruses, 

replicative intermediates from ssRNA viruses, and even as overlapping convergent transcripts 

from DNA viruses (Jacobs and Langland, 1996). Viral nucleic acids reside in the endosome or 

cytoplasm of infected cells, or may be released into the extracellular space following lysis, where 

they may be sensed by neighbouring cells.  

Pattern recognition receptors (PRRs) are germline-encoded receptors involved in sensing a 

variety of microbial PAMPs. There are many PRRs for the detection of viral PAMPs, located at 

different cellular interfaces (surface, endosome, cytoplasm) to ensure appropriate detection. 

Common viral PRRs include toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I)-like 

receptors (RLRs), and cytosolic DNA sensors (CDSs). When activated, these PRRs stimulate the 

production of numerous cytokines involved in mounting an antiviral immune response, namely, 

type I interferons (IFNs; Takeuchi and Akira, 2009). There are a number of specific PRRs involved 

in the induction of type I IFNs. TLRs are membrane–associated PRRs responsible for sensing 

extracellular viral PAMPs. Of the many TLRs that have been identified, TLR3, -7, -8, -9, and -22 

are essential in virus recognition. TLR3 responds to dsRNA; TLR7, and -8 recognize ssRNA; and 

TLR9 is able to detect CpG DNA (Garcia-Sastre and Biron, 2006). TLR22 is specific to fish cells 

and is responsible for recognizing extracellular dsRNA (Poynter et al., 2015). On the other hand, 

RLRs reside in the cytoplasm and are capable of sensing a variety of intracellular viral PAMPs. 

Currently, two major RLRs have been described: RIG-I and melanoma differentiation-associated 

gene 5 (MDA5), both of which are activated by viral dsRNA (Poynter et al., 2015). In addition to 

the RLRs, another cytoplasmic PRR exists that is essential for the innate antiviral response: the 

dsRNA-dependent protein kinase, PKR. PKR is a serine-threonine kinase that also responds to 
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dsRNA and triggers signaling cascades that ultimately inhibit protein synthesis and induce 

programmed cell death (Gil and Esteban, 2000). Lastly, CDSs, as their name suggests, recognize 

and respond to foreign DNA within the cytosol. In mammals, a number of CDSs have been 

identified and shown to play key roles in the induction of IFN through different signaling pathways 

(Poynter et al. 2015). However, to date, only DEAD-box helicase 41 (DDX41) has been identified 

in teleosts (Quynh et al., 2015). DDX41 was identified in Japanese flounder and shown to exhibit 

similar antiviral activity to that of mammals, inducing the expression of antiviral and inflammatory 

cytokines. Of particular interest to this study, DDX41 was shown to be upregulated in response to 

ranavirus (a DNA virus) infection (Quynh et al., 2015).  

1.1.2. Type I IFN Production and Response  

The activation of host PRRs by viral PAMPs induces the production of type I IFNs through a 

multitude of pathways, depending upon the mechanism of viral entry and subcellular location (See 

Fig. 1.1; Garcia-Sastre and Biron, 2006; Poynter et al., 2015). Viruses entering the host cell via 

fusion at the surface or in endocytic vesicles are detected by surface and endosomal-associated 

TLRs, respectively. Those entering the cytoplasmic compartment through fusion are recognized 

by RLRs, NLRs, PKR, and CDSs. Following their activation, host PRRs activate different adaptor 

molecules, which interact with intracellular kinases, ultimately mediating the activation of key 

transcriptional regulators, such as nuclear factor kappa-light-chain-enhancer of activated B cells 

(NF-kB) and IFN regulatory factor 3/7 (IRF3/IRF7; Poynter et al., 2015). Once activated, these 

transcription factors translocate to the nucleus and bind to their corresponding regulatory domains 

to induce the expression of type I IFN (See Fig. 1.1).  

Type I IFNs are important signaling molecules, named according to their ability to “interfere” 

with virus replication (Isaacs and Lindenmann, 1957). In mammals, these antiviral glycoproteins 
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are divided into the multigene IFN-a (13 in humans) and single gene IFN-b subtypes. In teleost 

fish, however, IFN genes have been divided into two groups, based on their cysteine composition 

(Fensterl and Sen, 2009). In rainbow trout (Oncorhynchus mykiss), there are at least 5 type I IFNs 

(IFN1-5; Chang et al., 2009; Purcell et al., 2009). Following expression, these cytokines are 

secreted in an autocrine or paracrine fashion, where they bind to their cell surface receptor, the 

type I IFN a/b receptor (IFNAR; Garcia-Sastre and Biron, 2006). Upon binding, the receptor 

dimerizes, initiating a well-characterized Janus kinase/signal transducers and activators of 

transcription (JAK-STAT) pathway of signal transduction, ultimately resulting in the expression 

of hundreds of interferon-stimulated genes (ISGs; See Fig. 1.2; Garcia-Sastre and Biron, 2006). 

The resultant ISGs initiate and maintain an “antiviral state” in neighbouring cells, while actively 

inhibiting virus replication in the infected host cell (Stetson and Medzhitov, 2006; DeWitte-Orr 

and Mossman, 2010).  

Interferon-stimulated genes (ISGs) are the true effector proteins that limit virus replication, the 

expression of which, is stimulated by IFN signaling. There are numerous ISGs in different families, 

many with unknown functions. Many of the fish ISGs are homologous to mammalian ISGs and 

exhibit similar antiviral activity. One such family is the viral hemorrhagic septicemia virus 

(VHSV)-induced genes (vigs), a group of antiviral proteins, originally identified in rainbow trout, 

which are upregulated in response to virus infection. In fish, a number of vigs have been identified 

and found to inhibit virus replication analogous to their mammalian counterparts (Poynter and 

DeWitte-Orr, 2016).  

One recently-identified vig, Vig4, exhibits high sequence similarity with mammalian 

ISG56/IFIT1, a member of the IFN-induced proteins with tetratricopeptide repeats (IFIT) protein 

family (Zhou et al., 2013). ISG56 represents the best-studied member of a family of genes that 
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exhibit tremendous responsiveness to IFN, as well as certain viral and bacterial PAMPs (Fensterl 

and Sen, 2011). As their name suggests, ISG56 and other IFIT family members possess repeating 

tetratricopeptide domains, which mediate protein-protein interactions (Cortajarena and Regan, 

2006). In mammals, it was shown that ISG56 effectively inhibits parainfluenza type 5 (PAV5) and 

human papillomavirus (HPV) replication, thereby exhibiting significant antiviral activity 

(Andrejeva et al., 2013; Terenzi et al., 2008). While the exact mechanism of ISG56/IFIT1 viral 

inhibition remains poorly understood, a number of mechanisms have been suggested (Diamond 

and Farzan, 2013). Among the best-studied mechanisms is via translation inhibition. ISG56 

directly interacts with eukaryotic initiation factor 3 (eIF3), preventing stabilization of the eIF2-

GTP-Met-tRNA ternary complex required for translation initiation (Guo et al., 2000; Hui et al., 

2003, 2005). Other mechanisms may be involved, including binding uncapped viral RNA, 

sequestering viral proteins, and modulation of IFN or inflammatory responses (Diamond and 

Farzan, 2013). Similar to mammals, fish Vig4 also contains tetratricopeptide repeats and is 

upregulated in response to viral infection (Poynter and DeWitte-Orr, 2016). Antiviral effects of 

Vig4 in fish have also been observed. In tongue sole (Cynoglossus semilaevis), knockdown of 

ISG56 resulted in enhanced Megalocytivirus infection, while overexpression caused replication 

inhibition (Long and Sun, 2014). Additionally, Vig4 has been identified in rainbow trout and 

induced by synthetic dsRNA, a potent inducer of type I IFN (Poynter and DeWitte-Orr, 2015). 

While fish Vig4 has been identified in several fish and shown to exhibit antiviral activity (Poynter 

and DeWitte-Orr, 2016), its mechanism of action remains poorly understood. 

Among the best studied ISGs is the Myxovirus resistance gene (Mx), a GTPase that sequesters 

viral nucleocapsid structures to specific subcellular compartments (Garcia-Sastre and Biron, 

2006). Mx proteins are dynamin-like high molecular weight GTPases, which help to facilitate 
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intracellular trafficking and membrane modulation (Haller et al., 2007). Both mammalian and fish 

Mx proteins have shown to alter viral transcription by interfering with viral RNA polymerases 

(Turan et al., 2004; Wu et al., 2010). While many isoforms have been identified in fish, teleost Mx 

proteins are also IFN-inducible, and exhibit broad antiviral activity against a diverse range of 

viruses (Poynter and DeWitte-Orr, 2016). For instance, Atlantic salmon Mx1 exhibits strong 

antiviral activity against infectious pancreatic necrosis virus (IPNV; Larson et al., 2004). 

Interestingly, while efficient in preventing replication of a broad range of viruses, Mx proteins of 

many fish species have proven ineffective in inhibiting infection by members of the family 

Iridoviridae. For instance, Japanese flounder Mx exhibits strong antiviral activity against two 

species of Rhabdovirus, but not Red seabream iridovirus (RSIV; Caipang et al., 2003). As well, 

Baramundi Mx inhibits replication of IPNV and viral nervous necrosis virus (VNNV), but not 

Taiwan grouper iridovirus (TGIV; Wu et al., 2012; Wu and Chi, 2007). Similarly, rainbow trout 

Mx1 exhibits antiviral activity against IPNV, viral hemorrhagic septicemia virus (VHSV), 

Salmonid alpha virus (SAV), but remains ineffective against infectious hematopoietic necrosis 

virus (IHNV; Rhabdovirus) and Epizootic hematopoietic necrosis virus (EHNV; Ranavirus) 

replication (Lester et al., 2012; Poynter and DeWitte-Orr, 2016; Trobridge et al., 1997). While the 

involvement of Mx proteins in protecting against many viruses is well understood, their role in 

protecting against infections from certain virus families remains in question.    

 In addition to its role as a PRR, PKR is also a well-known ISG. Consistent with its receptor 

function, PKR is constitutively expressed in an inactive form prior to stimulation with IFN 

(Balachandran, 2000). Unlike Mx3, which effectively inhibits virus replication at the transcription 

level, PKR acts at the translation level. Following the detection of dsRNA, PKR phosphorylates 

the translation initiation factor, eIF2a, thereby terminating host protein synthesis, and 
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consequently, viral replication. PKR homologs have been identified in a variety of fish species 

(Poynter at al., 2016). What’s more, fish PKR, as in mammals, is IFN-inducible and exhibits 

antiviral activity toward a range of viruses (Liu et al., 2011). For instance, Crucian carp (Carassius 

carassius) and Japanese flounder (Paralichthys olivaceus) PKR was shown to inhibit the 

replication of grass carp hemorrhagic virus and Scopthalmux maximus rhabdovirus (SMRV), 

respectively (Liu et al., 2011; Zhu et al., 2008). Antiviral activity of PKR has not been 

demonstrated in the case of ranavirus infection. However, much research has been done regarding 

the ability of certain ranaviruses, particularly FV3, to encode a viral PKR inhibitor (Jancovich and 

Jacobs, 2011). FV3 encodes a viral homolog of eIF2a, designated vIF2a, which binds PKR and 

abrogates translation inhibition.  

While the functions of many ISGs remain unknown, it is generally understood that these 

proteins work together to attack the virus at every stage by blocking protein synthesis, inhibiting 

viral replication, or inducing apoptosis. In this way, innate antiviral responses are often sufficient 

for limiting and controlling viral infection during our daily exposures to viruses. 

1.1.3. Virus-Induced Apoptosis 

Apoptosis is an energy-dependent mechanism of programmed cell death in which the cell 

dies in a controlled and orderly fashion. Apoptotic cell death is recognized as a normal mechanism 

for the removal of excess and/or potentially harmful cells from the body, and as such is an 

important aspect of innate immunity. The process of apoptosis is characterized by distinct 

morphological features and biochemical processes. Cells dying by apoptosis typically exhibit cell 

shrinkage and severe chromatin condensation (pyknosis) during early stages, which may be 

detected with DNA stains or electron microscopy (Elmore, 2007). However, late stages of 

apoptosis involve the activation of cellular endonucleases, which cleave genomic DNA between 
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nucleosomes, producing 180-200 base pair multimers which ‘ladder’ when subject to gel 

electrophoresis (Hardwick, 1997). Plasma membranes of apoptotic cells actively “bleb” or pinch 

outward, but remain intact, eventually forming small membrane-enclosed cellular packets, called 

apoptotic bodies. These apoptotic bodies are (in vivo) subsequently cleared by neighbouring cells 

and phagocytes, without inducing an inflammatory response (O’Brien, 1998). Unlike in vivo 

experiments, apoptotic bodies in cell culture are not phagocytosed and ultimately lyse, a 

phenomena known as secondary necrosis (Cejna et al., 1994).  

Necrotic cell death, on the other hand, is an uncontrolled and passive process, typically the 

result of cell injury or a loss of cell energy supply. Necrosis is characterized by a loss of membrane 

integrity, lysis, and the release of cellular contents into the extracellular space. Ultimately, 

cytosolic spillage causes inflammation and damage to neighbouring cells and tissues (Elmore, 

2007). During necrotic cell death, unlike apoptosis, DNA degrades randomly. With respect to virus 

infection, necrosis is often associated with the release of newly assembled virus particles 

(Hardwick, 1997). Virologists have traditionally presumed viral cell death to be necrotic, but 

recently, however, it has been suggested that apoptosis, rather than necrosis, is the common 

outcome of virus-infected cells (Chinchar et al., 2003).  

