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Abstract 

 The interaction of organic matter with the interfaces of active soil components such as iron 

oxides is ubiquitous within soil environments. The presence of organics at these interfaces may 

have implications for other soil constituents whose mobility is controlled by their ability to bind 

to active soil components. Most of the studies performed to date which look at these interactions 

are bulk/batch studies performed ex-situ. Attenuated total internal reflectance Fourier transform 

infrared spectroscopy (ATR-FTIR) was utilized within this work to study interactions between 

select model organics (citrate, oxalate and pyrocatechol) and iron−(oxyhydr)oxides, as well as 

their effect on the surface chemistry of organic and inorganic arsenicals. Using baseline-corrected 

peak height measurements, model organics were reacted with iron−(oxyhydr)oxide nanoparticles 

as a function of pH and concentration to generate pH envelope and adsorption isotherm curves. 

The Langmuir adsorption model was applied to adsorption isotherm curves to obtain Keq constants 

for model organics on the surface of hematite nanoparticles. 

 Kinetic adsorption experiments were performed for model organics on hematite 

nanoparticles over a range of ionic strength conditions, with results showing a positive correlation 

between ionic strength and observed initial adsorption rates (robs1), obtained from the Langmuir 

adsorption model, of citrate and oxalate. Experiments on the kinetic desorption of model organics 

from the surface of hematite nanoparticles were also carried out to obtain initial rates of model 

organic desorption (k’des1) using the Langmuir desorption model; 1 mM of arsenate, 1 mM of 

dimethylarsinic acid (DMA), and a range of chlorine concentrations were utilized as the desorbing 

agents.  These results show that arsenate is an effective desorbing agent for all three of the model 

organics. Conversely, the effect of DMA and chloride as desorbing agents varied, with citrate 

being moderately sensitive, oxalate being very sensitive, and pyrocatechol being insensitive. 
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Arsenate and DMA adsorption kinetic experiments on hematite nanoparticles, which were either 

reacted or unreacted with model organics, were performed to obtain robs1. These experiments were 

plotted as a function of aqueous arsenic concentration, analyzed using the Langmuir adsorption 

model to obtain pseudo- first order adsorption rates (kads1). The results of these experiments show 

that the presence of surface oxalate on hematite nanoparticles has an enhancing effect on the initial 

rates of arsenate and DMA adsorption, when compared to unreacted hematite. Conversely, the 

presence of surface pyrocatechol was shown to have an inhibiting effect on the initial rate of 

adsorption of arsenate to hematite nanoparticles. 

 Results shown herein, along with aqueous phase comparisons of iron organic standards, 

provided information that has culminated in proposed surface complexes of the studied model 

organics on the surface of hematite nanoparticles under environmentally-relevant conditions. It is 

proposed that: oxalate forms a combination of outer-sphere and inner-sphere binuclear 

monodentate complexes, citrate forms an inner-sphere monodentate complex with either singly- 

or doubly-deprotonated carboxylic groups, and pyrocatechol forms a mixture of inner-sphere 

binuclear bidentate and monodentate surface complexes. The significance of this work is in 

providing a better fundamental understanding of the effect that different organic functional groups 

have on the binding of arsenicals to geosorbents, and thus the mobility of arsenicals within 

environments where organics are prevalent. 
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1 Introduction 

1.1 Arsenic compounds in the environment 

Arsenic is a natural element that exist within the environment and can be introduced 

through a number of natural and anthropogenic processes including: copper and gold smelting, oil 

refinement, the burning of coal high in arsenic, runoff from municipal waste and natural 

weathering of particular types of rock and minnerals.1-2 In the past, uses of arsenic included 

chromated copper arsenate for wood preservation, roxarsone used as a chicken steroid and the 

utilization of organic arsenic as a pesticide and herbicide.1-3 Arsenic has been identified as a human 

toxin and carcinogen, with its toxic effects dependent on the species, oxidation state and route of 

exposure.4 Because of this variability, understanding the environmental chemistry of arsenic is 

important in lowering rates of exposure and in finding new methods for remediation. The following 

Figure 1 illustrates anthropogenic and natural sources of arsenic, and processes effecting the 

environmental fate of arsenic. 

 

 

Figure 1. Anthropogenic sources and fate of arsenic in the environment. 
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 As shown in Figure 1, the environmental fate of arsenic can be uptake by marine organisms 

and plants. In the latter, this occurs via transport proteins within roots that are often meant for the 

uptake of the phosphorus, which forms compounds similar to ones formed by arsenic. Once within 

the plant, As(V) undergoes reduction to As(III) and toxic effects are either coped with via 

detoxification mechanisms, or the plant experiences the toxic effects of arsenics presence.5 

1.1.1 Inorganic arsenic 

Arsenic can be found in a wide array of rocks and minerals. The most common example of 

mineralized arsenic is arsenopyrite (FeAsS) and is often associated with the transition metals Cd, 

Pb, Ag, Au, Sb, P, W and Mo.2 Because of this association, mining and smelting introduce 

inorganic arsenic into the environment through stack emission from smelting processes or acid 

mine drainage.2, 6 An example of this is Giant Mine in the Northwest Territories, where years of 

mining gold from arsenopyrite ore has produced gas with a high arsenic concentration, that 

oxidizes to form arsenic trioxide (As2O3).
6-7 Arsenic gas is produced during the roosting process 

where in the ore is heated at high temperatures to release the gold but also results in the release of 

arsenic gas. Although most of the arsenic can be removed from the stack, these environmental 

precautions were not implemented at Giant Mine till 1951 (3 years after the opening of the mine) 

which resulted in contamination extending out 17 km from the property.6-7 Copper mining and 

smelting represents the single largest anthropogenic input of arsenic into the environment, with 

the burning of arsenopyrite-contaminated coal as the second highest source.2, 6 Although phased 

out in Canada, chromated copper arsenate was used as a wood preservative, which caused the slow 

leaching of arsenic from woodlots in which it was utilized.6 In soil and water, arsenic 

predominantly exists as either arsenate or arsenite depending on redox conditions.2 Table 1 shows 

examples of inorganic forms of arsenic most commonly found within soil environments. 
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Table 1. Examples of environmentally relevant inorganic arsenic compounds at pH 7 

Name of arsenic 

compound 

Oxidation state Structure 

Arsenic acid (Arsenate) As (V) 

 

Arsenous acid (Arsenite) As (III) 

 

1.1.2 Organic arsenic 

The formation of organic arsenic in the environment occurs through the biotransformation 

of inorganic species of arsenic. Many species of organic arsenic exist, and a few have been used 

for specific purposes.  For example, 4-hydroxy-3-nitrobenzenearsenic acid, known as Roxarzone, 

was historically used as a steroid in the poultry industry in Canada.3 Conversely, dimethylarsinic 

acid (DMA), in conjunction with other so called “rainbow” herbicides, was used in the Vietnam 

War by US forces for crop destruction.8 In general, both organic and inorganic species of arsenic 

have historically been used domestically as a pesticide in orchards.6 Although organic arsenic is 

thought to be less toxic, it generally has higher mobility within the environment, and less 

information is available on organic arsenic chemistry compared to that of inorganic arsenic.1, 9 

Table 2 shows examples of none volatile organic forms of arsenic found within soil environments 

and relevant organic arsenic contaminates. 
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Table 2. Examples of environmentally relevant organic arsenic compounds at pH 7 

Name of arsenic compound Oxidation state Structure 

Monomethylarsonic acid 

(MMA) 

As (V) 

 
Dimethylarsinic acid (DMA) As (V) 

 
4-hydroxy-3-

nitrobenzenearsenic acid 

(Roxarzone) 

As (V) 

 

1.1.3 Arsenic cycling pathways: redox and methylation chemistry 

The two major oxidation states of inorganic arsenic found in natural environments are 

As(III) and As(V) with oxidation states of -3 and 0 are also being possible.2, 9 Under natural soil 

and neutral water conditions, inorganic As(III), arsenite, exits as a neutral species (pKa: 9.23, 12.1, 

12.7).9-10 Conversely, arsenate exits as an anion (pKa: 2.22, 6.98, 11.53) and is predominant under 

oxidizing conditions.9-10 Within soils, arsenate dominates in the oxidizing conditions of the upper 

layers while arsenite will dominate in the reducing conditions of lower layers.9 The anionic charge 

present on arsenate results in electrostatic attraction between arsenate and cationic active soil 

components such as iron oxides, resulting in adsorption.3, 9 Arsenite lacks a charge under 

environmental conditions, which results in high mobility within soils compared with arsenate.9 

Inorganic arsenic has the ability to transform into the organic form through natural methylation to 

either monomethylarsonic acid (MMA) (pKa: 3.6, 8.2)  or dimethylarsinic acid (DMA) (pKa: 
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6.14).2 The Challenger Mechanism is one example of arsenic methylation. It produces MMA and 

DMA, as well as the volatile trimethylarsine (TMA) as a final product.11 

 

 

Figure 2. The Challenger mechanism for the biological methylation of arsenate. 

1.2 Environmental regulations of arsenic in soils and drinking water 

Arsenic is classified by Environment Canada as a Schedule 1 Substance and is regulated 

under the Canadian Environmental Protection Act (CEPA).12 This classification is a result of the 

high carcinogenic and toxicological, of arsenic effects on humans.12 Human exposure to arsenic 

from soil and water is comparably low in the developed world compared to the intake from food, 

particularly fish and shellfish.12 However, intake from non-food sources can surpass food intake if 

the affected population is close to a point source.12 Regulations on arsenic in drinking water vary 

depending on conditions within a country, including levels of arsenic naturally present in drinking 

water and the practical challenges associated with trying to achieve a particular concentration 

level.13 Health Canada mandates a 0.010 mg/L maximum acceptable concentration (MAC) of 

arsenic in drinking water, which is identical to the limit set by the World Health Organization 
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(WHO).12 Conversely, 0.050mg/L has been recommended and adopted as a guideline for many 

countries in the developing world, including Bangladesh.13  

For soils, the average concentrations measured in Canada range from 4.8 to 13.6 mg/kg 

and are not regarded as high contributors to exposure, with the exception of  specific contaminated 

sites such as the above-mentioned Giant Mine in North West Territories.12 

1.2.1 Methods for removal of arsenic from drinking water 

There are numerous methods for the removal of arsenic from drinking water, with a typical 

process consisting of a pretreatment step and a polishing step.12 The pretreatment step is designed 

to oxidize arsenic (III) to arsenic (V). This is performed because neutral As(III) is more difficult 

to remove than anionic As(V). Potassium permanganate, hydrogen peroxide, ozone, chlorine and 

ferric chloride can all be utilized for the oxidation of As(III) to As(V).12 In Canada, the most 

common method for removal of arsenic and subsequent polishing of arsenic in municipal systems 

is to use adsorptive media such as activated alumina or iron oxide.12 Other methods include, but 

are not limited to: reverse osmoses, lime softening, ion exchange, coagulation/filtration and 

manganese greensand filtration.12, 14 By contrast, short-term solutions are often necessary in the 

developing world to limit exposure of populations to contaminated water, which can exceed 1000 

µg/L in some cases.13, 15 One example is to use shallow dug wells, which can provide water that is 

still contaminated (from 10 µg/L to 50 µg/L) but to a lesser extent than deeper groundwater.13 

Although these short-term solutions are not removal processes, they have the advantage of being 

inexpensive and easy to implement. 
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1.2.2 Analytical methods for the detection and analysis of arsenic in 

drinking water 

Among the various analytical methods available for the detection of arsenic, a fundamental 

distinction exists between methods that can provide information on the chemical speciation of 

arsenic and methods that can only detect total arsenic. Given that the mobility, toxicity and 

bioavailability of arsenic are all dependent on the speciation in which it exists, information on the 

speciation of arsenic is one important variable (in conjunction  with other complex environmental 

factors) for predicting these behaviors. Chromatographic techniques such as High Performance 

Liquid Chromatography (HPLC) using an ion exchange column, or Gas Chromatography (GC) 

can be used to separate arsenic species for detection.16 One such method detection that allows for 

the differentiation of As(III) and As(V) is hydride generation atomic absorption spectrometry.16 

The drawback of speciation-sensitive techniques is that they often cost more or require more 

expertise to run than simpler methods that test only for total arsenic. 

