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Chapter 1

Introduction

Japanese Encephalitis (JE) is the leading cause of viral encephalitis in Southeast and East

Asia (Mackenzie et al., 2004; Misra and Kalita, 2010; Campbell et al., 2011; CDC, 2013). It is

estimated that approximately 67,900 cases of JE occur annually (CDC, 2013). �e case fatality

rate is 20–30% and approximately 30–40% of survivors su�er from permanent neurological

sequelae, which results from to damage of the central nervous system (CDC, 2013; World

Health Organization, 2014b). �e disease is primarily acquired by children less than 15 years

of age and is more commonly found in rural and agricultural areas (Mackenzie et al., 2004;

Campbell et al., 2011; CDC, 2013; World Health Organization, 2014b). LaBeaud et al. (2011)

estimated that 57 per cent of the global population is at-risk for contracting JE and that the

2005 disability-adjusted life years (DALYs) is between 107,435 and 1,859,170, thus causing

signi�cant burden on the global population.

JE is a vector-borne disease that is transmi�ed by mosquitoes. Infection and disease

are caused by the bite of a mosquito that is infected with the JE virus (JEV). Symptoms of

severe JE cases include; rapid onset of high fever, headache, neck sti�ness, disorientation, coma,

seizures, spastic paralysis, and death (Misra and Kalita, 2010; World Health Organization, 2014b).

However, not all incidents of infection result in full-blown JE symptoms. Most JEV infections

are either asymptomatic or result in non-speci�c �u-like illness, which can in�uence accurate

reporting and surveillance due to perceived insigni�cance of an infection. �e estimation of

the rate of asymptomatic infections vs. symptomatic infections is di�cult to determine and
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has varied considerably in the literature (Konishi and Suzuki, 2002; Solomon, 2004). Van den

Hurk et al. (2009) stated that the ratio of asymptomatic to symptomatic infections ranges in

the literature from 1 in 50 to 1 in 1000. However, the World Health Organization estimates

that approximately 1 in 250 infections result in severe disease (full-blown JE) (World Health

Organization, 2014b). �ese ratios can vary geographically and be in�uenced by the history of

JEV prevalence in a particular region. �ere is currently no antiviral treatment for those with

JE. �ose who exhibit severe JE symptoms receive supportive care, as they require feeding,

assistance breathing, and anti-convulsants for seizures. �us, identifying and monitoring high

risk areas is imperative for public health policy, prevention strategies, and outreach.

Cases of JE are reported to the World Health Organization’s Vaccine-Preventable Disease

programme (World Health Organization: Country O�ce for Nepal, 2011). Healthcare providers

are responsible for reporting positive cases of JE (World Health Organization, 2014a). However,

ensuring the completeness of surveillance data accuracy has been di�cult. For example, Kakkar

et al. (2013) examined recorded JE cases for the years 2011 and 2012 in the Kushinagar District

in U�ar Pradesh, India and found that 216 out of 812 �elds in the surveillance forms had

to be modi�ed in some way. �e majority of �elds that were either incorrect or le� blank

were from ‘Date of Symptom Onset’ and ‘Date of Fever Onset’ �elds (Kakkar et al., 2013).

Kakkar et al. (2013) concluded the quality of this surveillance data was so low that any sort of

prevention/control measures could not be based on it. Not only is data collection an issue for

accurate surveillance, but the likelihood that JE is reported depends on factors such as access

to healthcare and preference for traditional healers (Akiba et al., 2001). Akiba et al. (2001)

conducted social surveys in Nepal and found that the majority of rural village dwellers chose a

traditional faith healer as their primary preference for healthcare. Akiba et al. (2001) suggested

that this �nding may suggest why actual reported cases are more common in urban areas as

opposed to the more risky (higher mosquito populations) rural areas.

Although surveillance data plays a crucial role in disease control and prevention strategies,

it does not portray an exhaustive representation of actual case distribution. Kakkar et al. (2013)

demonstrated how selected surveillance records may be incomplete and/or inaccurate and CDC

(2013) highlights how, in most countries within the JE geographic distribution, surveillance
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sites do not provide full geographic coverage. Disease risk mapping and the identi�cation of

high priority areas that incorporate transmission cycle and risk factor knowledge would be of

use to �ll in this gap. Such methods would be�er inform control and prevention measures.