Apoptosis is regarded as a defense mechanism to limit viral replication and infection of 

susceptible neighbouring cells. Viruses are obligate intracellular parasites that require the use of 

host cell machinery for replication. Thus, it is no surprise that the premature death of virus-infected 

cells may be a powerful antiviral mechanism. In fact, many of the innate antiviral immune 

responses, including the type I IFN response, actually involve the induction of apoptosis. In light 

of this, IFN-a and IFN-b have both been shown to induce apoptosis in a number of cell lines with 

a variety of histologies. In fact, a plethora of ISGs have been identified, which are responsible for 
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the induction of apoptosis, including PKR, various caspases, and many more (Chawla-Sarkar et 

al., 2003). A number of other innate antiviral responses may also culminate in the induction of 

apoptosis, echoing its importance as an important defense mechanism against virus infection. This 

view is further supported by the discovery that many viruses encode genes that inhibit the apoptotic 

pathway (Hardwick, 1997; Dai et al. 1999; Gillet and Brun, 1996; Liu and Cohen, 2014; Roulston 

et al. 1999). Viral inhibition of apoptosis may enhance infection in two ways. At the cellular level, 

preventing cell suicide would ensure maximal replication to achieve higher virus titres. 

Additionally, at the organismal level, blocking apoptosis would prevent the onset of essential 

antiviral immune responses to enhance viral spread and the likelihood of a successful transmission 

(Mossman et al., 1996; Nash et al., 1999; Tortorella et al., 2000).  

The exact mechanisms by which viruses trigger apoptosis vary. Mechanisms of virus-

induced apoptosis may be direct or indirect. Simple binding of virion-associated molecules to cell 

surface receptors may be enough to trigger the death pathway. For instance, certain avian leukosis 

virus subgroups are able to trigger apoptosis by simply binding target cells via a member of the 

TNF receptor family (Brojatsch et al., 2000; Diaz-Griffero et al., 2003). As well, some viruses may 

trigger apoptosis by direct action of viral proteins. This is evident from adenovirus E1A, which 

alone is sufficient to trigger apoptosis (Rao et al., 1992). Alternatively, some viruses may 

shutdown host macromolecular synthesis, resulting in apoptotic death of the host cell. Consistent 

with this pathway, certain viruses of the family Iridovirdae, including frog virus 3 (FV3), are 

known for shutting down host DNA, RNA, and protein synthesis, followed by rapid apoptotic cell 

death (Goorha and Granoff, 1979; Raghow and Granoff, 1979). Whether this inhibition of host 

macromolecular synthesis is directly responsible for apoptosis, or simply an outcome of virus 

infection, remains to be studied. However, recently, a virion-associated protein with PKR-like 
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activity has been identified in Chilo iridescent virus (CIV), another member of the Iridoviridae 

family (Chitnis et al., 2011). This protein was shown to be responsible for both inhibition of 

macromolecular synthesis, as well as the induction of apoptosis. Virus-host interactions, such as 

the induction of apoptosis, for a number of viral species remain poorly understood. Understanding 

whether this mechanism of cell death occurs following infection, and the specific mechanisms and 

inhibitory actions that take place, will provide insight into the ways in which host organisms 

protect themselves from different viral species, such as FV3.   

1.2. Frog Virus 3 (FV3) 

  FV3 is a viral species that belongs to the family Iridoviridae, which include large dsDNA 

viruses with icosahedral symmetry, ranging in size from 120-200 nm (Chinchar, 2002). Currently, 

the Iridoviridae family is divided into five genera. Viruses belonging to the genera Ranavirus, 

Megaolcytivirus, and Lymphocystivirus are known to infect ectothermic vertebrates, whereas 

Iridovirus and Chloriridovirus require invertebrate hosts (primarily insects and crustaceans). 

Lymphocystivirus tend to only infect fish resulting in cutaneous lesions (Chinchar, 2002). In 

contrast, Ranaviruses (RVs) have a broad host range, infecting fish, amphibians, and reptiles, 

culminating in severe multi-organ systemic disease. FV3 is the type species and best characterized 

member of the Ranavirus genus. This viral species is recognized worldwide as a multi-host 

pathogen, capable of crossing multiple species barriers to infect a variety of new hosts (Jancovich 

et al., 2010; Grayfer et al., 2014). Interestingly, FV3 have previously been shown to infect, 

replicate, and induce apoptosis in mammalian cell cultures, albeit at lower temperatures (Willis et 

al., 1985; Chinchar et al., 2003). RVs were initially discovered in 1965 by Allan Grannof whilst 

attempting to generate a frog kidney cell line for the propagation of the oncogenic Lucke 

Herpesvirus (Granoff et al., 1966). Observation of virus-like cytopathic effects (CPEs) in some 
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cell cultures led to the subsequent isolation of FV1 and -2 from normal kidneys, and FV3, from 

the renal carcinoma of leopard frogs. This discovery sparked initial FV3 research that focused on 

the virus as a model for RV replication. However, FV3 research at that time soon became stagnant, 

due to the inability of RVs to cause cancer or serious disease in humans or economically important 

animals (Chinchar and Waltzek, 2014). This attitude soon changed in the 1980s when RVs were 

first associated with major die-offs among ecologically and economically important fish, 

amphibians, and reptiles (Lesbarreres et al., 2012; Chinchar and Waltzek, 2014).  

Thorough understanding of FV3 replication is crucial to understanding the mechanisms of 

FV3 PAMP expression and detection. FV3 exists as both naked (unenveloped) and enveloped 

forms, gaining entry into the cell through fusion or receptor-mediated endocytosis, respectively 

(Gendrault et al, 1981; Braunwald et al 1985; Chinchar et al., 2002). Despite both naked and 

enveloped forms being infectious, infectivity of enveloped virions is much greater (Braunwald et 

al., 1979). Viral replication takes place in both the nucleus and the cytoplasm, utilizing both host 

and viral enzymes (See Fig. 1.3). Upon entry, the viral dsDNA genome enters the nucleus where 

viral transcription and genome replication take place (Chinchar et al., 2002). As viruses rely on 

the use of host cellular machinery for replication, there exists a clear link between cellular 

metabolism and virus replication. Early transcription is catalyzed by host RNA polymerase II, 

leading to the expression of immediate-early and delayed-early genes (Majji et al., 2009). Among 

the first expressed is the viral DNA polymerase, responsible for viral genome replication. 

Following its synthesis, viral DNA is transported to the cytoplasm where it is methylated and 

linked to large concatamers (Chinchar et al., 2011). Also in the cytoplasm, transcription of late 

genes, including the major capsid protein (MCP) occurs via a virus-encoded RNA polymerase 

(Majji et al 2009; Chinchar et al., 2011). Virion formation takes place in morphologically distinct 
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viral assembly sites (VAS), containing viral proteins and concatameric DNA. These sites, unique 

to Iridoviridae, permit efficient virion assembly without interference of host cell functions (Murti 

et al., 1985). The FV3 genome is large, consisting of 105,057bp, with 97 open-reading frames 

(ORFs), able to encode anywhere from 100-140 proteins (Chinchar et al., 2011). This tremendous 

coding potential is beneficial in order to increase replication efficiency and evade host immune 

responses. In fact, FV3 is known to encode a number of putative immune evasion proteins, some 

of which may inhibit IFN responses or delay apoptosis (Chinchar et al., 2011; Grayfer et al., 2012). 

While much of the molecular biology of FV3 replication has been elucidated, much remains to be 

discovered regarding the anti-FV3 immune response.  

1.3. Impact of Ranaviruses on Teleosts  

Initially, RVs were believed to have little impact on fish and amphibian populations 

(Chinchar et al. 2009; Williams et al. 2005). This view has drastically changed, however, as more 

and more evidence has implicated these viruses in widespread epidemics and mortality of several 

species of fish, amphibians, and reptiles (Ahne et al. 1997; Chinchar 2002; Williams et al. 2005). 

This viral genus has been implicated in mortality events on six continents across the globe, 

involving over 175 species across 52 ectothermic vertebrate families (Duffus et al. 2015; Miller et 

al. 2011). Additionally, RVs can be transferred between taxonomic classes of ectothermic 

vertebrates (Brenes et al., 2014) and are known to infect multiple species at a single outbreak site 

(Duffus et al., 2008; Mao et al., 1999). This staggering, ever-expanding distribution, coupled with 

the ability to cause rapidly-progressing mass die-off events, warrants their classification as an 

emerging infectious disease (Daszak et al. 1999; Grayfer et al. 2014).  

With respect to teleosts, RVs have caused severe morbidity and mortality among both wild 

and captive fish populations (Whittington et al., 2010). The first RV associated with fish die-offs 
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was epizootic hematopoietic necrosis virus (EHNV), isolated in Australia in 1985 (Langdon et al., 

1986). Fish were collected during an investigation into the death of a large number of red fin perch 

(Perca fluviatilis L.), and represents the first virus isolation from Australian fish. This viral species 

causes mass mortality in red fin perch and recurrent die-offs in captive rainbow trout (Whitington 

et al., 1994; 2010). Shortly after, European catfish virus (ECV) was isolated from terminal 

sheatfish (Silurus glanis) in Europe (Ahne et al., 1989). Another ranavirus isolate, Santee-cooper 

ranavirus (SCRV) has been isolated from large-mouth bass from six different reservoirs across 

southeastern USA (Plumb et al., 1996). Ranavirus isolates exhibit epizootics confined within 

particular global regions: EHNV, is unknown outside Australia; ECV, is largely confined to 

European countries; and, LMBV is mainly found in North American fish (Whittington et al., 

2010).  

While only a single case of FV3 infection in wild fish has been reported, where FV3 was 

isolated from a single diseased threespine stickleback (Gasterosteus aculeatus; Mao et al., 1999), 

there have been numerous cases of infections among captive fish (Whittington et al., 2010). For 

instance, an FV3-like ranavirus was isolated from a mortality event involving juvenile white 

sturgeon (Acipenser transmontanus) in 1998 (Waltzek et al., 2014). Furthermore, there have been 

repeated FV3 epizootics among pallid sturgeon (Scaphirhynchus albus) in the Missouri River 

Basin (Waltzek et al., 2014). Fish hatcheries in the USA have been raising juvenile pallid sturgeon, 

in attempt to replenish ever-decreasing wild stocks of this critically endangered species. However, 

there have been multiple mass mortality events, particularly among juveniles, caused by FV3, 

further hindering efforts to restore sturgeon populations (Chinchar and Waltzek, 2014; Waltzek et 

al., 2014). Regarding host lethality, an FV3 was isolated from captive Russian sturgeon (Acipenser 

gueldenstaedtii) and shown to be lethal to both Russian and Lake sturgeon (Acipenser fulvescens; 
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Waltzek et al., 2014). In fact, experimental transmission studies have demonstrated that FV3 

isolated from numerous ectothermic vertebrate families are capable of infecting northern pike 

(Pike esox lucius), mosquito fish (Gambusia affins), bluegill (Lepomis macrochirus), and black 

bullhead (Amerius melas), however no mortality was observed (Bang-Jensen et el., 2009; 2011; 

Brenes et al., 2014; Gobbo et al., 2010). Consistent with this, a recent North American fish health 

survey lead to the isolation of FV3 from asymptomatic fathead minnow (Pimephales promelas), 

northern pike (Esox lucius), and walleye (Sander viterus; Waltzek et al., 2014). The ability of fish 

to serve as asymptomatic carriers for FV3 have been suggested in infection trials with northern 

pike, pike-perch and rainbow trout (Ariel et al., 2010; Jensen et al., 2009; 2011). Though FV3 and 

FV3-like RVs have impacted a number of fish populations, research in the field suggests an 

enhanced susceptibility of sturgeon to FV3, while other fish may simply act as asymptomatic FV3 

reservoirs. The ability of fish to serve as asymptomatic carriers of certain viruses is important as 

they are key vectors for transmission to other susceptible species. While this is merely preliminary, 

further research is required to investigate the impact of FV3 across a broader range of wild and 

captive fish species. Yet, there remains a lack of detailed reports of specific tissues and cell types 

that are permissive or susceptible to FV3 infection, which may be essential to understanding 

susceptibility to FV3 at the organismal level.   

1.4. Anti-FV3 Immunity  

RVs, particularly FV3, are often considered to be major amphibian pathogens, and as such, 

much of their research has focused on their effect on global amphibian populations. Currently, we 

are facing a rapid decline in amphibian populations, with 32% of amphibian species currently 

facing extinction (Grayfer et al., 2014). While the cause of this decline is poorly understood, RVs 

are considered to be significant contributors (Chinchar, 2002; Grayfer et al., 2014). To date, most 
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research regarding immunity to RVs has been conducted using the African clawed frog, Xenopus 

laevis, amphibian model. Using this model organism, it has been shown that Xenopus adults can 

effectively clear FV3 infection by developing rapid innate immune responses (rapid upregulation 

of proinflammatory cytokines), followed by an efficient cytotoxic T lymphocyte response and the 

generation of potent anti-FV3 antibodies (Gantress et al., 2003; Maniero et al., 2006; Morales 

Robert, 2007). However, tadpoles, which lack MHC I expression and effective cellular immune 

responses, succumb to infection and exhibit significant morbidity and mortality (Gantress et al., 

2003; Robert et al., 2005). In adults, FV3 infections are confined to the kidney and is resolved 

within weeks with little-to-no mortality observed (Gantress et al., 2003). However, in tadpoles and 

immunocompromised adults, infection begins in the kidney, but spreads systemically to multiple 

organs. Recent work has demonstrated that macrophages proliferate, followed by recruitment of 

natural killer (NK) cells, and finally by T cell activation (Morales et al., 2010). Despite their active 

role in anti-FV3 immune responses, macrophages are susceptible to infection and harbor FV3 for 

extended periods of time, albeit quiescent (Morales et al., 2010). Despite playing key roles in 

immunity, macrophages may enhance FV3 infection in two ways: by inhibiting their ability to 

present viral antigens to lymphocytes and serving as a reservoir of persistently infected cells. Most 

interesting, recent research has demonstrated, for the first time, the essential role of type I IFN in 

FV3 infection in X. laevis. Using recombinant IFN (rXl-IFN), Grayfer et al., (2014) demonstrated 

that rXl-IFN protected A6 kidney cells and tadpoles from FV3 infection, reducing the level of 

infection in both cases. As well, highly susceptible tadpoles exhibited weaker IFN responses, and 

enhanced viral burdens, as compared to adults (Grayfer et al., 2014). While rXl-IFN treatment 

protected adults from infection, and reduced viral burdens in tadpoles, it only transiently protected 

tadpoles, which eventually succumbed to infection.      
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While several studies have investigated the amphibian immune response to RVs, very little 

research has been conducted in piscine hosts, particularly with respect to the type I IFN response. 

