
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Theses and Dissertations (Comprehensive) 

2013 

AN INVESTIGATION OF ALTERNATIVE OXIDASE PRESENCE, AN INVESTIGATION OF ALTERNATIVE OXIDASE PRESENCE, 

EXPRESSION, AND REGULATION IN THE MOSS EXPRESSION, AND REGULATION IN THE MOSS 

PHYSCOMITRELLA PATENS PHYSCOMITRELLA PATENS 

Karina I. Neimanis 
Wilfrid Laurier University, neim7830@mylaurier.ca 

Follow this and additional works at: https://scholars.wlu.ca/etd 

 Part of the Bioinformatics Commons, Biology Commons, and the Molecular Biology Commons 

Recommended Citation Recommended Citation 
Neimanis, Karina I., "AN INVESTIGATION OF ALTERNATIVE OXIDASE PRESENCE, EXPRESSION, AND 
REGULATION IN THE MOSS PHYSCOMITRELLA PATENS" (2013). Theses and Dissertations 
(Comprehensive). 1619. 
https://scholars.wlu.ca/etd/1619 

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for 
inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ 
Laurier. For more information, please contact scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F1619&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=scholars.wlu.ca%2Fetd%2F1619&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=scholars.wlu.ca%2Fetd%2F1619&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=scholars.wlu.ca%2Fetd%2F1619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/1619?utm_source=scholars.wlu.ca%2Fetd%2F1619&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


 

 

 

 

AN INVESTIGATION OF ALTERNATIVE OXIDASE PRESENCE, EXPRESSION, AND 

REGULATION IN THE MOSS PHYSCOMITRELLA PATENS 

 

 

 

by 

 

 

 

Karina I. Neimanis 

 

Honours B.Sc. Biology, Wilfrid Laurier University, 2011 

 

 

 

 

 

 

 

 

 

THESIS 

Submitted to the Department of Biology 

Faculty of Science 

in partial fulfilment of the requirements for the 

Master of Science in Integrative Biology 

Wilfrid Laurier University 

2013 

 

 

 

 

 

 

 

 

 

Karina I. Neimanis 2013© 



 

 

 

i 

Abstract 

 Alternative oxidase (AOX) is an inner mitochondrial membrane protein that introduces a 

branch point at ubiquinone within the respiratory electron transport system (ETS). The AOX 

protein bypasses two sites of proton translocation within the ETS and as a result the yield of ATP 

per oxygen consumed is significantly reduced. Although AOX appears to be energetically 

wasteful, recent studies have revealed that AOX has a wide taxonomic distribution. AOX 

multigene families, transcripts, protein levels, and enzymatic activity have been most thoroughly 

characterized in many angiosperm (flowering) plants. Given the data available for angiosperm 

AOXs, evidence of non-angiosperm AOXs in the primary literature is scarce and therefore is a 

logical starting point for comparative studies. The bioinformatics results suggest that AOX is an 

ancient character in the Viridiplantae, as it is present within algae, a liverwort, a moss, lycopods, 

ferns, and many gymnosperms. Most interestingly, it appears that the moss Physcomitrella 

patens possesses a single AOX gene; a characteristic unobserved in all angiosperm AOXs 

studied to date. This finding has been validated by sequence analysis of a cloned P. patens AOX 

cDNA that was amplified by PCR using specific genomic primers. Reverse transcriptase PCR 

has demonstrated that AOX is expressed in P. patens and sequencing analysis suggests that AOX 

has all the residues to be catalytically active. At the protein level, moss AOX was heterologously 

expressed in the yeast Saccharomyces cerevisiae and protein expression was analyzed by 

performing mitochondrial isolations, SDS-PAGE, and immunoblots. Preliminary studies using 

respirometry and site-directed mutagenesis of key residues were undertaken, and it is anticipated 

that the optimization of these procedures will yield useful data in future studies. A greater 

understanding of the AOX pathway in non-angiosperm plants is of importance as it will 
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contribute to understanding the evolutionary history of AOX and may help determine its 

physiological function(s). 
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Introduction 
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1. Introduction 

1.1. Cellular Respiration and the Alternative Oxidase Pathway 

 All living cells require energy to carry out essential metabolic processes. Cellular 

respiration is the biochemical process by which cells obtain energy from the breakdown of 

organic molecules such as glucose. Several metabolic pathways are involved in the storage of 

energy in the form of adenosine triphosphate (ATP), these include: glycolysis, pyruvate 

oxidation, the citric acid cycle (TCA), and oxidative phosphorylation. The first three stages 

produce substrates (NADH and FADH2) that donate electrons to protein complexes and mobile 

carriers used in the final pathway. Oxidative phosphorylation is the major site of ATP synthesis 

and involves two components, an electron transport system (ETS) and ATP synthase (Brooker et 

al., 2008).  

 The ETS is located in the inner mitochondrial membrane (IMM) and consists of four 

multisubunit protein complexes (I to IV) and small electron carriers (ubiquinone and cytochrome 

c) (Figure 1.1). In a linear manner, electrons are transferred to each complex via redox reactions. 

At the beginning of the chain, electrons are donated to complex I and II from the oxidation of 

NADH and FADH2, respectively. Electrons transfer from complex I or II to ubiquinone which 

becomes reduced to ubiquinol. Electrons are transported from ubiquinol to complex III, to 

cytochrome c, and terminate at complex IV where oxygen is the final electron acceptor and is 

reduced to water (Brooker et al., 2008; Figure 1.1). Simultaneously, the energy released during 

electron transport is coupled to the translocation of protons across the IMM by three of the four 

complexes (Figure 1.1). This generates an electrochemical gradient that can be used to 

synthesize ATP by the enzyme ATP synthase. However, the presence of specific compounds can 



 

 

 

3 

render the terminal complexes of the ETS inactive. Antimycin A and cyanide are examples of 

inhibitors that will restrict electron flow at complexes III and IV, respectively (Siedow and 

Umbach, 1995; Albury et al., 2002). Despite this, it has been observed that respiration will still 

occur even under the influence of these inhibitors; this is due to a second pathway using the 

alternative oxidase (AOX) (Bendall and Bonner, 1971).  

 The AOX pathway is insensitive to all known inhibitors of the last two complexes of the 

ETS, and as a result it is referred to as ‘cyanide-resistant’ respiration (McDonald and 

Vanlerberghe, 2006). However, it has been demonstrated that AOX is sensitive to the 

compounds n-propyl gallate (nPG) and salicylhydroxamic acid (SHAM) (Siedow and Umbach, 

1995; Figure 1.1). AOX is a non-proton motive, terminal quinol oxidase protein that dissipates 

energy in the form of heat through the reduction of oxygen to water (Berthold et al., 2002; Figure 

1.1). This pathway introduces a branch point at ubiquinone, bypassing two sites of proton 

translocation within the ETS and as a result fewer ATP are generated per oxygen consumed 

(Guy et al., 1989; McDonald and Vanlerberghe, 2006; Figure 1.1). 

1.2. Taxonomic Distribution of AOX 

Despite the fact that AOX appears to be energetically wasteful, recent studies have 

revealed that AOX has a wide taxonomic distribution and is found in 2 of the 3 domains of life, 

excluding the Archaea. AOX is present in many plants, fungi, proteobacteria, protists, and has 

been recently identified in several animal species (McDonald, 2008). However, the most 

extensive distribution of AOX has been observed in the Viridiplantae. In basal plants, AOX has 

only been characterized in a single green algal species, Chlamydomonas reinhardtii (Dinant et 

al., 2001). The majority of AOX research has been conducted on a number of angiosperms 
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(flowering plants) (McDonald et al., 2002). AOX multigene families, gene expression, protein 

levels, and enzymatic activity have been thoroughly characterized in many angiosperm species 

such as Arabidopsis thaliana, soybean (Glycine max), tobacco (Nicotiana tabacum), rice (Oryza 

sativa), and voodoo lily (Sauromatum guttatum) (Vanlerberghe et al., 1998; Saika et al., 2002; 

Frederico et al., 2009). 

1.3. Physiological Role(s) of AOX 

 Even though AOX is widely distributed in nature, its physiological function(s) still 

remains unclear (Saika et al., 2002). The only confirmed function of AOX has been identified in 

thermogenic plant species such as the sacred lotus (Nelumbo nucifera) and dead horse arum 

(Helicodiceros muscivorus) (Angioy et al., 2004; Watling et al., 2006). Recent work has 

demonstrated that when AOX is active it will heat the plant during thermogenesis, thereby 

allowing it to survive at low temperatures (Watling et al., 2006). In addition, the heat that is 

generated will promote pollination by increasing the emission of an odour that is attractive to 

insect pollinators (Angioy et al., 2004). However, this function does not explain why AOX is 

present in non-thermogenic plants, a group which comprises the majority of plant species 

(McDonald, 2008).  

 Many alternative hypotheses have been made in an attempt to explain why a large group 

of taxa, particularly non-thermogenic plants, would possess this seemingly wasteful pathway. It 

has been proposed that AOX may play a key role in controlling oxidative damage (Maxwell et 

al., 1999), and in balancing carbon metabolism and electron transport (McDonald, 2008). 

Previous studies have also revealed that AOX activity increases when organisms are subjected to 
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biotic and abiotic stress (McDonald, 2008). Therefore, AOX may be advantageous to plants as 

they are sessile and constantly experience changing environmental conditions.  

1.4. AOX Gene Structure and Expression 

 AOX is a nuclear-encoded gene and exists as a multigene family (typically three to five 

genes) in most monocot and dicot angiosperm species (Vanlerberghe and McIntosh, 1997; Van 

Aken et al., 2009). Two AOX subfamilies have been identified in higher plants, AOX1 and 

AOX2. The AOX1-type is present in both monocots and dicots, whereas the second subtype, 

AOX2, is found in eudicot species but is absent in all monocots (Considine et al., 2002). The 

physiological importance of these subtypes has yet to be determined, however, it has generally 

been observed that accumulation of AOX1 is induced in response to environmental cues such as 

low temperature and anoxic conditions (Costa et al., 2010). In contrast, AOX2 is often expressed 

during different stages in plant development and is the prevalent form expressed in eudicots 

(Considine et al., 2002). However, a recent study by Costa et al. (2010) revealed that both 

subtypes were expressed when subjected to stress, indicating for the first time that AOX2 gene 

expression in cowpea (Vigna unguiculata) is both constitutive and inducible.  

 The exon/intron structure of AOX1 and AOX2 has been investigated in several 

angiosperms. A study by Considine et al. (2002) revealed that both subtypes in Arabidopsis and 

rice generally had four exons that were interrupted by three introns (Figure 1.2). Similar gene 

structure was also seen in both AOX genes of cowpea and soybean (Costa et al., 2010). 

Furthermore, it was observed that the intron positioning in three regions along the terminal 

portion of the gene in Arabidopsis and rice AOX was highly conserved among these species 

(Considine et al., 2002; Figure 1.2). 
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1.5. AOX Protein Structure and Regulation 

 AOX is a homodimeric protein that has been categorized within the group of di-iron 

carboxylate proteins (Berthold et al., 2002). Structurally, AOX is made up of a di-iron centre and 

four helices that associate with the IMM (McDonald, 2008). Highly conserved amino acids have 

been identified within the four helices that are thought to play a role in AOX enzymatic function 

and regulation.  

 Several glutamate (Glu) and histidine (His) residues are required for AOX activity, as 

they are responsible for coordinating the di-iron centre (Siedow et al., 1995). This has been 

demonstrated using site-directed mutagenesis of the AOX sequence in species such as the 

voodoo lily (Sauromatum guttatum) (Albury et al., 2002) and Arabidopsis thaliana (Berthold et 

al., 2002). The iron-ligands (based on the numbering in A. thaliana AOX1a) are:  Glu-183, Glu-

222, His-225, Glu-273, Glu-324, and His-327 (Berthold et al., 2002). 

 Cysteine 127 (Cys-127) is another highly conserved amino acid residue within 

angiosperm AOX sequences (Vanlerberghe et al., 1998; Berthold et al., 2000). This cysteine is 

responsible for the redox regulation of AOX and its requirement for AOX regulation in some 

plant species has been verified using site-directed mutagenesis (Vanlerberghe et al., 1998). In 

plants, AOX exists as a dimer due to a non-covalent association between the monomers (Figure 

1.3). The dimeric subunits of the AOX protein have the capability to interconvert between 

covalently linked (oxidized) and non-covalently linked (reduced) forms (Vanlerberghe et al., 

1998). The oxidized dimer forms an intersubunit disulfide bridge resulting from the interaction 

of Cys-127 residues in each monomer (Umbach and Siedow, 1993; Figure 1.3). This protein 

state displays little activity, whereas the reduction of the disulfide-linked subunits produces the 
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active form of the protein (Vanlerberghe et al., 1998; Figure 1.3). The conversion between these 

two forms in vitro can be achieved with the addition of a reducing agent, such as dithiothreitol 

(DDT), or an oxidizing agent, such as diamide (Umbach and Siedow, 1993) and visualized using 

non-reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). 

Additionally, treatment with α–keto acids, such as pyruvate, can further stimulate the reduced 

dimer activity by possibly interacting with the sulfhydryl group of Cys-127 (Umbach and 

Siedow, 1993; Figure 1.3). Holtzapffel et al. (2003) has demonstrated that some angiosperm 

AOX proteins are regulated and activated by succinate rather than pyruvate, due to the 

substitution of Cys-127 by a serine residue. 

1.6. Non-angiosperm Plant AOXs 

 Although AOX is said to be ubiquitous in the plant kingdom, evidence for non-

angiosperm (non-flowering plant) AOXs in the primary literature is scarce. These were the 

earliest plants to emerge onto land and originated from the Zygnematales green algae (Timme et 

al., 2012; Figure 1.4). Non-angiosperms can be classified into three different groups based on 

their morphology, physiology, and reproduction (Figure 1.4). The first group consists of the non-

vascular seedless plants collectively known as the bryophytes and includes liverworts, 

hornworts, and mosses (Figure 1.4). The development of vascular tissue characterizes the second 

group that is comprised of lycophytes (clubmosses, spikemosses, and quillworts) and pterophytes 

(ferns and horsetails) (Figure 1.4). Lastly, the origin of seeds marked an important evolutionary 

development by the gymnosperms, a group that includes cycads, conifers, Ginkgo, and Gnetales 

(Figure 1.4). 



 

 

 

8 

 Of the few studies that have investigated non-angiosperm AOX, the majority of the data 

have been collected from gymnosperms. Previous mitochondrial studies have suggested the 

presence of AOX in the gymnosperms Araucaria angustifolia (Mariano et al., 2008) and Picea 

glauca (Johnson-Flanagan and Owens, 1986; Weger and Guy, 1991). Additionally, putative 

gymnosperm AOX sequences have been identified using bioinformatics in a wide variety of 

pines and spruces such as Cryptomeria japonica, Picea engelmannii, Picea glauca, Picea 

sitchensis, Pinus pinaster, Pinus pinea, Pinus taeda, and Pseudotsuga menziesii (McDonald and 

Vanlerberghe, 2006; Frederico et al., 2009). To date, only a limited number of AOXs have been 

reported in basal plants such as Marchantia polymorpha, Physcomitrella patens, Selaginella 

moellendorffii, Selaginella lepidophylla, and Adiantum capillus-veneris (Frederico et al., 2009). 

1.7. Physcomitrella patens as a Model System 

 The moss Physcomitrella patens has been extensively used in genetic studies over the 

past decade. P. patens is a widely distributed moss that is abundant in temperate regions 

including regions of North America, Europe, Africa (Prigge and Bezanilla, 2010). Mosses show 

alternation of generations where they interchange between the haploid (gametophyte) and diploid 

(sporophyte) stages of their life cycle to produce spores (Figure 1.5). The diploid sporophyte is 

generally dominant in the majority of plants that display this life cycle; however, the haploid 

gametophyte phase is dominant in moss (Cove, 2005; Smidkova et al., 2010; Figure 1.5). This 

feature makes P. patens an ideal model system over other plants because mutations can be 

detected and analyzed earlier in development than species with a dominant diploid phase (Cove, 

2005). P. patens is an attractive model organism for plant molecular biology studies due to the 

availability of the complete genome sequence; the fact that it can grow rapidly and easily in a 
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laboratory setting; and its ability to incorporate foreign DNA by way of homologous 

recombination (Hohe et al., 2004; Rensing et al., 2008). As an expression system, P. patens has 

been exploited to investigate gene function by knock-out analysis, plant regulatory mechanisms, 

and recombinant protein expression (Hohe et al., 2004; Cho et al., 2007; Chater et al., 2011).  

2. Purpose 

The purpose of this study is to determine the similarities and differences between 

angiosperm and non-angiosperm AOXs by making comparisons at the levels of gene 

characteristics, transcript expression, and protein. Since angiosperm AOXs are encoded by a 

multigene family, they are challenging to study in these systems due to potential redundancy. 

The aim of this thesis is to characterize AOX for the first time in a non-angiosperm plant that can 

then be used as a model organism for future AOX studies. Ultimately, this research will 

contribute to understanding the evolutionary history of plant AOXs and may help determine the 

physiological function(s) of this protein. 

2.1. Rationale 

 Given that there is little known about AOX in non-angiosperm plants, it is important to 

perform an initial characterization of this protein in a model system. Therefore, the objectives of 

this study are to: 

1. Assess the taxonomic distribution of AOX in non-angiosperm members of the 

Viridiplantae using bioinformatics. Comparisons will be made at the amino acid level to 

identify similarities and differences between all plant AOXs.  
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2. Investigate P. patens AOX gene structure, expression and subtypes (AOX1/AOX2). 

Intron/exon structure will be examined using bioinformatics and comparisons will be 

made to angiosperm AOX gene (intron/exon) structure. Polymerase chain reaction (PCR) 

will be used to confirm the presence of AOX gene(s) in P. patens and amplified 

fragments will be cloned into a bacterial vector for sequencing. Bioinformatic analysis 

and PCR will be used to determine the AOX gene copy number and to verify what 

AOX1/AOX2 subtype(s) are present in moss. 

3. Examine P. patens AOX transcript copy number and expression. AOX transcript copy 

number will be determined using bioinformatics. Expression will be assessed by reverse 

transcriptase polymerase chain reaction (RT-PCR). 

4. Analyze P. patens AOX protein structure, size, conformation, localization, and 

functionality. Bioinformatics will be employed to determine if the amino acid residues 

that are essential for angiosperm AOX activity are conserved in moss. Recombinant P. 

patens AOX proteins will then be expressed in a heterologous system to analyze protein 

size and the oxidized/reduced forms will be detected in moss mitochondria by performing 

SDS-PAGE and immunoblotting. Finally, AOX functionality will be investigated by 

mutating key amino acid residues through site-directed mutagenesis and activity will be 

assessed through respirometry. 