�e likelihood of contracting JE, like other vector-borne diseases, can be increased by

certain landscape factors, for example, the presence of virus amplifying hosts and/or rice paddy

�elds. JE risk is also in�uenced by behavioural factors, for example, the amount of time an

individual spends in or near the previously mentioned landscape risk factors. JE risk can also

be reduced at an individual level if one engages in mosquito avoidance behaviours (e.g. the

use of insect repellant and/or window screens). Modelling JE risk can thus be taken from two

perspectives; 1) national-, or regional-scale, which allows for population generalizations, and

2) local-, or individual-scale, which allows for individual characteristics to in�uence disease

risk.

A prevailing methodology for mapping disease transmission risk at a small geographic

scale has been that of ecological niche modelling. Ecological niche modelling is used to map

the environmental covariates associated with a particular disease. With this method, data

for large regions can easily be incorporated into a model, highlighting high-risk regions over

a large geographic area. In the example of JEV, as in many vector-borne diseases, variables

such as climate, landcover, and virus host populations are crucial components of the disease

transmission cycle that dictate the spatial and temporal distribution of human cases of the

disease. �e overarching goal of ecological niche modelling is to identify the geographic

disease distribution potential. �e concept of ecological niche modelling makes perfect sense

for identifying high risk (or low risk) regions, and there has been a plethora of research looking

at the geographic distribution of JEV’s mosquito vector using these techniques (Hart, 2010;

Miller et al., 2012; Sallam et al., 2013; Wang et al., 2014). However, Peterson (2015) suggested

that ecological niche modelling may be too simple in some cases and that it fails to examine

host population and inter-species interactions. Peterson (2015) stated that modelling complex

disease systems, which involve a number of hosts and vectors, has been a challenge in these

component-based modelling methods.

Peterson (2015) contrasted ecological niche modelling and other component-based methods

3



with black-box methods. �e black-box’ approach to disease risk mapping involves analyzing

solely the spatial pa�ern of human occurrences of a particular disease. In other words, the

results (emergence) of the underlying interactions between environmental variables, landscape

characteristics, and inter-species interactions, which lead to increased risk of acquiring said

disease. Black-box approaches are useful when knowledge of the disease transmission system

and its components are of low-quality or non-existent. However, when surveillance data is

inconsistent or incomplete as demonstrated and suggested by previous research, black-box

methods, or the analysis of reported human cases of a disease, do not capture the entirety of a

disease transmission system.

Chapter 3 presents a method for mapping potential JE risk in the near future. Like ecological

niche modelling, we present a method that highlights regions of potential risk at a small

geographic scale (i.e. large area). However, unlike ecological niche modelling, this Chapter

focuses on two primary regional components of JE risk: virus amplifying host populations

and the at-risk human population. Motivation for this approach stemmed from being able to

estimate future high-risk regions allowing for population generalizations at this scale. Although

such generalizations are necessary at this level of scale, other methods that incorporate

individual factors are important when looking at local-level risk.

Another prevailing methodology for disease transmission is the SIR (Susceptible-Infected-

Recovered) model (Kermack and McKendrick, 1927). �is model, and its many variations are

used to examine disease transmission within closed, homogeneous populations. Although this

method for analyzing disease spread is a dominant method for studying disease transmission,

it fails to incorporate critical characteristics for looking at JEV spread. Firstly, SIR models

do not account for individual-based characteristics of a population. Populations within each

compartment are assumed to be homogeneous, with transmission rates dependent on various

set parameters. In other words, the output of an SIR model is the result of a single input value

(e.g. population), and a set of static parameters. Secondly, SIR models do not traditionally

incorporate spatial relationships, a crucial element of the JEV transmission cycle, although

some previous research have applied SIR models to spatial problems (Keeling, 1999; Fuks and