As the type I IFN response represents the first line of defense against infection, it is likely that 

numerous cellular genes, especially ISGs, play a critical role in antiviral immunity to FV3, and 

other RVs. Infection of epithelioma papulosum cyprinid (EPC) with four distinct ranaviruses, 

including FV3, stimulated expression of inflammatory genes in distinct expression profiles 

(Holopainen et al., 2012). Very recently, the role of various immune-related genes in FV3 infection 

of fathead minnow cells has been described (Cheng et al., 2014). Following infection, a number 

of genes were upregulated, including IFN, IFN regulatory factors (IRFs), ISGs such as Mx and 

MHC I, and interleukins IL-1b, IL-8, IL-2 and IL-17C. While Mx proteins are key ISGs 

upregulated in response to infection, they appear to be ineffective in protecting against infection 

by viruses of the Iridoviridae family. Thus, it appears that the role of IFN and ISGs in FV3 

infections of fish is complex and further examination into the protective role of the type I IFN 

response in other fish species is required.   

1.5. Cell Lines  

Cell culture is arguably one of the most important approaches to understanding key virus-host 

interactions. Cell culture is frequently used in the study of virology, and offers a number of benefits 

to in vivo virus research and include the ability to investigate virus-host interactions without the 

need to sacrifice whole animals. Importantly, as viruses are intracellular pathogens, the cell 

represents the initial interaction between the virus and the host organism. For this reason, the initial 

defense mechanisms take place at the cellular level. Understanding the cell types that are 

susceptible or permissive to virus infection, as well as the mechanisms that are effective in viral 

inhibition, is essential in understanding the fate of an infected animal and the mechanisms that 
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determine whether an organism serves as asymptomatic carriers or succumb to infection.  

Accordingly, two rainbow trout (Oncorhynchus mykiss) cell lines were used in this study: 

RTgutGC, an epithelial cell line of intestinal origin, and RTG-2, a fibroblastic cell line of gonadal 

origin (Wolf and Quimby, 1962; Kawano et al., 2010). Interestingly, preliminary observations 

suggested that there were susceptibility differences between these two rainbow trout cell lines: 

RTG-2 appeared to be more susceptible to FV3 infection than RTgutGC (Soares, unpublished 

results). Due to these differences in susceptibility, between individual cell types of the same 

species, these two cell lines provide an excellent model to study innate antiviral responses to FV3.  

RTG-2 is a well-characterized fibroblastic rainbow trout cell line derived from both male and 

female gonadal tissue (Wolf and Quimby, 1962). Many in vitro rainbow trout studies have been 

performed using this cell line. Previous studies have shown that RTG-2 constitutively expresses 

IFN2, but not IFN1 (Zou et al., 2007). However, both IFN1 and IFN2, as well as common ISGs 

(including Mx 1-3 and Vig1) are strongly upregulated in response to poly I:C, as well as virus 

infection (DeWitte-Orr and Bols, 2007; Tafalla et al., 2008; Zou et al., 2007). As well, a recent 

report has demonstrated that both poly I:C (synthetic dsRNA), as well as in vitro viral dsRNA, 

were capable of inducing robust IFN and ISG expression in RTG-2 in a length-dependent manner 

(Poynter and DeWitte-Orr, 2015). The ability of RTG-2 to undergo apoptotic cell death has been 

demonstrated using a number of toxic compounds, including gliotoxin, polybrominated diphenyl 

ethers (PBDEs), butylated hydroxyanisole, as well as virus (chum salmon reovirus; CSV) infection 

(DeWitte-Orr and Bols, 2005; 2007; Jin et al., 2010; Jos et al., 2005).  

RTgutGC is an adherent epithelial cell line derived from the intestine of rainbow trout 

(Kawano et al., 2010). Few studies have been conducted using this cell line, and as such, very little 

is known regarding the innate antiviral response. However, similar to that of RTG-2, RTgutGC 
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was shown to constitutively express IFN2 (Zou et al., 2007). As well, RTgutGC was shown to 

strongly upregulate IFN1, Mx1, Mx3, and Vig3 in response to extracellular dsRNA (poly I:C; 

Poynter et al., 2015). With respect to FV3 infection, a recent study investigated the ability of 

rainbow trout cell lines to support FV3 infection (Pham et al., 2015). It was shown that, for both 

cell lines, FV3 entered and caused cell death. However, RTG-2 exhibited much greater virus 

production, as compared to RTgutGC and other rainbow trout cell lines, which is consistent with 

the fore mentioned difference in susceptibility.  

1.6. Research Objectives and Hypotheses 

The overarching goal of this research was to investigate the innate antiviral response to FV3 

in RTgutGC and RTG-2 cell lines, and evaluate any differences there may be. This study will 

test the hypothesis that RTgutGC is more resistant to FV3 than RTG-2, exhibiting a stronger type 

I IFN response and less cell death. The objectives of this study are: 

(1) Quantification of cell death differences between the two cell lines.  

(2) Investigation of the ability of FV3 to induce apoptosis. 

(3) Quantifying IFN/ISG expression following FV3 infection. 

(4) Investigation of intrinsic cellular features that may determine differences in susceptibility. 
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Figure 1.1: Type I IFN production and PRR signaling pathways in fish. There are numerous 

PRRs for the detection of viral nucleic acids in the extracellular space, endosome, or cytosol. The 

activation of host PRRs by viral PAMPs induces the production of type I IFN through different 

pathways, depending on the mechanism of entry and subcellular location. Following their 

activation, host PRRs (red) activate different adaptor molecules (green), which interact with 

numerous intracellular kinases to ultimately mediate the activation of key transcription factors 

(orange), NF-kB, IRF3 and IRF7. Once activated, these transcription factors translocate to the 

nucleus where they mediate the expression of type I IFN and pro-inflammatory cytokines, which 

exhibit antiviral function. Note: Endosomal dsRNA can escape (unknown mechanism), which may 

be recognized by cytosolic RLRs to activate the downstream signaling pathway. DNA within the 

cytosol is recognized by cytosolic DNA sensors (CDSs). To date, DDX41 remains the only CDS 

described in fish. Whether additional CDSs exist in fish remains to be elucidated. CDS = cytosolic 

DNA sensor; CpG DNA = cytosine-phosphate-guanosine deoxyribonucleic acids (DNA); dsRNA 

= double-stranded ribonucleic acids (RNA); IFN = interferon; IKK = IkB kinase; IPS-1 = IFN-b 

promoter stimulator 1; IRF = interferon regulatory factor; LGP2 = laboratory of genetics and 

physiology 2; MDA5 = melanoma differentiation-associated gene 5; MyD88 = myeloid 

differentiation primary response protein 88; NF-κB = nuclear factor kappa-light-chain-enhancer 

of activated B cells; RIG-I = retinoic acid-inducible gene I; single-stranded RNA = ssRNA; STING 

= stimulator of interferon genes; SR-A = class A scavenger receptor; TBKI = tank-binding kinase-

1; TLR = toll-like receptor; TRIF = TIR domain-containing adaptor-inducing IFN-b. Adapted 

from Poynter et al., 2015.  
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Figure 1.2: ISG production by type I IFN. The binding of type I IFNs to the IFNa/b receptor 

(IFNAR) results in receptor dimerization and activation of JAK1 and TYK2 associated with 

the receptor cytoplasmic tails. JAK1 and TYK2 then phosphorylate STAT1 and STAT2, 

which form a trimeric complex with IRF9 referred to as ISGF3. Alternatively, STAT1 may 

form a homodimer complex called GAF. ISGF3 and GAF translocate to the nucleus to bind 

DNA regulatory sequences including ISREs and GAS, respectively. This leads to the 

production of numerous ISGs. IFN = interferon; IFNAR = IFN a/b receptor; JAK1 = Janus-

activated kinase 1; TYK2 = tyrosine kinase 2; STAT = signal transducers and activators of 

transcription; ISGF3 = IFN-stimulated gene factor 3; GAF = IFN-gamma-activated factor; 

ISRE = IFN-stimulated response elements; GAS = IFN-gamma-activated site. Adapted from 

Garcia-Sastre and Biron, 2006. 
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Figure 1.3: FV3 Life Cycle. FV3 exists as both naked and enveloped forms, gaining entry into 

the cell through fusion or endocytosis, respectively. The virion is uncoated and the viral dsDNA 

genome translocates to the nucleus where viral transcription and genome replication take place. 

Early transcription is catalyzed by host RNA polymerase II leading to the expression of immediate-

early and delayed-early genes. One of the first genes expressed is the viral DNA polymerase, 

responsible for viral genome synthesis, and a host of other proteins involved in immune evasion, 

nucleic acid synthesis, and growth in vivo. Following its synthesis, viral DNA is transported to the 

cytoplasm where it is methylated and linked to large concatamers. Also in the cytoplasm, 

transcription of late genes, including the major capsid protein (MCP) occurs via a virus-encoded 

homolog of RNA pol II. Virion formation takes place in specific viral assembly sites (VAS), 

containing viral proteins and concatameric DNA. Assembled FV3 particles may be seen as part of 

paracrystalline arrays or budding from the host cell membrane. Adapted from Chinchar, 2002.  
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Chapter 2 

Using Rainbow Trout Cell Lines as a Model for Understanding the Innate 

Anti-FV3 Immune Response  
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1. Introduction 

At the time of their discovery in northern leopard frogs (Rana pipiens), ranaviruses (RVs) 

were believed to have little impact on fish and amphibian populations (Granoff et al., 1966; 

Chinchar et al., 2009; Williams et al., 2005). This view has drastically changed, however, as more 

and more evidence has implicated these viruses in widespread epidemics and mortality of several 

species of fish, as well as amphibians, and reptiles (Ahne et al., 1997; Chinchar, 2002; Williams 

et al., 2005). This virus genus has been implicated in mortality events on six continents across the 

globe, involving over 175 species across 52 ectothermic vertebrate families (Duffus et al., 2015; 

Miller et al., 2011). This staggering distribution, coupled with the ability to cause mass die-off 

events, warrants their classification as emerging infectious diseases (Chinchar et al., 2009; Daszak 

et al., 1999). While the majority of RV species have, to date, been restricted to their respective 

natural hosts, frog virus 3 (FV3) exhibits a broader host range, capable of crossing multiple species 

barriers to infect a variety of new hosts (Becker et al. 2003; Haislip et al., 2011; Hyatt et al., 2000; 

Jancovich et al., 2010). 

 FV3 is the type species and best-characterized member of the Ranavirus genus (family 

Iridoviridae), which consists of large icosahedral viruses possessing a single, linear, double-

stranded DNA genome (Chinchar et al., 2002; 2009; 2011). FV3, as well as other members of the 

family Iridoviridae, possess large genomes able to encode anywhere from 100-140 proteins 

(Chinchar et al., 2011; Pham et al., 2015). This tremendous coding potential is beneficial in order 

to enhance host range, replication efficiency and evade host immune responses. Characteristic of 

in vitro FV3 infection is the rapid inhibition of host cell macromolecular synthesis, followed by 

extensive cytopathic effect (CPE). Previous reports have suggested that phosphorylation of 

eukaryotic initiation factor 2 (eIF2-a) by FV3  is responsible, and likely reflects its ability to take 
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over the translational capacity of the host cell (Chinchar and Dholakia, 1989; Chinchar and Yu, 

1992). While these events may be involved in FV3-induced cell death, the exact mechanism of 

death, and the pathways responsible, require further investigation.  

A common outcome of virus infection is cell death, either as a necrotic event, resulting 

from excessive virus production and release, or an apoptotic event, involving activation of the 

cellular death program. Recently, there is a growing understanding among virologists that 

apoptosis, rather than necrosis, is the common outcome of virus-infected cells (Chinchar et al., 

2003). Viruses rely heavily on host cell machinery for replication. As such, it is no surprise that 

premature death of the host cell can be a powerful antiviral mechanism. In light of this, viruses 

have developed strategies to inhibit apoptosis to permit continued replication and dissemination to 

neighboring cells (Dai et al., 1999; Gillet and Brun, 1996; Liu and Cohen, 2014; Roulston et al., 

1999). Previous studies have suggested that productive ranavirus infections typically culminate in 

the induction of apoptosis (Chinchar et al., 2003; Pham et al., 2012, 2015; Ring et al., 2013). As 

well, previous work with FV3 has suggested that virus-encoded proteins play a role in blocking or 

delaying apoptosis (Chinchar et al., 2003; Andino et al., 2015).  

While apoptosis is an effective antiviral response, it is typically the outcome of another 

innate antiviral immune response, the type I interferon (IFN) response. This response is considered 

the first line of defense against virus infection, and as such, represents the cornerstone of all 

antiviral responses. Following the detection of viral products, innate immune sensors trigger the 

expression of IFNs, which signal the expression of hundreds of antiviral effector proteins, 

collectively referred to as IFN-stimulated genes (ISGs; Baum and Garcia-Sastre, 2010; Garcia-

Sastre and Biron, 2006). While the IFN systems of warm-blooded vertebrates are well 

characterized, much remains to be understood regarding the IFN system of ectothermic vertebrates 
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that serve as hosts for RV infections. Previous work has demonstrated the ability of 

immunocompetent adult frogs to successfully clear RV infection, while tadpoles are unable to 

recover and succumb (Gantress et al., 2003; Grayfer et al., 2014; Maniero et al., 2006; Morales 

Robert, 2007). Responsible for this enhanced susceptibility, tadpoles lack full expression of MHC 

class I molecules and possess deficient cellular and cytokine immune responses (Grayfer et al., 

2014; Robert and Ohta, 2009).  IFN specifically has been shown to limit FV3 replication in 

amphibian cells (Grayfer et al., 2014) and induce IFN responses in fish cells (Cheng et al., 2014). 