2.2. Hypotheses 

 I predict that AOX is widespread in the Viridiplantae based on its presence in the green 

alga Chlamydomonas reinhardtii and many angiosperms. Based on previous bioinformatics 

work, I believe that I will be able to verify the presence of a single AOX gene within the moss P. 
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patens using PCR.Previous in silico analyses of P. patens AOX indicates that there are likely 

three transcript copies due to alternative splicing and I will confirm AOX transcript expression 

by RT-PCR.  These hypotheses will be tested in Chapter 2.  It is also hypothesized that the AOX 

enzyme is active in moss due to the presence of the conserved glutamate, histidine, and cysteine 

residues necessary for protein activity as determined from previous bioinformatics results. Due 

to the previous success of heterologous expression of non-plant AOXs in yeast, I also expect that 

recombinant moss AOX will be detected in isolated yeast mitochondria by an AOX specific 

antibody as described by Lang et al. (2011). Through respirometry, I anticipate that wild-type 

AOX will be functional and that activity will be abolished in mutant AOX strains. These 

hypotheses will be tested in Chapter 3. 
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Figure 1.1. A representative diagram of the alternative oxidase (AOX) pathway within the 

respiratory electron transport system (ETS). The four protein complexes (I to IV) within the ETS 

sequentially transfer electrons (e-) by way of redox reactions. High-energy electrons are transferred 

to complex I and II by the oxidation of NADH and FADH2, respectively. One-by-one, electrons are 

passed to ubiquinone (Q), complex III, cytochrome c (c), and lastly to complex IV. Simultaneously, 

protons (H+) are pumped across the inner mitochondrial membrane (IMM) and into the 

intermembrane space by complexes I, III, and IV. The translocation of protons creates an 

electrochemical gradient that can be used to generate ATP by the enzyme ATP synthase. The AOX 

pathway branches at ubiquinone and bypasses two proton-pumping sites. AOX is resistant to all 

inhibitors of complex IV, such as cyanide (CN-) and nitric oxide (NO). However, AOX can be 

inhibited by the compounds n-propyl gallate (nPG) and salicylhydroxamic acid (SHAM). The AOX 

protein is a terminal quinol oxidase and dissipates energy as heat by the reduction of oxygen to water 

(Berthold et al., 2002). Unlike the complexes within the ETS, AOX is non-proton pumping and as a 

result yields less ATP. Figure derived from McDonald, 2008. 
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Figure 1.2. Intron/exon structure of AOX genes in rice (Oryza sativa) and Arabidopsis thaliana. 

Straight black line, intron; black rectangle, exon; dashed lines, conserved regions. Figure 

obtained from Considine et al., 2002. 



 

 

 

19 

 

 

 

Figure 1.3. Post-translational regulation of angiosperm AOX dimeric proteins. A disulfide 

bridge covalently links the monomeric subunits (blue rectangles) of the inactive protein. AOX is 

activated when the disulfide-linked subunits are reduced. Further activation of the reduced dimer 

can be achieved in the presence of pyruvate. Hashed black line, the non-covalent association of 

the AOX dimer. 
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Figure 1.4. Evolutionary history of land plants showing the development of key evolutionary 

traits. 
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Figure 1.5. P. patens life cycle starting with the germination of spores. n, haploid number; 2n, 

diploid number.  Photos were obtained from Cho et al., 2007 and Prigge and Bezanilla, 2010.  

 



 

 

 

22 

 

 

 

CHAPTER 2 

Identification, expression, and taxonomic distribution 

of alternative oxidases in non-angiosperm plants 
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Abstract 

Alternative oxidase (AOX) is a terminal ubiquinol oxidase present in the respiratory 

chain of all angiosperms investigated to date, but AOX distribution in other members of the 

Viridiplantae is less clear. The taxonomic distribution of AOX was assessed using 

bioinformatics. Multiple sequence alignments compared AOX proteins and examined amino acid 

residues involved in AOX catalytic function and post-translational regulation. Novel AOX 

sequences were found in both Chlorophytes and Streptophytes and it is concluded that AOX is 

widespread in the Viridiplantae. AOX multigene families are common in non-angiosperm plants 

and the appearance of AOX1 and AOX2 subtypes pre-dates the divergence of the Coniferophyta 

and Magnoliophyta. Residues involved in AOX catalytic function are highly conserved between 

Chlorophytes and Streptophytes, while AOX post-translational regulation likely differs in these 

two lineages. The presence of an AOX gene has been demonstrated experimentally in the moss 

Physcomitrella patens and that the gene is transcribed. The findings suggest that AOX will likely 

exert an influence on plant respiration and carbon metabolism in non-angiosperms such as green 

algae, bryophytes, liverworts, lycopods, ferns, gnetophytes, and gymnosperms and that further 

research in these systems is required. 
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1. Introduction 

The phenomenon of cyanide-resistant respiration was first described in plant 

mitochondria (Bendall and Bonner, 1971) and results from the action of the enzyme alternative 

oxidase (AOX). AOX is a terminal oxidase that introduces a branch point in the respiratory 

electron transport system (ETS) at the level of ubiquinone. Electron flux through the AOX 

pathway bypasses two of the three proton pumping complexes in the ETS and thereby lowers 

ATP production per oxygen consumed and, as such, has been described as energetically wasteful 

(Moore and Siedow, 1991).  The physiological role of AOX is still under investigation, but it is 

known to play a role in thermogenesis and pollination regimes in some angiosperms (Grant et al., 

2009; Seymour and Matthews, 2006). AOX may also reduce the generation of reactive oxygen 

species (ROS) which can result in oxidative damage to the mitochondria and other cellular 

components (Maxwell et al., 1999). AOX may aid in balancing carbon metabolism and electron 

flow in plants (McDonald, 2008). Despite the fact that AOX activity is energetically costly, it has 

a wide taxonomic distribution and is present in some plants, fungi, animals, protists, and bacteria 

(McDonald and Vanlerberghe, 2006).  

AOX has been most thoroughly studied within the Viridiplantae, also known as the green 

lineage, which is a monophyletic group that is comprised of the green algae and land plants 

(Leliaert et al., 2012). This clade is thought to have originated more than 1.5 billion years ago 

(Bya) as a result of a primary endosymbiotic event involving a cyanobacterium and a eukaryotic 

host which led to the formation of plastids (Sanderson et al., 2004). Molecular clock studies 

estimate that this group of oxygenic, photosynthetic organisms diverged into two distinct clades, 

the Chlorophyta and Streptophyta, approximately 725-1200 million years ago (Mya) (Becker and 
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Marin, 2009). The Chlorophytes, which include the majority of green algal species, inhabit 

freshwater, marine, and some terrestrial environments and can be divided into four distinct 

classes: Prasinophyceae, Trebouxiophyceae, Chlorophyceae, and Ulvophyceae (Becker and 

Marin, 2009; Leliaert et al., 2012). The divergence of the Streptophyta into streptophyte green 

algae and terrestrial plants (Embryophytes) is estimated to have occurred 646-792 Mya 

(Sanderson et al., 2004). The streptophytes are freshwater algae that can be classified into six 

groups based on morphological differences: Mesostigmatophyceae, Chlorokybophyceae, 

Klebsormidiophyceae, Zygnematophyceae, Coleochaetophyceae, and Charophyceae (Becker and 

Marin, 2009; Leliaert et al., 2012).  

It is widely accepted that Streptophyte algae are the closest living relatives to terrestrial 

plants. Becker and Marin (2009) speculate that the freshwater environment inhabited by 

Streptophytes made it much easier to transition onto dry land compared to the high saline marine 

environments inhabited by many Chlorophytes. The earliest land plants (non-angiosperms) 

originated from green algae approximately 432-476 Mya (Bhattacharya and Medlin, 1998; Yoon 

et al., 2004) and the Zygnematales are the likely sister group to land plants (Leliaert et al., 2012). 

Land plants can be separated into three groups; the first group consists of the non-vascular 

seedless plants collectively known as the bryophytes and includes liverworts (Marchantiophyta), 

hornworts (Anthocerotophyta), and mosses (Bryophyta). The development of vascular tissue 

characterizes the second group that is comprised of lycophytes (clubmosses, spikemosses, and 

quillworts) and pterophytes (ferns and horsetails). Lastly, the origin of seeds by the 

gymnosperms marked an important evolutionary development in plants. Gymnosperms can be 
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further classified into four divisions: Cycadophyta, Ginkgophyta, Gnetophyta, and 

Coniferophyta. 

The majority of AOX research in plants has focused on the Streptophyta, and 

specifically, a small number of angiosperm species such as Arabidopsis thaliana (Saisho et al., 

1997), tobacco (Nicotiana tabacum) (Vanlerberghe and McIntosh, 1994), soybean (Glycine max) 

(Whelan et al., 1996), rice (Oryza sativa) (Ito et al., 1997), maize (Zea mays) (Karpova et al., 

2002) and several species of thermogenic aroids (Onda et al., 2008). The only Chlorophyte in 

which AOX has been characterized in any depth is Chlamydomonas reinhardtii (Dinant et al., 

2001).  

No previous investigation of AOX has focused on the Streptophyte algae. Within the 

Streptophyte land plants, reports of AOX in basal plants and gymnosperms are scarce, but 

cyanide-resistant mitochondrial respiration has been reported in white spruce (Picea glauca) 

(Johnson-Flanagan and Owens, 1986; Weger and Guy, 1991) and Araucaria angustifolia 

(Mariano et al., 2008). It is also hypothesized that AOX might be responsible for the 

thermogenesis seen in various cycad species (Skubatz et al., 1993). Previous work has 

demonstrated that AOX has a higher ability to discriminate against 
18

O compared to cytochrome 

c oxidase (COX) (Robinson et al., 1992). Work examining the soil discrimination for 
18

O 

indicates that a high fraction of AOX respiration occurs in a boreal site dominated by Picea 

mariana (black spruce) and the moss Hylocomium (Angert et al., 2003a). Further work 

examining the isotopic composition of atmospheric O2 (
18

O vs. 
16

O) indicates that the global rate 

of the AOX pathway has been underestimated (Angert et al., 2003b). Previous bioinformatics 

work indicates that AOX is present in Embryophyte lineages other than angiosperms (Frederico 
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et al., 2009; McDonald and Vanlerberghe, 2006). Only a limited number of basal plant AOXs 

have been identified, these include: Physcomitrella patens, Selaginella lepidophylla, and 

Selaginella moellendorffii (Frederico et al., 2009). The majority of non-angiosperm AOX 

sequences have been identified from a number of gymnosperm species such as Cryptomeria 

japonica, Picea engelmannii, Picea glauca, Picea sitchensis, Pinus pinaster, Pinus pinea, Pinus 

taeda, and Pseudotsuga menziesii (Frederico et al., 2009; McDonald and Vanlerberghe, 2006). 

Despite this somewhat limited assessment, AOX is often described as being ubiquitous in plants, 

however no focused study has ever been conducted to assess the taxonomic distribution of AOX 

in the Viridiplantae.  

AOX in angiosperms is encoded by a multigene family that typically contains three to 

five gene copies (Saisho et al., 1997; Whelan et al., 1996). Dicots contain two subtypes, AOX1 

and AOX2, while monocots contain only the AOX1 subtype; the physiological relevance of this 

distinction remains to be investigated (Considine et al., 2002). Recent work has demonstrated 

that the AOX1 and AOX2 subtypes are present in gymnosperms (Frederico et al., 2009), but it is 

unknown whether other non-angiosperms contain multiple AOX genes and what their 

complement of AOX1 and/or AOX2 genes might be. 

Electron paramagnetic resonance technology has confirmed that AOX belongs to the 

family of di-iron carboxylate proteins (Berthold et al., 2002; Moore et al., 2008). These proteins 

are characterized by a series of highly conserved glutamate (Glu) and histidine (His) residues 

that are required for the co-ordination of the di-iron centre of the enzyme (Siedow et al., 1995). 

These Glu and His residues are conserved in AOXs in organisms from a wide variety of 

kingdoms (McDonald, 2008). In addition, a conserved tyrosine residue (TyrII/Tyr-275) is 
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required for AOX activity (Moore and Albury, 2008). Albury et al. (2010) observed a 

hydrophobic region of the protein that is thought to play a role in the binding of ubiquinol.  The 

side groups, size and charge properties associated with conserved tyrosine (TyrI/Tyr-253), 

glutamine (GlnI/Gln-242), serine (Ser-256), histidine (HisIII/His-261), and arginine (Arg-262) 

residues are thought to play an important role at this site. A study by Crichton et al. (2009) 

identified a conserved tryptophan (TrpI/Trp-206) residue that is thought to play a role in 

anchoring AOX to the inner mitochondrial membrane (numbering as per the S. guttatum 

sequence). Recently, ThrI/Thr-179 and CysII/Cys-172 have been proposed to affect the catalytic 

cycle of the enzyme with respect to its interactions with oxygen (Crichton et al., 2010). Recent 

work examining the crystal structure of AOX in the protist Trypanosoma brucei has led to 

important insights about the structure and catalytic cycle of the enzyme (Shiba et al., 2013). 

All angiosperms investigated to date contain an AOX protein that is present as non-

covalently associated dimers (Onda et al., 2007; Umbach and Siedow, 1993). The AOX protein 

of most angiosperms is subject to post-translational regulation via redox control of an inter-

subunit disulfide bond that has been localized to a key cysteine residue (CysI) in the N-terminal 

region (Rhoads et al., 1998; Vanlerberghe et al., 1998). Upon reduction of this disulfide bond, 

the enzyme is subject to additional regulation by pyruvate leading to a further increase in its 

activity (Rhoads et al., 1998). Some angiosperms possess a naturally occurring serine residue in 

this position (SerI) (Holtzapffel et al., 2003) causing the enzyme to be regulated by succinate 

instead of pyruvate (Grant et al., 2009; Holtzapffel et al., 2003). A second N-terminal cysteine 

residue, CysII, may be involved in AOX regulation by the α-keto acid glyoxylate (Umbach et al., 

2006). It is not known whether non-angiosperm plants possess CysI or SerI and/or CysII or SerII 
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residues in these positions and this may have implications for the post-translational regulation of 

these AOXs. 

The purpose of this study was to: 1) assess the taxonomic distribution of AOX within 

non-angiosperm plants, 2) determine whether particular species contain a single AOX gene copy 

or multiple AOX genes and what complement of AOX1 and AOX2 subtypes are present, 3) 

determine if amino acid residues that are involved in AOX post-translational regulation and are 

required for catalytic function in angiosperms are conserved in all members of the Viridiplantae, 

and 4) experimentally confirm the presence of AOX gene(s) and the expression of AOX mRNA 

in a non-angiosperm species. Bioinformatics was used to perform a molecular database search to 

identify AOX sequences from members of the non-angiosperms in order to address the above 

questions. To validate the bioinformatics results, polymerase chain reaction (PCR) was used to 

amplify AOX genes and reverse transcriptase PCR (RT-PCR) to examine AOX transcript levels 

in the moss Physcomitrella patens. 

The results demonstrate that AOX is an ancestral protein in the Viridiplantae and that it is 

likely widespread in plants. I demonstrate that AOX multigene families are present in some 

members of the Chlorophyta and Streptophyta, and that the moss Physcomitrella patens most 

likely possesses a single AOX gene copy. The data confirm the claim that the AOX1 and AOX2 

subtypes arose prior to the divergence of the Coniferophyta and Magnoliophyta. An analysis of 

AOX proteins in the Viridiplantae indicates that amino acids involved in the catalytic function of 

AOX are highly conserved in all lineages, but that differences exist at the amino acid level that 

are likely to confer different post-translational modes of regulation for AOXs of different groups. 

Specifically, it is highly probable that SerI is the ancestral residue in this position and that the 
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CysI mutation has arisen independently several times in different plant lineages and is an 

example of convergent evolution. AOX in P. patens was further analyzed experimentally and it 

was demonstrated that an AOX gene is present and that AOX transcripts are expressed in this 

species. 

2. Materials and Methods 

2.1. In silico Recovery of Non-Angiosperm AOXs 

Molecular database searches to identify putative non-angiosperm AOX sequences were 

conducted using the BLASTn and tBLASTn software available online at the National Center for 

Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/) using previously identified 

angiosperm AOX sequences (McDonald and Vanlerberghe, 2006) and searching the non-

redundant, trace archive, and expressed sequence tags (EST) databases at NCBI and the 

databases at the Department of Energy Joint Genome Institute (www.jgi.doe.gov/). As new non-

angiosperm AOX sequences were identified they were then used to search for other novel non-

angiosperm AOX sequences in the above databases. In addition to the above molecular 

databases, a putative P. patens AOX sequence was retrieved from the complete P. patens 

genome at the Phytozome website (http://www.phytozome.net/) (Goodstein et al., 2012), a 

database that provides public access to over forty fully sequenced plant genomes.  

2.2. In silico Analyses- Identification and Verification of Non-angiosperm AOX Sequences 

Retrieved AOX DNA sequences were translated into protein sequences using the Translate 

tool located on the ExPASy server (http://ca.expasy.org/tools/dna.html). Putative AOX protein 

sequences had their identity verified using multiple sequence alignments with other plant AOX 
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sequences and the presence of one or more iron-binding sites was used as a means of positive 

identification (McDonald et al., 2003). Multiple sequence alignments of AOX proteins were 

generated using the Clustal X program (Thompson et al., 1997).  

 The retrieved P. patens AOX peptide sequence were placed in the mitochondrial 

targeting prediction programs MitoProt II- v1.101 (http://ihg.gsf.de/ihg/mitoprot.html) and 

TargetP 1.1 (http://www.cbs.dtu.dk/services/TargetP/) to evaluate the probability that this protein 

is mitochondrially targeted in moss.  

2.3. Plant Materials and Growth Conditions 

 Physcomitrella patens subsp. patens (Gransden; IMSC#40001) wild-type isolates were 

obtained from the International Moss Stock Centre in Germany. Somatic gametophyte tissue was 

grown in Petri plates with BCD solid medium supplemented with 5 mM diammonium tartrate 

(Cove et al., 2009; Appendix 1) and sealed with 3M™ Micropore™ tape. Cultures were 

incubated at room temperature (25°C) with constant white light (6.0 Wm
-2

) under long-day 

conditions (16h light: 8h dark photoperiod) and sub-cultured every 6-8 weeks in a sterile flow 

hood. 

2.4. Nucleic Acid Isolations and Amplification Parameters 

 Moss tissue was covered with liquid nitrogen in a chilled mortar and was ground into a 

fine powder using a pestle. Genomic DNA was extracted from 100 mg of moss gametophyte 

tissue with the GenElute™ Plant Genomic DNA Miniprep Kit (Sigma-Aldrich Co., St. Louis, 

MO, USA) according to the manufacturer’s instructions. Before processing, P. patens plants 

were subjected to cold treatment at 4°C for 1 hour to increase AOX transcript expression. Total 

http://www.cbs.dtu.dk/services/TargetP/
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RNA was isolated from 300-400 mg of chilled gametophore tissue using TRIzol
®
 Reagent 

(Invitrogen, Carlsbad, CA, USA) as outlined by the manufacturer’s directions. Prior to reverse 

transcriptase (RT)-PCR, P. patens RNA was treated with RQ1 RNase-Free DNase (Promega 

Corporation, Madison, WI, USA) to remove residual DNA from the sample. The concentration 

and purity of isolated genomic DNA and total RNA were assessed using a NanoPhotometer™ 

(Implen GmbH, München, Germany). 