Lawniczak, 2001).
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A prevailing method for representing and modelling systems that involve individual char-

acteristics is that of individual-based modelling (Grimm et al., 2006). �is method evolved from

cellular automata models (Ulam, 1950; Wolfram, 1984; Pesavento, 1995), which involve a grid of

cells that alter between various states according to a set of rules. At the individual-level, these

types of models are able to represent individual characteristics, such as those important in

disease spread (e.g. age, occupation, sex). Rules that govern individual-level interactions with

the landscape may result in emergent phenomena that are typical in the spatial and temporal

distribution of disease outbreak. A study of particular interest, which combines the use of SIR

compartment modelling, individual-based modelling, and geographic information systems

is that of Hailegiorgis and Crooks (2012). Hailegiorgis and Crooks (2012) use a variation of

the SIR, the Susceptible-Exposed-Infected-Recovered (SEIR) model, in an agent-based model

for cholera spread in refugee camps. �is approach allowed for e�ective representation of

disease characteristics. �ese methods were appropriate for modelling disease spread at this

geographic scale. We propose that such methods may identify regions with higher case counts

than what is apparent in surveillance data.

Chapter 4 presents an individual-based model, which can be thought of as a combined-

approach to disease risk mapping for JE. In our model we implement the basic components

of an ecological niche model to show the potential geographic distribution of JEV’s vector,

Culex mosquitoes, using multiple environmental datasets. We then employ a variation of a

Susceptible-Exposed-Infected-Recovered (SEIR) model to capture the human and host dynamics

and human-environment interactions. We take an individual-, or agent-based, modelling

approach, as it captures age and other individual characteristics that may not be represented

as well using other modelling techniques. It is hoped that this model will serve as a simple

representation of the JEV-human system and that additional complexity, such as human

behaviours regarding mosquito avoidance, can be easily integrated into the model.

Previous research has implemented agent-based modelling to examine vector-borne disease

risk. Linard et al. (2009) examined malaria risk in southern France by creating an agent-based

model to simulate the spatial and temporal dynamics of mosquito biting rate in relation to

landscape characteristics. Gu and Novak (2009) also developed an agent-based model to assess
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malaria transmission, but instead of humans being the primary agent, they programmed the

behaviour of mosquitoes to examine their movement. �eir model was then used to assess

mosquito-control measures (Gu and Novak, 2009). de Almeida et al. (2010) also using agent-

based modelling to examine the mosquito species Aedes aegypti populations and behaviours,

which can a�ect the risk of vector-borne disease transmission. Alexander et al. (2012) high-

lighted the importance of agent-based modelling in vector-borne and zoonotic diseases, as

they are able to systematically incorporate heterogenous populations and various types as

agents (e.g. virus hosts, vectors, and vulnerable human populations).

By focusing on disease transmission risk at the individual-level, we develop a simulation

that is able to reproduce a similar temporal and spatial distribution as JE surveillance data

from the World Health Organization. Human-landscape interactions play an important role

in an individual’s risk of contracting JE, thus modelling at the same scale is bene�cial for

�nding ways to reduce individual risk. Future work will look at the outcomes of human

incidence of JE under various scenarios, such as the increase in the number or change in

the spatial distribution of pig farms, increasing temperature due to climate change, and the

implementation of vaccination programs.

Both methodologies presented in this thesis identify high-risk areas for contracting the

Japanese Encephalitis virus. Countries that have li�le resources for managing vector-borne

diseases will be able to prioritize by focusing their resources on these high-risk regions. For

example, irrigation practices that inhibit mosquito growth can be taught and adopted, or

educational programs focusing on the reduction of vector-borne disease spread for pig farmers

can be implemented in these areas, rather than nation-wide.

Objective 1: Estimating Small-scale Risk

�e primary objective of Chapter 3 is to identify future regions of potentially high-risk for

JE within the current geographic distribution of the virus. Chapter 3 presents a method for

estimating future trends of the incidence of Japanese Encephalitis at a multi-national scale. By

taking into account human population trends at a sub-national level, a set of at-risk human
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populations are presented. Future trends of the virus’s host population are also estimated

at the sub-national level, using livestock statistics and projecting forward. Potential future

regions of high case counts are thus those with a high at-risk human population and high host

populations.