1.3 Organic matter in soil 

Natural organic matter (NOM) is an important component of soils, particularly topsoil, as 

it can make up a significant proportion of soils and play a role in many types of chemical and 

biological reactions. Organics high in carboxylic acid groups, such as citric acid, are naturally 

found within soils and can be introduced through secretion by plant roots and microbes.17-22 This 

process is hypothesized to enhance the bioavailability of nutrients, such as iron and phosphorus, 

so that they may be up taken by the organism.22 In addition to the secretion, organics are also 

introduced by the decaying biological matter and can serve as an agricultural supplement.20, 22 

NOM also acts as a food source for helpful microscopic organisms and aids in water retention, 

further enhancing soil fertility.22 
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The functional groups and size of NOM are highly variable and are characterized as either 

fulvic acid, humic acid or humin depending on molecular weight. Organic matter is often found at 

a high concentration within the upper layer of soil, referred to as the O-horizon (a soil horizon 

being a distinct layer of soil).18 Once introduced, organic matter retention in soils are heavily 

correlated with the presence of active soil components, specifically iron and aluminum oxide 

content.18, 21 It is reported in Lalonde et al. that an esstimated 21.5 ± 8.6% of the worlds 

sedimentary organic carbon is associated with iron.21 The adsorption of organic matter to 

geosorbents in soils such as aluminum and iron oxides is correlated with the long-term retention 

of organic matter within soils, as well as the long-term storage of carbon in deeper soil horizons 

via burial.19-20 This process has implications for understanding global carbon cycling.20 Removal 

of organic matter from soils normally occurs either by biominneralization to CO2 or through 

errosion/weathering, which causes the leaching of organic matter from soil into ground or surface 

water.22 

1.4 Role of organics in controlling the environmental fate of arsenic 

compounds 

The mobility of arsenic within the environment is often determined by its ability to bind to 

active soil components such as mineral clays and metal oxides.1  This binding process can be 

altered by the presence of other reactive substances such as natural organic matter (NOM). Prior 

research indicates a positive correlation between the presence of NOM and an increase in the 

mobility of arsenicals.23-30 Mladenov et al. report an increase in dissolved arsenic concentration in 

deep groundwater with high concentrations of NOM.27 This study uses isotope C-13 NMR and 

bulk analysis techniques to study fulvic acid isolates and the concentration  of arsenic in surface 

and ground waters.27 
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NOM influences arsenic mobility in one of three primary ways: First, NOM occupy 

potential binding sites for arsenic, thus increasing the portion of arsenic within the dissolved 

phase.25-27 Second, adsorbed natural organic matter can reverse the electronic charge of the 

geosorbent surface from positive to negative, thus creating repulsive forces against the binding of 

anionic arsinicals.24 Third, the natural organic matter may form a dissolved-metal bridging 

complex with arsenic, thus drawing more arsenic into the dissolved phase.23, 27-30 

There are two drawbacks to using IR techniques to study NOM from field samples 

regardless of source location. First, NOM produces broad bands in the IR region due to the high 

degree of variability among functional groups. These broad IR bands make it unclear what specific 

complexes are being formed with the surface of the geosorbent and by what mechanisms they 

form.24, 26 Second, the complexation reactions between arsenic and NOM further complicate the 

system, exacerbating the difficulty in determining the mechanisms of arsenic binding in the 

presence of adsorbed organics.24, 26 An example of both effects is reported in Redman et al., 

wherein the effect of NOM on arsenic sorption to hematite is studied using attenuated total 

reflectance Fourier transform infrared spectroscopy (ATR-FTIR).26 The author’s report that the 

presence of NOM adsorbed to the surface of hematite greatly decreases the kinetics of adsorption 

of arsenic to hematite.26 As a result of this complexity in reaction mechanism and IR spectrum, it 

is necessary to utilize compounds that can serve as analogs for NOM. To this end, previous studies 

have examined the interaction of low molecular weight (LMW) organics with geosorbents. These 

model organic compounds may also have environmental implications regarding arsenic mobility 

in addition to serving as model organics.31 Oxalic acid, citric acid and pyrocatechol are all used as 

model organic compounds due to their ability to serve as analogs to functional groups on NOM. 
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Specifically, both oxalic and citric acid possess carboxylic acid functional groups, while 

pyrocatechol itself represents phenolic compounds. 

1.4.1 Bulk/batch studies 

In Wang and Mulligan, batch experiments were performed using the three low molecular 

weight organics: succinic acid, L-aspartic acid, and L-cysteine with Pb–Zn mine tailings 

containing arsenic and a significant amount (23%) of iron.31 These experiments involved shaking 

the mine tailings for 24-h with distilled water and organic additives at each tested pH value.31 

Wang and Mulligan reported that the addition of organics inhibits the mobilization of arsenic under 

acidic conditions, but increase mobilization under neutral conditions.31 The mobility of arsenic 

species was shown to be heavily correlated with iron mobility in the tested samples.31 It is theorized 

that co-mobilization may have been a factor in increasing arsenic mobilization.31 Other bulk 

studies report a binding affinity between model organic compounds and iron oxides, including 

pyrocatechol, citric and oxalic acid, the same organics utilized in this study.32-33 Evanko and 

Dzombak (1998) performed batch experiments which involved reacting goethite individually with 

28 simple organic acids as well as Aldrich humic acid over a range of pH values and measuring 

percent of organic adsorbed to determine relative binding affinities.32 It was reported that the 

adsorption of model organics to goethite increased at low pH and decreased at high pH.32 This 

trend correlates with the charges of goethite and the reacting organic compound, resulting in 

electronic repulsion when both species are anionic.32 It was reported that adjacent carboxylic or 

phenolic groups, or an ortho-phenolic carboxylic acid pair, increase adsorption compared with 

similar organics.32 Yeasmin et al. preformed batch experiments  using 14C-labelled oxalic and citric 

acid, as well as four amino acids with five different minerals including goethite.33 Batch 

experiments were complemented with surface sensitive attenuated total reflectance Fourier 
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transform infrared spectroscopy (ATR-FTIR) experiments and the Freundlich equation applied to 

adsorption results.33 These batch experiments were limited to comparing the adsorption of different 

combinations of geosorbent and organic acid.33 It was reported that both citrate and oxalate have 

high adsorption to ferrihydrite and goethite compared to other geosorbents, with citrate having 

Freundlich constants of 17.01 and 9.57 for ferrihydrite and goethite, respectively, compared to 

oxalate having 1.02 and 0.55.33 The Freundlich equation is similar to the Langmuir adsorption 

model employed in this work (section 3.7), with the difference being that former assumes a multi- 

rather than a mono-layer. It was also reported that ferrihydrite has the highest Freundlich constant 

for all organic acids, with the exception of lysine owing to its positive charge.33 

1.4.2 Surface sensitive infrared spectroscopic studies 

A major drawback of all batch studies is that environmentally relevant interactions between 

the dissolved phase and the solid geosorbent surface are not studied directly, making these studies 

less environmentally relevant. In order to probe this solid/liquid interface, surface sensitive 

techniques must be used. Yeasmin et al. preformed both batch and surface-sensitive experiments 

with model organic compounds and minerals. The results from the batch experiments are described 

above in section 1.4.1.33 The results from the surface sensitive ATR-FTIR experiments produce 

adsorption spectra for each organic acid/mineral combination.33 It was reported that the adsorption 

of both oxalate and citrate to iron oxide and kaolinite surfaces results in the formation of a 

combination of inner-sphere and outer-sphere complexes, with binding occurring between 

deprotonated carboxylic acids and the iron/aluminum binding sites present on the mineral 

surface.33 Persson and Axe used ATR-FTIR combined with density functional theory calculations 

and extended x-ray absorption fine structure spectroscopy to study oxalate binding to goethite as 

a function of pH.34 It was reported that oxalate forms a combination of outer-sphere and inter-
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sphere complexes with goethite with outer-sphere complexes being favored at higher pH values.34 

Yang et al. studied the adsorption of pyrocatechol to goethite using ATR-FTIR, as well as 

performing 2D IR correlation analyses and quantum chemical calculations.35 It was reported that 

pyrocatechol is able to form an inner-sphere complex of both mononuclear monodentate and 

binuclear bidentate with the surface of goethite, where the binuclear bidentate complexation was 

favored as surface coverage increased.35 Hug and Bahnemann, used ATR-FTIR to study the 

binding interactions between three dicarboxylic acids (oxalic acid, malonate, and succinate) and 

three metal oxides, including the iron oxide lepidocrocite.36 The results indicated that oxalate 

forms an inner-sphere bidentate complex with lepidocrocite that can either take the form of a 

binuclear bridging or mononuclear chelating complex.36 The overall binding affinity for the 

organic acids reached its maximum at lower pH (specifically, pH 3 for oxalic acid) with higher pH 

values causing desorption of the metal oxide being studied.36 Gulley-Stahl et al. studied 

pyrocatechol adsorption on hematite films using ATR-FTIR as a function of pH. It is reported that 

under basic a neutral conditions pyrocatechol promoted dissolution of hematite attributed to the 

formation of inner-sphere bidentate mononuclear with the surface of hematite.37 

Previous studies have been carried out in the Al-Abadleh research group that used ATR-

FTIR to study the interaction between various organic and inorganic arsenicals and the iron-oxides 

hematite and goethite.3, 38-39 Arts et al. conducted ATR-FTIR experiments studying the adsorption 

kinetics of arsenate and p-arsanilic acid (pAsA) to the surface of hematite nanoparticles.3 It was 

reported that arsenate is able to form a strong inner-sphere bidentate binuclear complex with a kads1 

of 0.66 ± 0.07 min−1 mM−1, while pAsA was reported to form an inner-sphere monodentate 

complex with the surface of hematite with a kads1 of 0.42 ± 0.04 min−1 mM−1.3 The same ATR-

FTIR experiments were conducted by Tofan-Lazar and Al-Abadleh to study the adsorption of 



28 

 

dimethylarsinic acid (DMA) to goethite and hematite.38 The formation of outer-sphere complexes 

between DMA and both iron−(oxyhydr)oxides was reported with a kads1 of 0.4 ± 0.15 min−1 

mM−1.38 The Al-Abadleh group also performed thermodynamic studies for arsenate, DMA and 

monomethylarsonic acid (MMA). Through a combination of ATR-FTIR experimental results and 

triple-layer surface complexation modeling, logKeq values for adsorption to hematite nanoparticles 

were reported to be 12.93 ± 0.06 for arsenate, 7.30 ± 0.04 for DMA, and 11.27 ± 0.05 for MMA.40 

Sabur et al. also report that MMA forms a combination of strong inner-sphere bidentate binuclear 

and monodentate complexes with the surface of hematite at room temperature.40 The studies 

referenced in section 1.4.2 are all examples of the effectiveness of ATR-FTIR in obtaining 

thermodynamic and kinetic information on complexation occurring at the solid/liquid interface. 

2 Overview of thesis objectives 

The objectives of this thesis are to utilize ATR-FTIR to: (1) determine the structure of 

model organics adsorbed to the surface of hematite and goethite nanoparticles, (2) quantify the 

adsorption thermodynamics of model organics to the surface of hematite from pH envelope and 

adsorption isotherm studies, (3) quantify the adsorption and desorption kinetics of model organics 

on hematite, and (4) to quantify the adsorption kinetics of arsenicals to hematite that has been pre-

exposed to organics relative to clean surfaces. 