Custom primers were designed using the program Primer3 

(http://frodo.wi.mit.edu/primer3/) to amplify P. patens AOX. The Access RT-PCR Introductory 

System (Promega Corporation, Madison, WI, USA) was used in 50 µL reactions for both PCR 

and RT-PCR. For each PCR, 20 ng genomic DNA was used with the P. patens full-length 

genomic AOX coding region forward (5′-ATGTTGGGAAGGGTAGGATC-3′) and P. patens 

full-length genomic AOX coding region reverse (5′-CTAGTGGTACCCGACGGGAG-3′) 

primers. The thermal cycler was programmed for 30 rounds of amplification where each cycle 

consisted of 30 sec. at 94
°
C for denaturation, 1 min. at 53

°
C for annealing, and 1 min. at 68

°
C for 

elongation where the final elongation step was extended for 7 min. during the last cycle.  

 For each RT-PCR reaction, the internal moss transcript forward (5′-

GGATCGGAGGAAAAATTCGT-3′) and internal moss transcript reverse (5′-

GGCGAAATGGTTAACGTCAC-3′) primers or the full-length coding forward (5′-

ATGTTGGGAAGGGTAGGATC-3′) and full-length coding reverse (5′-

CTAGTGGTACCCGACGGGAG-3′) primers were used with 2 μg of total RNA template. 

Identical amplification conditions to those described above were used to carry out RT-PCR with 

the addition of an initial reverse transcription step at 45°C for 45 min. and a 55
°
C or 53˚C 
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annealing temperature for the internal moss transcript primers or full-length coding primers, 

respectively. All amplification products were separated using gel electrophoresis on a 1.2% 

agarose gel stained with ethidium bromide. 

2.5. cDNA Cloning and Sequence Analysis 

 Amplified cDNA fragments were purified using the QIAquick® Gel Extraction Kit 

(QIAGEN Sciences, Maryland, USA) and quantified with the NanoPhotometer™ (Implen 

GmbH, München, Germany) before ligation into the pGem
®

-T Easy Vector (Promega 

Corporation, Madison, WI, USA), according to the manufacturer’s directions. The insert: vector 

ratio was maximized in a 3:1 ratio using the equation: 

vector (ng) x insert size (kb)   x   insert:vector molar ratio   =   ng of insert 

                             vector size (kb) 

Reactions were stored overnight at 4˚C to optimize ligation efficiency. Transformations were 

carried out in 14 mL polypropylene round-bottom Falcon™ tubes (BD Biosciences, Mississauga, 

ON) containing 2 µL ligation reaction and 50 µL of One Shot
®

 TOP10 chemically competent 

Escherichia coli (Invitrogen, Carlsbad, CA, USA). Cells were kept on ice for 30 min. followed 

by a 30 sec. incubation at 42˚C the AccuBlock™ Digital Dry Bath (Labnet International, Inc., 

NJ, USA), and then immediately placed back onto ice. SOC medium (250 µL) was added to each 

tube and then incubated for 1 h. at 37˚C with 225 rpm shaking. Two different volumes (50 µL 

and 100 µL) of transformed cells were plated onto Luria-Bertani (LB) solid media supplemented 

with 100 µg/mL ampicillin that was overlaid with 40 mg/mL 5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside (X-Gal) in dimethyl sulfoxide (DMSO), and 23 mg/mL isopropyl-β-D-thio-

galactoside (IPTG). Plates were inverted and incubated overnight at 37˚C. Blue/white selection 
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was used to identify positive transformants that were prescreened using colony PCR (identical 

amplification parameters were used as described in Section 2.4.). Positive transformants were 

sub-cultured into 5 mL of liquid LB containing 100 µg/mL ampicillin and incubated for 24 h. at 

37˚C with 150 rpm shaking. Recombinant plasmid DNA was then purified using the QIAprep
®
 

Spin Miniprep Kit (QIAGEN Sciences, Maryland, USA) before sequencing at the Centre for 

Applied Genomics at the Hospital for Sick Children in Toronto, Ontario.  

3. Results 

3.1. Recovery of Novel AOX Sequences Using Bioinformatics 

 Viridiplantae AOX sequences recovered using molecular database searches, exclusive 

of those found in angiosperms, are shown in Table 2.1. Within the Chlorophyta, AOX was 

present in several members of the Chlorophyceae including several species of the genus 

Chlamydomonas and a single species of Volvox (Table 2.1). Chlamydomonas reinhardtii was the 

only Chlorophyte to exhibit an AOX multigene family as it encodes two AOX genes in its 

genome (Table 2.1). AOX was present in the Mamiellophyceae in the species Bathycoccus 

prasinos, in the Prasinophyceae in several species of Ostreococcus and in the Trebouxiophyceae 

in Prototheca wickerhamii and Chlorella vulgaris (Coccomyxa sp. C-169) (Table 2.1). In the 

Ulvophyceae, AOX was present in Ulva linza and in Acetabularia acetabulum (Table 2.1). AOX 

was also recovered from two uncultured phototrophic eukaryotes (Table 2.1). No AOX was 

recovered from a member of the Pedinophyceae. 

 AOX was recovered from two Streptophyte algae within the Zygnemophyceae in the 

species Spirogyra pratensis and Penium margaritaceum (Table 2.1). AOX was present in the 
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Chlorokybophyceae in Chlorokybus atmophyticus and in the Klebsormidiophyceae in 

Klebsormidium faccidum and Klebsormidium subtile. AOX sequences were recovered from the 

Charophyceae in Nitella hyalina and in Coleochaetophyceae in the species Chaetosphaeridium 

globosum and Coleochaete orbiculans. No AOX was found in the Mesostigmatophyceae, but 

several AOX sequences were recovered from members of the Embryophyta. Within the 

Marchantiophyta, AOX is present in the liverwort Marchantia polymorpha (Table 2.1). Within 

the Bryophyta, an AOX sequence was found in the genome of the model moss species 

Physcomitrella patens (Table 2.1). No evidence of AOX in the Anthocerotophyta (hornworts) or 

for a multigene family in any of the above Streptophyte groups was recovered.  

AOX is present in several species belonging to the Tracheophyta (Table 2.1). Within the 

Lycopodiophyta, AOX is found in two different species of Isoetopsida, Selaginella lepidophylla 

and Selaginella moellendorffii (Table 2.1). Both species of Selaginella present EST data for 

multiple putative AOX mRNA products, indicating that a multigene family may be present 

(Table 2.1). No evidence for AOX was found in the Isoetales or in the Lycopodiopsida. 

Within the Euphyllophyta, members of both the Moniliformopses and Spermatophyta 

contain AOX. Within the Moniliformopses, the Polypodiopsida (ferns) contain AOX. AOX is 

present in the ferns Adiantum capillus-veneris and Ceratopteris richardii (Table 2.1). No 

evidence of AOX was found within the Equisetopsida (horsetails), Marattiopsida, 

Ophioglossopsida, or Psilotopsida (whisk-ferns). 

Within the Spermatophyta, evidence for AOX exists for one member of the Gnetophyta in 

the species Ephedra distachya and in several members of the Coniferophyta (Table 2.1). No 

evidence for AOX was detected in the Ginkgophyta or Cycadophyta.  



 

 

 

36 

Within the Coniferales, AOX is present in the Cupressaceae in Cryptomeria japonica 

(Table 2.1). Within the Pinaceae, AOX is present in the genuses Picea, Pinus, and Pseudotsuga 

(Table 2.1). Picea glauca and Picea sitchensis contain mRNA encoding two putative different 

AOX products (Table 2.1). Several different AOX transcripts were also detected in Pinus taeda 

and Pinus pinea (Table 2.1). No evidence for AOX was found in the Araucariaceae, 

Cephalotaxaceae, Podocarpaceae, Sciadopityaceae, or the Taxaceae.   

3.2. Characteristics of Non-Angiosperm AOX Proteins 

All of the AOXs recovered displayed the extended N-terminal region described in other 

eukaryotic AOX sequences, in contrast to the short N-termini of prokaryotic AOXs (McDonald, 

2008). The most N-terminal part of the protein was highly variable in all of the AOXs recovered 

(Figure 2.1). An examination of the N-terminal region directly upstream from the first iron-

binding site of AOX identified several clear differences between the AOXs of Streptophytes and 

Chlorophytes (Figure 2.1). All of the Chlorophyte AOX proteins contain an insertion eight 

amino acids upstream of the L-E-T motif (Figure 2.1). The insertion is 7-9 amino acids in size 

and shares some sequence similarity within the different Chlorophytes examined (Figure 2.1). 

Streptophyte AOXs contain two motifs that are lacking in the Chlorophytes: Y-W-G and P-X-E-

X-Y (Figure 2.1).  

An examination of the two residues that play a role in the post-translational regulation of 

most angiosperm AOXs (i.e. CysI and CysII) revealed differences in these residues in non-

angiosperms. With regards to CysII, a cysteine residue is only found in Streptophytes, but not 

Chlorophytes (Figure 2.1), however, in several Streptophyte species a cysteine residue was not 

present at this location (e.g. P. patens) (Figure 2.1). An examination of the residue that is 
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analogous to CysI in angiosperms revealed that in Chlorophytes belonging to the 

Mamiellophyceae, Prasinophyceae, and Trebouxiophyceae, this residue is a tyrosine (Y) (Figure 

2.1). Tyrosine is an amino acid that is encoded by two codons (TAT and TAC). After examining 

this position at the DNA level, it was observed that both of these codons are used to code for 

tyrosine in these groups. In Chlorophytes belonging to the Chlorophyceae, this residue is a 

cysteine or a serine (Figure 2.1). C. reinhardtii contains two different AOX proteins, one of 

which contains a serine and one of which contains a cysteine in this position (Figure 2.1).  

Within the Streptophytes, all streptophyte algae, except for P. margaritaceum which possesses a 

cysteine, possess an AOX with a serine (Figure 2.1). Within the Embryophyta, a cysteine is 

found in this position in P. patens, M. polymorpha, E. distachya, and one AOX protein from S. 

moellendorffii (Figure 2.1). In contrast, the other AOXs from Selaginella, pines, spruces, and a 

fern all contain a serine in this position (Figure 2.1). Cysteine is encoded by the codons TGT and 

TGC, whereas serine has six different possible codons (TCT, TCC, TCA, TCG, AGT and AGC).  

After analyzing these putative AOX sequences at the DNA level, it was observed that all but one 

codon (TCT) is used to encode serine at this position in the Viridiplantae. Interestingly, it was 

observed that all Chlorophyte and Streptophyte species that possess CysI are encoded 

exclusively by the codon TGC.  

An examination of the core of the AOX protein from a variety of Viridiplantae species 

indicates that the glutamate (E) and histidine (H) residues required for AOX activity are 

absolutely conserved. Other residues that may be important in AOX catalysis including 

T179/ThrI, W206/TrpI, Q242/GlnI, Y253/TyrI, H261/HisIII, Y275/TyrII, and Y299/TyrIII 

(numbering as per the S. guttatum sequence) are conserved in the Chlorophytes and 
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Streptophytes examined (Figure 2.2). The predicted sequence required for AOA antibody 

recognition (McDonald, 2009) is present in the majority of AOX sequences examined (Figure 

2.2). The Chlorophyte AOXs also contain an indel that is not present in Streptophyte AOX 

proteins (Figure 2.2). 

The C-terminal regions of AOX proteins differ between Chlorophytes and Streptophytes 

(Figure 2.2). The longest C-termini are seen in green algae belonging to the Mamiellophyceae, 

Prasinophyceae, and Ulvophyceae (Figure 2.2) which contain an extension not seen in members 

of the Chlorophyceae (Figure 2.2). Despite this, the C-termini of Chlorophytes do exhibit a high 

degree of sequence similarity to each other (Figure 2.2). The C-termini of Streptophytes also 

share a high degree of sequence similarity with each other (Figure 2.2). In some AOX sequences 

from P. engelmannii, P. sitchensis, P. menziesii, and P. glauca the last 3 amino acids (D-Y-R) 

vary from those seen in other Streptophytes (G-Y-H) (Figure 2.2). 

3.3. AOX of the Moss Physcomitrella patens 

A search of the Phytozome database revealed that the moss P. patens contains a single 

AOX gene (Figure 2.3). The genomic sequence comprised of the 5′ untranslated region (UTR), 

coding DNA sequence (CDS) including introns and exons, and 3′ UTR is predicted to be 3426 

nucleotides in length (Figure 2.3A). The P. patens AOX transcript sequence is comprised a 5′ 

UTR, CDS (exons only), and 3′ UTR is predicted to be 2137 nucleotides in length (Figure 2.3B). 

One primary transcript and two alternative transcripts are predicted (Figure 2.3C). The gene is 

predicted to contain four exons and three introns and encodes a 365 amino acid protein (Figure 

2.3D). MitoProt II software analysis gives a probability of export to the mitochondria for this 
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AOX of 0.9126, while TargetP 1.1 yielded a probability of 0.856 for mitochondrial targeting 

(Claros and Vincens, 1996; Emanuelsson et al., 2000). 

PCR using AOX gene specific primers and genomic DNA from moss gametophore tissue 

amplified the expected ~ 2 kB product (Figure 2.4A). RT-PCR using DNase treated total RNA 

from cold treated gametophore tissue and internal AOX moss transcript specific primers 

amplified the expected ~700 bp product (primers were designed to amplify a portion of the AOX 

transcript) (Figure 2.4B) or the full-length coding specific primers to amplify the entire 1098 bp 

AOX coding region (Figure 2.4C). Cloning and sequencing of the genomic DNA and cDNA 

products identified AOX sequences that shared 100% identity with the sequences predicted by 

the Phytozome database. The second ~1.7 kB product (Figure 2.4A) was sequenced and was 

determined to be a hypothetical protein unrelated to AOX that is encoded by scaffold 111 of the 

moss genome project. 

4. Discussion 

4.1. The Taxonomic Distribution of AOX in the Viridiplantae 

 The Viridiplantae are composed of the Chlorophyta and the Streptophyta which are 

hypothesized to have diverged from a common ancestor between 725 to 1200 million years ago 

(Becker and Marin, 2009; Figure 2.5). The Chlorophyta are comprised of members of the 

Mamiellophyceae, Pedinophyceae, Prasinophyceae, Ulvophyceae, Trebouxiophyceae,
 

and 

Chlorophyceae (Pombert et al., 2005; Figure 2.5), and AOX was detected in at least one species 

from 5 of these 6 these groups (Table 2.1). The Prasinophyceae are the most basal Chlorophyte 

group (Pombert et al., 2005) and AOX is present in several species within the Ostreococcus 
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(Table 2.1). Combined with the presence of AOX in other primary plastid lineages (i.e. red algae 

and glaucocystophytes) (McDonald, 2008), the AOX gene is likely an ancient character of the 

Viridiplantae. Therefore, it is predicted that AOX will be found in most species within the 

Chlorophyta, a hypothesis that can be tested as data from additional sequencing projects becomes 

accessible.  

The Streptophyte algae are composed of the Mesostigmatales, Chlorokybales, 

Klebsormidiales, Zygnematales, Charales and Coleochaetales (Becker and Marin, 2009). Within 

the Streptophyta, it has been widely accepted that the algal group Mesostigmatales is the most 

basal (Becker and Marin, 2009; Rodríguez-Ezpeleta et al., 2007). AOX sequences were 

recovered from at least one species belonging to 5 of the 6 algal groups (Table 2.1). Given the 

fact that AOX is present in the Chlorophyta and members of the Embryophyta (Table 2.1; Figure 

2.5), it is predicted that AOX will be found in other Streptophyte algae. This prediction can be 

tested as more sequencing data becomes available from this group.  

 AOX is present in the Embryophyta within the Bryophyta (mosses), Marchantiophyta 

(liverworts), and Tracheophyta (Table 2.1; Figure 2.5). Although no data are available for the 

Anthocerotophyta (hornworts) I predict that AOX will also be present in this group due to its 

distribution in other Embryophytes. Within the Tracheophyta, AOX is present in the 

Lycopodiophyta (within the Isoetopsida in two species of Selaginella), but no data exist for 

members of the Isoetales or the Lycopodiopsida (Table 2.1; Figure 2.5). Within the 

Euphyllophyta, in the Moniliformopses AOX is present in several ferns (Filicophyta), but no 

data were available for the Equisetophyta or the Psilotophyta (Table 2.1; Figure 2.5). Within the 

Spermatophyta (seed plants), AOX was detected in several members of the Coniferophyta and in 
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one member of the Gnetophyta (Table 2.1; Figure 2.5). No AOX data were available for the 

Cycadophyta or Ginkgophyta (Figure 2.5). Previous work has suggested that the distribution of 

AOX in the Magnoliophyta (angiosperms) appears to be ubiquitous (McDonald, 2008; Figure 

2.5). The distribution of AOX in the Embryophyta therefore appears to be broad and I believe it 

likely that all members of this group will contain AOX. 

4.2. The AOX Multigene Family and AOX1 and AOX2 Subtypes 

 Within the Chlorophyta, Chlamydomonas reinhardtii contains two AOX genes (Dinant et 

al., 2001). It is likely that these genes represent a gene duplication event within the 

Chlorophyceae. The AOX1 of C. reinhardtii shares a high degree of sequence similarity with 

AOX proteins found in C. incerta, C. reinhardtii S1D2 and Volvox carteri, while the AOX2 of 

C. reinhardtii shares sequence similarity with an AOX protein from C. reinhardtii CW15 (Figure 

2.1). It is therefore possible that other members of the Chlorophyceae may contain two AOX 

genes, but additional sequence information will be required to test this hypothesis. No evidence 

of a multigene family was recovered in any other member of the Chlorophyta (Table 2.1; Figure 

2.5). It has been previously noted that these protein sequences have a higher sequence similarity 

to the AOX genes of fungi and yeast than to those of angiosperms (Dinant et al., 2001). Although 

these genes are named AOX1 and AOX2, they do not reflect the presence of the two different 

subtypes seen in angiosperms in C. reinhardtii (Figure 2.1; Figure 2.2).  

No evidence for an AOX multigene family was found within the Anthocerotophyta 

(hornworts), Bryophyta (mosses), or Marchantiophyta (liverworts) (Table 2.1). Within the 

Tracheophyta, EST data indicate that within the Lycopodiophyta AOX multigene families might 

exist in the species Selaginella moellendorffii and Selaginella lepidophylla as several different 
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mRNAs were detected (Table 2.1). Genome data will be required in order to determine whether 

these mRNAs are the result of multiple genes, alternative splicing, or allelic variation. Due to the 

evolutionary distance from the angiosperm AOXs it is difficult to determine whether these 

proteins should be classified as AOX1 or AOX2 subtypes.  