Objective 2: Estimating Large-scale Risk

�e primary objective of Chapter 4 is to develop a model that reproduces the spatial and

temporal distribution of JE cases in relation to known landscape risk factors and weather

pa�erns. Chapter 4 presents a method for examining the risk of acquiring Japanese Encephalitis

at the individual level. Landscape and other environmental factors are taken into account to

create an estimated “risk surface” of the Kathmandu Valley, in Nepal. �e primary research

question this Chapter asks if it is possible to develop a model that takes into account these

landscape risk factors to reproduce the spatial and temporal dynamics of the reported JE

surveillance data obtained from the World Health Organization. Considering the similarities

shared between many vector-borne diseases, it is proposed that such an individual-based

method for looking at disease occurrence can be applied to other vector-borne diseases, such

as the West Nile Virus, Dengue, malaria, etc..
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Chapter 2

Background Information on Japanese

Encephalitis

�is chapter introduces the JEV’s transmission cycle and the various landscape factors that are

associated with increased disease risk. �e aim of this background information is to emphasize

the complexities of this system and how it is intertwined with various human activities (land

use and land cover change, mosquito avoidance behaviours, occupation, etc.). A tool that is

able to model the transmission cycle of JEV can be used to analyze various scenarios, such as

changes in population distribution (of both human and virus host), increases in temperature and

altered precipitation pa�erns due to climate change, and the e�ects of vaccination programs.

�e sections of this chapter summarize the primary processes that in�uence JE risk, speci�cally.

However, it is emphasized that the methods presented in Chapter 3 and Chapter 4 could be

applied to the analysis of other vector-borne diseases, as the underlying processes and reliance

on the landscape to dictate pa�erns of disease are roughly similar.

2.1 Transmission Cycle

JEV exists within a zoonotic transmission cycle between animal hosts and insect vectors.

Humans are dead-end hosts for the virus, and unlike dengue fever, humans are unable to

pass along the virus to uninfected mosquitoes. �e most important species within the JEV

transmission cycle are those that are able to pass along the virus to uninfected vectors, these
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include species from families Suidae (swine, both wild and domesticated), Ardeidae (wading

birds, such as bi�erns, herons, and egrets), and mosquitoes from the genus Culex (Mackenzie

et al., 2004; Erlanger et al., 2009; Misra and Kalita, 2010). Although many species may become

infected with JEV (horses, sheep, goats, etc.), viral titers are not high enough in the bloodstream

of these species and are thus dead-end hosts.

Swine are considered to be an ampli�cation host of JEV. Van den Hurk et al. (2009) sum-

marized �ve main reasons for this ampli�cation role of pigs in the transmission cycle of the

JEV. �ese are described as follows; (1) there is a high natural infection rate of pigs, (2) pigs

have a high viremia of the virus in the blood stream, (3) viremia in pigs remains high enough

for transmission to mosquitoes for about 4 days, (4) pigs are highly prone to be fed upon by

mosquitoes, and (5) pigs have a high birth rate, which provides new sources of virus-susceptible

pigs each year. Pigs are also frequently located near rice paddy �elds or in peri-urban areas

where they are close to an at-risk human population (Dhakal et al., 2012, 2014).

Approximately 90 species of birds, domestic and wild, display JEV viremia (Van den Hurk

et al., 2009). Of these species, Ardeidae play a signi�cant role in virus transmission and are

considered to be the primary enzootic hosts of JEV as their habitat overlaps with that of Culex

mosquitoes (Van den Hurk et al., 2009). Weaver and Barre� (2004) indicated that populations

of ca�le egrets (Bubulus ibis coromandu) increased during the 19th century due to changing

agricultural practices and it has been suggested that this has a�ected the evolution and spread

of the �ve main JEV genotypes. Ardeidae birds frequent rice paddy �elds to feed on small

aquatic animals that reside there (Sibley, 2000). Wading birds become infected with the JEV

a�er they are bi�en by a mosquito carrying the virus. A�er initial infection, Ardeidae species

have high enough viral titers in their bloodstream to amplify the virus. However, these birds

become immune to JEV a�er virus-speci�c antibodies have developed, no longer playing a

role in the transmission cycle.

Culex tritaeniorhynchus and Culex vishnui are the primary vector of JEV (World Health

Organization, 2015b; Misra and Kalita, 2010). Although it has been stated that other species are

known to carry the virus (Solomon et al., 2003). Culex mosquitoes lay ra�s of eggs that require

clean, stagnant waterbodies (Rozendaal, 1997). Culex require temperate to tropical climates
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for their life-cycle. Females require the protein obtained from a blood meal to lay their eggs.