However, despite their powerful roles in limiting infection to most viruses, numerous reports have 

demonstrated an inability of certain ISGs in inhibiting RV infections (Alvarez-Torres et al., 2013; 

Caipang et al., 2003; Lester et al., 2012; Trobridge et al., 1997; Wu et al., 2012; Wu and Chi, 

2007). In addition to the role of cellular immune proteins in limiting infection, FV3-encoded 

proteins are believed to play key roles as immune antagonists. In fact, FV3 is known to express a 

number of putative immune evasion genes, which have been shown to be essential in pathogenicity 

and virulence (Andino et al., 2015; Grayfer et al., 2012). For example, FV3 encodes a caspase 

activation and recruitment domain-containing protein (vCARD), which is believed to modulate 

interactions with cellular CARD-containing proteins, typically associated with IFN immune 

sensors or pro-apoptotic molecules (Andino et al., 2015). Other immune evasion proteins have 

been identified and shown to be essential for FV3 replication in certain hosts (Andino et al., 2015; 

Grayfer et al., 2012). Clearly, the precise role of IFN and ISGs in limiting FV3 replication and the 

counter immune evasion strategies of FV3 requires further investigation. 

Consequently, two rainbow trout cell lines were utilized in this study: RTgutGC (epithelial; 

intestinal origin) and RTG-2 (fibroblastic; gonadal origin). Preliminary observations suggested a 

susceptibility difference between the two cell lines, with RTG-2 being more susceptible to FV3-
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induced cell death compared to RTgutGC. As such, these two cell lines serve as an excellent model 

to study susceptibility differences, which we postulated was due to differences in innate anti-FV3 

responses. In this study, these susceptibility differences were investigated by a number of 

approaches. First, FV3-induced cell death was quantified in both cell lines, and method of cell 

death determined. IFN and ISG induction following FV3 infection was measured, as well as the 

ability of IFN to limit virus-induced cell death. FV3 was inactivated by UV, and the ability of 

replication deficient-virus to induce cell death and IFN/ISG induction was determined. Finally, 

differences in virus susceptibility between RTgutGC and RTG-2 were determined by comparing 

virus entry and cellular metabolism between the two cell lines. Interestingly, IFN and ISGs were 

not induced during FV3 infection in either cell line, and poly I:C-induced IFN limited virus 

replication, but not cell death. Additionally, UV-FV3 induced cell death similar to infectious FV3 

(wt-FV3); and IFNs were also not induced. These data suggest that FV3 has potent cytotoxic 

effects that are not limited by IFN and do not require virus replication. 

 

2. Materials and Methods  

2.1 Cell culture  

This study employed the use of two rainbow trout cell lines: RTG-2, a fibroblastic cell line of 

gonadal origin, and RTgutGC, an epithelial cell line of intestinal origin. Both of these cell lines 

were obtained from Dr. N. Bols (University of Waterloo). Both cell lines were maintained at 21°C 

in L-15 supplemented with 10% v/v fetal bovine serum (FBS) and 1% v/v penicillin 

G/streptomycin sulphate (P/S; 10,000 U/mL penicillin; 10 mg/mL streptomycin). As well, both 

cell lines were grown in 75-cm2 plastic tissue culture flasks (BD Falcon, Bedford, MA, USA). For 

experimental use, both cell lines were seeded at 2´104 cells/well for 96-well plates and 3´105 



	 32	

cells/well for 6-well plates, unless otherwise described. Cells were incubated 24h before 

experiments were performed. 

 

2.2 FV3 Propagation and Infection  

Frog virus 3 (FV3) was propagated in confluent monolayers of epithelioma papulosum cyprinid 

(EPC) cells, shown to support high titres of the virus (Pearman et al., 2004; Pham et al., 2015). 

EPC cells were grown in Leibovitz’s L-15 supplemented with 10% FBS and 1% P/S at 21°C. FV3 

propagation occurred in L-15 with 5% FBS and 1% P/S at 21°C for 5 days or until complete 

cytopathic effect (CPE) was observed. FV3-containing medium was collected 5 days post-

infection (PI) and freeze-thawed three times at -80°C, vortexing intermittently. The virus-

containing media was then filtered through a 0.2 µm filter, and kept frozen at -20°C until required. 

The virus titre was determined by serially diluting viral suspensions (10-1 to 10-11) and infecting 

confluent monolayers of EPC cells seeded into 96-well plates. The EPC cells were incubated for 

7 days at 21°C. Following this infection period, the infected EPC cells were scored for the presence 

of CPE and a final titre, expressed as a TCID50/mL (50% Tissue Culture Infective Dose), was 

estimated using the Karber method (Karber, 1931). TCID50/mL values were converted to 

multiplicity of infection (MOI), based on the cell density of each assay: 

𝑀𝑂𝐼 =
𝑇𝐶𝐼𝐷()/𝑚𝐿	´	0.7 𝑉𝑜𝑙𝑢𝑚𝑒

(𝐶𝑒𝑙𝑙	𝐷𝑒𝑛𝑠𝑖𝑡𝑦)  

UV-inactivated FV3 (UV-FV3) was generated by exposing working dilutions of FV3 in 5% FBS 

media (total volume 1 mL) to 150 mJ of UV light in a UVP HL-2000 HybriLinkerä UV 

crosslinker, a method previously shown to successfully inactivate the virus (Chinchar et al., 2003). 
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2.3 Time-lapse FV3 Infection Videos 

RTgutGC and RTG-2 cells were seeded into 6-well plates and left to incubate for 24h at normal 

growth conditions. Following incubation, cells were infected with FV3 in 5% FBS at an MOI of 

1.5 for 48h. Infected cultures were then viewed with a Nikon Eclipse Ti-S microscope (Japan) at 

4´ magnification. Photographs were taken every 10 min over the 48h infection period, upon which 

time-lapse videos were created with the images stitched together at 50 frames per second (fps). 

Included are videos representative of at least three independent experiments.  

 

2.4 Cell Viability Assay 

2.4.1 Treatments 

For killing curves, RTgutGC and RTG-2 cell lines were infected with serial dilutions of FV3, from 

10-1 to 10-6 (MOI 55 to 5.5´10-4), in 96-well plates with 5% FBS media. Uninfected cultures 

(control) received 5% FBS media alone. Following infection, cells were left to incubate for 48h, 

72h, and 96h at normal growing temperatures, after which, cell viability assays were performed 

(2.4.2).  

 

For UV-FV3 treatments, RTG-2 cultures were infected with infectious FV3 (wt-FV3) or UV-FV3 

at an MOI of 1.5 for 48h in 96-well plates. Following a 48h infection period, cell viability assays 

were performed as described below.   

 

For the poly I:C antiviral assays, RTG-2 cells were plated in 96-well plates; cells were pretreated 

with 40 µg/mL poly I:C in 5% FBS media for 18h, while control wells received 5% FBS media 

alone. Following 18h, both pretreated and non-pretreated cells were infected with FV3 at an MOI 
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of 1.5, 3, and 4.5, with the exception of uninfected control cultures which, again, received 5% FBS 

media alone. Infection proceeded 48h, after which, cell viability assays were performed (2.4.2).    

 

For the metabolic assays, RTgutGC and RTG-2 cells were plated in 96-well plates. Following 24h 

in culture, both cell lines received 5% FBS media. Cell viability assays were carried out 24h, 48h, 

and 72h post-plating. In order to determine basal levels of metabolic activity at the time of plating 

(designated “1h”), 1.2´105 cells (2´104 x 6 wells) of each cell line were transferred to 1.5mL 

microcentrifuge tubes and pelleted by centrifugation at 2400´g for 6 minutes. The cells were then 

resuspended in 600 µL (100 µL/well ´ 6 wells) of a diluted alamarBlueâ solution (in 1´ PBS; 

Hyclone) and transferred to 6 wells of a 96-well plate, from which a cell viability assay was 

performed (2.4.2).   

 

2.4.2 Alamar Blue/CFDA-AM assays  

Cells were then washed once with 100 µL 1´ PBS/well (with Ca2+ and Mg2+; Hyclone). A solution 

containing 4mM 5-CFDA-AM (5-Carboxyfluorescein Diacetate, Acetoxymethyl Ester; 

ThermoFisher Scientific) and 5% v/v alamarBlueÒ (ThermoFisher Scientific) diluted in 1´ PBS 

(Hyclone) was added to the cells at 100 µL/well of a 96-well plate and left to incubate 1h in the 

dark. AlamarBlueÒ is a redox indicator dye which fluoresces in response to metabolic activity. 

Viable cells reduce alamarBlueÒ from non-fluorescent blue resazurin to fluorescent pink resorufin 

(Bopp and Lettieri, 2008). 5-CFDA-AM is also taken up by viable cells where it is hydrolyzed by 

intracellular esterases into fluorescent carboxyfluorescein. As these esterases are only active 

within intact cells, 5-CFDA-AM serves as a measure of membrane integrity (Bopp and Lettieri, 

2008). Fluorescence was measured using a Synergy HT plate reader (Bio-Tek). Relative 
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fluorescent units (RFUs) for treated or infected samples was expressed as a percentage of the 

uninfected control sample. Data represents the average of at least three independent experiments.    

 

2.5 Fluorescence Microscopy: DAPI Staining 

RTgutGC and RTG-2 cells were seeded into 6-well plates. Subsequently, cells were infected with 

FV3 in 5% FBS media at an MOI of 1.5 for 7h, 20h, 36h, and, for RTgutGC only, 60h PI. 

Uninfected control cells received 5% FBS media alone for 36h (RTG-2) or 60h (RTgutGC). Cells 

were fixed with 10% neutral buffered formalin (Fisher Scientific) for 12 min followed by 3´ rinse 

with PBS. Cells were then stained by adding 400 µL DAPI/well (10 µg/mL), diluted in PBS, for 

5 min in the dark. Upon staining, the cells were rinsed twice with PBS, twice with milliQ water, 

and viewed with a Nikon Eclipse Ti-S microscope (Japan). Three representative photographs were 

taken for each treatment and the number of apoptotic/affected nuclei were counted manually and 

expressed as a percentage of the total nuclei in the field of view. Data represents the average of at 

least three independent experiments.  

 

2.6 DNA Ladder Assays 

RTgutGC and RTG-2 cells were seeded at 3.2´106 cells in 25-cm2 tissue culture flasks and left to 

incubate for 24h. Cultures were infected with wt-FV3 or UV-FV3 (MOI 1.5). At the indicated time 

post-infection, cells were collected by the addition of trypLE dissociation reagent and 

centrifugation (1400´g for 6 min) and genomic DNA (gDNA) was extracted using a GenElute 

mammalian genomic DNA miniprep kit (Sigma). The genomic DNA was eluted from the column 

using 75 µL elution solution (Sigma), and 4 µg of this DNA was resolved by electrophoresis on a 
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2% (w/v) agarose gel for 4h at 60 V. The DNA ladders were visualized by staining gels with 0.5 

µg/mL ethidium bromide and imaged under a UV transilluminator.  

 

2.7 qRT-PCR: IFN/ISG/Viral Transcript Expression Analysis   

2.7.1 Cell Infections and Treatments  

RTgutGC and RTG-2 cells were seeded at a cell density of 6´105 cells/well of a 6-well plate and 

left to incubate 24h in normal growth medium and temperature. Both cell lines were infected with 

FV3 in 5% FBS media at an MOI of 1.5 for 4, 8, and 18h. Additionally, cells were infected with 

wt-FV3 and UV-FV3 in 5% FBS media at an MOI of 0.15 for 72h. In either case, uninfected 

(control) cells were included, which received 5% FBS media alone at the time of infection. As 

well, RTG-2 cells were pretreated with 40 µg/mL poly I:C in 5% FBS media for 18h prior to 

infection with FV3 at an MOI of 0.15 for 72h. In these experiments, poly I:C controls were 

included in which cells received 40 µg/mL poly I:C alone at the time of pretreatment for the 

duration of the 72h infection period. Following the indicated length of infection, treatment, or 

incubation, RNA was extracted from the cells as described below.  

 

2.7.2 RNA Extraction and cDNA synthesis 

Total RNA was extracted from both cell lines by use of TRIzol (Life Technologies) according to 

the manufacturer’s instructions. RNA was treated with DNAse I to remove any contaminating 

genomic DNA. RNA was quantified using a NanoDrop Lite Spectrophotometer (Thermo 

Scientific) and stored at -80°C.   
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cDNA was synthesized from 1µg of RNA, which was combined with iSCRIPT reverse 

transcription supermix (BioRAD) to make a 20µL reaction mixture. The reaction mixture was 

incubated at 25°C for 5min, 46°C for 20 min, 95°C for 1 min, and held at 4°C. Following 

amplification, all of the resulting cDNA was diluted 1:10 in molecular biology grade water and 

stored at -20°C.  

 

2.7.3 qPCR Reactions  

Individual qPCR reactions included 4 µL of template cDNA and 6 µL of qPCR mastermix, 

containing: 10 µM forward/reverse primer (Table 2.1; 200 nM final concentration), molecular 

biology grade water, and SsoFast EvaGreen Supermix (BioRad; 2´ concentration). The qPCR 

reactions were carried out using a BioRAD CFX Connect real-time system at the following cycling 

conditions: 95°C for 2 min, 40 cycles of 95°C for 5s and 55°C for 10s, with plate reads between 

each cycle. Following PCR amplification, the relative normalized expression of all genes was 

calculated using the DDCt method. Gene expression was normalized to the endogenous control (b-

actin) and expressed as a fold change over the uninfected control, the expression of which was set 

to 1. For viral transcripts, in which no threshold value is given for uninfected control samples, the 

control values were set to a threshold (Ct) of 40. Single PCR melting peaks were employed to 

determine product specificity.  