3 Experimental and Modeling Approach 

3.1 Reagents 

Each solution was prepared used 18 MΩ-cm Millipore water with 10 mM KCl added to 

adjust the ionic strength (potassium chloride, 99%+, GR ACS, EMD). The oxalic acid solutions 

were made using: oxalic acid dihydrate (Oxalic acid dihydrate, 99%+, ACS reagent, Sigma-
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Aldrich) and mixed on a stir plate until the solid oxalic acid had dissolved. The pH of the newly 

formed solution was around 3 and was raised using concentrated NaOH solution (sodium 

hydroxide, 99%+, GR ACS, EMD). For experiments, involving citric acid (citric acid 

monohydrate, 99%+, ACS reagent, Alfa Aesar) or pyrocatechol (pyropyrocatechol, 99%+, C9510-

100G, Sigma-Aldrich) the same procedure was followed with the resulting solutions pH being 

around 3 and 6, respectively. The arsenic solutions were prepared using sodium arsenate (sodium 

arsenate, AsO4HNa2•7H2O, ACS reagent, J.T. Baker, used as received), and DMA (sodium 

cacodylate trihydrate, C2H6AsO2Na•3H2O, Sigma-Aldrich, used as received) added to 10 mM KCl 

and mixed on a stir plate until the solid had fully dissolved. Protective equipment was worn when 

handling arsenic compounds including gloves and a gas mask. This was done in order to minimize 

the risk of exposure, as both substances are human carcinogens. The pH of both resulting arsenic 

solutions was just above pH 7 and was lowered to pH 7 with dilute HCl solution (hydrochloric 

acid, ACS, 6 N, Ricca Chemical). 

3.2 Characterization of hematite nanoparticles 

The hematite nanoparticles used in this study were sent to McMaster University where 

transmission electron microscopy (TEM) images were taken. Figure 3 is a TEM of hematite 

nanoparticles showing size and shape. 
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Figure 3. TEM image of hematite nanoparticles used in this study. [The scale bar corresponds to 

20 nm.] 

 

Average particle size of hematite particles was measured to be 39 ± 11 nm. These 

measurements were performed by measuring the diameters of hematite particles on physical 

printouts of multiple TEM images, referencing these measurements to the scale bar on each image, 

and averaging the referenced particle sizes. Other analyses performed includes the determination 

of the iso-electric point of hematite (pH 8.45) and the surface area 54 m²/g per gram. 

Characterization of goethite nanoparticles was carried out previously in Tofan-Lazar and Al-

Abadleh.38 

3.3 Film preparations on ATR-FTIR crystal  

A fresh hematite film was deposited on to the ZnSe ATR-FTIR crystal before each 

experiment. The mass of each hematite sample is 6 mg, which was measured and added to a glass 

vial (α-Fe2O3, 98%+, US Research Nanomaterials, Inc.). Following this, 0.91 mL 18 MΩ-cm 

Millipore water and 0.39 mL ethanol ethyl alcohol, (anhydrous, denatured, 85% ethanol, 14.3% 
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methanol, Anachemia) were then added to the same vial as the hematite. The glass vial was then 

sonicated for one hour to fully disperse the hematite particles throughout the solution. After 

sonication, the film was deposited across the ZnSe ATR crystal using a pasteur pipet so that the 

solution was evenly distributed. The film was deposited a night before to dry for the experiment 

the following day. Around 18 hours pass between when film preparation and the experiment. For 

experiments involving goethite (iron(III) hydroxide nano rods, 99+%, Nanostructured and 

Amorphous Materials Inc.), the same procedure was used but using 16 mg of goethite. 

3.4 Experimental Procedure: 

3.4.1 Principle of ATR-FTIR as a surface sensitive technique 

The IR spectrometer used in this study is a Nicolet 8700 spectrometer (Thermo 

Instruments) equipped with an MCT detector and a HATRPlus accessory (Pike Technologies). 

The ATR cell has a ZnSe internal reflection element (IRE) (80×10×4 mm, 100 μL) crystal mounted 

within. The IR beam enters the ZnSe crystal at a 60° degree angle where it undergoes multiple 

internal reflections. Each time the light interacts with the sample, an evanescent wave is produced 

which is partially absorbed by the sample at the interface with the crystal. The attenuated 

evanescent wave is bounced back to the crystal and then hits the detector. This produces a single 

beam spectrum that can be referenced to another single beam spectrum creating an absorbance 

spectrum. The main advantage of using ATR-FTIR, which allows for probing reactions taking 

place at the solid-liquid interface. An overview of the use of ATR-FTIR in studying the liquid/solid 

interfaces can be found in Hind et al. 41 
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Figure 4. Diagram of ATR-FTIR crystal in the flow cell. 

3.4.2 Calibration curves from spectra collected for aqueous phase species 

Aqueous phase calibration curves were generated by running a series of increasing 

concentration of oxalate, pyrocatechol, citrate, iron oxalate, DMA, or arsenate solutions over a 

clean ZnSe ATR flow cell (no hematite or goethite film present). Spectra were collected using 

OMNIC for the dry ZnSe, background KCl solution and after each consecutive concentration. 

Upon completion, each sample aqueous phase spectrum was referenced to the dry ZnSe spectrum. 

Then using spectral math (see appendix C), each aqueous phase species absorbance spectra was 

subtracted from the background KCl absorbance spectrum referenced to dry ZnSe. This was done 

to properly subtract out water absorbance from the aqueous phase species absorbance spectra and 

isolate the absorbance from the species being studied. 

3.4.3 Adsorption and desorption kinetics using ATR-FTIR  

At the start of the experiment, 10 mM KCl at pH 7 was flown over the hematite film for 

90 min with a single beam spectrum recorded at 90 min. Following the initial KCl flow, 1 mM, at 

pH 7 organic solution was flown for 80 min. Following the 1.0 mM organic solution, either 1.0 

mM arsenate, 1.0 mM DMA or 10 mM KCl were flown for 80 min. Control experiments were also 

conducted where 1 mM arsenate or DMA flown directly after the initial 90 min KCl. The flow rate 

used in all experiments was 2 mL/min as measured directly by a 5 mL volumetric cylinder located 
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at the end of the output flow tube. Using macros basic (see appendix A), 50 single beam spectra 

were recorded for the first 5 min of flow time of an organic solution, or 40 single beam spectra for 

the first 10 min of an arsenical solution. After the first 5 min or 10 min respectively, single beam 

spectra were recorded manually every 5 min until 80 min had passed, at which time, either the next 

solution was flown or the experiment ended. Every single beam spectrum was referenced to the 

initial single beam spectrum recorded after 90 min of KCl flow to generate the absorbance spectra 

reported herein (see appendix B). Adsorption and desorption kinetics curves generated from 

baseline-corrected peak heights plotted versus reaction times were created using peak heights from 

maximum peak height wavenumber (e.g. if there is a shift in wavenumber of maximum peak height 

then the wavenumber at which the peak of measurement is made also shifts). 

3.4.4 Adsorption isotherm studies using ATR-FTIR 

At the start of the experiment, 10 mM KCl at pH 7 was flown over the hematite film for 

90 min with a single beam spectrum recorded at 90 min. Following the initial KCl flow, pH 7 

organic solutions with concentrations starting at 1×10-6 M up to 1×10-3 M were flown for 30 min 

each. The flow rate used in all experiments was 2 mL/min as measured directly by a 5 mL 

volumetric cylinder located at the end of the output flow tube. Every single beam spectrum was 

referenced to the initial single beam spectrum recorded after 90 min of KCl flow to generate the 

absorbance spectra reported herein (see appendix B). 

3.4.5 pH envelope studies using ATR-FTIR 

At the start of the experiment, 10 mM KCl at pH 7 was flown over the hematite film for 

60 min with a single beam spectrum recorded at 60 min. Next, 10 mM KCl at pH 9 was flow for 

30min with a spectrum collected after 30min. Following the initial KCl flow, 0.1 mM organic 
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solutions with pH starting at 9 and going down in intervals of 0.5, down to pH 5, were flown for 

30 min each. The flow rate used in all experiments was 2 mL/min as measured directly by a 5 mL 

volumetric cylinder located at the end of the output flow tube. Every single beam spectrum was 

referenced to the single beam spectrum recorded after 30 min of pH 9, KCl flow to generate the 

absorbance spectra reported herein (see appendix B). 

3.5 Modeling of adsorption kinetics 

A baseline-corrected peak height analysis was performed on ATR absorbance spectra using 

Macros Basic (Appendix B). Baseline-corrected peak height measurements attributed to surface 

complexes, at the wavenumber of specific spectral features, were used as an accurate measurement 

of surface coverage. The reaction to be analyzed is between aqueous analyte species and empty 

reactive sites on the surface of the geosorbent film, shown in reaction 1. 

 

In the above equation, [MO] is the concentration of model organic, kads is the adsorption rate 

constant, and kdes is the desorption rate constant. The Langmuir adsorption model can be used to 

analyze the kinetics and thermodynamics of reaction 1. The assumption within the Langmuir 

adsorption model is that a homogeneous surface is formed and that reactive surface sites are 

identical.  The Langmuir kinetic adsorption model, shown in equation 2, was used to analyze the 

collected peak heights in order to generate time dependent adsorption kinetic curves. 

𝜃(𝑡) = 𝑏(1 − 𝑒−𝑟𝑜𝑏𝑠∗𝑡) … (2) 

𝑤ℎ𝑒𝑟𝑒, 𝑏 = 𝑘𝑎𝑑𝑠1 [𝑀𝑂]𝑎𝑞 𝑟𝑜𝑏𝑠1⁄  

𝑎𝑛𝑑, 𝑟𝑜𝑏𝑠 = 𝑘𝑎𝑑𝑠[𝑀𝑂] + 𝑘𝑑𝑒𝑠 
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𝜃(𝑡) is a measure of surface coverage. Surface coverage is related to absorbance via the relation 

expressed in equation 3.  Expanding the 𝜃 term in equation 3 with the measurement for surface 

coverage produces equation 4, which provides a measurement of baseline-corrected peak height 

absorbance. 

𝜃 =
𝐴

𝐴𝑚𝑎𝑥
… (3) 

𝐴 = 𝑏′(1 − 𝑒−𝑟𝑜𝑏𝑠∗𝑡) … (4) 

𝑤ℎ𝑒𝑟𝑒, 𝑏′ = 𝐴𝑚𝑎𝑥 ∗ 𝑏 

Equation 4 is then linearized to produce equation 5 with 𝑏’ being a collection of constants equal to 

absorbance in the plateau region of the adsorption kinetic curve. 

ln (1 −
𝐴

𝑏′
) = −𝑟𝑜𝑏𝑠 ∗ 𝑡 … (5) 

Using equation 5, robs is equal to the slope of the least-squared fit of ln (1 −
𝐴

𝑏′) plotted against 

adsorption time. The Langmuir adsorption kinetic adsorption model allows for the plotting of robs 

against aqueous analyte concentration to extract kads using equation 6. 

𝑟𝑜𝑏𝑠 = 𝑘𝑎𝑑𝑠[𝑀𝑂]𝑎𝑞 + 𝑘𝑑𝑒𝑠 … (6) 

3.6 Modeling of desorption kinetics 

 Desorption of model organics from the surface of geosorbents by the adsorption of aqueous 

arsenic species is shown in reaction 7 and can be described by the Langmuir kinetic desorption 

model shown in equation 8. 
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𝜃(𝑡) = 𝜃0𝑒−𝑘′𝑑𝑒𝑠∗𝑡 … (8) 

𝑤ℎ𝑒𝑟𝑒, 𝜃 =
𝐴

𝐴𝑚𝑎𝑥
 𝑎𝑛𝑑, 𝜃0 =

𝐴0

𝐴𝑚𝑎𝑥
  

𝑎𝑛𝑑, 𝑘𝑑𝑒𝑠
′ = 𝑘𝑑𝑒𝑠 ∗ [𝐴𝑠]𝑎𝑞 

𝜃(𝑡) and 𝜃0 are converted to absorbance values and linearized to produce equation 9. 

ln (
𝐴

𝐴0
) = −kdes

′ ∗ 𝑡 … (9) 

𝐴0 equals the initial absorbance before the start of desorption. The initial observed desorption rate 

can be extracted by plotting ln (
𝐴

𝐴0
) vs desorption time with the initial observed desorption being 

equal to the slope of the least-squared fit. 

3.7 Modeling adsorption thermodynamics with the Langmuir model 

The Langmuir adsorption model predicts a dynamic equilibrium between adsorbed and 

aqueous phase species, shown by reaction 1. According to the Langmuir adsorption model, the 

equilibrium constant Keq for reaction 1 can be expressed by equation 10. 