Eggs hatch a�er 2-3 days as they enter the larval stage of their life cycle. �ey enter the pupa

stage a�er about 4-7 days, spending most of their time at the water surface. �is pupa stage

lasts about 1-3 days and then the adult stage is reached. �e entire life-cycle process can range

between 7 and 14 day, depending on environmental conditions and food availability. Warmer

temperatures typically speed up the life-cycle process between egg-laying and the transition

to adult (Rozendaal, 1997).

2.2 EnvironmentalConditions thatContribute to Japanese

Encephalitis Transmission

JEV is a member of the Flavivirus genus in the family Flavivridae. Most viruses of the genus

Flavivirus are transmi�ed via arthropod insects and are thus termed arboviruses. Similar

Flaviviruses include; West Nile, dengue fever, St. Louis, tick-borne encephalitis, and several

other such viruses that may cause encephalitis in humans. JEV is the leading cause of viral

encephalitis in Asia (World Health Organization, 2014b), causing approximately 67,900 human

cases a year.

�e current geographic distribution of JE is shown in Figure 2.1. However, its distribution

has the potential to expand. Hanna et al. (1996) showed how the virus recently crossed

the Torres Strait to reach Australia and Nemeth et al. (2010) examined the seroprevalence

of potential JEV antibodies in non-native birds on two islands in Hawaii, highlighting the

potential for spread to the Americas. Many factors, acting at various scales, contribute to the

possibility of JEV’s geographic expansion.

Rice agriculture and pig farming are two common practices that have been associated with

heightened JE risk in Asia (Dapeng et al., 1995; Rayamajhi et al., 2007; Erlanger et al., 2009; Misra

and Kalita, 2010; Singh et al., 2012; Le Flohic et al., 2013). Rice paddy �elds provide breeding

habitat for Culex mosquitoes and Culex populations are more abundant within proximity to

paddy �elds. Rice paddy �elds also provide abundant feeding territory for wading birds, JEV’s

natural reservoir. In Asia, pig farming is primarily conducted in peri-urban areas (�orpe
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Figure 2.1: �e current geographic distribution of Japanese Encephalitis.

and Jemaneh, 2008), or in rural areas, where there is also a higher probability of rice farming

located nearby. �ese conditions in�uence the endemic nature of JEV in most tropic regions.

�e population in Asia is expected to increase from 4.342 billion in 2012 to 5.164 billion

by 2050 (Department of Economic and Social A�ars: Population Division of the United

Nations, 2014), in�uencing land-use and land cover change as well as increasing the at-risk

population. Land-use/cover change, especially agricultural expansion and increasing swine

livestock numbers are expected to intensify as population increases (Coker et al., 2011). Coker

et al. (2011) stated that during the period 1990-2008, agricultural land increased in area by

over 8% in Southeast Asia. Pig-farming is also intensifying in Asia, increasing the number of

potential virus amplifying hosts in many Asian countries. Erlanger et al. (2009) estimated that

between 1990 and 2005, Cambodia, China, South Korea, Laos, Myanmar, Nepal, the Philippines,

Sri Lanka, �ailand, and Vietnam all experienced increased pork production by between 12

and 381%. Such environmental factors will undoubtedly lead to an increased amount of JE
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cases unless otherwise managed.

Figure 2.2 (p. 18) displays the dynamic relationship between human activities/processes and

factors that contribute to JEV transmission. Human activities, such as population growth and

internal migration pa�erns, a�ect the rate of urbanization and peri-urban and rural agricultural

activities, potentially increasing the presences of landscape characteristics that contribute

to JE risk (e.g. pig livestock counts and rice paddy �elds). �ese processes can then a�ect

mosquito populations by expanding habitat area and fragmenting the landscape (Lambin et al.,

2010). It quickly becomes apparent that the JEV exists within a complex, dynamic system in

which human and environment interactions play fundamental roles. Since these landscape

characteristics are geographically speci�c, our current research looks at the Kathmandu Valley

in Nepal as a case example for the human-environment system.