Within the Euphyllophyta, no evidence for a multigene family was present in the 

Moniliformopses (Table 2.1). Within the Spermatophyta, potential AOX multigene families were 

detected in members of the Coniferophyta in the species Picea glauca and Picea sitchensis 

(Table 2.1). Previous work established the presence of a multigene family in Pinus pinea that 

contained both AOX1 and AOX2 subtypes (Frederico et al., 2009; Table 2.1) and AOX 

multigene families appear to be common in the Magnoliophyta (McDonald, 2008; Saisho et al., 

1997; Whelan et al., 1996). Based on the current evidence, I hypothesize that the duplication of a 

single AOX gene in Streptophytes into a multigene family occurred after the separation of the 

Tracheophyta from the rest of the Embryophyta approximately 707 million years ago (Hedges et 

al., 2004; Figure 2.5). I therefore predict that AOX multigene families will be found in other 

members of the Lycopodiophyta, and in the Euphyllophyta in members of the Moniliformopses 

and Spermatophyta (Figure 2.5). Based on the results, only one non-angiosperm AOX2 sequence 

was found in the Streptophyta, in the species Cryptomeria japonica (Table 2.1; Figure 2.5). 

Recent work supports this result and also indicates that an AOX2 is present in the stone pine 

Pinus pinea (Frederico et al., 2009). Therefore, results to date indicate that the AOX1 and AOX2 

subtypes are limited to members of the Spermatophyta and therefore predate the divergence of 

the Coniferophyta from the Magnoliophyta (Figure 2.5) and suggest that the lack of the AOX2 

subtype in monocots is due to a secondary gene loss event.  
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4.3. AOX Protein Similarities and Differences in the Viridiplantae 

4.3.1. N-terminal Region 

 Sequence analysis indicates that the AOX sequences of Chlorophytes and Streptophytes 

contain similarities and differences in their N-terminal regions. At the level of protein sequence, 

the AOXs of these two groups differ. The Streptophyte AOXs contain two N-terminal motifs, Y-

W-G and P-X-E-X-Y that are absent in the Chlorophytes (Figure 2.1). It has recently been 

hypothesized that these regions might be involved in the non-covalent dimerization of 

angiosperm AOXs (McDonald, 2009). If this hypothesis is correct, it suggests that the 

Chlorophyte AOXs will be monomeric, similar to the situation seen in other protists and fungi, 

as opposed to the AOX dimers seen in angiosperms (McDonald, 2008). This would also mean 

that all Streptophytes (from bryophytes to angiosperms) would be expected to contain AOX 

dimers. 

In terms of the post-translational regulation of the enzyme, the Chlorophyte AOXs 

contain an indel in the N-terminal region that is not present in the Streptophyte AOXs (Figure 

2.1). Variations of this particular indel are also present in AOXs of protists, fungi, and animals 

(McDonald, 2009). It has been hypothesized that this indel may be responsible for the regulation 

of these AOXs by AMP/GMP or pH (McDonald, 2009). The Chorophyte insertion and the 

Streptophyte specific motifs now make it possible to differentiate between Chlorophyte and 

Streptophyte AOX proteins using an examination of only the N-terminus (Figure 2.1). This 

information may prove useful when analyzing metagenomic datasets or determining whether 

newly identified species are Streptophyte or Chlorophyte algae. 
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Further evidence exists that the post-translational regulatory mode that is typical for most 

angiosperm AOXs will not hold true for the Chlorophyte AOXs and several Streptophyte AOXs. 

The CysI residue that is important for the redox and pyruvate regulation of AOX in the majority 

of angiosperms is often absent in Chlorophyte AOXs (Figure 2.1; Table 2.2). Most basal 

Streptophyte AOXs recovered from the algae contained a serine in this position (Table 2.1; 

Figure 2.1; Table 2.2; Figure 2.5). While the CysI residue is present in the liverwort M. 

polymorpha, the moss P. patens, the gnetophyte E. distachya, and a protein from the lycopod S. 

moellendorffii, all other non-angiosperm Streptophytes contain a serine in this position (Figure 

2.1; Table 2.2). Recent work in Nelumbo nucifera has demonstrated that a serine in this position 

results in an AOX that is responsive to succinate (Grant et al., 2009). I can hypothesize by 

extrapolation that the majority of Streptophyte AOXs may be subject to succinate regulation 

since they possess a SerI residue in this position. In addition, although CysI is present in 

Streptophyta, it was evident that the majority of non-angiosperm AOXs possess a serine at this 

position instead (Figure 2.5). A widespread abundance of CysI is not observed until the 

emergence of angiosperms (Magnoliophyta). At the DNA level, there are six different possible 

codons for serine; the majority of these codons are used in the species that have this residue. In 

contrast, those species that possess CysI are encoded by a single codon (TGC). This change from 

serine to cysteine is the result of a non-synonymous substitution that is most likely due to a 

single point mutation or multiple base substitutions. The fact that only a single codon encodes 

CysI likely suggests that there is codon usage bias that may have resulted from selection. In 

addition, the presence of cysteine residues in this position in plants from different lineages may 

represent a case of convergent evolution. However, the ancestral residue in this position cannot 

be confirmed until more sequences from basal plants become available. 
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With regards to the CysII residue, the AOXs of Chlorophytes do not have a cysteine in 

this position (Figure 2.1; Table 2.2). The vast majority of Streptophyte AOXs have a cysteine in 

this position, with some having an isoleucine, valine, or tyrosine present (Figure 2.1; Table 2.2). 

The role of the CysII residue in regulation of AOX activity in angiosperms is still under 

investigation (Umbach et al., 2006) and it has recently been proposed that it may play a role in 

influencing the catalytic cycle of the enzyme via interactions with oxygen (Crichton et al., 2010).  

Overall, these results indicate that the AOXs of the majority of Chlorophytes will differ 

in their mode of post-translational regulation from those of Streptophytes (i.e. regulation by 

AMP/GMP and pH vs. regulation by pyruvate or succinate) and that the affinity of AOX for 

oxygen may differ in these systems. It is also likely that the post-translational regulation of non-

angiosperm AOXs will differ from those of angiosperms due to the presence of a SerI residue 

instead of a CysI residue in the majority of sequences (Figure 2.1; Table 2.2). I hypothesize that 

the CysI residue present in the AOXs of some basal members of the Embryophyta represents 

multiple independent mutations that are lineage specific (Figure 2.1; Figure 2.5; Table 2.2). 

Within the Magnoliophyta it appears that some CysI residues have reverted back to SerI in some 

AOX proteins of tomato (Lycopersicon esculentum), Nelumbo nucifera, corn (Zea mays), rice 

(Oryza sativa), and wheat (Triticum aestivum) (Grant et al., 2009; Holtzapffel et al., 2003; 

Umbach et al., 2006; Figure 2.5).  

4.3.2. Core Region 

All of the iron-binding residues required for AOX activity are conserved in the sequences 

that were examined (Figure 2.2; Table 2.2) indicating that these proteins should be catalytically 

active. A key tyrosine residue involved in AOX activity (TyrII/Y-280) is conserved in all 
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Viridiplantae AOXs examined (Figure 2.2; Table 2.2). Therefore, at the functional level, it is 

likely that the AOXs of all Chlorophytes and Streptophytes share a similar catalytic mechanism 

to the AOXs of all other kingdoms (McDonald, 2009). At a structural level, it is evident that a 

tryptophan residue that is thought to play a role in AOX structure (TrpI/W-206) is conserved in 

all species of Viridiplantae (Figure 2.2). Amino acid residues that are thought to be involved 

with ubiquinol-binding (GlnI/Q-242, TyrI/Y-253, S-256, HisIII/H-261, and R-262) are 

conserved among most members of Viridiplantae. However, S-256 has been replaced in some 

land plants by phenylalanine (F-256) and R-262 has been replaced with an alanine (A-262) in 

several species of Chlamydomonas (Figure 2.2; Table 2.2). These changes may affect the ability 

of the enzyme to interact with ubiquinol and render it inactive. 

4.3.3. C-terminal Region 

 The AOA antibody was generated against the AOX of the voodoo lily plant and has 

proved to be a valuable resource for the AOX community due to its cross-reactivity with the 

AOX proteins from a broad range of species and kingdoms (Elthon et al., 1989; McDonald, 

2009). Recently a scheme was proposed for predicting whether the AOA antibody will cross-

react with an AOX protein based on a 12 amino acid sequence located in the AOX C-terminus 

(McDonald, 2009). Based on a comparison with this consensus sequence for antibody binding, 

the majority of non-angiosperm AOXs that were recovered will likely cross-react with the AOA 

antibody (Figure 2.2; Table 2.2). It is likely that the antibody will continue to be a powerful tool 

for investigating the presence of AOX proteins in the Viridiplantae. 

 The extreme C-terminal regions are quite different between Chlorophytes and 

Streptophytes (Figure 2.2). The other interesting difference that was observed in the C-terminal 
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regions occurred in some members of the family Pinaceae. In most AOXs from Streptophytes the 

last 3 amino acids are G-Y-H (Figure 2.2). In some AOX sequences from P. engelmannii, P. 

sitchensis, P. menziesii, and P. glauca the last 3 amino acids are D-Y-R (Figure 2.2). Whether 

these differences translate into any effect on protein structure or regulation remains to be 

investigated. 

4.4. AOX of the Moss Physcomitrella patens 

AOX is encoded by a multigene family in all angiosperms studied to date. This attribute 

makes it particularly challenging to study its physiological function in these systems due to the 

possible functional redundancy of the protein isoforms. However, through the use of molecular 

databases, evidence has been provided that only a single AOX gene copy is present in the moss 

Physcomitrella patens (Figure 2.3A). This makes P. patens an attractive system for future 

research using antisense or RNAi technologies to examine the physiological role of AOX in 

plants. Structurally, this gene is made up of four exons that are interrupted by three introns; a 

characteristic seen in the majority of angiosperm AOXs studied to date (Considine et al., 2002; 

Ito et al., 1997; Figure 2.3A). The full-length gene sequence and full-length transcript sequence 

retrieved from the Phytozome database were used to design specific primers for use in PCR and 

RT-PCR, respectively (Figure 2.3A; Figure 2.3B). A region of the AOX gene was amplified and 

its presence and identity have been confirmed in moss (Figure 2.4A) after sequencing. The data 

available on Phytozome reveals that the P. patens AOX gene may be expressed as three putative 

transcript variants (Figure 2.3C). The RT-PCR results demonstrate that AOX is expressed in P. 

patens (Figure 2.4B; Figure 2.4C). An analysis of the cloned cDNA sequences revealed that the 
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amino acid iron-ligands are conserved which allows me to predict that AOX is catalytically 

active in moss.  

The cloned moss AOX sequences exhibited identical sequence similarity with the 

sequences retrieved from the Phytozome database. Using the predicted AOX sequence from the 

Phytozome database, the N-terminus of the protein was able to be examined (Figure 2.3D). 

Dissimilar to most non-angiosperm AOXs, P. patens AOX has CysI which allows for the 

prediction that it is post-translationally regulated in a manner that is similar to angiosperm AOXs 

(Table 2.2; Figure 2.1). MitoProt II and TargetP 1.1 software programs predicted a high 

probability of mitochondrial targeting of the protein and suggests that organelle isolations will be 

required to analyze AOX proteins. A 35 kDa protein that cross reacts with an AOX1/2 antibody 

has been detected in Western blots of moss mitochondrial fractions (Lang et al., 2011).  

5. Conclusions and Future Directions 

 This work demonstrates for the first time that AOX is broadly distributed in the 

Viridiplantae, both within the Chlorophyta and the Streptophyta (Table 2.1; Figure 2.5). Future 

work should endeavor to increase the sequence data available within the Anthocerotophyta, 

Lycopodiopsida, Psilotophyta, Equisetophyta, Ginkgophyta, and Cycadophyta since no AOX 

data are currently available for these lineages (Figure 2.5). Better sampling of these lineages will 

allow for the testing of hypotheses and predictions made in this work with respect to the 

taxonomic distribution of AOX, the origins of the AOX multigene family and AOX1 and AOX2 

subtypes, and the post-translational regulation of the enzyme. Thus far, the majority of work on 

AOX in the Viridiplantae has occurred in the Magnoliophyta. This work indicates that a more 

detailed investigation of AOX in non-angiosperm lineages is warranted. 
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Table 2.1. Chlorophyte and non-angiosperm streptophyte alternative oxidase (AOX) sequences 

retrieved from molecular database searches. Database searches are current as of July 1, 2013. 

Group Species Accession 

Number 

Conditions 

Chlorophyta    

Chlorophyceae Chlamydomonas incerta DQ122873, 

EC114320  

EST, cDNA 

 Chlamydomonas 

reinhardtii AOX1 

AF047832 mRNA 

 Chlamydomonas 

reinhardtii AOX2 

AF314255 mRNA 

 C. reinhardtii  

CC-1690 

BI997629, 

BI720614, 

BE453335, 

BE725120 

EST, stress 

conditions 

 Chlamydomonas sp. W80 AB009087 mRNA, anti-stress 

gene 

 Chlamydomonas 

reinhardtii S1D2 

FC095258, 

FC107788, 

FC089790, 

FC096794, 

FC101139 

EST 

 Chlamydomonas 

reinhardtii CW15 mt- 

AF285187 mRNA 

 Volvox carteri f. 

nagariensis 

FD838977, 

XM_002955135 

 

Mamiellophyceae Bathycoccus prasinos FO082264 

204834- 204196 

 

DNA 

Prasinophyceae Ostreococcus lucimarinus 

CCE9901 

XM_001419431 Genome 

  XM_001422917 mRNA 

  ES326082, 

ES336319, 

ES339063, 

ES336379, 

ES334493, 

ES330134, 

ES333378, 

ES337984, 

ES329658, 

ES336433, 

ES338640, 

EST-likely a couple 

of genes but difficult 

to determine from 

ESTs 
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ES330847, 

ES337415, 

ES332883, 

ES326357, 

ES343407, 

ES326174, 

ES340252, 

ES339340, 

ES338210 

 Ostreococcus sp. RCC809 GR817110, 

GR823881, 

GR817852, 

GR821051, 

GR821050 

mRNA 

 Ostreococcus tauri CAID01000009 genome 

Trebouxiophyceae Coccomyxa subellipsoidea 

C-169 

GW223177, 

GW238474, 

GW221449, 

GW232312, 

GW230086, 

GW220993, 

GW229529, 

GW226608, 

GW231106, 

GW223480, 

GW224325, 

GW218354, 

GW227179 

mRNA 

 Prototheca wickerhamii EC181905, 

EC180273 

EST 

Ulvophyceae Acetabularia acetabulum CF258325, 

CF258617  

EST, late adult and 

early reproductive 

cells 

 Ulva linza AJ892187, 

AJ891330, 

AJ891574 

EST, sporulating 

thallus 

Unclassified uncultured phototrophic 

eukaryote 

 

CAFX01005208 DNA 

 uncultured phototrophic 

eukaryote 

 

CAFY01001175 DNA 

Streptophyta    

Zygnemophyceae Spirogyra pratensis 

Transeau 

GW599090, 

GW598494, 

EST 



 

 

 

58 

GW601827, 

GW600845 

 Penium margaritaceum HO650634, 

HO623842 

EST, cDNA 

Chlorokybophyceae Chlorokybus atmophyticus HO408459, 

HO422383 

EST, cDNA 

Klebsormidiophyceae Klebsormidium faccidum HO471043, 

HO480760 

EST, cDNA 

 Klebsormidium subtile JG441912 EST, cDNA 

Charophyceae Nitella hyaline HO503263 EST, cDNA 

Coleochaetophyceae Chaetosphaeridium 

globosum 

HO367913 EST, cDNA 

 Coleochaete orbiculans GW591598 EST, cDNA 

Marchantiophyta 

 

Marchantia polymorpha BJ864156, 

BJ872239 

EST, sexual organ 

Bryophyta Physcomitrella patens XP_001774858 Genome, Gransden 

ecotype 

  FC444005, 

FC455056 

EST, Gransden 

ecotype, dessicated 7 

day old protonema 

  FC366080, 

FC356806, 

FC423252, 

FC387448, 

FC407449 

EST, Villersexel 

ecotype, asexual 

protonema 

  AW561656 EST, 7 day old 

protonemata  

Tracheophyta    

Lycopodiophtya    

Isoetopsida Selaginella lepidophylla 

AOX subtype 1 

EH093479, 

EH093273, 

EH091901 

EST, adult 

microphyll fronds 

and roots 

 Selaginella lepidophylla 

AOX subtype 2 

EH093745 EST, adult 

microphyll fronds 

and roots under a 

dehydration-

rehydration cycle 

  EH093135 EST, adult 

microphyll fronds 

and roots under a 

dehydration-

rehydration cycle 

  EH091642, 

EH092545, 

EST, adult 

microphyll fronds 
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EH092495 and roots 

 Selaginella moellendorffii 

AOX subtype 1 

XP_002963435, 

XP_002971569 

Hypothetical protein 

 Selaginella moellendorffii 

AOX subtype 2 

XP_002972804, 

XP_002984380 

Hypothetical protein 

 Selaginella moellendorffii 

AOX subtype 3 

XP_002981994, 

XP_002986074 

Hypothetical protein 

 Selaginella moellendorffii 

AOX subtype 4 

FE468243 EST, whole juvenile 

plants and 

reproductive stems 

with developing 

strobili 

 Selaginella moellendorffii 

AOX subtype 5 

FE497473, 

FE490594, 

FE516656, 

FE439170, 

FE490593, 

FE497472, 

FE439171, 

FE450180, 

FE429925, 

FE508717, 

FE465252, 

FE516655, 

FE446706, 

FE465253 

EST, whole juvenile 

plants with roots and 

reproductive stems 

with developing 

strobili 

Moniliformopses    

Filicophyta Adiantum capillus-veneris DK948381 EST, prothallia, 

gametophyte, light-

brown 

 Ceratopteris richardii BE642413 EST, spore 20 hours 

after germination 

initiation 

Spermatophyta    

Gnetophyta Ephedra distachya JG722268, 

JG721633 

mRNA, cell culture 

Coniferophyta Cryptomeria japonica 

AOX 

BW993935, 

BY910481, 

BY898792 

EST, male cone 

 Picea engelmannii x Picea 

glauca 

CO207489, 

CO213112, 

DR464823, 

DR464925, 

CO214470, 

CO208811 

EST, bark (with 

phloem and cambium 

attached) from one 

year old trees 
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 Picea glauca AOX 

subtype 1 

BT119347, 

GO371345, 

GO371284, 

EX306539, 

EX442167, 

GE477243 

EST, actively 

elongating root tips 

free of mycorrhizae; 

EST, dormant shoot 

tips dissected from 

buds; 

 Picea glauca AOX 

subtype 2 

BT104039, 

EX313454, 

DR555875, 

CO479724, 

DR562015, 

DR569129, 

DR566922 

 

EST, phloem; EST, 

cambium and phloem 

region from 35 year 

old trees; EST, male 

cones from mature 

trees; EST, whole 

root from seedlings, 

predominantly free 

of mycorrhizae 

 Picea sitchensis subtype 1 BT123906, 

GT124975 

 

 Picea sitchensis subtype 2 EF084004, 

GT121657, 

DR504859, 

DR492349, 

ES256697, 

ES661756, 

FD730742, 

FD731057, 

ES662384, 

FD736777, 

ES861806 

EST, leader bark 

(phloem and 

cambium attached) 

induced with 

Pissodes strobi 

(white pine weevil) 

feeding; EST, leader 

bark (phloem and 

cambium attached) 

induced with 

wounding; EST, bark 

(with phloem and 

cambium attached) 

from two year old 

trees; EST, green 

leader tissue from 

one year old trees 

 Pinus banksiana GW754219 

 

Previous year's bark 

(phloem and 

cambium attached) 

from 

mechanically 

wounded trees 

 Pinus pinaster AOX1 CT583387 EST, developing 

buds of adult trees 

  BX678396 EST, 6 week old 

seedling root 

(drought stress 
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treatment) 

 Pinus pinea ACV60631, 

ACV60632, 

ACV60633, 

ACV60634, 

ACV60635, 

ACV60636, 

ACV60637, 

ACV60638 

Mitochondrial 

alternative oxidase 

1a, partial 

  ACV60639, 

ACV60640 

Mitochondrial 

alternative oxidase 

1b, partial 

  ACV60641 Mitochondrial 

alternative oxidase 2, 

partial 

 Pinus taeda AOX1 CF394475 EST, drought-

stressed roots 

  DT629136, 

DN613935 

EST, subtracted pine 

embryo library 

  DR120631, 

DR116916, 

DR116838 

EST, roots minus 

magnesium 

  DR059844 EST, roots minus 

nitrogen 

  CO366022, 

CO367936, 

CO367860 

EST, roots minus 

potassium 

  CO166870 EST, flooded roots 

  DR095420, 

DR099771, 

DR095336 

EST, stems (shoot 

tips) challenged with 

the fungus Fusarium 

circinatum (agent of 

pitch canker disease) 

  DR110126 EST, roots minus 

sulfur 

  DR069321 EST, roots, 24 hour 

dark treatment of 1 

year old trees 

 Pseudotsuga menziesii 

AOX 

CN636314 EST, 1 month old 

seedlings 
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Figure 2.1. A multiple-sequence alignment of the N-terminal region of AOX proteins from non-

angiosperm members belonging to Viridiplantae. Brackets 1 and 2 refer to motifs seen only in 
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Streptophytes, while bracket 3 highlights an insertion seen only in Chlorophytes. Residues 

analogous to CysI and CysII are indicated by red arrows. The first iron-binding residue (GluI) is 

indicated by a black arrow.  
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Figure 2.2. A multiple-sequence alignment from the first iron-binding site to the end the AOX 

protein from a variety of non-angiosperm members belonging to the Viridiplantae. The black 

arrows denote the iron-binding residues (GluI, GluII, GluIII, GluIV, HisI, HisII), the green 
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arrows point residues important for AOX activity (ThrI, TrpI, GlnI, TyrI, HisIII, TyrII, TyrIII). 