 

2.8 Viral Entry Assay 

RTgutGC and RTG-2 cells were seeded at a cell density of 8´105 cells/well of the same 6-well 

plate and left to incubate 24h under normal growth conditions. Different lengths of infection were 

separated on different 6-well plates, while both cell lines of the same infection period were seeded 
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in the same 6-well plate. Both cell lines were simultaneously infected with FV3 at an MOI of 1.5 

in 400 µL of 5% FBS media, with the exception of the uninfected control, which received 5% FBS 

media alone. Following the addition of FV3 to each well, always from the same virus prep, plates 

were left to incubate 1h, rocking every 12 min. At 1h PI, gDNA was extracted from the 1h infection 

wells of both cell lines by use of GenElute mammalian genomic DNA miniprep kit (Sigma). At 

the same time, FV3-containing media was removed from the 2h and 3h infection wells of both cell 

lines and replaced with fresh 5% FBS media for an additional 1h and 2h, respectively. Following 

the 2h and 3h infection periods, gDNA was extracted as described previously. gDNA was 

quantified using a NanoDrop Lite Spectrophotometer (Thermo Scientific) and individual 12.5 

ng/µL dilutions were made from each sample. The level of MCP in each of the fore mentioned 

samples was measured by qPCR (2.7.3). Data represents the average of four independent 

experiments.  

 

2.9 Statistics and Quantitative Analysis 

LD50 values reported in FV3 killing curves were generated using Prism software (GraphPad 

Software, Version 6). All statistical analyses were performed using KaleidaGraph (version 4.1.0, 

Synergy software).  Specific analysis details are included in the figure headings for each Figure.  
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Table 2.1: qPCR Primers: Primer sequences used in real-time PCR. Included are product sizes, 

annealing temperatures (TA), and references or accession numbers.  

 
Gene or 

Fragment 
Primer Sequence 5’-3’ Product 

Size 
(bp) 

TA 
(°C) 

Reference or 
Accession 
Number 

b-actin F-GTCACCAACTGGGACGACAT 
R-GTACATGGCAGGGGTGTTG 

174 55 Poynter and 
DeWitte-Orr, 2015 

IFN1 F-AAAACTGTTTGATGGGAATATGAAA 
R-CGTTTCAGTCTCCTCTCAGGTT 

141 55 Chaves-Pozo et 
al., 2010 

Vig4 F-GGGCTATGCCATTGTCCTGT 
R-AAGCTTCAGGGCTAGGAGGA 

151 55 Poynter and 
DeWitte-Orr, 2015 

Mx3 F-TGAGGCCATTAAGCAGGTGA 
R-TGGTAAGGGTCGGTCGTCT 

151 55 Poynter and 
DeWitte-Orr, 2015 

FV3 MCP F-CGTCGGCTCCAATTACACCT 
R-CTCTTGACGGGATCTACCGC 

90 55 KM114252.1 

FV3 vCARD F-ATGCAAAACTTTGGAGCACA 
R-TGGTGACGCTGTCTATCAGG 

196 55 Majji et al., 2009 

 

3. Results 

3.1 RTG-2 is more susceptible than RTgutGC to FV3-induced cell death 

FV3-infected RTgutGC cultures exhibited low to moderate cell death over a 48h infection period 

(Video 1A). FV3-induced cell death began at around 20h PI and progressed slowly. However, 

under the same infection conditions, RTG-2 exhibited rapid, extensive cell death; beginning at 

around 7h PI (Video 1B). Following 48h, very few RTG-2 cells remained in culture. In order to 

quantify differences in FV3 susceptibility between different rainbow trout cell lines, RTG-2 and 

RTgutGC cultures were infected with serial dilutions of FV3 to generate a killing curve, from 

which LD50 values could be calculated. Both cell lines included mock-infected cultures, which 

received 5% FBS media alone. Both cell lines exhibited a virus titre-dependent decline in viability, 

when infected with the virus (Figure 2.1). At a high MOI of 55, both cell lines exhibit extensive 

cell death compared to the uninfected control at 48h, 72h and 96h PI (Figure 2.1). However, at an 
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MOI of 5.5, the differences in susceptibility between the two cell lines became very prominent. 

RTG-2 cells exhibited viability of only ~10%, whereas RTgutGC exhibited viability of ~65% by 

72h PI. As the FV3 titre decreased with serial dilutions of the virus, the differences in susceptibility 

became less apparent. LD50 values were generated from the fore mentioned killing curves and 

RTG-2 demonstrated significantly lower LD50 values, as compared to RTgutGC (Figure 2.1). 

While this trend was consistent over the 48h, 72h, and 96h infection periods, the data became less 

variable and more statistically significant with a longer infection. 

 

3.2 Mechanism of FV3-induced cell death is apoptosis  

To determine the mechanism of FV3-induced cell death, both cell lines were infected with FV3 

and examined for characteristic features of apoptosis. One such hallmark of apoptosis is chromatin 

condensation and fragmentation into apoptotic bodies, as measured by DAPI staining and 

fluorescence microscopy (Hardwick et al., 1997). Mock-infected RTgutGC and RTG-2 possessed 

round, uniformly-staining nuclei (Figure 2.2A). Beginning at 20h PI, RTgutGC cultures began to 

exhibit significant numbers of apoptotic bodies (~10%). This percentage of apoptotic nuclei 

remained relatively the same over 36h and 60h PI. Surprisingly, in FV3-infected RTG-2 cultures 

there was an absence of “traditional” apoptotic bodies, in which the nuclei are highly fragmented 

into small nuclear packets; instead, many irregular and highly condensed nuclei were observed 

(Figure 2.2A). While a very small percentage of these condensed nuclei were observed in control 

cultures, the percentage of these increased with both the length of infection, as well as the MOI of 

virus (Figure 2.2B and C). A second hallmark of apoptosis is the presence of gDNA laddering, 

i.e., the fragmentation of cellular DNA into ~180bp oligomers (Hardwick et al., 1997). When 

gDNA from mock-infected cultures was run on a 2% agarose gel, no evidence of DNA degradation 
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was observed for either cell line (Figure 2.2D). However, gDNA laddering was detected in FV3-

infected cultures from both cell lines. DNA fragmentation was detected as early as 20h PI for 

RTgutGC. However, for RTG-2, laddering was only detectable at 36h PI. Important to note, due 

to the extensive cell death in the more susceptible RTG-2 cell line, there were very few cells 

remaining for analysis following 36h PI. For this reason, only RTgutGC cultures were examined 

at 60h PI.  

 

3.3 Differences in FV3-induced cell death may be due to constitutive, but not induced, type I 

IFN production  

As IFN is a key regulator of the innate antiviral state, its expression and expression of its 

downstream interferon stimulated genes (ISGs) were measured either constitutively in the cell 

lines or induced by FV3. Levels of IFN1, as well as Vig4, and Mx3, were measured at the transcript 

level using qRT-PCR. To determine whether constitutive levels of IFN or ISGs differ between the 

two cell lines, RTG-2 and RTgutGC, control (uninfected) cultures were examined for mRNA 

levels of IFN1, Vig4, and Mx3. Threshold (Ct) levels for each gene, including actin, were recorded 

and a ratio of the target gene Ct to actin Ct was generated. Average actin Ct values for RTG-2 and 

RTgutGC were similar values of 19.45 and 20.66, respectively. RTgutGC exhibited significantly 

lower Ct ratios for each gene, thus higher transcript levels, as compared to RTG-2 (Figure 2.3A). 

In addition, IFN and ISG transcripts were measured following FV3 infection in both RTgutGC 

and RTG-2 (Figure 2.3B). Significant upregulation of IFN or ISG transcripts could not be detected 

in either cell line within the first 18h of infection. Even at 72h PI, IFN and ISG expression was 

absent, with the exception being RTG-2 at 72h PI, where there was a 4-fold increase in IFN1 and 

an 8-fold increase in Mx3. Also detected was a subtle upregulation in Mx3 for RTgutGC at 72h 
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PI, albeit very modest. MCP transcript levels were also measured to determine the level of FV3 

replication over an 18h infection period (Figure 2.3C). RTG-2 supported significantly more virus 

replication compared to RTgutGC at 18h PI.  

 

3.4 Poly I:C inhibits FV3 replication, but not FV3-induced cell death 

The importance of type I IFN in FV3 infection was suggested by the observation that the highly-

susceptible RTG-2 cell line, exhibited a lower constitutive expression of IFN and ISGs (Figure 

3A). For this reason, the ability of poly I:C pretreatment to protect against FV3 infection was 

investigated in RTG-2 cultures, the more susceptible cell line with poorer constitutive IFN and 

ISG expression. Poly I:C induced IFN1 and ISGs (Vig4 and Mx3) at significantly high levels in 

RTG-2 18h post-treatment (Figure 2.4A). When pretreated with 40µg/mL poly I:C for 18h, FV3 

replication was significantly inhibited, as measured by virus transcript expression (MCP and 

vCARD; Figure 2.4B). MCP transcript expression is ~ 3 log fold lower, and vCARD expression ~ 

2 log fold lower, when cultures were pretreated with poly I:C prior to infection. However, cell 

death, as measured by cell viability assays, was not affected by poly I:C pretreatment (Figure 

2.4C). Despite IFN presence, RTG-2-infected cultures exhibited similar levels of FV3-induced cell 

death, as compared to FV3 infection alone. This was consistent over multiple MOIs of virus 

(Figure 2.4C). 

 

3.5 UV- inactivated FV3 kills, but does not induce type I IFNs 

Next, UV-FV3 (FV3 inactivated by UV irradiation) was utilized to determine whether virus 

replication was required for virus-induced cell death, and whether IFN and ISG expression was 

altered when virus replication is inhibited. UV irradiation provided an effective mechanism for 
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FV3 inactivation, as FV3 transcripts (MCP and vCARD) were significantly reduced in RTG-2 

following UV exposure (Figure 2.5A). Interestingly, UV-FV3 was able to induce cell death in 

RTG-2 with the same efficacy as infectious (wt) virus (Figure 2.5B). Both wt-FV3 and UV-FV3 

caused ~50% reduction in viability following 48h of infection. In addition to the extent of cell 

death, the mechanism of cell death induced by UV-FV3 was investigated by monitoring the 

presence of gDNA laddering. Following infection with UV-FV3, both RTG-2 and RTgutGC 

exhibited gDNA laddering at 36h PI, absent in mock-infected cultures (Figure 2.5C). Additionally, 

IFN and ISG (Vig4 and Mx3) expression was measured in RTG-2 and RTgutGC infected with 

UV-FV3 for 72h. Following infection, neither cell line expressed IFN or ISGs significantly 

different between WT and UV-FV3 (Figure 2.3B and Figure 2.5D).  

 

3.6 Greater FV3 susceptibility may be due to enhanced viral entry and metabolism 

In addition to differences in constitutive IFN expression observed (Figure 2.3A), other possible 

explanations for differences in FV3 susceptibility between RTgutGC and RTG-2 were pursued. 

Among the first steps in FV3 replication is the entry of FV3 virions into host cells. Accordingly, 

the rates of viral entry in both cell lines were quantified by measuring the level of viral DNA 

(MCP) at 1h, 2h, and 3h PI. Despite both cultures being synchronously infected with an MOI of 

1.5, RTG-2 exhibited significantly greater levels of MCP DNA at all three time-points compared 

to RTgutGC (Figure 2.6A). As viruses require the use of host cell machinery for replication, virus 

replication and cellular metabolism are closely associated. In light of this, we set out to determine 

whether the difference in FV3 susceptibility between RTG-2 and RTgutGC was the result of 

differences in cellular metabolism/virus replication efficiency. Cellular metabolism, as measured 

by alamarBlueÒ reduction, was evaluated over 3d in both cell lines. RTG-2 exhibited a higher 
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metabolic/replication capacity at 1d, 2d and 3d post plating, as compared to RTgutGC despite 

having similar basal metabolic rates at 1h (Figure 2.6B).  

 

4. Discussion 

FV3 was lethal to both rainbow trout cell lines, RTgutGC and RTG-2. FV3 infection lead 

to a decline in metabolism and impairment of membrane integrity, as measured by alamarBlueâ 

and 5-CFDA-AM fluorescent indicator dyes. At a relatively high MOI of 55, both cell lines 

demonstrated extensive cell death as measured by low relative fluorescence compared to 

uninfected control cultures. As expected, cell viability increased with a decrease in MOI, 

demonstrating that cell death is proportional to both the length of infection and the MOI of virus. 

Of particular interest was the drastic difference in FV3 susceptibility between the two rainbow 

trout cell lines. As observed in the time-lapse infection videos, RTG-2 exhibited much more 

extensive cell death following FV3 infection, as compared to RTgutGC. Over the 48h infection 

period, RTgutGC exhibits low to moderate cell death, which begins at ~20h PI and progresses 

slowly. Conversely, under the same conditions, RTG-2 exhibits extensive cell death, beginning at 

~7h PI, with very few cells remaining at the end of the infection period. This difference in 

susceptibility to FV3 was confirmed with killing curves, in which LD50 values were generated for 

each cell line. As expected, RTG-2 reported a lower LD50, compared to that of RTgutGC, 

indicating its greater susceptibility. What’s more, this differential FV3 susceptibility was observed 

over 48h, 72h, and 96h of infection. While this difference in susceptibility was consistent over 

various infection periods, the 48h infection course had greater variability. The significance of the 

data increased in proportion the length of infection. Susceptibility also correlated with virus 

replication, as RTG-2 supported more FV3 transcription compared with RTgutGC. The difference 
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in FV3 susceptibility between RTgutGC and RTG-2 provided an excellent model to study the 

mechanisms that may enable protection from FV3-induced cell death. While some studies have 

suggested that certain teleost fish may act as asymptomatic carriers of FV3 (Ariel et al., 2010; 

Jensen et al., 2009; 2011; Robert et al., 2007), there remains a lack of comprehensive reports of 

cell types that are susceptible or permissive to FV3 infection, essential to understanding their 

ability to serve as potential reservoir hosts of FV3. 