2.3 Pathogenesis of Japanese Encephalitis Virus

�e pathogenesis, the process by which a pathogen (i.e. the JE virus) causes a diseased state

(JE) in an individual, of JEV is largely undetermined. Many cases of JEV infection are either

asymptomatic or result in non-speci�c �u-like illness. Very few infections actually result in

full-blown incidents of JE. Van den Hurk et al. (2009) stated that the range of asymptomatic

to symptomatic cases varies considerably in the literature, from about 1 in 50 to 1 in 1000.

However, the exact mechanisms of pathogenesis are not clear (Turtle et al., 2012).

Previous work by Desai et al. (1997) explored the pathogenesis of JEV and co-infections

with cysticercosis. Cysticercosis is a parasitic tissue infection cause by larval cysts created

by the tapeworm Taenia solium. �is parasitic disease also resides within a zoonotic cycle

between humans and pigs. Human hosts to Taenia solium excrete the tapeworm eggs in their

feces. When fecal ma�er reaches rivers and streams, parasite eggs are potentially consumed

by pigs inhabiting rivers embankment areas. Infected pigs then manifest cysts throughout

their bodies. Larval cysts can then be consumed by human if infected pig meat is consumed

undercooked, repeating the transmission cycle of Taenia solium.

Desai et al. (1997) found that full-blown encephalitis syndrome, caused by JEV, was more
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likely in individuals who were also infected with cysticercosis. Out of 163 sampled con�rmed

JE cases, 61 were infected with cysticercosis. Desai et al. (1997) suggested that cysticercosis

a�ects the blood-brain barrier, making it easier for JEV to cross and cause encephalitis.

Introduction of JEV into the body elicits an immune response from both the innate and

the adaptive immune system. Since many JEV infections do not result in serious illness, the

adaptive immune system develops JEV antibodies which recognize the virus for future ba�les.

�e combination of non-serious illness and the adaptive immune system response is the reason

why younger age groups are more susceptible to contracting serious illness. �ese age groups

have had less time to develop adaptive immunity to the JE virus.

For reasons discussed above, the model we have developed does not di�erentiate between

individual-level probabilities of becoming infected with JEV and contracting full-blown JE

symptoms. �e likelihood of developing JE, in our model, is solely based on encounters

with landscape risk factors, since the precise mechanisms of individually-based likelihood of

contracting the disease is unknown.

2.4 Modelling Vector-borne Diseases

Kermack and McKendrick (1927) developed what is known to be the standard methodology for

epidemiological modelling. �e SIR model, which stands for ‘Susceptible-Infected-Recovered’,

is a deterministic model in which populations in each compartment (either the susceptible,

infected, or recovered compartments) are determined by a set of di�erential equations (Kermack

and McKendrick, 1927). �ere are many variations of the SIR model, used to capture the

dynamics of various types of diseases and their spread. �e SEIR model, which stands for

‘Susceptible-Exposed-Infected-Recovered’, accounts for the incubation, or latent period that

many pathogens exhibit. �e ‘Exposed’ compartment accounts for this time lag between when

individuals are �rst exposed to a pathogen, and when that individual is determined to be in

the compartment ‘Infected’, and can then spread that disease.

SIR and related models, such as the SEIR model, have been used extensively to study

human-transmi�able diseases, some examples include; Ebola (Lekone and Finkenstädt, 2006),
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in�uenza (Mills et al., 2004), measles (Bjørnstad et al., 2002), and Chickenpox (Deguen et al.,

2000). �ere are also countless variations of the SIR model used to study hypothetical situations

of general disease dynamics; (Bere�a and Takeuchi, 1995; Yu et al., 2009), and even to study

the spread of rumours (Zhao et al., 2013) and tra�c congestion (Wu et al., 2004).

Although SIR models, and their many variations, are well-used for studying disease trans-

mission, they possess inherent characteristics that make them di�cult to apply to spatially

explicit scenarios. Compartments in SIR models are used to represent a single value for the

number of individuals in the corresponding state (either Susceptible, Infected, or Removed).

Compartments are unable to capture the heterogeneity of realistic human populations, such

as age, sex, and other characteristics that may in�uence the likelihood of disease transmis-

sion. Because of this, they are best used for human-to-human spread diseases that are only

dependent upon exposure to an infected individual.