Bracket 1 shows an insertion seen only in Chlorophytes and bracket 2 highlights the epitope 

recognized by the AOA antibody, and bracket 3 shoes a unique C-terminal motif found in some 

gymnosperms. 
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Figure 2.3. Physcomitrella patens AOX gene structure, transcript structure, transcripts, and peptide sequence retrieved from the 

Phytozome database. A) The 3426 nt length AOX genomic sequence is predicted to be comprised of a 5′ UTR (light and dark green 

underline), a coding region comprised of four exons (light and dark blue) interrupted by three introns (non-underlined regions), and a 

3′ UTR (red underline). Forward and reverse genomic coding region primers (black boxes) were designed to amplify the full-length 

AOX gene in a PCR. 
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Figure 2.3. Physcomitrella patens AOX gene structure, transcript structure, transcripts, and 

peptide sequence retrieved from the Phytozome database. B) The 2137 nt length AOX transcript 

is predicted to be comprised of a 5′ UTR, a coding region (introns spliced), and a 3′ UTR. The 
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internal moss transcript primers (orange boxes) and the full-length coding primers (black boxes) 

were designed to amplify the AOX coding region in RT-PCRs.  
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Figure 2.3. Physcomitrella patens AOX gene structure, transcript structure, transcripts, and peptide sequence retrieved from the 

Phytozome database. C) Software predicts that three AOX transcripts are expressed in moss (one primary and two alternatives) due to 

alternative splicing. The white boxes represent the untranslated regions, the black lines represent introns and the black boxes represent 

exons. D) The predicted AOX peptide sequence. The black triangle denotes the position of CysI and the four iron-binding site regions 

are numbered 1 through 4. The black arrows highlight the Glu (E) and His (H) residues that are important for the co-ordination of the 

di-iron centre. This figure was compiled from data modified from the Phytozome website. 
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Figure 2.4. Detection of amplified AOX products from P. patens separated by DNA 

electrophoresis. A) The full-length 1988 bp AOX gene (introns and exons) was amplified from 

20 ng P. patens genomic DNA by PCR using the full-length genomic coding region AOX 

primers (lane 2). B) Detection of AOX expression in P. patens by RT-PCR. Lane 2, 323 bp 

positive kit control; lane 3, 700 bp amplified AOX transcript using 2 µg total RNA and internal 

moss transcript primers; lane 4, negative kit control (omitted reverse transcriptase from reaction). 

C) Detection of the reamplified full-length 1098 bp AOX coding region cDNA in P. patens 

(Lane 2; band indicated by *). The original RT-PCR product was poorly amplified using the full-

length coding primer set (not shown), and was therefore reamplified in a PCR (gel shown) to 

increase levels for extraction. Lane 1, DNA molecular size marker. Figure 4B was modified to 

remove a lane between lanes 3 and 4 that contained an unamplified product from Selaginella. 
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Figure 2.5. The evolutionary history and taxonomic distribution of AOX among non-angiosperm  

members of the Viridiplantae. 
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Table 2.2. Identification of amino acid residues that are involved in AOX regulation, characterization, or activity in non-angiosperm 

members of the Viridiplantae. Arabidopsis thaliana AOX1a (accession #AEE76627) is used as a reference for what is commonly seen 

in angiosperm AOXs and all residues are numbered according to this sequence. “Unknown” indicates that data is not available due to 

partial sequences. 
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CHAPTER 3 

Heterologous expression of P. patens AOX in the yeast 

Saccharomyces cerevisiae 
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Abstract 

 Despite being a non-energy conserving pathway, AOX has a vast taxonomic distribution 

and is present in many plants, fungi, and some protists. It has been most thoroughly characterized 

in a number of angiosperm plants; however, AOX distribution in other members of the 

Viridiplantae is less clear. An initial characterization of AOX at the gene and transcript level has 

been recently conducted in the moss Physcomitrella patens. In this study, I have extended that 

characterization by examining moss AOX at the protein level. I have heterologously expressed 

P. patens AOX in the yeast Saccharomyces cerevisiae and protein expression was analyzed by 

performing mitochondrial isolations, SDS-PAGE, and Western blots. The immunoblot results 

indicate that moss AOX is targeted to the mitochondria, and for the first time, I have 

demonstrated that both oxidized and reduced protein forms are present in a non-angiosperm 

plant. Although oxygen consumption was measured using respirometry, the results indicated that 

AOX was not functional in transformed yeast mitochondria using NADH as a substrate. I was 

unable to mutate several conserved amino acid residues in moss AOX by site-directed 

mutagenesis. Despite the lack of success in respirometry and site-directed mutagenesis, I believe 

that an examination of AOX protein characteristics in the S. cerevisiae expression system will be 

a valuable tool for future comparative studies once these procedures have been optimized.     
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1. Introduction 

 The alternative oxidase (AOX) is an inner mitochondrial protein that creates an 

alternative pathway for electrons at the ubiquinone pool in the respiratory electron transport 

system and bypasses the last two complexes in the cytochrome c oxidase (COX) pathway (Figure 

1.1). Respiration by the AOX pathway has been termed as ‘cyanide-resistant’ because of its 

tolerance to all COX inhibitors, such as cyanide and nitric oxide (Vanlerberghe et al., 1994; 

Huang et al., 2002; Figure 1.1). However, it has been demonstrated that AOX activity is 

compromised by salicylhydroxamic acid (SHAM) and n-propyl gallate (nPG) (Vanlerberghe et 

al., 1994; Yip and Vanlerberghe, 2001; Figure 1.1). Similar to complex IV of the COX pathway, 

the AOX protein is a terminal oxidase and reduces oxygen to water (Berthold et al., 2000; Figure 

1.1). However, unlike the COX complexes, AOX is non-proton motive and as a result, fewer 

ATP molecules are yielded per oxygen consumed during its activity (Moore and Siedow, 1991). 

 Despite being a non-energy conserving pathway, AOX has a vast taxonomic distribution 

and has been predominately characterized in the plant kingdom. AOX multigene families, 

transcript expression, protein regulation, and enzymatic activity have been thoroughly 

investigated in several angiosperm plants (McDonald, 2008). A number of amino acid residues 

have been identified in all angiosperm AOX sequences and have been shown to play a crucial 

role in protein regulation and activity by site-directed mutagenesis. In plants, AOX exists as a 

dimeric protein that is typically modulated by the redox state of a disulfide bond that is formed 

by a conserved cysteine residue (CysI) (Vanlerberghe et al., 1998). The reduction of the 

sulfhydryl groups renders AOX in an active state and can be further stimulated by pyruvate 

(Rhoads et al., 1998). Key glutamate (GluI, II, III, and IV) and histidine (HisI, II, and III) 
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residues have been confirmed to play a role in iron-binding (Berthold et al., 2000), and a tyrosine 

(TyrII) residue has been shown to contribute to AOX activity in all angiosperm AOXs studied to 

date (Moore and Albury, 2008). Angiosperm AOX protein levels have been detected in isolated 

mitochondria by AOX-specific antibodies using Western blot analyses. Wild-type and mutant 

angiosperm AOX functionality have also been assessed by respirometry to measure oxygen 

consumption rates after the addition of respiratory inhibitors (McDonald et al., 2002). 

 Although AOX is said to be widespread in the Viridiplantae, AOX has not been 

thoroughly investigated in non-angiosperms. A recent bioinformatics study by Neimanis et al. 

(2013) assessed the taxonomic distribution of AOX in this group and revealed that AOX is 

present in many chlorophytes and non-angiosperm streptophytes. Sequence analysis revealed 

that AOX is likely active in these plants due to the presence of conserved amino acids that are 

essential for angiosperm AOX function. For the first time, AOX was experimentally 

characterized at the gene and transcript levels in a non-angiosperm plant, Physcomitrella patens 

(moss) (Neimanis et al., 2013). It was demonstrated that the AOX gene is present in moss and an 

AOX transcript is produced. More interestingly, it is likely that P. patens possesses only a single 

AOX gene (Neimanis et al., 2013); a characteristic unseen in all angiosperm AOXs studied to 

date, which are encoded by multigene families. This lack of AOX gene copies and protein 

redundancy coupled with the genetic tools available in P. patens makes this moss an attractive 

system to study AOX in future experiments in order to elucidate the physiological significance of 

AOX in plants (Neimanis et al., 2013).  

 The moss Physcomitrella patens has been used as a model system in plant biology studies 

in recent years. The recent development of a mitochondrial isolation protocol by Lang et al. 
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(2011) has made it possible to investigate mitochondrial proteomics in moss. However, large-

scale moss propagation is needed to carry out this procedure (Lang et al., 2011) and would 

require the use of costly bioreactors (Reutter and Reski, 1996). This type of culture set-up is not 

feasible in every laboratory setting. As an alternative solution, moss mitochondrial proteins can 

be easily studied using a heterologous eukaryotic expression system.  

 The yeast Saccharomyces cerevisiae has been extensively used as a model system in 

protein expression studies due to its rapid growth, the fact that it possesses eukaryotic protein 

processing mechanisms (Domínguez et al., 1998), and the availability of its complete genomic 

sequence (Goffeau et al., 1996). This system is particularly useful for AOX research as S. 

cerevisiae is one of the two known fungal species that naturally lack AOX (Minagawa and 

Yoshimoto, 1986). Thus, S. cerevisiae has been exploited to heterologously express AOX from 

angiosperms such as tomato (Lycopersicon esculentum L. Mill cv. Sweetie) (Holtzapffel et al., 

2003) and other fungal species such as Hansenula anomala (Mathy et al., 2006) and Candida 

albicans (Huh and Kang, 1999). 

 The purpose of this study was to investigate P. patens AOX at the protein level to 

examine AOX size, localization, conformation, and functionality in isolated mitochondria from 

transformed S. cerevisiae. The Western blot analyses demonstrate that recombinant AOX protein 

is expressed in yeast and that P. patens AOX is targeted to the mitochondria; for the first time it 

has been have revealed that the oxidized and reduced AOX forms are both present in moss. I 

attempted to assess AOX functionality using respirometry. My results indicate that wild-type 

moss AOX is not functional using NADH as a substrate in transformed yeast mitochondria. 

Attempts to mutate amino acid residues required for AOX function using site-directed 
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mutagenesis were unsuccessful and I have yet to verify if conserved amino acid residues are 

essential for P. patens AOX activity in mutant strains. However, since this is a preliminary 

investigation, I anticipate that AOX respiratory activity and mutant protein functionality will be 

measured in future studies by modifying the experimental procedures described below. 

2. Materials and Methods 

2.1. AOX Primer Design for Yeast Transformation and Amplification Parameters 

 Custom DNA primers were designed to amplify the full-length, native P. patens AOX 

coding sequence using the program Primer3 (http://frodo.wi.mit.edu/primer3/). The identical 

forward “Stop” and “NoStop” primers (5′-CGGTTTCGGATGCGATGT-3′) included a Kozak 

consensus sequence and the “ATG” start codon and was designed to ensure translation initiation 

in the heterologous host once the cDNA product was cloned into the expression vector. The 

reverse-complement for the stop codon “TAG” was incorporated into the reverse “Stop” primer 

(5′-ACTAGCAATGCGCTAGTGG-3′) to end translation of the native moss AOX protein when 

expressed in the vector. The reverse “NoStop” primer (5′-ACTAGCAATGCGCTTGTGG-3′) 

included a point mutation (in bold and underlined) within the stop codon of the native AOX 

sequence, which converted it to lysine, to allow translation to continue until it reaches a stop 

codon designed within the vector. This moss AOX protein was thereby engineered to contain a 

C-terminal multi-histidine tag. 

 To amplify the “Stop” and “NoStop” cDNA products, a first-round of amplification was 

carried out using the Access RT-PCR Introductory System (Promega Corporation, Madison, WI, 

USA) using Tfl Polymerase. RT-PCR contained 2 μg of P. patens gametophyte total RNA that 
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was pre-treated with RQ1 RNase-Free DNase (Promega Corporation, Madison, WI, USA). The 

thermal cycler was programmed with an initial reverse transcription step for 45 min. at 45
°
C, 

followed by a first cycle of denaturation for 2 min. at 94˚C. Next, for 30 rounds of amplification 

each cycle included 30 sec. at 94
°
C for denaturation, 1 min. at 53

°
C for annealing, and 1 min. at 

68
°
C for elongation. The final extension time was prolonged for 7 min.  

 Next, 2 µL of the RT-PCR products were reamplified using the iTaq Polymerase kit 

(iNtRON Biotechnology, Inc.) in order to acquire 3′A-overhangs that are required for successful 

ligation into the pYES2.1 vector (Figure 3.1). The thermal cycler was programmed with an 

initial denaturation step for 2 min. at 94˚C, followed by 30 cycles of amplification. Each cycle 

consisted of 20 sec. at 94
°
C for denaturation, 20 sec. at 53

°
C for annealing, and 1.15 min. at 72

°
C 

for elongation (the elongation step was extended for 7 min. during the last cycle). All cDNA 

products were analyzed on a 1.2% agarose gel stained with ethidium bromide. For yeast 

transformation, the inserts known as “Stop” and “NoStop” were selected for ligation into the 

pYES2.1/V5-His-TOPO® vector (Invitrogen, Carlsbad, CA) (Figure 3.1).  

2.2. Ligation of PCR Products into pYES2.1 and Transformation into Competent E.coli 

 The pYES2.1 TOPO
®

 TA Expression Kit (Invitrogen, Carlsbad, CA) was used to ligate 

the “Stop” and “NoStop” PCR products into the pYES2.1/V5-His-TOPO
®

 vector (Figure 3.1). 

The following 6 µL reactions were prepared: 4 µL PCR reaction, 1 µL salt solution, and 1 µL 

vector. The samples were incubated at room temperature for 30 min. to increase ligation 

efficiency. The reactions were then placed on ice before transformation into competent E. coli. 
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 One Shot® TOP10F′ chemically competent E. coli were transformed with 2 µL of the 

“Stop” or “NoStop” ligation reactions or with the pYES2.1/V5-His/lacZ plasmid (positive 

control provided with the kit), as outlined by the supplier (Invitrogen, Carlsbad, CA). Selective 

plates were inoculated with the transformed cells at two different volumes (50 µL or 100 µL). 

The plates were grown overnight at 37˚C on Luria-Bertani (LB) agar plates supplemented with 

100 µg/mL ampicillin. Blue/white screening selection was not possible; therefore, colonies that 

appeared to have sufficient growth were randomly selected and restreaked onto LB ampicillin 

plates. Plasmids were pre-screened by colony PCR using the internal moss transcript forward (5′-

GGATCGGAGGAAAAATTCGT-3′) and internal moss transcript reverse (5′-

GGCGAAATGGTTAACGTCAC-3′) primers (see Chapter 2, Section 2.4) to verify the presence 

of the AOX insert. Positive transformants were subcultured into 5 mL LB broth with 100 µg/mL 

ampicillin and grown overnight at 37˚C with 100 rpm shaking. Glycerol stocks using 0.5 mL 

transformed cells with 0.5 mL 100% glycerol were prepared and stored at -80˚C. Plasmids were 

isolated using the QIAprep
®

 Spin Miniprep Kit (QIAGEN Sciences, Maryland, USA) according 

to the manufacturer’s instructions and eluted with 40 µL nuclease-free water. Five of the “Stop” 

and “NoStop” constructs were then sent for sequencing at the Centre for Applied Genomics at 

the Hospital for Sick Children (Toronto, Canada) to confirm that the insert was in the correct 

orientation and in-frame, before proceeding to yeast transformation. 

2.3. Transformation of Saccharomyces cerevisiae with P. patens AOX cDNA 

2.3.1. Initiation of Yeast Growth 

 The wild-type uracil auxotrophic yeast strain Saccharomyces cerevisiae INVSc1 cells 

(Invitrogen, Carlsbad, CA, USA) were streaked onto Yeast Extract Peptone Dextrose (YPD) 
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plates and grown for 4 days at 30˚C. A single colony was inoculated into 10 mL YPD liquid 

medium and incubated overnight at 30˚C with 150 rpm shaking. The next day, 9 mL of overnight 

culture was added to 50 mL fresh YPD medium and incubated overnight at 30˚C with 150 rpm 

shaking. A glycerol stock of wild-type INVSc1 (0.5 mL culture: 0.5 mL 100% glycerol) was 

prepared and stored at -80˚C.  