In attempt to prevent viral replication, dissemination, and persistent infection, host 

organisms have developed an impressive integrated network of defense mechanisms, many of 

which ultimately involve the induction of apoptosis. In an effort to determine the mechanism of 

FV3-induced cell death, and any differences there may be between cell lines, the ability of FV3 to 

induce apoptosis was investigated. Nuclear condensation and fragmentation are hallmarks of 

apoptotic cell death (Hardwick et al., 1997; Elmore, 2007), and these characteristic features were 

observed in FV3-infected cultures under a variety of conditions. FV3-induced cell death appears 

to be apoptotic as significant numbers of apoptotic nuclei were observed in both cell lines within 

20h of FV3 infection. As expected, the highly susceptible RTG-2 cell line exhibited a greater 

percentage of apoptotic nuclei, as compared to RTgutGC, albeit a different nuclear morphology. 

While FV3-infected RTG-2 cultures lacked the traditional apoptotic bodies observed in RTgutGC, 

in which the nucleus is highly fragmented into small apoptotic bodies, many nuclei displayed 

highly condensed, shrunken, and irregular morphology. The presence of these highly irregular 

nuclei in FV3-infected RTG-2 cultures not only increased with the length of infection, but also 

with the titre of virus, suggesting that this nuclear morphology was virus-induced. Given that 

apoptosis, particularly early-stage apoptosis, is associated with a high degree of nuclear 

condensation and shrinkage, these nuclei could also be considered apoptotic (Tone et al., 2007). 
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The presence of traditional apoptotic bodies in RTG-2 cultures has been reported in a previous 

study involving treatment with gliotoxin, a lethal fungal metabolite (DeWitte-Orr et al., 2005). 

Possibly, the lack of traditional apoptotic bodies in FV3-infected RTG-2 cultures is due to viral 

interruption of the normal progression of apoptosis in this cell line.  

To confirm this mode of cell death, DNA laddering was also investigated. Following FV3 

exposure, DNA laddering was detected in both cell lines, further supporting apoptosis as the death 

mechanism. DNA laddering was detectable in FV3-infected RTgutGC and RTG-2 cultures within 

20h and 36h, respectively. Why DNA fragmentation is detected later in FV3-infected RTG-2, 

despite showing significantly greater numbers of apoptotic nuclei earlier, remains unclear. Perhaps 

the lack of DNA laddering at 20h PI, despite the significant number of apoptotic nuclei is due to 

the fact that the fore mentioned nuclear morphology is that of early-stage apoptosis prior to DNA 

degradation. The ability of Ranaviruses to trigger apoptosis in host cells has been observed 

previously in numerous cell types from fish, amphibians, and even mammals (Chinchar et al., 

2003; Lai et al, 2008; Chiou et al., 2009; Morales et al., 2010; Pham et al., 2012; Ring et al., 2013; 

Yuan et al., 2013). FV3 specifically has been shown to induce apoptosis in fathead minnow 

(FHM), rainbow trout macrophages (RTS11), Xenopus laevis peritoneal leukocytes, baby hamster 

kidney (BHK), and baby green monkey kidney (BGMK) cells (Chinchar et al., 2003; Pham et al., 

2015; Morales et al., 2010; Ring et al., 2013). While virus activation of the caspase cascade has 

been reported (Chinchar et al., 2003), the exact mechanism of FV3-induced apoptosis requires 

further investigation. Apoptosis is an essential defense mechanism by which viral replication is 

limited by premature death of the host cell. However, programmed cell death represents only one 

of many antiviral responses.  
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Among the first responses to virus infection involves the induction of a family of cytokines, 

called IFNs. Viral infection triggers the expression of IFN, which signals in an autocrine or 

paracrine fashion to trigger the expression of hundreds of ISGs that directly inhibit virus 

replication or even facilitate apoptosis. As the type I IFN response, represents the cornerstone of 

antiviral immune responses, IFN/ISG expression in response to FV3 was investigated to uncover 

potential differences between the two cell lines that would enable RTgutGC to control infection. 

To accomplish this, transcript levels of IFN1, as well as Vig4, and Mx3, common fish ISGs 

(Poynter and DeWitte-Orr, 2016), were measured at 4, 8, and 18h PI by qPCR. Surprisingly, no 

significant IFN or ISG expression was detected in either cell line within 18h of infection. In order 

to ensure an effective infection and the initiation of virus replication within both cell cultures at 

the time of measurement, the expression of viral MCP was also quantified. MCP is an abundant 

late viral gene product, required to create the viral capsid, and thus serves as a measure of the level 

of infection (Devauchelle et al., 1985; Chinchar et al., 2002). MCP was detected in both cell lines 

at 4h, 8h, and 18h PI, with levels increasing over time, thereby indicating a successful infection 

and support of virus replication. As well, despite being infected with an equal MOI of virus, RTG-

2 exhibited a three log-fold greater level of infection than RTgutGC at 18h PI. This confirms 

previous observations regarding differences in susceptibility, in which RTgutGC appears to 

control viral replication in some way. In attempt to observe significant IFN and ISG expression to 

FV3 at some point during the course of infection, cultures were infected with FV3 at a lower MOI 

of 0.15 for 72h. Even after 72h of infection, IFN and ISG expression was absent, with the exception 

being RTG-2 at 72h PI, where there was a 4-fold increase in IFN1 and an 8-fold increase in Mx3. 

Also detected was a subtle upregulation in Mx3 for RTgutGC at 72h PI, though very modest. Thus, 

subtle IFN/ISG expression was detected, albeit at very low levels. 
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This meagre IFN response may be the result of active or passive inhibition by the virus. 

With respect to active inhibition, FV3 is known to express a number of putative immune evasion 

genes (Grayfer et al., 2012). Among these is a caspase activation and recruitment domain-

containing protein (vCARD), which, through the use of FV3 knock-out (KO) studies, has been 

shown to be involved in the impairment of IFN induction, as well as in the inhibition of apoptosis 

(Chen et al., 2015; Andino et al., 2015). Perhaps virus-encoded immune evasion proteins are 

inhibiting the FV3-infected cultures, blocking their ability to express IFN and ISGs. Alternatively, 

there may be passive inhibition of IFN/ISG expression taking place. This is based on the potential 

lack of recognition by innate immune sensors, which are essential in initiating type I IFN 

responses. While, the presence of cytosolic RNA sensors in teleost fish, particularly rainbow trout, 

have been well characterized, cytosolic DNA sensors (CDSs) in teleost fish remain to be identified. 

While the presence of dsRNA, a common intermediary by-product of virus infection, has recently 

been demonstrated during the course of FV3 infection (Doherty et al., 2016), the primary abundant 

nucleic acid would be the dsDNA genome. With the exception of the newly characterized DDX41 

in Japanese flounder (Quynh et al., 2015), no other CDSs have been identified in teleost fish 

(Poynter et al., 2015). Possibly, a lack of CDSs in rainbow trout cells is leading to a low 

immunogenicity of FV3 and, in turn, a diminished IFN response. Additionally, RVs encode an 

RNAse III-like protein, suggested to be involved in degrading viral dsRNA, thereby inhibiting 

viral recognition by the cell (Grayfer et al., 2015).  

To explore this further, UV-FV3 was utilized in IFN/ISG expression analysis studies. UV-

FV3 is replication-deficient, unable to express any immunosuppressive proteins, while conserving 

the ability to bind and infect host cells. Successful inactivation of FV3 was determined by 

demonstrating significantly decreased expression of viral MCP and vCARD, by qPCR. 
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Surprisingly, exposure of UV-FV3 to both cell lines resulted in an equally modest IFN response. 

Thus, while FV3 expresses a number of immune evasion proteins, UV-FV3 did not elicit a strong 

type I IFN response; suggesting de novo viral protein synthesis was not required for IFN 

modulation. Previous studies have demonstrated that FV3 mutants lacking putative immune 

evasion proteins replicate as well as wt-FV3 in non-host (non-amphibian) cell lines (Andino et al., 

2015). As well, previous work in FHM cultures demonstrated an inability of FV3 to block or delay 

apoptosis, a potential immune evasion mechanism associated with FV3 vCARD (Chinchar et al., 

2003). Thus, it is possible that these immune evasion proteins function only in certain host species. 

Taken together, this data supports the hypothesis of passive immune evasion by FV3.  

Given that the type I IFN response to FV3 is equally poor in both cell lines, further 

investigation into the difference in FV3 susceptibility was required. A previous study demonstrated 

that both cell lines constitutively express IFN2 (Zou et al., 2007). In this light, constitutive IFN/ISG 

expression was investigated in both cell lines. Thus, uninfected control cultures were analyzed for 

the expression of IFN1, Vig4, and Mx3 by qPCR. Interestingly, RTgutGC exhibited lower 

threshold ratios for each gene, thereby indicating greater constitutive expression, compared to 

RTG-2. While the virus-induced IFN response to FV3 may be lacking in both cell lines, perhaps 

the basal levels of these genes, prior to infection, is sufficient to provide some protection against 

FV3-induced cell death.  

As the highly susceptible RTG-2 cell line exhibits inferior constitutive expression of IFN 

and ISGs, it was hypothesized that pretreating RTG-2 cultures with poly I:C, a potent inducer of 

type I IFN, would reduce the effects of FV3. RTG-2 demonstrated exceptionally high expression 

of IFN1, Vig4, and Mx3 when treated with poly I:C for 18h. Accordingly, RTG-2 cultures were 

pretreated with poly I:C for 18h prior to FV3 infection, and examined for changes in virus 
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replication. When pretreated with poly I:C, FV3 replication in RTG-2 was markedly inhibited. 

This is evident from a drastic reduction in MCP and vCARD expression in pretreated cultures, as 

compared to FV3 alone. Previous reports on X. laevis kidney implicate the role of type I IFN in 

the inhibition of FV3 replication both in vivo and in vitro (Grayfer et al., 2014). Thus, the ability 

of the IFN response to limit FV3-induced cell death was investigated.  Despite this drastic 

reduction in virus replication, poly I:C pretreatment had no effect on FV3-induced cell death in 

RTG-2. Thus, there appears to be, not only a lack of protection by IFN, but also an apparent 

disconnect between virus replication and virus-induced cell death. To further support this 

hypothesis, UV-FV3 induced cell death similarly to wt-FV3. This further confirms a dissociation 

between virus replication and cell death. Previous reports have demonstrated the ability of FV3 to 

induce apoptotic cell death in FHM and BHK cells in the absence of productive virus replication 

(Chinchar et al., 2003). For this reason, the ability of UV-FV3 to induce apoptosis in both RTG-2 

and RTgutGC was investigated. As observed in other cell lines, exposure to UV-FV3 resulted in 

DNA fragmentation at 36h PI in both rainbow trout cell lines. Thus, the ability of UV-FV3 to 

induce apoptosis indicates that de novo viral protein synthesis is not required for virus-induced 

cell death, via apoptosis, in rainbow trout cell lines. 

As the type I IFN response, specifically the induced response, is equally absent in both cell 

lines, the mechanisms responsible for this difference in susceptibility remained unknown. While 

constitutive IFN/ISG expression was greater in more resistant cell line, the poly I:C-induced IFN 

response was unable to protect against FV3-induced cell death. Thus, greater constitutive 

expression of IFN/ISGs is unlikely the primary mechanism accounting for this difference in 

susceptibility. In order to further investigate the mechanisms responsible for this difference in 

susceptibility, intrinsic cellular features were investigated, including virus entry and cellular 
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metabolism. While the ability of FV3 to infect and enter rainbow trout cell lines has been 

investigated previously (Pham et al., 2015), differences in the rates of viral entry between cell lines 

has not been reported, yet may provide important insight into mechanisms governing FV3 

susceptibility. Based on the detection of viral MCP DNA by qPCR, FV3-infected RTG-2 cultures 

exhibited greater levels infection at 1h, 2h and 3h PI, compared to the less susceptible cell line 

RTgutGC. Owing to the very short infection period, as well as the detection of viral DNA, rather 

than transcript mRNA, the greater level of infection observed in RTG-2 can reasonably be 

attributed to enhanced entry of FV3 virions. FV3 preparations contain both enveloped particles 

and non-enveloped (naked) particles (Chinchar et al., 2011). While receptor-mediated endocytosis 

is one of two possible modes of entry, the other being fusion, it is likely the primary route 

(Gendrault et al., 1981; Braunwald et al., 1985; Chinchar et al., 2002). Thus, RTG-2 may express 

more surface receptors, to date of unknown identity, to enhance virus entry, and in turn, 

susceptibility.   

Following entry, the viral genome translocates to the nucleus where viral transcription 

takes place, catalyzed by host RNA polymerase II (Chinchar et al., 2011). Viruses rely on the use 

of host cell machinery for replication at some stage of their replicative cycle. One of the first 

products of early viral transcription is a viral DNA polymerase, which replicates the viral DNA 

genome (Goorha, 1982). Thus, while the greater level of viral DNA between cell lines at earlier 

time-points can reasonably be attributed to viral entry alone, later infection periods (such as 3h) 

may also be the result of enhanced cellular metabolism. As such, the metabolic rate, and thus the 

replicative capacity of both cell lines, was monitored over 3 days. Despite both cell lines exhibiting 

similar basal metabolic levels, RTG-2 exhibited greater metabolic and/or replicative capacity over 

time. As mentioned previously, RTG-2 also supported a greater level of FV3 replication as 
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measured by changes in MCP expression over 4h, 8h, and 18h PI. Indeed, RTG-2 displayed a 

three-fold greater level of MCP expression compared to RTgutGC at 18h PI. The greater metabolic 

activity of RTG-2 enables FV3 to replicate at a faster rate. Taken together, these results suggest 

that FV3 susceptibility may be due to enhanced viral entry, metabolic capacity, and constitutive 

interferon expression, as opposed to any induced innate antiviral immune response.      