𝐾𝑒𝑞 =
𝜃

[𝑀𝑂](1 − 𝜃)
… (10) 

𝜃 is the surface coverage, which is a fraction of occupied sites on the surface of the geosorbent, 

while the (1 −  𝜃) term is the fraction of empty sites. Equation 10 can be rearranged into the form 

of y=mx+b, using equation 3. 

𝜃 =
𝐾𝑒𝑞[𝑀𝑂]𝑎𝑞

1 + 𝐾𝑒𝑞[𝑀𝑂]𝑎𝑞
 

𝑜𝑟,   
𝐴

𝐴𝑚𝑎𝑥
=

𝐾𝑒𝑞[𝑀𝑂]𝑎𝑞

1 + 𝐾𝑒𝑞[𝑀𝑂]𝑎𝑞
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𝑜𝑟,   
1

𝐴
=

1 + 𝐾𝑒𝑞[𝑀𝑂]𝑎𝑞

𝐴𝑚𝑎𝑥𝐾𝑒𝑞[𝑀𝑂]𝑎𝑞
 

𝑜𝑟,   
1

𝐴
=

1

𝐴𝑚𝑎𝑥𝐾𝑒𝑞
∗

1

[𝑀𝑂]
+

1

𝐴𝑚𝑎𝑥
… (11) 

Keq can be obtained from the slope of the 
1

𝐴
 vs 

1

[𝑀𝑂]
 plot using the y-intercept, equal to 

1

𝐴𝑚𝑎𝑥
.4 

Results and Discussion 

4.1 Characterization of Aqueous phase model organics using ATR-

FTIR 

Figure 5 shows the speciation curves for citric acid, oxalic acid, and pyrocatechol using the 

formulas shown in Appendix D. Citric acid at pH 7 contains a mixture of triply and doubly 

deprotonated species in about an 80-20 ratio. The species of oxalic acid at pH 7 is fully 

deprotonated, while pyrocatechol is fully protonated.  

 

 

Figure 5. Speciation curves of (a) citric acid, (b) oxalic acid and (c) pyrocatechol. The solid black 

line on each plot indicates pH 7 conditions at which experiments were conducted. 

 

To aid in the interpretation of surface interactions between model organics and 

iron−(oxyhydr)oxides films, bulk aqueous phase absorbance ATR-FTIR spectra were collected 
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using a clean ZnSe ATR crystal. Figure 6 shows the ATR-FTIR absorbance spectra of aqueous 

citrate, oxalate and pyrocatechol at pH 7. 

 

 

Figure 6. ATR-FTIR absorbance spectra of 0.1 M aqueous citrate (CA), oxalate (OA) and 

pyrocatechol (PC) at pH 7, I = 10 mM KCl. Clean ZnSe ATR crystal used (no film). 

 

There are three main bands present in the aqueous spectra of citrate: 1570, 1388 and 1280 

cm-1 assigned to νa(COO-), νs(COO-) and δ (CO2
-) respectivly.42 The aqueous spectra of oxalate 

contains two bands at 1307 and 1569 cm-1 which are assigned to νs(COO-) and νa(COO-), 

respectively.43 The aqueous absorbance spectra of pyrocatechol is much more complicated than 

that of the two carboxylic acids, owing to the presence an aromatic ring. The bands present in the 

aqueous phase spectra of pyrocatechol are produced from the following vibrational modes: 1600 

cm-1 from ν(CC) + ν(CO), 1516 cm-1 from ν(CC), 1473 cm-1 from ν(CC) and δ (CH), 1377 cm-1 

from δ (OH) and ν(CC), 1277 and 1257 cm-1 from ν(CO) and δ (CH), 1199 cm-1 from ν(CO) and 

δ (OH), 1103 cm-1 from δ (CH) and 1033 cm-1 from δ (CH).37, 44 The height of the most intense 

band from each organic compound was measured over a range of concentrations to generate 

aqueous phase calibrations curves for each model organic compound as a function of 

concentration. The bands selected for measurement were 1570 cm-1 for citrate and oxalate and 
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1257 cm-1 for pyrocatechol. Figure 7 shows spectra and calibration curves generated for each 

model organic compound in the aqueous phase. The slopes correspond to molar absorption 

coefficient (ε) multiplied by the path length of the ZnSe ATR crystal. 

 

  

  

  

Figure 7. ATR-FTIR absorbance spectra of a) citrate, c) oxalate and e) pyrocatechol, respectively, 

over a concentration range of 0.005 to 0.1 M. b), d) and f) calibration curves generated from 

baseline-corrected ATR absorbances at 1570 cm-1 for citric and oxalate and 1257 cm-1 for 

pyrocatechol. Error bars are ±s. 
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 The Beer–Lambert law states that measured absorbance is a function of the analyte 

concentration, path length and the molar absorption coefficient (ε), according to equation 12. 

𝐵𝑒𝑒𝑟– 𝐿𝑎𝑚𝑏𝑒𝑟𝑡 𝑙𝑎𝑤: 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 =  𝜀 (𝑀−1 𝑐𝑚−1) ∗ 𝑏 (𝑐𝑚) ∗ 𝑐 (𝑀) … (12) 

With an effective path length of 2.7×10-4 cm, the calculated molar absorption coefficients are 

1345.7, 981.7, and 393.8 cm-1 M-1 for citrate, oxalate, and pyrocatechol, respectively. Molar 

absorption coefficients are necessary for the conversion of baseline-corrected absorbance values 

attributed to a specific adsorbed analyte into surface coverage. The assumption made is that the 

molar absorption coefficient of an aqueous analyte is the same as its surface complex. 

4.2 Adsorption thermodynamics of model organics using ATR-FTIR 

4.2.1 Organic adsorption spectra and assignment 

Thermodynamic adsorption isotherm experiments at pH 7 were carried out using aqueous 

solutions of model organics citrate, oxalate and, pyrocatechol flown over 6 mg hematite and 16 

mg goethite films deposited across a ZnSe ATR crystal. The resulting ATR-FTIR absorption 

spectra for adsorbed species are shown in Figure 8 for 1 mM solutions. 

 

 

Figure 8. ATR-FTIR absorption spectra of adsorbed citrate, oxalate and, pyrocatechol (1 mM) at 

pH 7, I = 10 mM KCl, and 2 mL/min flow rate at room temperature on a) 6 mg hematite film and 

b) 16 mg goethite films after 80 min flow time. 
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The comparison between the aqueous phase spectra and the surface spectra of each model 

organic compound shows differences corresponding to the formation of surface complexes. The 

spectra of adsorbed citrate has shifted slightly compared to aqueous citrate. Although the peak at 

1581 cm-1 in Figure 8 a) may be close to the νa(COO-) aqueous peak at 1570 cm-1 shown in Figure 

6, it is attributed to iron binding on the surface of hematite and goethite consistent with the 

formation of inner-sphere monodentate surface complex as shown in Figure 9.42, 45 this assignment 

is also been supported by triple-layer or surface complexation modelling performed in Situm et 

al.45 

 

 

Figure 9. Complexes formed by citrate with the surface of hematite and goethite. (Left): 

protonated inner-sphere monodentate, (Right):  deprotonated inner-sphere monodentate. 

 

The three main bands in the absorption spectra of adsorbed citrate on hematite are slightly 

shifted but have almost the same assignments as aqueous citrate, with 1581 cm-1, 1400 cm-1 and 

1265 cm-1 assigned to ν(CO2Fe), νs(COO-) and δ (CO2
-) respectivly.42, 45 The band assignments of 

the absorption spectra of adsorbed citrate to goethite are the same as for hematite with the νs(COO-

) band at 1400 cm-1 shifted to 1408 cm-1 and the 1265 cm-1 δ (CO2
-) band shifted to 1257 cm-1.42, 
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45 A full listing of band assignments for citrate surface and aqueous phase citrate are in Table 3. 

Noerpel and Lenhart preformed bulk ATR-FTIR experiments reacting citrate with hematite 

nanoparticles and coupled these finding with surface complexation modeling and computational 

molecular modeling.42 Situm et al. is the submitted publication done in collaboration with Dr. 

Sabine Goldberg at the U.S. Salinity Laboratory reporting the thermodynamic results found herein 

in combination with triple-layer surface complexation modeling.45 

 

Table 3. Band assignments for ATR-FTIR absorption spectra of aqueous citrate and citrate 

adsorbed on hematite and goethite particles. 

Band assignment Aqueous spectra 

wavenumber 

(cm-1) 

Surface spectra wavenumber (cm-1) Reference 

Hematite Goethite 

νa(COO-) 1570   42, 45 

ν(CO2Fe)  1581 1581 42, 45 

νs(COO-) 1388 1400 1408 42, 45 

δ (CO2
-) 1280 1265 1257 42, 45 

 

The number of bands present in the ATR-FTIR absorbance spectrum of adsorbed oxalate 

has increased to three from two compared to aqueous oxalate, indicating that the symmetry of 

oxalate has been altered. The three main bands in the absorption spectra of adsorbed oxalate are 

1658, 1430 and 1288 cm-1 on hematite and 1658, 1435 and 1304 cm-1 on goethite. The first two 

are assigned to ν(CO2Fe), and 1288 cm-1 is assigned to νs(COO-) bonding for hematite.34, 45 The 

surface complexes formed by oxalate on the surface of hematite and goethite are shown in Figure 

10. 
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Figure 10. Complexes formed by oxalate with the surface of hematite and goethite. (Left): inner-

sphere bidentate mononuclear, (Right):  outer-sphere complex. 

 

The band assignments of the absorption spectra of adsorbed oxalate on goethite are the 

same as for hematite with the ν(CO2Fe) band at 1430 cm-1 shifted to 1435 cm-1 and the νs(COO-) 

band 1288 cm-1 shifted to 1304 cm-1.34, 45 The initial surface complex assignment made was that 

the decrease in symmetry was consistent with the formation of an inner-sphere complex. Persson 

and Axe reported a five membered mononuclear bidentate complex is formed from adsorption of 

oxalate to goethite.17, 34 Although an inner-sphere complexation is believed to form from oxalate 

binding to the surface of hematite, further analysis performed in Situm et al. through triple-layer 

surface complexation modelling indicates that outer-sphere complexation may occur 

simultaneously with inner-sphere complexation.45 the assignment of outer-sphere complexation is 

also supported by kinetic results presented in sections 3.3 and 3.4 of this work. A full listing of 

band assignments for surface and aqueous phase oxalate are in Table 4. 
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Table 4. Band assignments for ATR-FTIR absorption spectra of aqueous oxalate and oxalate 

adsorbed on hematite and goethite particles. 

Band assignment Aqueous spectra 

wavenumber 

(cm-1) 

Surface spectra wavenumber (cm-1) Reference 

Hematite Goethite 

νa(COO-) 1570   34, 45 

νs(COO-) 1307 1288 1304 34, 45 

ν(CO2Fe)  1658, 1430 1658, 1435 45 

 

The largest change in the ATR-FTIR absorption spectra of pyrocatechol adsorbed to 

hematite and goethite compared with aqueous pyrocatechol is an increase in intensity of the band 

at 1257 cm-1 and the shift and large increase from the aqueous band at 1473 cm-1 to the surface 

band at 1481 cm-1. The band at 1481 cm-1 is assigned to ν(COFe) along the band at 1257 cm-1.45 

The shoulder at 1277 cm-1, which is not present in pyrocatechol-goethite surface spectra, is 

assigned to ν(COFe).45 A full listing of band assignments for surface and aqueous phase 

pyrocatechol are in Table 5. 

 

Table 5. Band assignments for ATR-FTIR absorption spectra of aqueous pyrocatechol and 

pyrocatechol adsorbed on hematite and goethite particles. 