Another shortfall of SIR models is that they do not account for spatial interactions ex-

plicitly. Many diseases are highly dependent upon the environment and/or human-animal

interactions. For example, Jones et al. (2008) stated that 60% of all emerging infectious diseases

are zoonotic, and World Health Organization (2015c) stated that there are over 200 zoonotic

diseases. Zoonoses are diseases that are transmi�able from animal to human, and whether

domesticated or wild, animals play a critical role in the disease transmission system.

�e distribution of animal populations is highly dependent on landscape characteristics.

Recent work by Rodriguez-Meza (2012) utilized an SIR model to represent the spatial and

temporal dynamics of the A/H1N1 virus pandemic in Mexico during the year 2009. �ey

adjusted the SIR model to account for the spatial behaviour of infected individuals. Although,

this is a novel contribution to the �eld of SIR modelling, Rodriguez-Meza (2012) do not vary

the characteristics of space, but rather use space and proximity to determine infection spread.

Vector-borne disease, such as dengue fever, lyme disease, malaria, and JE are zoonotic diseases

that require an insect vector to transfer a pathogen from an infected animal to a human. �is

in-between step presents a hurdle for SIR models to represent this type of disease transmission

system.

Macal and North (2008) de�ned an agent as ‘an identi�able, discrete, or modular, individual
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with a set of characteristics and rules governing its behaviours and decision-making capability.’

Railsback and Grimm (2012) stated that agents are able interact with other agents, they change,

have di�erent stages as they progress through time. Agents also have the potential to make

autonomous, adaptive decisions in order to pursue their objectives. Examples of types of agents

include; humans, households, businesses, various species of wildlife, institutions or anything

that pursues a certain goal (Railsback and Grimm, 2012). Agent-based models simulate these

traits of agents to examine a speci�c or various outcomes.

�e ability to model complex systems has become much more feasible in the past decade.

Computational power and the capability to gather and store data has increased remarkably.

�ere are also many open-source programs for ABM simulations that are now available. Almost

anyone can download and learn so�ware such as NetLogo, which comes with tutorials many

demonstration models (Wilensky, 1999). �is has facilitated the learning of ABM simulations.

�e use of agent-based modelling (ABM) in epidemiology is extensive (Eubank et al., 2004;

Fraser et al., 2004; Germann et al., 2006; Balcan et al., 2009). However, the research evaluating

the spread of vector-borne diseases using ABMs is not as thorough. ABMs have been used to

simulate interactions between people and how these can change the landscape (Deadman et al.,

2004; Brown and Robinson, 2011; Murray-Rust et al., 2014), but focus on how land-used/cover

change a�ects mosquito-breeding. �e remainder of this section of this paper will examine

some studies that have used ABMs to study vector-borne diseases, such as malaria.

Linard et al. (2009) used an ABM to assess the risk of reemergence of malaria in southern

France. �is region of France is home to the mosquito genus Anopheles, which have the

potential to transmit malaria. Currently, the south of France is malaria-free, but due to the

presence of Anopheles mosquitoes, there is a possible risk of malaria moving into this region.

To evaluate this risk, Linard et al. (2009) utilize an ABM to represent the factors involved in

malaria transmission.

Mosquitoes and humans were the agents in the ABM produced by Linard et al. (2009). �ey

evaluated the contact rate between people and vectors in order to predict the re-emergence of

malaria, which varies spatially. �ey also determined the number of people working (seasonal

or regular workers), touring, or enjoying other leisure activities in mosquito habitat areas.
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�ese human activities vary through space and time and are then susceptible to varying vector

exposure risks (Linard et al., 2009). �e purpose of the model developed by Linard et al. (2009)

was to simulate vector-human contacts.

Although the study by Linard et al. (2009) is incredibly useful for understanding these

interactions, the human impact on the environment was not considered. �e remaining sections

of this review will examine human-landscape interactions and how they may lead to the risk

of vector-borne diseases. A special focus will the on the disease, Japanese Encephalitis.
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Chapter 3

Japanese Encephalitis: Estimating

Future Trends in Asia

3.1 Introduction

Japanese Encephalitis (JE) is the leading cause of viral encephalitis in Asia (Mackenzie et al.,

2004; Campbell et al., 2011). It is estimated that approximately 67,900 cases occur annually

(Centers for Disease Control and Prevention, 2013). �e case fatality rate is 20-30% and 30-40%

of survivors su�er from permanent neurological sequelae (Centers for Disease Control and

Prevention, 2013). �e disease is primarily acquired by children less than 15 years of age and

is historically more common in rural and agricultural areas (Mackenzie et al., 2004; Campbell

et al., 2011; Centers for Disease Control and Prevention, 2013).