 

5. Conclusion 

The above results demonstrate that FV3 induced apoptotic cell death in both rainbow trout cell 

lines. RTG-2 appears to be significantly more susceptible to FV3-induced cell death compared to 

RTgutGC. Intrinsic cellular features of RTgutGC, including constitutive IFN/ISG levels, as well 

as reduced rates of viral entry and metabolism, may be responsible for the observed differences in 

susceptibility. However, this susceptibility difference does not appear to be due to any differences 

in the induced type I IFN response, as this response is surprisingly deficient. While IFN and ISG 

induction and UV-irradiation drastically inhibited FV3 replication, apoptosis remained the 

outcome, suggesting apoptotic cell death does not require de novo viral protein synthesis. These 

data highlight the many factors influencing host cell susceptibility to FV3, and the possible 

disconnect between the IFN response and cell death in rainbow trout cells infected with this 

ecologically important pathogen. 
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6. Figures and Figure Legends 
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Video 1: FV3-infected RTgutGC and RTG-2 time-lapse. (A) RTgutGC and (B) RTG-2 cultures 

were infected with FV3 at an MOI of 1.5 for 48h. Photographs were taken every 10 minutes for 

48h. Images were stitched together and played at 50 fps. Videos are representative of at least three 

independent experiments (external media access provided).  
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Figure 2.1: Susceptibility differences of RTG-2 and RTgutGC to FV3. Cells were infected 

with serial dilutions of FV3 (MOI of 55 to 5.5x10-4) for 48h, 72h, and 96h. Cell viability was 

measured on a fluorescence plate reader using alamarBlue® (AB) and 5-CFDA-AM (CFDA) 

fluorescent indicator dyes, expressed on the y-axis as a percent of control (uninfected) cultures. 

For each MOI, six wells were infected (technical replicates), and data represents mean ± SEM. 

These data include three independent experiments. Statistical analysis was performed by a one-

way ANOVA with Tukey post-test (*p<0.05, **p<0.01). *represents statistically significant 

differences between RTG-2 and RTgutGC at the corresponding measurement.   
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Figure 2.2: Mechanism of FV3-induced cell death in RTG-2 and RTgutGC. Following 

infection with FV3 at an MOI of 1.5, RTG-2 and RTgutGC cultures were examined for nuclear 

fragmentation, as well as gDNA laddering, two hallmarks of apoptosis. RTG-2 and RTgutGC cells 

were mock-infected (uninfected controls) or infected with FV3 at an MOI of 1.5 for 7h, 20h, 36h, 

and in the case of RTgutGC, 60h. (A) Following the indicated length of infection, cultures were 

fixed and stained with DAPI, which stains nuclear DNA, and examined by fluorescence 

microscopy. Shown are representative images of mock- and FV3-infected cultures for both cell 

lines at 36h PI. (B) The percentage of apoptotic nuclei in DAPI-stained images were scored. (C) 

Additionally, RTG-2 cultures were infected with FV3 at MOIs ranging from 0.012 to 1.5 for 36h 

and examined for nuclear condensation/fragmentation. The percentage of apoptotic nuclei in 

DAPI-stained cultures were scored. This data represents means ± SEM, and is representative of 

three independent experiments. Statistical analysis was performed by a one-way ANOVA with 

Dunnett’s post-test (***p<0.001). *indicates statistically significant difference from control. (D) 

Following the indicated infection period, DNA was extracted and subject to gel electrophoresis. 

Shown are representative images of two independent experiments.   
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Figure 2.3: IFN and ISG expression in RTG-2 and RTgutGC, constitutive and virus-induced. 

(A) Constitutive expression of IFN1, Vig4, and Mx3 were measured by qRT-PCR with primers 

specific for these genes. Threshold (Ct) values of the fore mentioned genes were gathered. A ratio 

of actin Ct to gene-of-interest Ct was generated for each experiment. Shown are means ± SEM 

from fourteen independent experiments. Data was compared by an unpaired t-test (***p<0.0001). 

* represents statistically significant differences between RTG-2 and RTgutGC gene expression. 

The expression of IFN1, Vig4, Mx3, (B) and MCP (C) was measured by qPCR in RTG-2 and 

RTgutGC cells, either mock infected or infected with FV3 at an MOI of 1.5 for 4, 8, and 18h and 

MOI of 0.15 for 72h.  All gene expression was normalized to the housekeeping gene, actin. The 

results are means ± SEM of gene expression from three independent experiments. Statistical 

analysis was performed by a one-way ANOVA with a Dunnett post-test (*p<0.05; **p<0.01). * 

represents statistical difference between FV3-infected cultures and uninfected (control) cultures.  
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Figure 2.4: Poly I:C inhibits FV3 replication, but not cell death in RTG-2. (A) Transcript 

levels of IFN1, Vig4 and Mx3 were measured in RTG-2 cultures treated with 40 µg/mL poly I:C 

for 18h by qRT-PCR. All gene expression was normalized to the housekeeping gene, actin. Results 

represent means±SEM of gene expression from three independent experiments. Statistical analysis 

was performed by comparing treated samples for each gene to uninfected control samples by an 

unpaired t-test (*p<0.05; **p<0.01; ***p<0.001). (B) MCP and vCARD transcript levels were 

measured by qRT-PCR in either mock-treated or 18h poly I:C (PIC)-treated RTG-2 cells followed 

by either mock-infection or infection with FV3 at an MOI of 0.15 for 72h. All gene expression 

was normalized to the housekeeping gene, actin. The results are means ± SEM of gene expression 

from four independent experiments. Statistical analysis was performed by a one-way ANOVA 

with Tukey’s post-test between treated and/or infected samples and uninfected control samples 

(not shown) for each gene (**p<0.01). *represents statistically significant differences between 

PIC+FV3 and FV3 alone. (C) Cell viability was measured in either mock-treated or poly I:C-

treated RTG-2 cells for 18h followed by a mock-infection or FV3 infection (MOI of 1.5). At 48h 

PI, cell viability was measured using alamarBlueÒ (AB) and 5-CFDA-AM (CFDA) fluorescent 

dyes, expressed as a percent of the uninfected control cultures. Statistical analysis was performed 

by a paired t-test. “n.s.” represents data that is not statistically significant in comparison to one 

another.    
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Figure 2.5: UV-inactivated FV3 induces apoptosis, but does not induce significant IFN 

expression compared with wildtype. (A) MCP and vCARD expression was measured by qRT-

PCR in RTG-2 cultures that were mock-infected or infected with FV3 and UV-FV3 at an MOI of 

0.15 for 72h. Gene expression was normalized to rainbow trout actin. Results are means±SEM of 

three independent experiments. Statistical analysis was performed by a one-way ANOVA with 

Tukey’s post-test within a single cell line, including uninfected control samples (not shown; 

*p<0.05). (B) Cell viability was measured in mock, wt-FV3 or UV-FV3 (MOI=1.5 for 48h) -

infected RTG-2 cells, using two fluorescent indicator dyes, alamarBlueÒ (AB) and 5-CFDA-AM 

(CFDA), which was expressed as a percent of the uninfected control cultures along the y-axis. 

Statistical analysis was performed by a paired t-test. “n.s.” represents data that is not statistically 

significant in comparison to one another. (C) Intranucleosomal fragmentation was observed in 

RTG-2 and RTgutGC cells infected with UV-FV3 at an MOI of 1.5 for 36h. Shown is a 

representative image of two independent experiments. (D) IFN1, Vig4 and Mx3 expression was 

measured by qRT-PCR in RTG-2 and RTgutGC cells infected with UV-FV3 at an MOI of 0.15 

for 72h. All gene expression was normalized to the rainbow trout actin endogenous control. The 

results are means ± SEM of gene expression from three independent experiments. Statistical 

analysis was performed by a one-way ANOVA with a Tukey’s post-test comparing IFN/ISG 

expression induced by UV-FV3 to that induced by wt-FV3 at 72h PI. 
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Figure 2.6: Differential rates of viral entry and metabolism between cell lines. (A) MCP DNA 

levels were measured by qPCR in both RTG-2 and RTgutGC following FV3 infection (MOI=1.5; 

1h, 2h and 3h PI). MCP expression was normalized to rainbow trout actin endogenous control. 

This data represents means±SEM of gene expression from four independent experiments. * 

represents statistically significant difference between RTG-2 and RTgutGC at the corresponding 

time-point (*p<0.05). (B) Cell metabolism was measured in RTG-2 and RTgutGC cells using 

alamarBlueÒ, at 1h, 24h, 48h, and 72h post-plating. This data represents means ± SEM of relative 

fluorescence units (RFU) for four independent experiments. Cultures were compared using a 

paired t-test. *indicates statistically significant difference between each corresponding time point 

(except 1h) in RTgutGC and RTG-2 (1d p<0.001; 2d p<0.01; 3d p<0.05). 
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General Discussion 

Ranaviruses (RVs) are emerging pathogens of fish, amphibians, and reptiles, responsible 

for numerous species die-offs and outbreaks across the globe. RV infections of wild and captive 

ectothermic vertebrates are on the rise and are of considerable concern to the future of these 

ecologically and economically important organisms (Duffus et al. 2015; Miller et al. 2011). While 

it appears that susceptibility to these pathogens differs between individual host species, the 

immune and viral determinants governing disease remain ambiguous. Due to the rapid increase in 

the prevalence of RV infections and their capacity to cause mass die-offs in a multitude of new 

hosts, RVs such as Frog virus 3 (FV3), are considered to be potential global threats to ectothermic 

vertebrate populations (Chinchar et al., 2002; 2011; Jancovich et al., 2010; Miller et al. 2011). As 

such, there is an urgent need to determine whether susceptibility of a given species reflects an 

inability to mount appropriate antiviral immune responses or the ability of the virus to overcome 

otherwise effective immune mechanisms. RVs are known to possess a number of immune evasion 

and host modulation mechanisms, which may circumvent host efforts to clear infection. As a result, 

a more thorough understanding of virus-host interactions at the cellular and molecular level is 

required in order to develop antiviral strategies for susceptible hosts, and to minimize potential 

future consequences to new off-target hosts. Accordingly, we investigated the innate antiviral 

immune response to FV3, with a focus on potential strategies of immune evasion by the virus, in 

attempt to determine the mechanisms that dictate susceptibility.  

 This study identified and quantified a major susceptibility difference between two rainbow 

trout cell lines: RTgutGC, an epithelial cell line of intestinal origin; and RTG-2, a fibroblastic cell 

line of gonadal origin. RTG-2 exhibited greater susceptibility to FV3-induced cell death, compared 

to RTgutGC. This provided an excellent model to study the innate antiviral immune response, 
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which governs susceptibility to the virus. As apoptosis is an important innate antiviral defense 

mechanism, the ability of both cell lines to undergo apoptosis following infection was investigated. 

We demonstrated that FV3 was able to induce apoptosis in both cell lines, despite the difference 

in susceptibility. One of the first lines of defense against virus infection is the type I IFN response. 

As such, this response was investigated in both cell lines following infection. Surprisingly, the IFN 

response was equally absent in both cell lines, again, despite differences in susceptibility. As FV3 

is known to express putative immune evasion proteins, some of which have been shown to 

shutdown host type I IFN responses, this response was measured following infection with UV-

inactivated FV3 (UV-FV3). Much to our surprise, the IFN response was equally absent following 

UV-FV3 exposure. Despite prior induction, IFNs and ISGs were able to significantly hinder virus 

replication, but had no effect on cell death. Likewise, UV-inactivated FV3 (UV-FV3) exhibited 

impaired replication, but again, virus-induced apoptotic cell death was not affected. This highlights 

an apparent disconnect between virus replication and cell death. Ultimately, we determined that 

FV3-induced cell death does not require productive FV3 replication, and the mechanisms 

protecting RTgutGC are IFN-independent. To uncover the mechanisms responsible for the 

observed susceptibility differences between the two cell lines, intrinsic cellular features were 

investigated, including constitutive IFN expression, viral entry, and cellular metabolism. We 

demonstrated that constitutive expression of IFN and ISGs is lower in the more susceptible RTG-

2 cell line. This, coupled with enhanced viral entry and cellular metabolism may account for the 

observed susceptibility differences.   

Based on the realization that virus replication is not required to trigger apoptosis, apoptotic 

induction may reasonably be the result of two mechanisms. Firstly, simple binding of FV3 to a 

specific transmembrane protein may be sufficient to trigger apoptosis. For instance, subgroups of 
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avian leukosis virus have been shown to bind host cells and trigger apoptosis via interactions with 

a TNF-family receptor (Brojatsch et al., 2000; Diaz-Griffero et al., 2003). While FV3 virion entry 

has been well-studied (Chinchar et al., 2011), the identity of the FV3 binding receptor remains 

unknown, complicating further investigation into this mechanism of apoptosis induction. As well, 

the existence of both enveloped and naked (unenveloped) FV3 virions, which enter cells by simple 

fusion (not receptor-mediated), suggests this pathway may be less likely. On the other hand, FV3-

induced apoptosis may be triggered by one or more virion-associated proteins that are released 

during viral uncoating. Precedent for this pathway is seen in previous studies with Chilo iridescent 

virus (CIV), another member of the iridoviridae family, in which a virion-associated protein kinase 

was shown to induce apoptosis in the absence of virus replication (Chitnis et al., 2011). 

Characteristic of FV3 infections is the rapid inhibition of host cell protein synthesis and the 

activation of eIF2-a (Chinchar and Dholakia, 1989). Responsible for eIF2-a phosphorylation, as 

well as apoptosis induction, is PKR, a serine-threonine kinase that recognizes and responds to viral 

dsRNA (Gil and Esteban, 2000). In the fore mentioned CIV study, this protein kinase, termed 

iridoptin, was shown to possess serine/threonine kinase activity, and was responsible for both 

translational shutoff, as well as apoptosis induction. Possibly, FV3 possesses a virion-associated 

PKR-like molecule, which induces apoptosis in host cells. 

While apoptosis, particularly the early onset of apoptosis, is well known as an important 

antiviral defense mechanism, this death mechanism may provide several advantages for the virus. 