Band assignment Aqueous spectra 

wavenumber 

(cm-1) 

Surface spectra wavenumber (cm-1) Reference 

Hematite Goethite 

ν(CC) + ν(CO) 1600 1608 1628 35, 37, 44-45 

ν(CC) + δ (CH) 1516, 1473 1574 1574 35, 37, 44-45 

ν(COFe)  1481, 1257 1481, 1446, 1257 45 

δ (OH) + ν(CC) 1377 1315 1315 35, 37, 44-45 

ν(CO) + δ (CH) 1277 and 1257 1277  35, 37-38, 44-45 

ν(CO), δ (OH) 1199  1199  1199 35, 45 

δ (CH) 1103 1103 1103 35, 45 

δ (CH) 1033 1033 1026 37, 44 45 
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 The decrease in bands associated with hydroxide vibrational modes and formation of 

ν(COFe) suggests pyrocatechol forms a mixture of inner-sphere bidentate binuclear and inner-

sphere monodentate complexs on hematite and goethite as shown in Figure 11. 

 

        

Figure 11. Complexes formed by pyrocatechol with the surface of hematite and goethite. (Left): 

inner-sphere bidentate binuclear, (Right):  inner-sphere monodentate. 

 

 It should be emphasized that the surface complexation assignments for citrate, oxalate, and 

pyrocatechol on hematite are only proposed. To confirm these surface complexes, computational 

studies would need to be paired with this work in order to compare IR frequencies. 

The negative bands that are present in model organic adsorption spectra in Figure 8 at 1485 

and 1350 cm-1 have been attributed to carbonate desorption from the surface of hematite.46 In order 

to confirm this assignment, nitrogen gas was bubbled through 10 mM KCl, at pH 7 then flown 

over an unreacted hematite film. Difference spectra from the nitrogen gas bubbling test are shown 

in Figure 12, which were obtained by referencing to the spectra collected after 1 min flow time. 
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Figure 12. ATR-FTIR absorption spectra of surface carbonate desorption by nitrogen gas bubbled, 

at pH 7, and I = 10 mM KCl, using a 2 mL/min flow rate at room temperature on 6 mg hematite 

film. 

 

The results of the nitrogen gas bubbling experiment show that the negative bands observed 

at 1485 and 1350 cm-1 are from loss of carbonate from the surface of hematite. The adsorption of 

organics was also carried out using with continued nitrogen gas bubbling. The resulting spectra of 

citrate, oxalate, and pyrocatechol adsorption are shown in Figure 13, and shows minimum 

interference from the signal of surface carbonate. 

 

 

Figure 13. ATR-FTIR absorbance spectra of adsorbed a) citrate, b) oxalate and c) pyrocatechol 

respectively, collected as a function of concentration. Adsorption of model organics (1 mM) on 6 

mg hematite film at pH 7, I = 10 mM KCl, and a 2 mL/min flow rate at room temperature and 

nitrogen gas bubbling. 
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4.2.2 Adsorption isotherms on hematite at room temperature 

Adsorption isotherm experiments were conducted for the adsorption of model organics on 

hematite nanoparticles, with the goal of extracting equilibrium constants. Figure 14 shows the 

adsorption of model organics to hematite nanoparticles as a function of increasing concentration. 

 

 

Figure 14. ATR-FTIR absorbance spectra of adsorbed a) citrate, b) oxalate and c) pyrocatechol 

respectively, collected as a function of time. Adsorption of model organics on 6mg hematite film 

at varying concentrations ranging from 10-6 M to 10-3 M (pH 7, I = 10 mM KCl, and a 2 mL/min 

flow rate at room temperature).  

 

 From the spectra in Figure 14, adsorption isotherm curves can be generated for the 

adsorption of model organics to hematite nanoparticles. Figure 15 shows Langmuir adsorption 

isotherms for the adsorption of model organics on hematite nanoparticles. 
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Figure 15. Adsorption isotherms of a) citrate b) oxalate and c) pyrocatechol on 6 mg hematite 

film at pH 7, I = 10 mM KCl, and a 2 mL/min flow rate at room temperature. The solid line 

represents the least-squares fitting of the 1-site Langmuir adsorption model: Absorbance = 

(Amax*Keq*[organic]/M)/(1+Keq*[organic]/M). Data points represent the average of three to 

four experiments. Error bars are ±s. 

 

 The solid line within Figure 15 represents the least-squared fitting of the one-site Langmuir 

adsorption model, the derivation of which can be found in section 3.7 of this work. Using equation 

12, the results from Langmuir isotherms can be used with molar absorption coefficient (ε) values 

obtained from aqueous calibration curves in section 4.1 to calculate surface concentration from 

absorbance. Using equation 11 found in section 3.7, Langmuir adsorption isotherm curves were 

linearized to extract Keq values for the adsorption of model organics to hematite nanoparticles. 
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Figure 16. Linearized absorbances for the adsorption of a) citrate, b) oxalate and c) pyrocatechol 

on 6 mg hematite film as a function of concentration at pH 7, I = 10 mM KCl, and a 2 mL/min 

flow rate at room temperature. [Data points represent the average of three to four experiments and 

error bars were removed for clarity.] 

 

Using the concentration of water (55.5 M) to eliminate M-1, the logKeq values were 

calculated from the Keq values shown in Figure 16 and are shown in Table 6. 
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logKeq values obtained from Langmuir adsorption model are compared to logKeq values 

obtained from triple-layer surface complexation modelling preformed in Situm et al.45 Also 

included in Table 6 are logKeq values for model organic binding to goethite nanoparticles. Filius 

et al. (1997) and Geelhoed et al. (1998) are studies performed in the Van Riemsdijk group using 

the CD-MUSIC model to analyze the adsorption of oxalate and citrate to goethite.47-48 The charge 

distribution (CD) multi-site complexation (MUSIC) model used by the Van Riemsdijk group 

considers surface complexes to have spatial charge distribution rather than being point charges.50 

Marcussen et al. preformed bulk phase experiments, reacting citrate with goethite nanoparticles 

and analyzing the results using diffuse double-layer surface complexation modelling to produce 

logKeq values.49 The surface complexation models described herein illustrates the wide variety of 

models available to describe surface complexation. 

4.2.3 pH envelope curves on hematite and goethite 

pH envelope adsorption experiments were carried out for model organics on hematite and 

goethite as described in section 3.4.5. Figure 17 shows absorbance spectra for model organics 

adsorbed to the surface of hematite. 
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Figure 17. Adsorption of model organics (1 mM) on 6 mg hematite film at varying pH, I = 10 

mM KCl, and a 2 mL/min flow rate at room temperature and nitrogen gas bubbling. ATR-FTIR 

absorbance spectrum of adsorbed a) citrate, b) oxalate and c) pyrocatechol respectively. 

 

 A peak shift from 1650 cm-1 to 1670 cm-1 was observed in the pH envelope absorption 

spectra of oxalate as pH is lowered from 9 to 5. Conversely, there was no observed shift in citrate 

and pyrocatechol absorbance spectra. One possible explanation for the observed shift in the 

absorbance spectra of oxalate is the fact that protonation of carboxylic groups on outer-sphere 

oxalate (Figure 10) reduces resonance, which increases double bound in adsorbed oxalate on 

positively-charged hematite surface. Another consequence of a decrease in pH is that the hematite 

surface develops a stronger positive charge that would increase the maximum adsorption of 

charged analytes to the surface of hematite. Figure 18 shows adsorption of model organics to 
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hematite nanoparticles as a function of pH, with peak height measurements taken at maximum 

peak height. 

 

  

 

Figure 18. Adsorption of a) citrate b) oxalate and c) pyrocatechol adsorption on 6 mg hematite 

film as a function of pH, at I = 10 mM KCl, and a 2 mL/min flow rate at room temperature. Data 

points represent the average of three experiments. Error bars are ±s. 

 

 Trends observed in Figure 18 show an increase in oxalate and citrate adsorption with 

decreasing pH. This trend is likely caused by an increase in positive charge on the surface of 

hematite, which acts as a stronger electrostatic attractive force for the anionic model organics. The 

trend for pyrocatechol adsorption to hematite is not as straightforward, with adsorption increasing 

from pH 9 to 7 before decreasing slightly as pH is lowered to 5. Further analysis of pH envelope 

adsorption curves was performed in Situm et al. using triple-layer surface complexation 
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modelling.45 The same pH envelope adsorption experiments were conducted using goethite 

nanoparticles, of which the absorption spectra is shown in Figure 19. 

 

 

 

Figure 19. Adsorption of model organics (1 mM) on 16 mg goethite film at varying pH, I = 10 

mM KCl, and a 2 mL/min flow rate at room temperature and nitrogen gas bubbling. ATR-FTIR 

absorbance spectra of adsorbed a) citrate, b) oxalate and c) pyrocatechol respectively. 

  

 pH envelope adsorption experiments were performed on goethite in order to compare the 

effect that pH has on the adsorption of model organics to different iron oxide nanoparticles. Unlike 

pH envelope adsorption on hematite nanoparticles, Figure 19 illustrates no observed shift in the 
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spectra for any of the model organics. Figure 20 shows adsorption to goethite nanoparticles of 

model organics as a function of pH, using baseline-corrected maximum peak heights. 

 

 

Figure 20. Adsorption of a) citrate b) oxalate and c) pyrocatechol adsorption on 16 mg goethite 

film as a function of pH, at I = 10 mM KCl, and a 2 mL/min flow rate at room temperature. Data 

points represent the average of three experiments. Error bars are ±s. 

 

 The trends observed in the pH envelope adsorption curves for goethite nanoparticles are 

similar to trends observed for hematite nanoparticles. Oxalate and citrate adsorption was observed 

to increase as an inverse function of pH, which is consistent with increased positive charge on the 

surface of goethite. Pyrocatechol, on the other hand, increases in adsorption from pH 9 down to 

around pH 6 before slightly decreasing as the pH is lowered to 5. 
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4.3 Adsorption kinetics of model organic matter 

 Adsorption kinetic experiments were conducted using citrate, oxalate, and pyrocatechol 

adsorption on unreacted hematite films at pH 7. Spectra from typical experiments are shown in 

Figure 21. 

 

  

  

Figure 21. Adsorption of model organics (1 mM) on to a clean, 6 mg hematite film at pH 7, I = 

10 mM KCl, and a 2 mL/min flow rate at room temperature. ATR-FTIR absorbance spectra of 

adsorbed a) citrate, b) oxalate and c) pyrocatechol respectively, collected as a function of time. 

 

 Using peak heights at 1579, 1658 and 1257 cm-1 for citrate oxalate and pyrocatechol 

respectively, baseline-corrected adsorption kinetic curves were generated as a function of 
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adsorption time. Baseline-corrected adsorption kinetic curves for each model organic on unreacted 

hematite nanoparticles are shown in Figure 22. 

 

 

Figure 22. Adsorption kinetic curves generated from the baseline-corrected ATR-FTIR 

absorbances for a) citrate, b) oxalate and c) pyrocatechol adsorbed on to a clean, 6 mg hematite 

film at pH 7, I = 10 mM KCl, and a 2 mL/min flow rate at room temperature, respectively. Data 

points represent the average of three to four experiments. Error bars are ±s. 

 

 The results shown in Figure 22 show that organic adsorption on hematite is rabid fast, with 

equilibrium between aqueous phase model organics and the surface of hematite having been 

reached by the 80 min adsorption time. In order to gain more information on the type of surface 

complexes each model organic forms with the surface of hematite nanoparticles, adsorption kinetic 

experiments were carried out under multiple ionic strength conditions. The hypothesis is that 

charged surface complexes, especially outer-sphere complexes, will have rates of adsorption 
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different than inner- sphere because of the charge double layer formed on the surface of hematite 

by potassium and chloride ions. From Figure 22, it is observed that adsorption of model organics 

to the surface of hematite is fast within the first five minutes of adsorption time. Linearization of 

model organic adsorption kinetic curves can be performed in order to extract observed initial rates 

of adsorption. Baseline-corrected adsorption kinetic curves for each model organic on unreacted 

hematite nanoparticles under the various ionic strength conditions are shown in Figure 23. 

 

 

Figure 23. Adsorption kinetics of a) citrate, b) oxalate, and c) pyrocatechol on 6 mg hematite film 

with 0, 10, 100, and 1000 mM KCl at pH 7. [Data points represent the average of two to four 

experiments and error bars have been removed for clarity.] 