2.3.2. Transformation of INVSc1 Cells 

 The Stop P. patens AOX and positive lacZ control (pYES2.1/V5-His/lacZ) vectors were 

transformed into INVSc1 yeast cells according to the supplier’s instructions (Invitrogen, 

Carlsbad, CA, USA). An OD600 of 0.4 was required for the protocol and the absorbance of the 

overnight culture was determined by a spectrophotometer using the equation below: 

 

(Volume inoculum)(OD600 inoculum) = (Volume required)(OD600 required) 

 

The calculated volume of overnight culture was then diluted into 50 mL YPD and grown for an 

additional 2 h. at 30˚C with shaking. Equal volumes of the yeast suspension were poured into 

two 50 mL centrifuge tubes and the cells were pelleted at 2500 rpm for 3 min. The supernatant 

was carefully decanted and the tubes were inverted onto paper towel to remove residual liquid. 

The pellets were resuspended in 20 mL 1X Tris-EDTA (TE) buffer by inverting the tubes and the 

cells were centrifuged at 2500 rpm for 3 min. and the supernantant was discarded. The pellets 

were then resuspended in 2 mL 1X lithium acetate (LiAc)/ 0.5X TE solution by inverting and 

incubated at room temperature for 10 min. Duplicate transformations for each sample (two tubes 

Stop and two tubes lacZ) were set-up to contain 1 µg plasmid DNA, 100 µg denatured sheared 

salmon sperm DNA (Sigma-Aldrich D9156), and 100 µL yeast suspension. Next, 700 µL of 
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fresh 1X LiAc/ 40% PEG-3350/ 1X TE solution was added to each tube and was mixed by 

inverting. The samples were incubated at 30˚C for 30 min. and then heat shocked at 42˚C for 7 

min. The cells were centrifuged at 2500 rpm for 3 min. and the supernatant was carefully 

discarded. Pellets were resuspended in 1 mL 1X TE and repelleted. The supernatant was 

decanted and the cells were resuspended in 100 µL 1X TE. Two volumes (50 µL and 100 µL) 

were plated from each sample along with negative control wild-type INVSc1 onto selective 

synthetic complete medium without uracil with 2% glucose (SC-U glucose) plates and incubated 

at 30˚C for 2 days. Three individual colonies from both the Stop and lacZ plates were randomly 

selected and restreaked onto SC-U glucose solid medium at 30˚C for 2 days. 

2.4. Induced Protein Expression in Transformed S. cerevisiae 

 For the following procedure, all incubation steps were carried out at 30˚C with 90 rpm 

shaking. To initiate cultures, one loopful of transformed cells was inoculated into 50 mL SC-U 

glucose liquid medium and incubated for 26.5 h. The cells were spun at 3000 x g for 5 min., the 

supernatant was decanted, and the pellet was resuspended into 250 mL SC-U glucose for 20.5 h. 

The cells were repelleted, washed with 250 mL sterile Milli-Q water, and spun down again. The 

washed pellet was then resuspended into 250 mL SC-U with 2% filter-sterilized galactose (SC-U 

galactose) induction medium for recombinant protein expression or into 250 mL repression 

medium (SC-U glucose). Cultures were then incubated until mitochondrial isolations were 

performed. 
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2.5. Mitochondrial Isolations and Protein Quantification 

 The yeast mitochondria isolation procedure was carried out through differential 

centrifugation as described by Meisinger et al. (2006). Yeast mitochondria were isolated at 

various time points (0, 4, 8, 12, and 16 h.) in order to determine the maximal protein expression 

time after galactose induction. All time-course experiments were conducted at the same sampling 

times with cells grown in two different media conditions: one in SC-U glucose to ensure 

recombinant proteins are not expressed and the second in SC-U galactose in order to induce 

expression. All isolations were performed in duplicate.  

 To begin, the yeast culture was poured into a 400 mL centrifuge tube and spun at 3000 x 

g for 5 min. at room temperature, the supernatant was decanted and the pellet was resuspended in 

250 mL water; this was repeated once in order to remove residual growth media. The cells were 

then centrifuged at 3000 x g for 5 min. and the mass of the wet pellet was recorded. The cells 

were resuspended in dithiothreitol (DTT) buffer (100 mM Trisma base pH 9.4, 10 mM DTT; 2 

mL buffer: g wet mass cells), transferred to a 40 mL centrifuge tube, and shaken at 70 rpm for 30 

min. at 28˚C. The culture was then pelleted at 3000 x g for 5 min. and was resuspended in 

Zymolyase buffer (20 mM potassium phosphate pH 7.4, 1.2 M sorbitol; 7 mL buffer: g wet mass 

cells); this was repeated once. The resuspension was then transferred to a beaker containing 20T 

Zymolyase (3 mg powder: g wet mass cells) and was incubated for 30 min. at 28˚C with 70 rpm 

shaking in order to lyse the cells. After this point, all remaining centrifugation steps were 

performed at 4˚C and all solutions and tubes were kept on ice. The culture was spun at 2200 x g 

for 8 min. in a 40 mL centrifuge tube and then resuspended in homogenization buffer (10 mM 

Tris-HCl pH 7.4, 0.6 M sorbitol, 1 mM EDTA; 6.5 mL buffer: g wet mass cells); this was 
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repeated once. The cells were then placed in a 50 mL glass potter, followed by 15 up and down 

strokes with a pestle in order to homogenize them. The mixture was then topped off with one 

volume of homogenization buffer and poured into a 40 mL centrifuge tube and spun at 1500 x g 

for 5 min. The supernatant was poured into a new tube and spun at 3000 x g for 5 min. The 

supernatant was transferred to a fresh tube and spun at 12000 x g for 15 min. The pellet was then 

resuspended in homogenization buffer (6.5 mL buffer: g wet mass cells) and centrifuged at 3000 

x g for 5 min. The supernatant was transferred into a new tube and spun for 15 min. at 12000 x g. 

The remaining pellet containing the crude mitochondrial fraction was carefully resuspended in 1 

mL SEM buffer (250 mM sucrose, 1 mM EDTA, 10 mM MOPS/KOH pH 7.2) and transferred to 

a microcentrifuge tube before a final spin at 12000 x g for 15 min. The pellet was then diluted in 

250 µL SEM buffer and stored at -80˚C. Protein concentrations were determined using the Quick 

Start™ Bradford Protein Assay (Bio-Rad Laboratories, Canada) with bovine serum albumin 

(BSA) standards quantified with the Ultraspec 1100 pro UV/visible spectrophotometer (Fisher 

Scientific).  

2.6. Whole Cell Protein Extraction from Yeast 

 S. cerevisiae proteins were extracted from whole cells as outlined by Kushnirov (2000).  

Before proceeding with the mitochondrial isolation procedure (outlined above), 1 mL of whole 

yeast cells was taken from each culture, centrifuged at 5000 x g for 5 min. and stored at -80˚C in 

cryogenic vials until processing. Frozen yeast pellets (as described in Section 2.5), that were 

grown in SC-U galactose medium, were thawed at room-temperature and 2.3 mg of wet weight 

was resuspended in 100 µL distilled water and 100 µL 0.2 M sodium hydroxide. Cells were 

incubated for 5 min. at room temperature before centrifugation at 5000 x g for 5 min. The pellet 
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was resuspended in 50 µL modified Laemmli buffer (0.06 M Tris-HCl (pH 6.8), 5% glycerol, 

2% SDS, 4% β-mercaptoethanol, 0.0025% bromophenol blue) and then boiled for 3 min. before 

centrifugation at 5000 x g for 5 min. The supernatant, which contained the yeast proteins, was 

then ready for analysis.  

2.7. Theoretical Molecular Weight Determination, SDS-PAGE and Western blotting 

 Prior to performing SDS-PAGE and Western blotting, the predicted P. patens AOX 

peptide sequence retrieved from the Phytozome database (http://www.phytozome.net/) was 

placed into the compute pI/Mw tool (Gasteiger et al., 2005) available on the ExPASy server 

(http://web.expasy.org/compute_pi/) to estimate the theoretical molecular mass (kDa). This value 

was used to predict the approximate region of localization of the AOX protein in the gel and 

membrane. 

 Recombinant proteins from isolated mitochondria or whole cell yeast protein extracts 

were analyzed by SDS-PAGE and immunoblotting. Two 12% acrylamide gels were loaded with 

5 μl Precision Plus Protein™ prestained ladder (Bio-Rad Laboratories, Canada), 5 μg of 

mitochondrial protein or 6 µL whole cell yeast proteins (as suggested by Kushnirov [2000]) per 

well, and 4.7 μg phosphate starved (low Pi) tobacco mitochondrial protein (provided by Dr. G.C. 

Vanlerberghe) as a control. Proteins were separated using reducing SDS-PAGE in the presence 

of Laemmli loading buffer (Laemmli, 1970) for mitochondrial proteins or modified Laemmli 

buffer (Kushnirov, 2000) for yeast protein extracts, both containing the reductant β-

mercaptoethanol. To ensure proper separation and equal loading of the protein samples, the first 

acrylamide gel was stained with Coomassie brilliant blue R-250 for 30 min. and then incubated 

overnight on a shaker in destain solution.  

http://www.phytozome.net/
http://web.expasy.org/compute_pi/
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 For Western blot analysis, the resolved proteins in the second acrylamide gel were blotted 

onto a nitrocellulose membrane using a cassette holder that was placed into the Mini Trans-Blot
®
 

cell (Bio-Rad Laboratories, Canada) containing protein blotting buffer and transferred for 1 h. at 

100 V constant. The membrane was blocked overnight using 0.5% milk powder in tris-buffered 

saline with Tween 20 (TBS-T). The blot was probed with a primary monoclonal antibody 

specific to AOX (AOX1/2 product number: AS04054; Agrisera AB, Vannas, Sweden) in a 

1:5000 dilution of antibody to TBS-T, or with a primary monoclonal porin antibody specific to S. 

cerevisiae (product number: 459500; Invitrogen, Carlsbad, CA, USA) in a 1:1000 dilution of 

antibody to TBS-T, and was placed on a shaker for 1 h. at room temperature. The membrane was 

washed three times in TBS-T (once for 15 min. and twice for 10 min.) before incubation in the 

secondary antibody. The secondary AOX antibody was a horseradish peroxidase (HRP)-

conjugated goat anti-rabbit IgG (H&L) (product number: AS09602; Agrisera AB, Vannas, 

Sweden), whereas the secondary porin antibody was an HRP-conjugated goat anti-mouse IgG1 

(g1) (product number: A10551; Invitrogen, Carlsbad, CA, USA), both of which were both 

applied in 1:10000 dilutions in TBS-T. Both secondary antibodies were combined with a 

1:10000 dilution of the Precision Protein StrepTactin-HRP Conjugate (Bio-Rad Laboratories, 

Canada) to TBS-T and then incubated at room temperature for 1 h. on a shaker, followed by 

three washes in TBS-T as described above. Lastly, the membrane was covered with a 1:1 ratio of 

luminol/enhancer and peroxide buffer solutions from the Immun-Star™ WesternC™ 

Chemiluminescent Kit (Bio-Rad Laboratories, Canada) for 5 min. before being visualized on the 

Bio-Rad Molecular Imager Gel-Doc XR. 
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2.8. Oxygen Uptake Measurements 

 High-resolution respirometry was performed with intact, isolated mitochondria from S. 

cerevisiae to assess AOX functionality. Oxygen consumption rates were measured using a Clark-

type oxygen electrode in the Oroboros Oxygraph-2k (Oroboros® Instruments GmbH, Innsbruck 

Austria). Each trace was maintained at 30˚C in a closed-glass chamber containing 0.1 mg 

mitochondrial proteins in 2 mL of MiR05 respiration medium (Appendix 2). Cytochrome c 

oxidase (COX) and AOX activity was assessed using two different assay conditions with a 

combination of respiratory substrates, AOX activators, and inhibitors (Table 1). In the first assay 

(assay A), the compounds were added to the chamber in the following order: NADH, ADP, 

potassium cyanide (KCN), and SHAM (Table 3.1). The second assay (assay B) included NADH, 

ADP, DTT, pyruvate, KCN, and SHAM (Table 3.1). Oxygen consumption rates (nmol O2 min
-1

 

mg
-1

 protein) and standard errors were calculated from the average of three independent 

mitochondrial isolations.  

2.9. Site-directed Mutagenesis Primer Design and Construct Preparation 

 Six amino acids within the P. patens AOX were selected for site-directed mutagenesis 

(Table 3.2). The QuikChange® Primer Design program, located on the Agilent Technologies 

website (https://www.genomics.agilent.com/HomePage.aspx), was used to design primers to 

introduce the following individual mutations: Tyr107 to Phe, CysI to Ala, Tyr134 to Phe, GluII 

to Ala, TyrII to Phe, and HisII to Ala (Table 3.2).  

 The QuikChange® Lightning Site-directed Mutagenesis Kit (Agilent Technologies, 

Mississauga, ON) was used to generate mutant plasmids, as described by the supplier. For each 

https://www.genomics.agilent.com/HomePage.aspx
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mutation, a 50 µL PCR reaction was prepared using 50 ng of 1Stop plasmid DNA and 125 ng of 

forward and reverse oligonucleotide primers. To optimize amplification conditions, an initial 

denaturation step was programmed for 2 min. at 95˚C, followed by 18 cycles consisting of: 20 

sec. at 95˚C for denaturation, 10 sec. at 60˚C for annealing, and 3.5 min. at 68˚C for elongation 

(with a final extension time of 5 min. for the last cycle). PCR products were digested with 2 µL 

of the Dpn I restriction enzyme for 5 min. at 37˚C to remove the non-mutated, parental plasmid 

DNA. Next, XL10-Gold ultracompetent E. coli cells were chemically transformed with the 

mutant plasmids (Figure 3.2). Plasmid DNA was purified using the QIAprep
®

 Spin Miniprep Kit 

(QIAGEN Sciences, Maryland, USA) and sent to the Centre for Applied Genomics at the 

Hospital for Sick Children (Toronto, Canada) for sequencing (Figure 3.2).  

3. Results 

3.1. Sequence Analysis of Plasmid Constructs and Yeast Transformation  

 Five Stop and five NoStop plasmids were sequenced using the GAL1 forward primer and 

the V5 C-term reverse primer (Invitrogen, Carlsbad, CA, USA) for N-terminal and C-terminal 

sequencing of the insert, respectively. A single construct, called “1Stop”, contained the P. patens 

AOX insert in the correct orientation and in-frame; all of the “NoStop” sequencing results came 

back negative. The N-terminal and C-terminal products obtained through sequencing were 

translated into amino acids using the Translate tool located on the ExPASy server 

(http://ca.expasy.org/tools/dna.html) and then placed into a multiple-sequence alignment against 

the predicted P. patens AOX peptide sequence (Figure 3.3). The alignment revealed that the full-

length AOX insert was successfully cloned into the pYES2.1 vector and that it shared 100% 

shared sequence identity to the predicted AOX protein (Figure 3.3). 

http://ca.expasy.org/tools/dna.html
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 INVSc1 yeast cells were transformed with the lacZ positive kit control vector or the 

1Stop construct. Two volumes of each transformation reaction and negative control wild-type 

INVSc1 cells were plated onto SC-U glucose solid media (Figure 3.4). Sufficient colony growth 

on selective media demonstrated successful chemical transformation of yeast with the pYES2.1 

vector (Figure 3.4A; Figure 3.B). No growth was observed on the negative control plates, as 

wild-type yeast do not possess the URA3 gene (Figure 4C). 

3.2. Recombinant Protein Expression in Yeast 

3.2.1. Mitochondrial Protein Analysis 

 Western blotting was used to analyze proteins in mitochondria isolated from yeast that 

were transformed with the pYES2.1 vector containing the 1Stop or lacZ gene. To assess 

recombinant protein expression, mitochondria were isolated at specific time points from cells 

that were grown in either repression (GLU) or induction (GAL) medium. Pilot experiments were 

carried out using 0 h., 4 h., and 8 h. GLU and GAL 1Stop mitochondria. Protein expression was 

not observed in the 0 h. samples and very low signals were seen in the 4 h. and 8 h. GAL 

samples (data not shown). Thus, transformed cells were incubated for longer time points (8 h., 12 

h., and 16 h.) in order to achieve higher levels of protein expression (Figure 3.5).  

 The compute pI/Mw software predicted a theoretical AOX protein size of ~42 kDa 

(Gasteiger et al., 2005). Effective protein separation by electrophoresis was analyzed in 

acrylamide gels that were stained with Coomassie brilliant blue (Appendix 3). Experimentally, 

the reduced (~35 kDa) and oxidized (~75 kDa) forms of AOX were detected as double bands in 

8 h., 12 h., and 16 h. 1Stop GAL mitochondria by the AOX antibody (Figure 3.5A). The highest 
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protein signals (most intense bands) were observed at 16h. of expression (Figure 3.5A). The 

porin antibody, specific to S. cerevisiae, was used as a positive control to validate the 

mitochondrial isolation procedure. Porin is a ~30 kDa outer mitochondrial membrane protein, 

and was recognized at comparable levels in all 1Stop GLU and GAL mitochondria (Figure 

3.5B). A signal was not detected in any of the lacZ mitochondrial samples by the AOX antibody 

(Figure 3.5C); however, porin was detected in all lacZ samples (Figure 3.5D). The presence of 

porin in all 1Stop and lacZ samples indicated that mitochondria were successfully isolated. Low 

Pi tobacco mitochondria were as a positive or negative control in each experiment respectively. 

The reduced (~35 kDa) and oxidized (~75 kDa) forms of AOX were present as single bands in 

low Pi tobacco mitochondria (Figure 3.5A; Figure 3.5C); there was no signal detected by the 

yeast-specific porin antibody in this sample (Figure 3.5B; Figure 3.5D).    

3.2.2. Whole Cell Protein Analysis 

 Whole cell yeast protein extracts were isolated from 16 h. 1Stop GAL and INVSc1 GAL 

whole cell cultures and analyzed by Western blots probed with the AOX or porin antibody 

(Figure 3.6). The AOX antibody was used to detect recombinant AOX (Figure 3.6A). The 

reduced (~35 kDa) AOX protein was recognized in the 1Stop sample only (Figure 3.6A). Porin 

(~30 kDa) was present in the 1Stop and INVSc1 samples (Figure 3.6B). These results indicate 

that residual AOX and porin proteins are detectable in whole cell extracts. Interestingly, two 

intense bands (~41 kDa and ~125 kDa) were recognized in 1Stop and INVSc1 mitochondria by 

both antibodies (Figure 3.6A; Figure 3.6B). The identity of these proteins has yet to be 

determined.   
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3.3. Oxygen Uptake via the AOX Pathway 

 Oxygen consumption by the COX and AOX pathways was analyzed using isolated 

mitochondria from wild-type or AOX expressing S. cerevisiae (Appendix 4 & 5). For each assay, 

0.1 mg mitochondrial proteins were added to the chamber containing 2 mL respiratory medium 

and equilibrated for 5 min. and this rate was used for background correction. In all samples, little 

activity was observed from isolated mitochondria until 2 mM NADH was added to the chamber 

(Table 3.3). A noticeable increase in the oxygen consumption rate in both wild-type and AOX 

mitochondria was observed after the addition of ADP in both assay conditions (Table 3.3). In 

“assay B” runs, the uptake rates decreased after the sequential addition of DTT and pyruvate 

(AOX activators) in both mitochondrial samples (Table 3.3). Resistance to COX inhibitors by 

AOX was measured by titration of KCN. Respiratory rates reached below zero levels after the 

addition of KCN in all samples (Table 3.3). Lastly, complete shutdown of AOX activity was to 

be achieved by titration with SHAM; however, inhibition was not possible since oxygen 

consumption rates were already well below zero (Table 3.3).  