It is understood that the early onset of apoptosis, and thus premature death of the host cell, may 

severely inhibits virus replication. However, following a sufficient infectious cycle, apoptosis may 

also be a mechanism that may enhance virus replication and persistence within a host organism. 

Following the induction of apoptosis, cellular contents are packaged into membrane-enclosed 
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apoptotic bodies, which are readily taken up by neighboring cells. As the virus is not exposed to 

the extracellular environment, the virus may spread undetected to neighbouring cells without 

triggering a significant inflammatory response (Roulston et al., 1999). Furthermore, virions 

enclosed within apoptotic bodies would be protected from host antibodies, proteases, and 

antimicrobial peptides. For this reason, in vitro studies of virus-induced apoptosis may not be 

entirely applicable in comprehending the role of apoptosis in whole organisms. The ability of FV3 

to both induce and inhibit apoptosis suggests a complex relationship between virus replication and 

cell death. Perhaps, the virus is able to inhibit apoptosis momentarily, until a sufficient level of 

virus replication has taken place, upon which apoptotic cell death occurs, facilitating its safe 

transmission to neighbouring cells. Possibly, the ability of FV3 to induce apoptosis, rather than 

necrosis, prevents disease within the animal, enabling the virus to coexist with its host. This would 

explain the ability of these fish to serve as asymptomatic carriers, with no clinical signs of disease.   

A multitude of research has been conducted investigating the ability of RVs to induce 

apoptosis in host cells. Earlier work has demonstrated the ability of RVs to induce apoptosis within 

a variety of cell types from fish, amphibians, and even mammals (Chichar et al., 2003; Essbauer 

and Ahne, 2002; Lai et al, 2008; Chiou et al., 2009; Morales et al., 2010; Pham et al., 2012; Ring 

et al., 2013; Yuan et al., 2013). FV3, in particular, has been shown to induce apoptosis in fathead 

minnow (FHM), rainbow trout macrophages (RTS11), Xenopus laevis peritoneal leukocytes, baby 

hamster kidney (BHK), and baby green monkey kidney (BGMK) cells (Chinchar et al., 2003; 

Pham et al., 2015; Morales et al., 2010; Ring et al., 2013). This study further confirms apoptosis 

as a characteristic outcome of RV infection, specifically by FV3. However, FV3-induced apoptosis 

was investigated in novel cell lines. Few reports have demonstrated the ability of apoptosis to 

occur in the absence of productive infection (Chinchar et al., 2003; Chitnis et al., 2011). Our 
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research adds to this by demonstrating the induction of apoptosis, which was independent of 

productive virus replication, in new cell lines. However, further research is essential in determining 

the mechanisms involved in virus-induced apoptosis.  

With respect to antiviral immunity, some work has been performed on the immune 

mechanisms against RV infections. The ability of immunocompetent adult frogs to clear infection 

within weeks, while tadpoles succumb to infection, highlights a key role of immune mechanisms 

in governing susceptibility (Gantress et al., 2003; Maniero et al., 2006; Morales and Robert, 2007). 

Adults can develop rapid innate immune responses (upregulation of proinflammatory cytokines), 

followed by an efficient cytotoxic T cell response and the generation of potent anti-FV3 antibodies. 

Additionally, the protective role of cytotoxic T lymphocytes (CTLs) and antibodies in FV3 

infections has been previously been demonstrated in X. laevis (Caipang et al., 2006; Morales and 

Robert, 2007; Ou-yang et al., 2012). While their role in survival is presently unknown, numerous 

antiviral immune-related genes have been shown to be upregulated during FV3 infection. Cheng 

et al. (2014) have reported the upregulation of numerous immune-related genes, including IFN, 

following FV3 infection of fish cells. As well, the protective role of type I IFN has been suggested 

in amphibian cells (Grayfer et al., 2014). IFN was shown to protect frog kidney cells, as well as 

induce an antiviral state in adults and tadpoles, which conferred protection against FV3 (Grayfer 

et al. 2014). Interestingly, while recombinant X. laevis IFN (rXlIFN) provided protection, FV3-

infected tadpoles eventually succumb (Grayfer et al., 2014). Our research is novel in that we 

demonstrate, not only a lack of induction of IFN and ISGs by the virus, but also a lack of protection 

by IFN and ISGs. Consistent with the fore mentioned studies, IFN/ISGs were found to significantly 

inhibit virus replication. However, IFN responses had no effect on cell death, similar to 

observations with rXlIFN-treated tadpoles. This observation further suggests that RVs, such as 
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FV3, may exhibit virulence factors independent of virus replication. While the ability of FV3 to 

induce IFN and ISGs in fish cells has been investigated previously (Chen et al., 2014), a protective 

role of these genes in infection has been poorly investigated in fish. Furthermore, the ability of 

certain ISGs, such as Vig4, to protect against RV infection had not been previously addressed. 

This research emphasizes novel insights into the FV3-host immune interaction in fish cell lines, 

and suggests that immune protection to FV3 may be cell type specific.  

Novel findings of this report are derived from further investigation into the mechanisms 

governing susceptibility differences. Our study, for the first time, investigated potential differences 

in the rates of FV3 virion entry between cell lines. We demonstrated that the more susceptible cell 

line, RTG-2, exhibited greater viral entry. The mechanisms of ranavirus entry have been 

previously characterized (Braunwald et al., 1979; Ma et al., 2014). Additionally, the ability of FV3 

to enter rainbow trout cell lines has previously been studied (Pham et al., 2015). However, our 

research is novel in that the rates of virion entry were quantified in different cell lines. This 

differential rate of virion entry is suggested to account for differences in susceptibility, and may 

be due to enhanced FV3 receptor expression. In addition to viral entry, cellular metabolism was 

also investigated as a potential determinant of susceptibility. It is well understood that virus 

replication and host metabolic machinery are closely connected, as viruses utilize host enzymes 

for replication. However, the relationship between virus replication and cellular metabolism has 

been poorly investigated. In this light, cellular metabolism/replication capacity was measured in 

both cell lines. As expected, the more susceptible cell lines, RTG-2, exhibited a greater 

metabolism. Thus, it is reasonable to attribute this greater metabolic capacity to the greater level 

of FV3 replication, and thus susceptibility, observed in RTG-2.  
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Biological research, by its very nature, utilizes and relies on multiple areas of study in 

attempt to understand nature. Biology is so intrinsically integrative that it is difficult to classify 

this area of research into just a single field. This study investigated the innate antiviral immune 

response of rainbow trout cells to a relatively new and understudied virus, FV3. This research 

employs knowledge and techniques that draw heavily on concepts in immunology, virology, cell 

and molecular biology, physiology, genomics, and ecology. Not only is the virus itself being 

studied, but also the biological response of the organism (rainbow trout) to the virus, the genes 

upregulated in response, and the environmental contributions to infection. While at first it may not 

be evident, all biological research incorporates different subdisciplines, thus demonstrating the 

truly integrative nature of biology. 

This interrelatedness is important because it provides alternative perspectives, enabling 

discoveries to be more widely applicable and have more dimensionality. The impact of RV 

infections on numerous species has been described. These viruses have been implicated in 

mortality events on six continents across the globe, involving over 175 species across 52 

ectothermic vertebrate families (Duffus et al. 2015; Miller et al. 2011). This can have applications 

on an ecological level by providing answers as to why a particular animal population is declining, 

and what effects this may have on the ecosystem overall. While rainbow trout are merely 

asymptomatic carriers of the virus, a number of species have shown to be particularly susceptible, 

exhibiting mass mortality to the virus. Additionally, asymptomatic carriers of the virus serve as 

important vectors for transmission to other highly susceptible organisms within a particular 

environment. Furthermore, these viruses continue to demonstrate an ability to infect a variety of 

new hosts more and more. In this light, this research becomes essential from a conservation biology 

perspective. Among other species affected by RVs, amphibians in particular, are facing a serious 
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threat of extinction. RVs have been implicated as major causative agents in the global amphibian 

decline (Robert, 2010). Thorough understanding of the mechanisms that govern susceptibility may 

enable the development of effective antiviral strategies to protect certain species from die-off 

events. Complete loss of a particular species within a community, not only threatens the concept 

of biodiversity, but can have detrimental impacts on the ecosystem as a whole.  

Additionally, as many antiviral immune responses, particular innate responses, are highly 

conserved among vertebrates, these findings in rainbow trout may be applied to virus interactions 

in a number of host organisms. Viruses are continually developing new strategies to circumvent 

host antiviral immune responses. This is true of all viruses, even those currently plaguing human 

populations. For instance, previous work with human immunodeficiency virus (HIV) has 

demonstrated the ability of HIV viral proteins to disrupt the IFN response by degrading interferon 

regulatory factor 3 (IRF3) in target T cells (Doehle et al., 2009; Okumura et al., 2008). By 

understanding these strategies in a number of viruses, even ranaviruses, the ability to develop 

successful antiviral therapeutics is improved. In this light, this research may hold potential 

biomedical implications. While it is difficult to specialize so much so that you incorporate only a 

single discipline, the result would be an overly narrow investigation, thus limiting the applicability 

of one’s results.  

 While there have been significant advances regarding FV3-host interactions and antiviral 

immunity, much remains to be elucidated in order to fully comprehend these responses. Based on 

the literature discussed, it is clear that anti-FV3 immunity is very complex and may be species- 

and developmental stage-specific. Much remains to be understood regarding the immune 

responses that dictate susceptibility. The present study demonstrated the ability of FV3 to induce 

apoptosis in host cells, independent of virus replication. Whether FV3-induced apoptosis is a 
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consequence of PKR activation and translational shutoff or independent of these two events 

remains to be determined. To accomplish this, the ability of FV3 to shutdown host macromolecular 

synthesis in rainbow trout cell lines should be investigated with both infectious and inactivated 

FV3. As well, further investigation into whether FV3 virions possess the fore mentioned virion-

associated PKR-like molecule, or a structurally and/or functionally similar molecule, is essential 

to understanding and characterizing FV3-induced cell death. Additionally, this study observed a 

particularly poor IFN or ISG response to FV3 in both cell lines. UV-inactivated FV3 did not show 

any difference in IFN or ISG induction, suggesting a lack of viral inhibition by immune evasion 

proteins. Whether these immune evasion proteins function similarly in rainbow trout cells would 

be an important future area of research. This may be accomplished by in vitro studies with FV3 

knock-out mutants, lacking putative immune evasion genes. Observations of replication 

efficiencies and cell death in these cell lines in comparison to wild-type virus would benefit this 

area of research. As well, it was hypothesized that the meagre IFN response to FV3 may be due to 

a lack of appropriate recognition by the cell. With the exception of the recently-identified DDX41 

receptor in Japanese flounder (Quynh et al., 2015), no other CDSs have been identified in teleost 

fish. Thus, investigation into whether these rainbow trout cell lines possess functional CDSs is 

essential into understanding why these cell lines are unable to mount appropriate IFN responses to 

this DNA virus.  
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Summary 

1. Subject.  

Ranavirus infections are becoming increasingly prevalent worldwide and are responsible for 

numerous species die-offs across the globe. Frog virus 3 (FV3) is a large ranavirus of the family 

Iridoviridae that possess a dsDNA genome. FV3 is considered to be the type species of the 

genus, yet its virus-host interactions are poorly understood. Essential virus-host interactions 

include the innate antiviral immune response, particularly the type I interferon (IFN) response. 

Following infection, cellular immune receptors detect the virus and trigger the expression of 

antiviral IFN molecules. These signaling molecules trigger the expression of more antiviral 

effector proteins, collectively referred to as interferon-stimulated genes (ISGSs). These 

proteins work together to cripple the virus at different stages, by inhibiting replication, 

blocking protein synthesis, or inducing apoptosis. Apoptosis, or cellular suicide, is regarded as 

an important innate antiviral defense mechanism, as premature death of virus-infected cells 

prevents further virus replication. Two rainbow trout cell lines, with differing susceptibility to 

FV3, were utilized as a model to study the innate antiviral immune responses that provide 

protection.  

 

2. Findings.  

2.1. RTG-2 is more susceptible than RTgutGC to FV3-induced cell death 

FV3-induced cell death was much more extensive, and began at an earlier time-point, in RTG-

2. RTG-2 exhibited lower LD50 values, compared to RTgutGC, indicating a greater 

susceptibility. Additionally, as measured by viral transcript expression, RTG-2 supported 

greater FV3 replication than RTgutGC.  
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2.2. Mechanism of FV3-induced cell death is apoptosis 

Both FV3-infected RTG-2 and RTgutGC cultures exhibited significant apoptotic nuclei and 

DNA fragmentation, typical hallmarks of apoptosis. 

 

2.3. FV3 induces apoptosis independent of virus replication 

Pretreatment of RTG-2 cells with poly I:C significantly inhibited FV3 replication, but had no 

effect on FV3-induced cell death. Likewise, FV3 was successfully inactivated by UV 

irradiation (as measured by viral transcript expression), but UV-FV3 exhibited equal amount 

of cell death as wild-type (wt) FV3. As well, UV-FV3 induced apoptosis in both cell lines.  

  

2.4. FV3-induced IFN response was equally absent in both cell lines   

Despite the presence of actively replicating FV3 (as measured by viral transcript expression), 

no IFN or ISG response was detected in either cell lines within 18h of infection. Even at 72h, 

IFNs and ISGs were only detected at very low levels. As well, UV-FV3 did not induce a 

significantly greater IFN response in either cell line.  

 

2.5. Greater FV3 susceptibility may be due to intrinsic cellular features 

RTG-2 exhibited greater viral entry (as measure by levels viral DNA), than the less susceptible 

RTgutGC. As well, the highly susceptible RTG-2 cell line exhibits a greater 

metabolic/replication capacity, as compared to RTgutGC. Both features would enable RTG-2 

to have a greater level of infection. As well, RTgutGC exhibited a greater level of constitutive 

expression of IFN and ISGs, perhaps enabling some initial protection from the virus. 
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