 

Linearization of model organic adsorption kinetic curves shown in Figure 23 was 

preformed and the resulting linearized adsorption kinetic curves are shown in Figure 24. 
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Figure 24. Linearized adsorption kinetics of a) citrate, b) oxalate, and c) pyrocatechol on 6 mg 

hematite film with 0, 10, 100, and 1000 mM KCl at pH 7. ln(1-(A(Organic)/A(OrganicMax))) with 

A(Organic) corresponding the band measured for citric oxalate, and pyrocatechol respectively. 

[Data points represent the average of two to four experiments and error bars have been removed 

for clarity.] 

 

 The linearization preformed in Figure 24 involves taking a natural log of model organic 

peak heights absorbances normalized against the maximum peak height absorbance measured at 

80 minutes adsorption time (equation 4). The least-squared fits added to linearized model organic 

adsorption kinetics in Figure 24 are predicted to have slopes equal to the observed initial rates of 

adsorption (robs1) according to the kinetic form of the Langmuir adsorption model described in 

section 3.5. Initial observed rates of model organic adsorption to unreacted hematite nanoparticles 

are shown in Table 7. 
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Table 7. Linearized first-order observed adsorption rates (min-1) at various ionic strength 

conditions of model organics on 6 mg hematite film. 

Adsorption of 

surface organic: 

Ionic strength condition 

0 mM KCl 10 mM KCl 100 mM KCl 1000 mM KCl 

Citrate 0.28 ± 0.01 0.25 ± 0.02 0.40 ± 0.05 0.39 ± 0.08 

Oxalate 0.39 ± 0.06 0.39 ± 0.02 0.57 ± 0.11 0.59 ± 0.13 

Pyrocatechol 0.33 ± 0.04 0.29 ± 0.01 0.37 ± 0.16 0.33 ± 0.15 

 

 The observed initial rates of model organic adsorption shown in Table 7 show a correlation 

between ionic strength and initial rates of absorbance for citrate and oxalate but a complete 

insensitivity of the initial rates of adsorption of pyrocatechol to changes in ionic strength. This 

increase in adsorption rates for the charged citrate and oxalate species is attributed to the presence 

of electrolytes and the surface of hematite. A charged double layer of electrolytes the surface of 

hematite should increase the adsorption of the negatively charged species because of electrostatic 

attraction to potassium ions. These results support proposed surface complexes of model organics 

on hematite nanoparticles. The adsorption rate of pyrocatechol on hematite nanoparticles supports 

the assignment of a neutral inner-sphere complex while the enhancing effect of ionic strength on 

citrate and oxalate adsorption help support the assignment of charged surface complexes. 

4.4 Desorption kinetics of model organic matter on hematite 

 In this work, two different arsenicals were reacted with hematite nanoparticles, which had 

either been exposed to model organics or were unreacted, in order to gather information on the 

effect that organic functional groups have on the kinetics of arsenical adsorption. Information 

gathered from model organic desorption from hematite nanoparticles may also be utilized to 

support the assigned surface complexes of model organics on hematite. Previous studies conducted 
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within the Al-Abadleh group have shown that arsenate forms a strong inner-sphere bidentate 

binuclear complex with the surface of hematite nanoparticles, while DMA forms an outer-sphere 

complex.3, 38 Desorption studies using these selected arsenicals, along with different concentrations 

of the weak desorbing agent chloride, allows for a general picture of the effectiveness that different 

types of desorbing agents have on adsorbed model organics. 

4.4.1 Desorption kinetics of citrate due to flowing arsenicals 

 Experiments on the desorption of citrate from hematite nanoparticles were conducted using 

arsenate, DMA, and background KCl. Spectra from typical experiments are shown in Figure 25. 

 

  

 

Figure 25. ATR-FTIR absorbance spectra correspond to citrate desorption from 6 mg hematite 

film at pH 7, I = 10 mM KCl, and a 2 mL/min flow rate at room temperature, by the flowing of a) 

10 mM Cl-, b) 1 mM DMA and c) 1 mM Ars respectively. 

2000 1600 1200 800

Wavenumber (cm
-1

)

1
2

10
5

20

30

1585

1400
Desorption

(min)

time

0.01

1257

A
b
s
o
r
b
a
n
c
e

a)

2000 1600 1200 800

Wavenumber (cm
-1

)

1

2

10

5

20

30

1585

1400
Desorption

(min)
time

0.01

1257

b)

840

2000 1600 1200 800

Wavenumber (cm
-1

)

1

2

10

5

20

30

1585

1400
Desorption

(min)

time

0.01

1257

A
b
s
o
r
b
a
n
c
e

c)

875



61 

 

 Using baseline-corrected peak height absorbances at 1585 cm-1 plotted as a function of 

desorption time, kinetic curves for citrate desorption from hematite nanoparticles were generated, 

and are shown in Figure 26 along with their linearized citrate desorption kinetics. 

 

  

Figure 26. Desorption kinetic curves generated from the baseline-corrected ATR-FTIR 

absorbances of a) citrate from 6 mg hematite film at pH 7, I = 10 mM KCl, and a 2 mL/min flow 

rate at room temperature, by 10 mM KCl, 1.0 mM Arsenate and 1.0 mM DMA, and b) shows 

ln(A(Organic)/A(OrganicMax)) with A(Organic) corresponds to absorbance at 1579 cm-1. Data 

points represent the average of two to four experiments and error bars have been removed for 

clarity. 

 

 Linearized desorption kinetics were generated in a similar way to linearized adsorption 

kinetics: by taking the natural log of baseline-corrected peak height absorbance values, normalized 

against the initial baseline-corrected peak height absorbance at 0 min desorption time (equation 

9). The comparison of the slopes of the least-squared fits of linearized citrate desorption kinetics 

shows the effectiveness of different desorbing agents, as the slopes of the least-squared fits are 

predicted to be equal to the observed initial rates of desorption (k’des1) according to the Langmuir 

desorption model described in section 3.6. Arsenate has the highest initial desorption rate of citrate 
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from the surface of hematite in the desorption kinetics curves in Figure 26, while the background 

10 mM chloride solution has the lowest initial rate of citrate desorption. 

4.4.2 Desorption kinetics of oxalate due to flowing arsenicals  

 Desorption kinetic experiments of citrate from hematite nanoparticles were conducted 

using arsenate, DMA, and background KCl at pH 7. Spectra from typical experiments are shown 

in Figure 27. 

 

  

 

Figure 27. ATR-FTIR absorbance spectra correspond to oxalate desorption from  6 mg hematite 

film at pH 7, I = 10 mM KCl, and a 2 mL/min flow rate at room temperature, by the flowing of a) 

10 mM Cl-, b) 1 mM DMA and c) 1 mM Ars respectively. 
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 Using baseline-corrected peak height absorbances at 1658 cm-1, plotted as a function of 

desorption time, kinetic curves for oxalate desorption from hematite nanoparticles were generated, 

and  are shown in Figure 28 along with their linearized citrate desorption kinetics. 

 

   

Figure 28. Desorption kinetic curves generated from the baseline-corrected ATR-FTIR 

absorbances of a) oxalate from 6 mg hematite nanoparticles at pH 7, I = 10 mM KCl, and a 2 

mL/min flow rate at room temperature, by 10 mM Cl-, 1.0 mM Arsenate and 1.0 mM DMA, and 

b) shows ln(A(Organic)/A(OrganicMax)) with A(Organic) corresponds to absorbance at 1658 cm-

1. Data points represent the average of two to four experiments and error bars have been removed 

for clarity. 

 

 Similar to the desorption kinetics of citrate shown in Figure 26, arsenate has the highest 

rate of initial desorption from hematite nanoparticles, while the background 10 mM chloride 

solution has the lowest initial rate of citrate desorption. However, unlike citrate desorption from 

hematite, oxalate desorption is much more rapid, with the surface oxalate peak at 1658 cm-1 being 

nonexistent after 10 minutes of desorption time using arsenate the desorbing agent, and almost 

completely absent after 80 minutes of desorption time using DMA. The high rates of desorption, 
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even by weak desorbing agents like DMA, support the assignment of surface-bound oxalate as 

being partially outer-sphere . 

4.4.3 Desorption kinetics of pyrocatechol due to flowing arsenicals  

 Desorption kinetic experiments of pyrocatechol from hematite nanoparticles were 

conducted using arsenate, DMA, and background KCl at pH 7. Spectra from typical experiments 

are shown in Figure 29. 

 

  

 

Figure 29. ATR-FTIR absorbance spectra correspond to pyrocatechol desorption from 6 mg 

hematite film at pH 7, I = 10 mM KCl, and a 2 mL/min flow rate at room temperature, by the 

flowing of a) 10 mM Cl-, b) 1 mM DMA and c) 1 mM Ars respectively. 
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 Using baseline-corrected peak height absorbances at 1257 cm-1 plotted as a function of 

desorption time, kinetic curves for pyrocatechol desorption from hematite nanoparticles were 

generated, and are shown in Figure 30 along with their linearized citrate desorption kinetics. 

 

   

Figure 30. Desorption kinetic curves generated from the baseline-corrected ATR-FTIR 

absorbances of a) pyrocatechol from 6 mg hematite film at pH 7, I = 10 mM KCl, and a 2 mL/min 

flow rate at room temperature, by 10 mM Cl-, 1.0 mM Arsenate and 1.0 mM DMA, and b) shows 

ln(A(Organic)/A(OrganicMax)) with A(Organic) corresponds to absorbance at 1257 cm-1. Data 

points represent the average of two to four experiments and error bars have been removed for 

clarity. 

 

 Similar to the desorption kinetics shown in Figures 26 and 28, for citrate and oxalate 

desorption respectively, arsenate was observed for pyrocatechol to have the highest initial rate of 

desorption from hematite nanoparticles. However, the initial rate of pyrocatechol desorption by 

DMA is the same as the initial rate of desorption by the background 10 mM chloride solution. One 

possible explanation for this insensitivity of pyrocatechol to DMA as a desorbing agent is that the 

neutral inner-sphere complexes formed by pyrocatechol to the surface of hematite nanoparticles 

are not directly competing with the outer-sphere-forming DMA. Regardless, the insensitivity of 

pyrocatechol towards DMA supports the assignment of surface pyrocatechol to neutral inner-

sphere. 
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4.4.4 Effect of aqueous chloride on the desorption kinetics of surface 

organics 

In addition to the desorption experiments carried out using arsenate and DMA, desorption 

experiments were also performed as a function of chloride concentration from 0 – 1000 mM at pH 

7 to get insight into the type of surface complexes the three model organics form with hematite. 

Using baseline-corrected peak height absorbances plotted as a function of desorption time, kinetic 

curves for citrate, oxalate and pyrocatechol desorption from hematite nanoparticles were generated 

and shown in Figure 31. 

 

 

Figure 31. Desorption kinetics of a) citrate, c) oxalate, and e) pyrocatechol from 6 mg hematite 

film at pH 7, and a 2 mL/min flow rate at room temperature by 0, 10, 100, and 1000 mM Cl-. [Data 

points represent the average of two to four experiments and error bars have been removed for 

clarity.] 
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Linearization of model organic desorption kinetic curves shown in Figure 31 was 

preformed and the resulting linearized adsorption kinetic curves are shown in Figure 32. 

 

Figure 32. Desorption kinetics of a) citrate, c) oxalate, and e) pyrocatechol from 6 mg hematite 

film at pH 7, and a 2 mL/min flow rate at room temperature by 0, 10, 100, and 1000 mM Cl-. b), 

d), and f) show ln(A(Organic)/A(OrganicMax)) with A(Organic) corresponding the band 

measured for citric oxalate, and pyrocatechol respectively. [Data points represent the average of 

two to four experiments and error bars have been removed for clarity.] 
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were generated by taking the natural log of baseline-corrected peak height absorbance values 

normalized against the initial baseline-corrected peak height absorbance at 0 min desorption time 

(equation 9). As predicted by the Langmuir desorption model, the slope of the lease squared fit of 

linearized desorption kinetics will be equal to the observed initial rates of desorption (k’des1). 