3.4. P. patens AOX Mutants  

 Six AOX amino acid residues were selected for mutation (Table 3.1). The plasmid 

containing the 1Stop insert was used as template DNA for site-directed mutagenesis. 

Amplification, restriction digest, and transformation procedures were performed in accordance 

with the kit manufacturer’s instructions. No blue colonies were detected on selective plates, 

which implied 100% transformation efficiency. Since this is an unlikely result, only two of the 

six site-directed mutagenesis plasmids (GluII to Ala and HisII to Ala) were sequenced to 

determine if the mutation had been successfully incorporated. Sequencing analysis revealed that 
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the AOX insert was unaltered in both constructs. Therefore, site-directed mutagenesis 

experiments were halted. 

4. Discussion 

4.1. Expression of Moss AOX in S. cerevisiae 

 S. cerevisiae cannot perform cyanide-resistant respiration due to the absence of AOX 

(Minagawa and Yoshimoto, 1986). P. patens AOX was introduced into S. cerevisiae to examine 

non-angiosperm AOX localization and functionality. Prediction software estimated a high 

probability of mitochondrial targeting for moss AOX (Neimanis et al., 2013). Therefore, 

mitochondrial isolations from transformed S. cerevisiae cells were carried out to investigate this 

protein. Western blot analysis revealed that the reduced (~35 kDa) and oxidized (~75 kDa) forms 

of P. patens AOX were only expressed in cells that had been grown in induction media (Figure 

3.5A). The most intense levels of expression were observed in 16 h. isolated mitochondria 

(Figure 3.5A). AOX expression was highly repressed in the presence of glucose (Figure 3.5A), 

and therefore suggests that the pYES2.1 yeast expression vector is not leaky. AOX was not 

recognized by the AOX antibody in mitochondria extracted from yeast transformed with the lacZ 

containing vector (Figure 3.5C), confirming that AOX is absent in S. cerevisiae. The detection of 

AOX in immunoblots confirms that AOX was successfully targeted to the mitochondrion, as 

predicted by MitoProt software. The 30 kDa porin protein was detected at equal levels in 

mitochondria isolated from AOX and lacZ transformed yeast cells grown in repression and 

induction media (Figure 3.5B; Figure 3.5D). Porin was not recognized in low Pi tobacco 

mitochondria, which confirmed the specificity of the porin antibody to S. cerevisiae (Figure 
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3.5B; Figure 3.5D). The presence of porin in the isolated yeast mitochondria authenticates the 

mitochondrial isolation procedure (Meisinger et al., 2006).  

4.2. Characteristics of Moss AOX Protein 

 The experimental size of moss AOX (35 kDa) did not coincide very well with the mass 

predicted (~42 kDa) using in silico methods. This higher theoretical value may be due to the 

presence of an N-terminal signal peptide in the AOX peptide sequence that was used in the 

prediction program. The smaller 35 kDa sized protein observed in the immunoblot (Figure 3.5A) 

is likely due to the cleavage of the targeting peptide upon mitochondrial import (Whelan et al., 

1993). Therefore, the predicted moss AOX peptide sequence was placed into the program 

TargetP 1.1 (http://www.cbs.dtu.dk/services/TargetP/) which predicted an N-terminal 

presequence length of 34 amino acids. When the 34 amino acid targeting sequence was removed 

from the moss AOX protein sequence, the compute pI/mW software predicted a ~38 kDa 

protein, which coincides more strongly with the experimental 35 kDa protein. The detection of 

reduced AOX in moss mitochondrial fractions has been previously reported by Lang et al. 

(2011). The immunoblot results indicate that the reduced and oxidized forms of AOX are both 

present in moss, suggesting that it exists as a dimer that is redox-modulated at a conserved CysI 

in a similar manner to angiosperm AOXs (Neimanis et al., 2013). More prominent bands were 

observed at 35 kDa than at 75 kDa in all 1Stop GAL mitochondria (Figure 3.5A). The detection 

of the oxidized form suggests that as AOX is being overexpressed, the amount of β-

mercaptoethanol (reductant) in the sample buffer is not sufficient to fully reduce all AOX 

proteins in the sample. The size of both AOX forms in moss is highly comparable to what is seen 

in most angiosperms (refer to the low Pi tobacco mitochondrial sample in Figures 3.5A & 3.5C). 

http://www.cbs.dtu.dk/services/TargetP/
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However, the reduced and oxidized AOX forms in moss are present as doublets (Figure 3.5A). 

AOX doublets in Western blots have been previously reported in angiosperms such as transgenic 

maize (Zea mays) (Karpova et al., 2002) and potato (Solanum tuberosum) (Hiser et al., 1996). 

Hiser et al. (1996) speculates that doublet formation may be due to the accumulation of precursor 

proteins if AOX is overexpressed. Alternatively, Rhoads et al. (1998) proposes that double 

banding is attributable to a post-translational modification event. It has also been observed that 

the presence of doublets is tissue-specific (Hiser et al., 1996). This could explain why the double 

bands were absent in AOX in mitochondria isolated from moss protonema (Lang et al., 2011), 

but are present in the mitochondrial fractions containing AOX from moss gametophytes used in 

this study. Further investigation of AOX doublets is warranted.  

 Proteins were extracted from whole cells of wild-type and AOX expressing S. cerevisiae 

that were grown for 16 h. in induction medium in order to determine if AOX could be detected 

without the requirement for mitochondrial isolation. Western blot analysis using the AOX 

antibody revealed that only the reduced AOX protein was present in these extracts (Figure 3.6A). 

Porin was also detected in whole cell extracts (Figure 3.6B). Interestingly, two bands at 41 kDa 

and ~125 kDa were recognized by both antibodies in all samples (Figure 3.6A; Figure 3.6B). The 

detection of these bands is likely attributable non-specific antibody recognition of cytosolic 

proteins (Trinkle-Mulcahy et al., 2008). The identity of these proteins should be determined by 

mass spectrophotometry or N-terminal sequencing in future experiments (Trinkle-Mulcahy et al., 

2008). The presence of the 35 kDa protein shows that all AOX proteins had been completely 

reduced in the whole cell lysate sample buffer, since the oxidized form was undetected. The 

presence of AOX in the whole cell extracts suggests that at 16 h. large quantities of AOX are 
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expressed and that organelle isolations may not be necessary for AOX detection in future 

experiments. However, it is unknown whether AOX is sufficiently expressed in cells grown for 

shorter induction times (8 h. and 12 h.) to be detectable. Future work should examine AOX 

protein levels in whole cell extracts from a range of induction times to determine if 

mitochondrial isolations are required for AOX detection on shorter time scales. The non-specific 

binding of the antibody to other proteins is also a concern in whole cell lysates.  

4.3. Investigation of Moss AOX Functionality in the Yeast Expression System  

 Inhibitor studies have been extensively used to investigate cyanide-resistant respiration 

by the AOX pathway in a number of angiosperms, some of which include maize (Zea mays L.) 

(Van de Venter, 1985), Arabidopsis thaliana (Watanabe et al., 2010), tobacco (Nicotiana 

tabacum) (Vanlerberghe and McIntosh, 1992), and voodoo lily (Sauromatum guttatum) 

(Crichton et al., 2010). Despite the vast amount of data collected from both monocots and dicots, 

scarce information is available on AOX function in non-angiosperm plants. Of the few studies 

that have investigated non-angiosperm alternative respiration, data is limited to gymnosperms 

such as the ancient conifer Araucaria angustifolia (Mariano et al., 2008) and white spruce (Picea 

glauca) (Johnson-Flanagan and Owens, 1986; Weger and Guy, 1991). However, there has yet to 

be a study that has assessed cyanide-resistant respiration due to AOX in a basal plant. For the 

first time, I have attempted to measure the respiratory activity of moss AOX from isolated 

mitochondria of transformed yeast. Oxygen consumption rates of AOX were compared to those 

measured in AOX-deficient mitochondria from wild-type S. cerevisiae.  

 Respiratory activity was evaluated in the presence of substrates and inhibitors since very 

low levels of oxygen consumption were detected from the isolated mitochondria alone. In 
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contrast to most eukaryotic mitochondria, S. cerevisiae lacks complex I of the respiratory 

electron transport chain (Fang and Beattie, 2003; Figure 3.7).  Instead, this yeast possesses 

internal and external NADH dehydrogenases, which are located on the inner and outer faces of 

the inner mitochondrial membrane, respectively (Fang and Beattie, 2003; Figure 3.7). Therefore, 

in respirometry runs using yeast mitochondria, the substrate NADH can be added directly to the 

chamber for oxidation by the external enzymes to initiate electron flow directly to ubiquinol. 

After the addition of NADH, the rate at which oxygen was consumed significantly increased, 

indicating that external NADH dehydrogenases were functional in both AOX expressing and 

wild-type isolated mitochondria (Table 3.3). Assay A rates were somewhat comparable to those 

observed by Crichton et al. (2010) in isolated mitochondria from S. pombe transformed with S. 

guttatum AOX (~132 nmol O2 min
-1

 mg
-1

); however, rates measured in Assay B, were 

significantly higher than what is observed in the literature (Crichton et al., 2010). The variation 

may be due to the difference in plant phylogeny (angiosperm vs. non-angiosperm enzyme) so it 

is difficult to make a direct comparison. Since electron transfer by the cytochrome pathway is 

directly coupled to proton translocation which drives ATP synthesis (Vanlerberghe et al., 1994), 

the rate of oxygen consumption is expected to greatly increase after ADP is added. An increase 

in rate by all samples after the addition of ADP suggests that the uptake of oxygen is a direct 

result of the coupling of electron transport to proton pumping (Table 3.3). However, a much 

higher rate was expected than what was measured, suggesting that the isolated mitochondria 

were only partially coupled. This provides evidence that the mitochondrial isolation protocol has 

not been optimized. To measure cyanide-resistant respiration, the complex IV inhibitor KCN was 

added to shut down the COX pathway. Interestingly, oxygen consumption rates measured below 

zero (indicating that oxygen was being generated) in all samples and continued to decrease after 
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the AOX inhibitor (SHAM) was added (Table 3.3). This implies that oxygen was unexpectedly 

introduced into the chamber. Previous respirometry experiments by other groups indicate that 

oxygen consumption will continue after the addition of KCN if AOX is active, but that this 

activity is lost (no oxygen uptake) after SHAM addition (Crichton et al., 2010; Johnson-Flanagan 

and Owens, 1986; Weger and Guy, 1991; Mariano et al., 2008). For these reasons, statistical 

analysis was not performed, as it would not be valid. The results suggest that moss AOX is not 

active in transformed yeast mitochondria that were isolated when NADH is used as a respiratory 

substrate. This also explains why the AOX activators DTT and pyruvate exhibited unusual 

effects on the respiration rate in Assay B conditions (Table 3.3) and it remains to be determined 

whether the same activators for angiosperm AOXs (Vanlerberghe et al., 1998) will stimulate 

non-angiosperm AOXs. However, I predict that since CysI is conserved in moss AOX it will be 

redox-modulated and stimulated by pyruvate in a similar manner as angiosperm AOXs 

(Neimanis et al., 2013).  

 I speculate that AOX-transformed yeast could not perform cyanide-resistant respiration 

due to incorrect targeting of the mitochondrial protein, protein degradation, disrupted 

mitochondrial membranes due to the isolation procedure, or because the AOX protein was not 

functionally active. The possibility of incorrect targeting can be ruled out because the Western 

blot analysis shows that AOX is present in isolated mitochondria from transformed S. cerevisiae 

(Figure 3.5A). Immunoblots also show that proteolysis was unlikely because smaller band 

fragments were not seen, which would be representative of degradation, in any of the 

transformed samples (Figure 3.5A). It is possible that that the inner mitochondrial membrane 

may have been disrupted during the mitochondrial isolation procedure as the respirometry results 
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indicated that the mitochondria were not fully coupled. However, the presence of porin in the 

immunoblots (Figure 3.5B & 3.5D) reveals that the outer mitochondrial membrane was not 

compromised, suggesting that the isolated mitochondria are intact. A recent study by Petrussa et 

al. (2008) investigated the respiratory capacity of Picea abies and Abies cephalonica. Their 

results demonstrated that the two conifers were incapable of cyanide-resistant respiration (zero 

oxygen consumption) when NADH was used as a substrate; interestingly, AOX capacity was 

measurable when succinate or malate combined with glutamate were used as substrates (Petrussa 

et al., 2008). Therefore, I predict that the AOX-transformed yeast cells possess a functionally 

active AOX, however, AOX activity was undetected because NADH was used as a substrate.  I 

anticipate that with the adjustment of certain parameters, such as the substrate and inhibitor 

concentrations, I will be able to successfully assess P. patens AOX functionality in future 

experiments.  

4.4. Functionality of P. patens AOX Mutants 

 A number of conserved amino acid residues have been identified as playing an essential 

role in angiosperm AOX activity and regulation, and their importance has been confirmed 

through site-directed mutagenesis. These key amino acid residues are also conserved in all non-

angiosperm AOX sequences (Neimanis et al., 2013); however, the effects of mutations in these 

key residues on AOX activity has yet to be investigated in this group. For this reason, I have 

attempted to influence P. patens AOX functionality by introducing six individual mutations 

through site-directed mutagenesis. Four of the six mutations (CysI, GluII, TyrII, and HisII) 

(Table 3.2) have been previously investigated in angiosperm AOXs from tobacco (Rhoads et al., 

1998; Vanlerberghe et al., 1998), voodoo lily (Albury et al., 2002), and Arabidopsis thaliana 
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(Berthold et al., 2002). The remaining amino acid residues (Tyr107 and Tyr134) that were 

selected for mutagenesis have yet to be investigated in plant AOXs (Table 3.2); thus, their effect 

on AOX activity has yet to be determined (Neimanis et al., 2013). My goal was to successfully 

mutate these residues in moss AOX and then assess protein functionality via respirometry with 

mitochondria isolated from transformed S. cerevisiae. Site-directed mutagenesis reactions were 

carefully performed as per the manufacturer’s instructions and mutant constructs were 

transformed into E. coli. However, sequencing results from two selected constructs (GluII and 

HisII mutations) indicated that the full-length P. patens AOX sequence was unaltered; therefore, 

I felt that sequencing of the other constructs would be unnecessary. I speculate that mutant 

constructs were not generated due to a source of experimental error, which most likely occurred 

during amplification. Therefore, future site-directed mutagenesis experiments should modify the 

amplification parameters and attempt to improve the protocol. Alternatively, pre-made mutant 

constructs can be prepared by a manufacturer (Life Technologies), which will help reduce 

experimental error and troubleshooting. Further research is warranted to determine if conserved 

amino acids in non-angiosperm AOXs play an essential role in activity and in post-translational 

regulation as observed in angiosperm AOXs. 

5. Conclusions and Future Directions 

 The overall goal of this study was to investigate P. patens AOX at the protein level in 

transformed S. cerevisiae. Through Western blot analysis, I have demonstrated that P. patens 

AOX is successfully targeted to the mitochondria. The presence of the reduced and oxidized 

forms indicates that moss AOX is likely dimeric and is redox-regulated in a manner similar to 

angiosperm AOXs. Preliminary respiratory data suggest that P. patens AOX is inactive in 
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transformed yeast mitochondria when NADH is used as a respiratory substrate and it has yet to 

be determined if conserved amino acid residues play a key role in moss AOX functionality and 

regulation. Despite this, I predict that AOX respiratory activity and mutant protein functionality 

will be successfully analyzed in future studies by using different respirometry substrates and 

improving the site-directed mutagenesis protocols. I believe that once these procedures have 

been optimized, investigation of P. patens AOX protein characteristics in the yeast expression 

system will be a useful tool for comparative studies.  
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Figure 3.1. pYES2.1/V5-His-TOPO® vector map. Key features of this plasmid include: the 

GAL1 promoter for recombinant protein expression by galactose induction and repression by 

glucose in yeast, a multiple cloning site, an ampicillin resistance gene for selection in 

transformed E. coli, and the URA3 gene for selection on uracil deficient media. Figure obtained 

from: www.invitrogen.com. 

http://www.invitrogen.com/
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Table 3.1. Substrate and inhibitor concentrations for respirometry.  

Substrates Final concentration (mM) 

in 2 mL chamber 

Purpose 

NADH 2 - External NADH dehydrogenase oxidizes 

NADH to NAD
+
 

- Initiates electron flow through the electron 

transport chain 

ADP 1 - ATP synthesis 

DTT 1  - Angiosperm AOX activator 

- Reduces AOX to the active form 

Pyruvate 5  - Angiosperm AOX stimulator 

- Further activation of the reduced AOX form 

Inhibitors   

KCN 1  - Complex IV inhibitor  

- Shuts down cytochrome c oxidase pathway 

SHAM 3  - AOX inhibitor 

- Shuts down AOX pathway 
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Table 3.2. Site-directed mutagenesis primers.  

Key AOX 

amino acid 

Mut. Forward primer Reverse primer 

Tyr107 Phe 5'-ggccacggatatctccagtttttggggtgtgg-3' 5'-ccacaccccaaaaactggagatatccgtggcc-3' 

CysI 

(Cys127) 

Ala 5'-ccttggaaatggacggccttcacgccgcacga-3' 5'-tcgtgcggcgtgaaggccgtccatttccaagg-3' 

Tyr134 Phe 5'-gccgcacgagacgttctatcccgatgtca-3' 5'-tgacatcgggatagaacgtctcgtgcggc-3' 

GluII 

(Glu222) 

Ala 5'-cgaggaagctgaaaacgcacgaatgcacttgatga-3' 5'-tcatcaagtgcattcgtgcgttttcagcttcctcg-3' 

TyrII 

(Tyr280) 

Phe 5'-ggaagccgtttactccttcacgcaattcctcaaaa-3' 5'-ttttgaggaattgcgtgaaggagtaaacggcttcc-3' 

HisII 

(His327) 

Ala 5'-gttcgtgcagacgaagctcatgctcgtgacgttaaccattt-3' 5'-aaatggttaacgtcacgagcatgagcttcgtctgcacgaac-3' 
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Figure 3.2. Experimental procedure for chemical transformation of E. coli with site-directed 

mutagenesis AOX constructs.  
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Figure 3.3. Multiple sequence alignment of the cloned 1Stop AOX insert with the predicted AOX peptide sequence. The forward 

GAL1 primer and the reverse V5 C-term reverse primer were used to sequence the N-terminal region and the C-terminal region of the 

insert DNA, respectively. Cloned DNA sequences were converted into amino acid sequences and were aligned to the predicted P. 

patens peptide sequence derived from the Phytozome database. 
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Figure 3.4. Chemically transformed Saccharomyces cerevisiae INVSc1 plated onto selective 

synthetic complete medium without uracil (SC-U). Left, 50 µL; right, 100 µL. A) Yeast cells 

containing the lacZ positive kit control vector. B) Transformed yeast with the 1Stop P. patens 

AOX construct. C) Untransformed wild-type S. cerevisiae INVSc1 cells (negative control) 

without pYES2 vector. 
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Figure 3.5. Western blot analysis of isolated S. cerevisiae mitochondrial proteins probed with the AOX antibody (A & C) or the yeast-

specific porin antibody (B & D). Lane 1, protein ladder; lane 2, blank; lanes 3-8, mitochondrial protein (5 µg); lane 9, blank; lane 10, 

low Pi tobacco mitochondria (4.8 µg). Mitochondria that were grown in the presence of glucose (lanes 3, 5, and 7) or galactose (lanes 
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4, 6, and 8) were extracted at three different time points (8, 12, and 16 h.). A, B) 1Stop isolated mitochondrial proteins (lanes 3-8). *, 

35 kDa reduced band; , 75 kDa oxidized band. C, D) lacZ mitochondrial protein samples (lanes 3-8). Western blots are 

representative results that were obtained from two independent mitochondrial isolations for each sample.  
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Figure 3.6. Western blot analysis of whole cell S. cerevisiae protein extracts. Lane 1, protein ladder; lane 2, blank; lane 3, (6 µL) 16 h. 