Although discussed more in section 4.4.5, oxalate initial rates of desorption are very sensitive to 
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changes in chloride concentration consistent with the assignment of its surface complex as partially 

outer-sphere, while citrate and pyrocatechol show less sensitivity. 

4.4.5 Comparison of surface organics desorption kinetics 

The linearized kinetic curves shown in Figures 26, 28, 30, and 32 were analyzed to obtain 

observed first order rates of desorption of model organics from hematite as listed in Table 8. 

 

Table 8. Linearized first-order observed desorption rates (min-1) of model organics from 6 mg 

hematite film. 

Desorption 

of surface 

organic: 

Desorbing agent 

0 mM KCl 10 mM 

KCl 

100 mM 

KCl 

1000 mM 

KCl 

1.0mM 

Arsenate, 

10 mM 

KCl 

1.0mM 

DMA,       

10 mM 

KCl 

Citrate 0.064  

± 0.002 

0.055  

± 0.004 

0.064  

± 0.005 

0.074  

± 0.009 

0.156 

± 0.017 

0.067 

± 0.010 

Oxalate 0.036  

± 0.015 

0.062  

± 0.001 

0.104  

± 0.024 

0.134  

± 0.016 

0.685 

± 0.283 

0.200 

± 0.013 

Pyrocatechol 0.026  

± 0.001 

0.033  

± 0.002 

0.034  

± 0.018 

0.072  

± 0.002 

0.072 

± 0.021 

0.031 

± 0.005 

 

In desorption experiments using, negatively charged chloride, the ions act as desorbing 

agents as they compete for surface sites on hematite. It is observed that an increase in the chloride 

concentration is correlated with an increase in the initial observed rate of desorption. The exception 

to this is the observed desorption rate of citrate at 0 mM KCl, citrate, which had an increased initial 

observed rate of desorption compared to the observed rate at 10 mM KCl. One possible explanation 
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for this is that although there are more chlorine anions acting as desorbing agents in the 10 mM 

case than the 0 mM case, the presence of a small amount KCl has a stabilizing effect on the citrate–

hematite complex. The stabilizing effect may be through ion pairing with the charged citrate–

hematite complex. The response of citrate desorption to KCl is a further indicator that citrate forms 

a charged complex with hematite. 

Desorption of model organics by arsenate and DMA have the same basic trend, with 

arsenate being a more effective desorbing agent then DMA for all three model organics. The flow 

of 1 mM arsenate at 10 mM KCl gives rise to the largest initial observed rates of desorption for all 

three model organics. Conversely, flowing 1 mM DMA at 10 mM KCl has a varied effect on model 

organic desorption rates from hematite. Oxalate desorption shows a high sensitivity to DMA flow, 

with an initial desorption rate 0.2 min-1 compared with a rate of only 0.062 min-1 for 10 mM KCl 

alone. Conversely, pyrocatechol shows no sensitivity towards the flowing of DMA with the 

observed intial rate of desorption being slightly lower than for 10 mM KCl alone (0.031 and 0.033 

min-1 respectively). The sensitivity of citrate to DMA flow falls in-between with an observed initial 

desorption rate that is greater than the 10 mM KCl control experiment but lower than 1000 mM 

KCl case. 

The comparison of initial observed rates of desorption shows that pyrocatechol surface 

complexes are the most resistant to desorption and oxalate surface complexes the least. This holds 

for all cases with the exception of the 0 mM KCl. The rates of desorption for the 0 mM KCl ionic 

strength experiments is pyrocatechol<oxalate<citrate, which is due to citrate being sensitive to the 

presence of KCl. One of the indicators that an outer sphere complex has been formed is changes 

in electrolyte concentration have an effect on the rate of desorption. The large increase in 

desorption rate of surface oxalate with increases in in chloride concentration helps support the 



70 

 

assignment of the oxalate–hematite complex as outer-sphere. Conversely, the lack of change and 

desorption rate of surface pyrocatechol to changes in chloride concentration helps support the 

assignment of a strong inner-sphere complex between pyrocatechol and the surface of hematite. 

4.5 Adsorption kinetics of arsenic compounds on hematite 

4.5.1 Adsorption on clean surfaces-spectra, spectral assignment and kinetic 

curves 

Figure 33 shows the ATR absorption spectra of arsenate and DMA adsorption onto a clean 

hematite surface. 

 

    

Figure 33. ATR-FTIR absorbance spectra of a) 1.0 mM arsenate and b) 1.0 mM DMA adsorption 

on to a clean, 6 mg hematite film at pH 7, I = 10 mM KCl, and a 2 mL/min flow rate at room 

temperature. 

 

The main feature of adsorbed arsenate on clean hematite observed in Figure 33 a) is at 875 

cm-1.  Arts et al. reported that this feature originates from arsenic-oxygen vibrations associated 

with an inner-sphere bidentate binuclear surface complex.3 The main feature of adsorbed DMA on 

clean hematite observed in Figure 33 b) is at 840 cm-1. Tofan-Lazar and Al-Abadleh report that 

this feature also originates from arsenic-oxygen vibrations and is associated with outer-sphere 
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complexation of DMA with the surface of hematite.39 The negative features at 1485 and 1350 cm-

1 are reported in Brechbuhl et al. to originate from a loss of carbonate from the surface of 

hematite.51 The adsorption of aqueous species to the surface of hematite causes the loss of 

carbonate because carbonate competes with reactive sites on the surface of hematite. Negative 

carbonate features at 1485 and 1350 cm-1 are also observed in the ATR absorption spectra of 

surface adsorbed model organics but appear sharper in the arsenic surface spectra due to lack of 

surface model organic IR absorbance. The ν(As-O) bands at 875 and 840 cm-1 were measured to 

create baseline-corrected kinetic curves seen in Figure 34 for arsenate and DMA respectively.  

 

 

Figure 34. Baseline-corrected adsorption kinetics of a) 1.0 mM arsenate and b) 1.0 mM DMA on 

to a clean, 6 mg hematite film at pH 7, I = 10 mM KCl, and a 2 mL/min flow rate at room 

temperature, respectively. Data points represent the average of two to four experiments. Error bars 

are ±s. 

 

The resulting kinetic curves show that after 80 min adsorption time, both arsenate and 

DMA have reached equilibrium with the surface of hematite. The use of these kinetic curves comes 

from their ability to be analyzed by kinetic model such as the kinetic form the Langmuir adsorption 

model to extract rates of adsorption. 
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4.5.2 Adsorption of arsenicals on surface pre-exposed to model organic 

matter-kinetic curves 

Figure 35 shows the ATR absorption spectra of arsenate (a, c and e) and DMA (b, d and c) 

adsorption onto hematite surface pre-exposed to model organics. 

 

  

  

   

Figure 35. ATR-FTIR absorbance spectra of 1.0 mM arsenate adsorption on to a a) citrate, c) 

oxalate and e) pyrocatechol saturated 6 mg hematite film and 1.0 mM DMA adsorption on to a b) 

citrate, d) oxalate and f) pyrocatechol saturated 6 mg hematite film at pH 7, I = 10 mM KCl, and 

a 2 mL/min flow rate at room temperature. All absorbance spectra were generated using the 

corresponding 80 min model organic adsorption time single beam spectra as reference spectra. 
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Bands at around 875 cm-1 assigned to adsorbed arsenate and those bands at 840 cm-1 

assigned to adsorbed DMA were measured to create baseline-corrected kinetic curves for 

arsenicals adsorption on the surface of hematite as a function of adsorption time. In order to 

determine initial rates of adsorption of arsenate and DMA on hematite, kinetic curves were 

linearized using equation 5 and plotted as a function of adsorption time. Both kinetic curves and 

linearized kinetic curves for arsenate are shown in Figure 36 a) and b), and Figure 36 c) and d) for 

DMA. 

 

  

  

Figure 36. Baseline-corrected adsorption kinetics of a) arsenate and c) DMA respectively, on 

citrate, oxalate, pyrocatechol and unreacted hematite films at pH 7, I = 10 mM KCl, and a 2 

mL/min flow rate at room temperature, and b) and d) show ln(1-(A(As)/A(AsMax))) with A(As) 

corresponding to each hematite film’s arsenate or DMA peak respectively. Data points represent 

the average of two to four experiments and error bars have been removed for clarity. 
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Table 9 contains first-order observed rate constants of arsenate and DMA adsorption onto 

hematite clean and pre-exposed to model organics. 

 

Table 9. Linearized first-order observed rate constants of 1.0 mM arsenate and 1.0 mM DMA 

adsorption onto 6 mg hematite in the presence and absence of adsorbed model organics. 

Surface Observed Rate (min-1) 

1.0 mM arsenate adsorption 

Observed Rate (min-1) 

1.0 mM DMA adsorption 

Unreacted hematite 0.21 ± 0.01 0.20 ± 0.01 

Hematite/Citrate 0.19 ± 0.02 0.20 ± 0.03 

Hematite/Oxalate 0.27 ± 0.02 0.30 ± 0.05 

Hematite/Pyrocatechol 0.12 ± 0.03 0.16 ± 0.04 

 

A few observations can be made from the kinetic curves in Figure 36 and first order 

observed rates of adsorption listed in Table 9 for each combination of arsenical and hematite 

surface. Citrate is not observed to have a significant effect on the initial rate of arsenate or DMA 

adsorption to hematite. A possible explanation for this is that the inner-sphere monodentate 

complex formed by citrate on the surface of hematite is blocking off the reactive surface sites that 

this inhibiting effect is counteracted by the increased electrostatic attraction provided by 

electrolytes within the diffuse double layer around the charged surface citrate. Citrate on the 

surface of hematite may allow for a larger diffuse double layer of electrolytes to form compared 

with unreacted hematite. Conversely, oxalate is observed to have an enhancing effect on the rate 

of adsorption of arsenate and DMA to the surface of hematite. One possible explanation for this is 

that surface bound oxalate also allows for a larger diffuse double layer of electrolytes to form 

because it is a much better leaving group then citrate it does not block reactive sites on the surface 

of hematite as effectively, thus leading to an increase in adsorption rates of arsenate and DMA. 

The results obtained from arsenate and DMA kinetic curves show that surface pyrocatechol has an 
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inhibitory effect on the initial rate of adsorption of arsenate but no significant effect on the rate of 

DMA adsorption. One explanation for this is that the surface pyrocatechol is blocks binding sites 

on hematite, which lowers the adsorption rate of arsenate and DMA, but the nonpolar interactions 

between phenolic groups on pyrocatechol and methyl groups on DMA lead to an increase in the 

adsorption rate of DMA. This would explain why pyrocatechol lowers the initial rate of adsorption 

of arsenate but is not observed to have an effect on DMA. To try to better understand these 

observations, arsenate adsorption experiments were repeated in triplicate over range of 

concentrations in order to extract pseudo- first order rate adsorption constants using equation 6, 

for arsenate on hematite nanoparticles. These experiments were conducted on clean hematite, 

oxalate and pyrocatechol hematite surfaces, the latter two having produced the highest and lowest 

observed first order rates of adsorption respectively. Figure 37 shows the observed first order rate 

constants and the maximum arsenate adsorption on oxalate, pyrocatechol and unreacted hematite 

surfaces. 

 

  

Figure 37. Dependency of a) the observed initial rate of adsorption (robs) on [arsenate(aq)] on 

hematite surfaces in the presence and absence of surface organics. Lines through the data represent 

linear least-squares fits and b) shows maximum adsorption of arsenate on hematite surfaces in the 

presence and absence of surface organics as a function of [arsenate(aq)]. Error bars are ±s. 
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Figure 37 a) confirms the trend observed in Figure 36 b) that surface oxalate increases, 

while surface pyrocatechol decreases the initial rate of arsenate adsorption. Table 10 lists the 

pseudo- first order rate constants for arsenate adsorption on hematite surfaces in the presence and 

absence of surface model organics. From Figure 37 b), the presence of pyrocatechol on the surface 

of hematite is not observed to have a significant inhibiting effect on the maximum adsorption of 

arsenate nor surface oxalate to have an increased the maximum adsorption. A possible explanation 

for this is that although both pyrocatechol and oxalate can alter the initial rates of arsenate 

adsorption to hematite, under longer reaction times they are simply desorbed from the surface of 

hematite and arsenate is able to reach equilibrium with the surface. 

 

Table 10. Best-fit parameters from the linear least-squares regression to the experimental data of 

the observed adsorption rate (robs) versus [arsenate(aq)] as shown in Figure 37. For the adsorption 

of arsenate on hematite in the presence and absence of surface organics. 1 mM solution of each 

organic was flown over hematite for 80 min at 10 mM KCl and pH 7 prior to arsenate flow. 

Surface organic (1.0 mM) Arsenate peak (cm-1) First order rate constant (min-1 

mM-1 arsenate) 

Unreacted hematite 875 0.14 ± 0.03 

Oxalate/hematite 879 0.21 ± 0.03 

Pyrocatechol/hematite 871 0.10 ± 0.02 

 

Based on the differences in the pseudo- first order rate constants of arsenate adsorption on 

hematite surfaces in the presence and absence of surface organics in Table 10, the differences in 

the pseudo- first order rates of adsorption were found to be significant. The same set of experiments 

were carried out over range of DMA concentrations on hematite (either reacted or unreacted with 

model organics) in order to extract the pseudo- first order rates of DMA adsorption to hematite 
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nanoparticles using equation 6. Figure 38 shows the observed first order rate constants, as well as 

the maximum DMA adsorption, on oxalate, pyrocatechol and unreacted hematite surfaces. 

 

 

Figure 38. a) Dependency of a) the observed initial rate of adsorption (robs) on [DMA(aq)] on 

hematite surfaces in the presence and absence of surface organics. Lines through the data represent 

linear least-squares fits and b) shows maximum adsorption of DMA on hematite surfaces in the 

presence and absence of surface organics as a function of [DMA(aq)]. Error bars are ±s. 

 

 The same general trend for DMA max adsorption is observed in Figure 38 b) as was found 

in Figure 37 b), with no significant difference in max DMA adsorption on different hematite 

services. The pseudo- first order rate binding constants shown in Figure 38 a) are listed in Table 

11. 

 

Table 11. Best-fit parameters from the linear least-squares regression to the experimental data of 

the observed adsorption rate (robs) versus [DMA(aq)] as shown in Figure 38. For the adsorption of 

DMA on hematite in the presence and absence of surface organics. 1 mM solution of each organic 

was flown over hematite for 80 min at 10 mM KCl and pH 7 prior to DMA flow. 

Surface organic (1.0 mM) DMA peak (cm-1) First order rate constant (min-1 

mM-1 DMA) 

Unreacted hematite 840 0.06 ± 0.02 

Oxalate/hematite 840 0.11 ± 0.06 

Pyrocatechol/hematite 800 0.10 ± 0.04 
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 The results obtained for concentration-dependent DMA adsorption onto hematite films 

either reacted or unreacted with model organics is less definitive than the results obtained from 

arsenate experiments. While oxalate was observed to have an enhancing effect on the observed 

initial rates of DMA adsorption, the slope of these initial rates plotted against the concentration of 

DMA, kads1, is essentially the same as the associated kads1 for DMA on pyrocatechol hematite 

nanoparticles. One large difference between these results are the y-intercepts, which are equal to 

kdes1 according to equation 6, with the oxalate-reacted hematite surface having a much larger kdes1 

than that of DMA on pyrocatechol or on unreacted hematite. 

5 Conclusions and significance 

In conclusion, based on the results presented herein, the effect of small molecular weight 

organic on the binding of arsenicals to hematite is not purely inhibitory. Unlike studies involving 

large molecular weight natural organic matter, small molecular weight organic can either have an 

inhibiting or stimulating effect on the binding of arsenicals to hematite. This conclusion is based 

on the pseudo- first order rate constants of arsenate and DMA adsorption to hematite nanoparticles 

in the presence and absence of model organics. While surface pyrocatechol presence decreases 

arsenate binding kinetics, oxalate was observed to have increased rates of arsenate and DMA 

adsorption. This observed difference in effect is attributed to the ability of these organics to block 

binding sites on the surface of hematite and affect the presence of charged electrolytes in the 

diffuse double layer. The lack of change in adsorption kinetics of DMA on pyrocatechol hematite 

is hypothesized to be caused by nonpolar interaction between methyl and phenolic groups 

offsetting inhibitory effects of surface pyrocatechol. Both citrate and pyrocatechol were shown to 

form inner-sphere complexes on the surface of hematite with citrate forming a negatively charged 

monodentate and pyrocatechol both a mono and bidentate complexes. Oxalate in this work is 
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observed to form week outer-sphere complexes based on its sensitivity to changes in chloride 

concentration during the desorption experiments. This observation explains the enhancing effect 

of oxalate on rates of arsenate and DMA binding. 

 This work is significant because it provides a better fundamental understanding of the 

effect that different functional groups have on the binding of organics to geosorbents. This may 

aid in environmental modeling of organics through application of equilibrium constants. Also, 

the results provide a better understanding of the factors affecting the binding of arsenic 

compounds to geosorbents in the presence of organics, which helps to better model residence 

time of arsenicals in the aqueous phase and thus possibly predict their bioavailability and 

presence in drinking water. Application of these results may also aid in incorporating the effect 

of organics and fate/transport modelling of arsenicals. Finally, small molecular weight organics 

may serve specific functions within the environment (such as siderophores), or act as pollutants 

(such as artificial sweeteners) and hence their surface chemistry gives a better understanding of 

their environmental mobility. 
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Appendix A: Macros used in data collection 

The number of scans is changed from 100 (used for manual spectra collection) to 5 or 25 

depending on if an organic or an arsenical is being flown. 

 

Macros Basic is opened and the spectrum collection macro is opened and the “Start of Loop” 

value adjusted to 50 or 40 depending on the spectra to be collected (50 for organics and 40 for 

arsenicals). 
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The macros is then run at the precise point when the solution reaches the ATR flow cell (the 

pump is started and one hand is on “Enter” while the other is on the stopwatch). 

 

After the collection is finished the macros window is reappear on the screen. 
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The number of scans is changed back in preparation for collection of manual scans. 
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Appendix B: Macros used in data analysis 

Macros is the useful program that we use to analyze Omnic spectra when there are too many in 

one experiment to analyze manually. 

In Omnic, drag the black bar at the bottom of the screen to zoom in on the base line that will be 

used (should be about 50cm^-1 away from the base line). 

 

Press the full scale near the top of the screen 

 

Open Macros and open the data analysis macro. 
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The following fields must be edited in the macro to correspond to the experimental data to be 

analyzed: Page 1: Open, Reprossess, Save As, Page 2: Open, Reprossess, Save As, and Page 3: 

Peak Height, Open Log. Each field is edited by double clicking. 

In the window, change the “file name” to the location of the folder that has the single beam spectra 

followed by: \#mv6#.spa 



85 

 

 

The location of your folder is what is written in the top left hand corner of the window when you 

have that folder open: 

 

Press OK 

The same thing is done for Save As, this time using the location of the folder the possessed 

absorbance spectra are to be saved. 

The “Reprocess” field is to be edited by clicking “Browse” and selecting the reference spectra to 

be used in possessing. 



86 

 

 

These steps are repeated for “Open”, “Save As” and “Reprocess” on page 2. 

“Open Log” on page 3 is edited to include the file name of the resulting log file that is produced 

by the macros and where the file is to be saved. 
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“Peak Height” is to be edited for the baseline and peak location of the absorbance peak being 

analyzed. 



88 

 

 

File then Save in the drop down menu. 

File then Run in the drop down menu and select the macros analysis file 

The last 4 digits of the single beam two before the first spectra to analyzed are entered into the first 

pop up. 
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Two higher than the number of spectra to be possessed is entered into the second pop up. 

 

The base number of the spectra to be possessed (the number ahead of the last four numbers) is 

entered into the last pop up. 

 

The macro is now running. 

Once Macros is finished, the Omnic window is selected. 

In Omnic; the log window is closed to generate the log file. 
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The log file is opened with Excel, column A selected and the Data tab selected. 

 

“Text to Columns” is selected and the data is changed to tab delimited as follows. 
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The Excel file now looks as follows: 

 

Using the OFFSET function the peaks heights are extracted. 
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The peak height data can then be copied into Igor Pro for processing. 
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Appendix C: Spectral Math used in data analysis 

Spectral math is used when analyzing spectra generated from aqueous tests (no film) 

Both the single beam KCl reference spectrum (0002) and the single beam spectrum to be 

analyzed (0003) are opened. 

 

Absorbance spectra are generated by referencing both single beam spectrum to the dry ATR cell 

(0001) which is either Ge or ZnSe. 
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Spectral math is then opened by after selecting the spectra to be analyzed and the KCl reference 

spectrum in OMNIC. 
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The resulting spectrum is generated in spectral math using “Calculate”. 

 

The K factor is adjusted to minimize water absorbance at 1643cm-1. 
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The absorbance spectrum is then added using “Add” to a new window in OMNIC for further 

analysis. 
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Appendix D: Speciation curve calculations 

The following formulas where used to general the speciation curves presented in section 4.1 

CHARACTERIZATION OF AQUEOUS PHASE MODEL ORGANICS USING ATR-FTIR. 

Citric acid: CAH3 

[𝐶𝐴𝐻3] =
𝐶𝐴𝑇

1 +
𝑘𝑎1

[𝐻+]
+

𝑘𝑎1𝑘𝑎2

[𝐻+]2

 

[𝐶𝐴𝐻2
−] =

𝐶𝐴𝑇

[𝐻+]
𝑘𝑎1

+ 1 +
𝑘𝑎2

[𝐻+]
+

𝑘𝑎2𝑘𝑎3

[𝐻+]2

 

[𝐶𝐴𝐻2−] =
𝐶𝐴𝑇

[𝐻+]2

𝑘𝑎1𝑘𝑎2
+

[𝐻+]
𝑘𝑎2

+ 1 +
𝑘𝑎3

[𝐻+]

 

[𝐶𝐴3−] =
𝐶𝐴𝑇

[𝐻+]2

𝑘𝑎2𝑘𝑎3
+

[𝐻+]
𝑘𝑎3

+ 1
 

ka1 = 3.13, ka2 = 4.76, ka3 = 6.40, CAT = 0.001M, concentrations normalized against this value. 

Oxalic acid: OAH2 

[𝑂𝐴𝐻2] =
𝑂𝐴𝑇[𝐻+]2

[𝐻+]2 + 𝑘𝑎1[𝐻+] + 𝑘𝑎1𝑘𝑎2
 

[𝑂𝐴𝐻−] =
𝑂𝐴𝑇𝑘𝑎1[𝐻+]

[𝐻+]2 + 𝑘𝑎1[𝐻+] + 𝑘𝑎1𝑘𝑎2
 

[𝑂𝐴2−] =
𝑂𝐴𝑇𝑘𝑎1𝑘𝑎2

[𝐻+]2 + 𝑘𝑎1[𝐻+] + 𝑘𝑎1𝑘𝑎2
 

ka1 = 1.25, ka2 = 4.14, OAT = 0.001M, concentrations normalized against this value. 
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Pyrocatechol: PCH2  

[𝑃𝐶𝐻2] =
𝑃𝐶𝑇[𝐻+]2

[𝐻+]2 + 𝑘𝑎1[𝐻+] + 𝑘𝑎1𝑘𝑎2
 

[𝑃𝐶𝐻−] =
𝑃𝐶𝑇𝑘𝑎1[𝐻+]

[𝐻+]2 + 𝑘𝑎1[𝐻+] + 𝑘𝑎1𝑘𝑎2
 

[𝑃𝐶2−] =
𝑃𝐶𝑇𝑘𝑎1𝑘𝑎2

[𝐻+]2 + 𝑘𝑎1[𝐻+] + 𝑘𝑎1𝑘𝑎2
 

ka1 = 9.4, ka2 = 12.8, PCT = 0.001M, concentrations normalized against this value. 
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