GAL 1Stop protein extract; lane 4, blank; lane 5, (6 µL) 16 h. GAL INVSc1 protein extract; lane 6, blank; lane 7, low Pi tobacco 

mitochondria (4.8 µg). A) Nitrocellulose membrane probed with AOX antibody. *, 35 kDa reduced AOX. B) Nitrocellulose 

membrane probed with the porin antibody. , 30 kDa corresponding porin band. 
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Table 3.3. Oxygen consumption rates of wild-type (WT) or AOX expressing mitochondria isolated from S. cerevisiae. Rates are the 

average from 3 individual mitochondrial isolations and were calculated after the addition of each substrate and inhibitor with ± the 

standard error. Data was background corrected with the initial mitochondrial respiratory rate before substrates were added.  

   Rate  

(nmol O2 consumed min
-1

 mg
-1

) 

   

 NADH ADP DTT Pyruvate KCN SHAM 

Assay A       

AOX 163.9 ±32.1 211.1 ±72.3 - - -6.0 ±6.4 -9.6 ±7.4 

WT 170.3 ±7.7 264.5 ±19.1 - - -14.4 ±4.8 -17.8 ±5.0 

Assay B       

AOX 225.2 ±17.5 308.9 ±17.8 254.4 ±10.2 167.8 ±3.9 -10.3 ±15.2 -19.5 ±14.5 

WT 198.3 ±35.4 280.3 ±35.2 262.4 ±22.3 201.3 ±29.1 -7.9 ±5.5 -9.2 ±4.7 
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Figure 3.7. Representative electron transport system of S. cerevisiae. Electrons (e-) are 

transferred from external or internal NADH dehydrogenases (1-3) or from complex II to 

ubiquinone (Q). Electrons then flow to complex III, to cytochrome c (C), and lastly to complex 

IV. Protons (H
+
) are translocated across the inner mitochondrial membrane (IMM) and into the 

intermembrane space by complexes III and IV. An electrochemical gradient is created which is 

used to drive ATP synthesis by the enzyme ATP synthase.  
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CHAPTER 4 

General Discussion 
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1. Summary 

1.1. Major Findings and Future Directions 

 The goal of this research project was to characterize AOX for the first time in a non-

angiosperm plant. The taxonomic distribution of AOX in non-angiosperm members of the 

Viridiplantae was examined in order to assess the evolutionary history of the protein. 

Comparisons were made to identify similarities and differences between all plant AOXs. I have 

experimentally investigated AOX in the moss Physcomitrella patens at the DNA (gene), mRNA 

(transcript expression), and protein levels. An integrative approach was employed to examine 

AOX across a diverse group of plants differing with respect to their reproductive strategies, 

physiology, and morphology, and at different levels of biological organization (from the 

molecular level to the organism) using various interdisciplinary techniques. The major findings 

of this research are as follows: 

 The first major discovery of this research is that AOX is widespread in the Viridiplantae 

and is likely an ancient character in this group (Chapter 2, Section 4.1; Table 2.1). Evidence of 

multigene families in one chlorophyte and some streptophyte land plants suggests that an AOX 

gene duplication event occurred before the divergence of the Magnoliophyta (Chapter 2, Section 

4.2). Variation at the amino acid level among chlorophyte and streptophyte AOXs was observed 

in the N-terminal and C-terminal regions of the protein, however, the protein sequence was 

highly conserved in the core-region of the enzyme in all species (Chapter 2, Section 4.3). This 

sequence analysis suggests that all AOXs in plants will be functional, but that chlorophyte AOXs 

are monomeric, whereas streptophyte AOXs are dimeric. Thus, major differences are expected to 

occur in the manner by which AOX will be post-translationally regulated in these two groups.  
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 In this thesis, I have provided evidence that AOX has a widespread distribution in the 

Viridiplantae, as it is present in many chlorophyte and non-angiosperm streptophyte plants. I 

anticipate that as more sequencing data become available, it will be revealed that AOX is 

ubiquitous in the plant kingdom. Within the Chlorophyta, AOX data is unavailable from the 

Pedinophyceae (Figure 2.5). Streptophyte AOX sequence data is missing from the algal group 

Mesostigmatophyceae and from the embryophyte groups Anthocerotophyta, Lycopodiopsida, 

Psilotophyta, Equisetophyta, Ginkgophyta, and Cycadophyta (Figure 2.5). I propose that the 

Cycadophyta would be the logical starting point for AOX research in groups from which there is 

currently no sequence data. Cycad tissue is easily accessible from greenhouses and would be an 

interesting system to explore AOX activity as thermogenesis has been previously reported in the 

male cones of some cycad species (Skubatz et al., 1992). I propose that the lycophyte Selaginella 

moellendorffii should be used in future investigations of multigene families in basal plants, as my 

results indicate that it likely possesses two AOX genes based on the expression of two different 

mRNAs. This system would be advantageous in molecular biology studies as it has been recently 

described as a model plant system and its genome has been sequenced (Banks et al., 2011). In 

addition, a D-Y-R motif that is present in the C-terminal region of P. engelmannii, P. sitchensis, 

P. menziesii, and P. glauca should be explored as this may indicate the presence of different 

isoforms (Figure 2.2). It was apparent that differences exist among chlorophyte and streptophyte 

AOXs at the amino acid level. The majority of angiosperm AOXs are post-translationally 

regulated by the redox state of a conserved CysI residue and are stimulated by pyruvate 

(Vanlerberghe et al., 1998). After analyzing the non-angiosperm sequences, it is evident that 

some streptophyte AOXs will be post-translationally regulated in a similar manner due to the 

presence of CysI. However, most streptophyte AOXs contain a serine (SerI) residue in this 
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position, and I predict that these AOXs will be regulated by succinate (Grant et al., 2009). More 

research is warranted on this group to determine if AOX activity is stimulated in a similar 

manner as in angiosperms. Again, I suggest that additional characterization of streptophyte 

AOXs should be conducted using the model plant S. moellendorffii as the bioinformatics work 

has demonstrated that the CysI and SerI residues are present in different genes. I propose that 

future AOX research with this species should examine not only non-angiosperm AOX multigene 

families but also investigate different modes of post-translational regulation (pyruvate vs. 

succinate). Future respirometry and site-directed mutagenesis experiments can be conducted to 

assess the functionality of AOX in this species. Based on the presence of an indel located in the 

N-terminus of chlorophyte AOXs, I expect that these proteins will be regulated similarly to 

protist, fungal, and animal AOXs as opposed to those of angiosperms (McDonald, 2008). Future 

studies should investigate whether chlorophyte AOXs will be regulated by GMP/AMP or pH 

(McDonald, 2009). With the recent availability of complete genome sequences from Volvox 

carteri (Prochnik et al., 2010) and Bathycoccus prasinos (Moreau et al., 2012), I propose that 

these species would be a logical starting point for future respirometry work to assess AOX 

functionality within the chlorophytes. The streptophyte algae have not been investigated in any 

great detail, and represent another group where significant research contributions could be made. 

The presence of two conserved motifs (Y-W-G and P-X-E-X-Y) in the N-termini of streptophyte 

AOXs suggests that they will be dimeric. The absence of this motif in chlorophytes suggests that 

AOX is likely monomeric similar to protists and fungi. Further investigation of the protein form 

in these groups is required and can be examined by non-reducing SDS-PAGE and native PAGE 

analyses by subjecting mitochondria from the species mentioned above to various reducing and 

oxidizing agents. 
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 The second major finding of this research is that my molecular database searches have 

revealed that a single AOX gene is present in the moss Physcomitrella patens. This work marks 

the first time that only one AOX gene has been identified in a plant species. This is in contrast to 

the gene structure seen in angiosperms which exist in multigene families. An analysis of the 

moss AOX gene indicates that the number of introns and exons that are present (Chapter 2, 

Section 4.4; Figure 2.3A) are highly comparable to what is commonly seen in angiosperm AOXs 

(Considine et al., 2002; Costa et al., 2010; Figure 1.3). The PCR results demonstrated that I have 

successfully amplified the full-length coding region from the genomic AOX sequence and 

sequencing analysis has confirmed that AOX is present in moss (Chapter 2, Section 4.4; Figure 

2.4A).  

 For the first time, AOX has been characterized in a non-angiosperm plant. I demonstrated 

that a single AOX gene is present in moss using PCR; however, future work using this system 

should validate the AOX gene copy number by Southern blot analysis. The identification of only 

a single AOX gene in the moss Physcomitrella patens indicates that this species provides an 

excellent platform for future research to explore questions about the physiological role of the 

enzyme as this system will be amenable to using RNAi and anti-sense technologies without 

having to worry about possible redundant functions of different AOX genes. Future studies 

should focus on other basal land plant groups to determine if other species possess a single AOX 

gene copy (e.g. bryophytes such as hornworts and other mosses). Within plants, further 

investigation of AOX gene structure is warranted, in particular focusing on the N- and C-

terminal intron/exon positioning of the genes to determine if they are comparable to 

angiosperms. Future research in this area can explore the possibility of alternative splicing of 
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mRNA and regulatory regions within introns. Future studies should explore the AOX genomic 

gene structure in other basal plants in order to contribute information to the areas described 

above. 

 The third significant outcome from this research is that the data available on the 

Phytozome website provided the full-length AOX transcript sequence and predicted that three 

different variants may be expressed in moss (Chapter 2, Section 4.4; Figure 2.3B; Figure 2.3C). 

RT-PCR results indicate that AOX is expressed in moss (Chapter 2, Section 4.4; Figure 2.4B; 

Figure 2.4C) and sequencing analysis of the cloned cDNA revealed that the key amino acids 

residues that are required for AOX activity are completely conserved in moss. 

 The information available on the Phytozome website revealed that there are three 

possible AOX transcripts in moss, and using RT-PCR, I have demonstrated that one was 

expressed. In future studies, changes in AOX expression levels should be examined at different 

developmental stages to determine if other predicted alternative transcripts are expressed at 

specific stages of the moss life cycle. My preliminary data revealed that AOX transcript 

expression increased when moss plants were subjected to cold temperature (data not shown). 

Therefore, I suggest that cold stress might be another area to explore further in moss.    

 Lastly, an analysis of the predicted AOX peptide sequence from moss indicated that it 

would be post-translationally regulated similarly to angiosperms due to the presence of a 

conserved cysteine (CysI) residue (Chapter 2, Section 4.4; Figure 2.3D). Western blot analyses 

provided evidence for the first time that the reduced (~35 kDa) and oxidized (~75 kDa) protein 

forms are present in moss AOX from isolated yeast mitochondria that were grown in induction 

media, suggesting that similar to angiosperms, AOX exists as a dimer in moss (Chapter 3, 
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Section 4.1; Figure 3.5A). Respirometry trace data have revealed that yeast transformed with 

moss AOX are incapable of performing cyanide-resistant respiration using NADH as a substrate 

under the conditions tested (Chapter 3, Section 4.3; Table 3.3).  

 Protein analysis has confirmed that moss AOX is dimeric from the detection of reduced 

and oxidized forms in isolated yeast mitochondria and is likely due to a conserved cysteine 

(CysI) that is responsible for the interconversion between the two forms (Vanlerberghe et al., 

1998). Lastly, further work is warranted to assess wild-type and mutant moss AOX functionality 

in transformed yeast mitochondria by respirometry or cyanide-containing agar plate assays. 

Based on previous site-directed mutagenesis studies conducted in angiosperms, I predict that 

modification of key residues will render AOX inactive (Albury et al., 2002; Berthold et al., 

2002). Once the mitochondrial isolation and site-directed mutagenesis procedures have been 

optimized, future work will be able to assess cyanide-resistant respiration rates.   

 Overall, this thesis has contributed significant information about non-angiosperm AOXs 

and has identified new areas for AOX research. Since previous AOX work in plants has 

primarily focused on angiosperms, many opportunities exist for comparative studies. This thesis 

has identified that chlorophyte and streptophyte AOXs exhibit significant differences at the 

amino acid sequence level that will likely have major impacts on enzyme dimerization and 

regulation. As more AOX data becomes available from non-angiosperm plants, it could provide 

insight as to why such an extensive group of organisms have retained this seemingly wasteful 

pathway and may help determine the physiological role(s) of AOX in plants. The identification 

of only a single AOX gene in moss also offers us an advantage over other systems as future 

knockout experiments can examine the physiological effects that AOX has on these plants.  
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1.2. Real-world Applications  

 Previous studies have revealed that AOX activity increases when plants experience 

stressful conditions such as temperature change, oxidative stress, drought, and pathogen invasion 

(bacterial, viral, etc.) (McDonald, 2008; Feng et al., 2010) Therefore, AOX may serve as a 

potential gene target to improve plant resistance to a wide range of environmental and biotic 

stresses (Purvis and Shewfelt, 1993). It may be advantageous for future biotechnology and 

agricultural research to manipulate this gene by designing plants that overexpress AOX or to 

breed plants that are more stress tolerant in order to decrease plant susceptibility to these factors. 

A better understanding of the physiological role of AOX in plants will aid in these efforts.  

 AOX research also has the potential to provide alternative treatments of human diseases. 

The parasite Trypanosoma brucei brucei, which causes African sleeping sickness in humans, is 

entirely dependent on AOX respiration during its infectious stage and therefore, AOX inhibition 

has been a target for drug design (Clarkson et al., 1989; Ott et al., 2006). Although it is rare, 

certain species of green algae have been known to cause human infections, primarily in 

immunosuppressed individuals (Krcmery, 2000). For example, Prototheca wickerhamii causes 

human chlorellosis, and patients are often treated with antifungal agents; however, resistance has 

been documented (Krcmery, 2000). The bioinformatics results have demonstrated that AOX is 

present in P. wickerhamii and it may serve as a potential target for drug therapy as an alternative 

treatment method. Therefore, further investigation of AOX regulation and/or inhibitors in basal 

plants is required.  

 Lastly, the potential impacts that climate change will have on the economy and the 

environment has made it a topic of special interest. In particular, Canada’s economy will be 
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significantly impacted by climate change in the areas of forestry and agriculture (Natural 

Resources Canada, 2007). One potential way of reducing the impact of climate change is to 

exploit primary productivity (converting carbon dioxide into organic compounds) in plants. 

Trees are often discussed as the principal carbon sinks through primary productivity; however, 

moss is abundant in forest regions, such as the Boreal forest (Angert et al., 2003). Moss may be 

very effective for carbon sequestration due to its rapid growth and biomass accumulation in these 

regions (Hohe et al., 2004). Therefore, having a greater understanding of respiration and electron 

flow in these plants may give us a better idea of carbon sequestration processes. In addition, a 

more thorough investigation of AOX may aid in the development of more realistic models for 

plant respiration and global climate change.   
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Appendix 

Appendix 1. BCD moss media recipe as described by Cove et al., 2009. All reagents and 

quantities are to be autoclaved when combined, unless otherwise specified. 

Reagent Amount 

Phytoblend™ agar (Caisson PTP01) 9 g 

1 M CaCl2 ª 1 mL 

FeSO4•7H2O 12.5 mg 

Stock Solution B (0.1 M MgSO4•7H2O solution) 
b
 10 mL 

Stock Solution C (184 mM KH2PO4 solution) 
b
 10 mL 

Stock Solution D (1 M KNO3 solution) 
b
 10 mL 

Hoagland’s A-Z Trace Element Solution (TES) 
b c

 1 mL 

0.5 M Diammonium tartrate 
b
 10 mL 

Distilled water Top to 1 L 

 

ª Add after other media components have been autoclaved 

b
 Autoclave solutions before preparation of BCD medium 

c
 TES: 0.006% (w/v) Al2(SO4)3•K2SO4•24H2O, 0.006% (w/v) CoCl2•6H2O, 0.006% (w/v) 

 CuSO4•5H2O, 0.061% (w/v) H3BO3, 0.003% (w/v) KBr, 0.003% (w/v) KI, 0.003% 

 (w/v) LiCl, 0.039% (w/v) MnCl2•4H2O, 0.003% (w/v) SnCl2•2H2O, and 0.006% (w/v) 

 ZnSO4•7H2O in 1 L distilled water 

 

Appendix 2. MiR05 mitochondrial respiration medium recipe. Store in 15 mL portions at -20˚C. 

Reagent Amount 

EGTA 0.19 g 

MgCl2•6H2O  0.61 g 

0.5 M K-lactobionate stock (pH 7.0) 120 mL 

Taurine 2.502 g 

KH2PO4 1.361 g 

HEPES 4.77 g 

Sucrose 37.65 g 

BSA 1.0 g 

Distilled water Top to 1 L (pH 7.1) 

 



 

 

 

132 

 
 

Appendix 3. Representative Coomassie blue stained acrylamide gels of isolated mitochondrial 

proteins from S. cerevisiae. Lane 1, protein ladder; lane 2, empty; lanes 3-8, mitochondrial 

protein (5 µg); lane 9, empty; lane 10, low Pi tobacco mitochondria (4.8 µg). Mitochondria were 

isolated at three time points (8, 12, and 16 h.) and were grown in glucose (lanes 3, 5, and 7) or 

galactose (lanes 4, 6, and 8) media. A) 1Stop mitochondrial protein samples (lanes 3-8). B) lacZ 

isolated mitochondrial proteins (lanes 3-8).  
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Appendix 4. Representative oxygen consumption (blue line) traces from S. cerevisiae isolated 

mitochondria under Assay A conditions. Additions to the chamber were: Mitos, mitochondria 

(0.1 mg per 2 mL of MiR05 respiration medium); 2 mM NADH; 1 mM ADP; 1 mM KCN; 3 

mM SHAM. A) 1Stop isolated mitochondria. B) lacZ isolated mitochondria.  
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Appendix 5. Representative oxygen consumption (blue line) traces from S. cerevisiae isolated 

mitochondria under Assay B conditions. Additions to the chamber were: Mitos, mitochondria 

(0.1 mg per 2 mL of MiR05 respiration medium); 2 mM NADH; 1 mM ADP; 1 mM DTT; 5 mM 

PYR, pyruvate; 1 mM KCN; 3 mM SHAM. A) 1Stop isolated mitochondria. B) lacZ isolated 

mitochondria. 
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