Con�rmed cases of JE are reported to the World Health Organization through the pro-

gramme for vaccine-preventable diseases (h�p://apps.who.int/immunization monitoring/en/).

Surveillance is absolutely necessary to guide immunization programs, target surveillance

resources, set priorities, and can serve as an early warning system for identifying public

health emergencies (World Health Organization, 2014c). However, most human cases of JE

are asymptomatic and go unreported, making the spatial distribution of the virus di�cult to

estimate.

�e World Health Organization (2014c) estimates that approximately 1 in 250 of those who
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acquire the JE virus display encephalitis symptoms. For those that do experience disease, there

is signi�cant variation in health-seeking behaviours across Asia, which distort the sensitivity of

disease surveillance systems. Factors such as the structure of the health care system (centralized

or not), physical access to health care, propensity to adopt traditional and/or care services

outside of the government system all vary across Asia and merge to obscure understanding of

the disease burden due to JE. For example, Akiba et al. (2001) noted that many people in Nepal

prefer traditional healers/medicine over hospitals, resulting in many unreported cases. Akiba

et al. (2001) also mentioned that this preference for traditional healers was more prominent

among poor and disadvantaged sectors of the population. �ere is therefore need to examine

not only the reported cases of disease, but also the distribution of disease risk factors when

estimating risk, developing health policy, and anticipating future changes.

�ere are several major contributing factors that lead to high-risk areas for JE. First,

landscape factors play an important role in vector-borne disease transmission. Increased area

dedicated to land-use types that contribute to vector habitat promote virus transmission and

risk to humans. Other landscape characteristics, such as fragmentation and heterogeneity, can

also increase risk of vector-borne disease (Lambin et al., 2010). Second, susceptible populations

mixed with pig populations are strongly linked to JE risk. Pigs are considered to be an

amplifying host for the JE virus. If a pig is infected with the virus, the probability that there

will be infected mosquitoes in their vicinity is signi�cantly increased. Finally, Age is also

linked to JE, as the virus is typically associated with disease in children for areas where it

is endemic. However, where childhood immunization programs exist, risk is approximately

equal for adults and children (Wu et al., 1999; Sohn, 2000).

�e Morbidity and Mortality Weekly Report conducted by Centers for Disease Control and

Prevention (2013) summarized the status of JE surveillance programs in risk areas. �e report

concluded that as of 2012, 10 of 25 countries with JE risk conducted nation-wide surveillance

programs. �ey reported that six countries do not conduct any form of surveillance. �e true

incidence of JE is largely unknown due to the lack of su�cient surveillance and diagnostic

laboratory testing in many countries (World Health Organization, 2014c; Campbell et al., 2011).

Additional information is required to compensate for limitations in surveillance data to
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inform JE preparedness and response planning. In this study, we propose a method that

compensates for under-reporting using demographic trends as a forecasting tool. We also

estimate potential distribution of pig population density in Asia using livestock head count

data from the United Nations’ Food and Agricultural Organization (FAO). By estimating where

people will be in the near future, and where amplifying host will be, we can identify areas

where there may be a larger number of susceptible individuals and thus areas of higher risk

for JE.
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Figure 3.1: �e current geographic distribution of Japanese Encephalitis.

3.2 Background

3.2.1 �e Japanese Encephalitis Virus

�e JE virus (JEV) is a Flavivirus transmi�ed via mosquitoes. �e primary vector of JEV is the

genus Culex, although other mosquitoes are also known to carry the virus (Solomon et al., 2003).
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Rice agriculture areas provide ideal habitat for Culex mosquitoes, and thus risk of acquiring

the virus tends to increase with proximity to paddy �elds (Erlanger et al., 2009; Miller et al.,

2012). Keiser et al. (2005) estimated that area dedicated to rice agriculture in Asia increased by

22% during the period 1963-2003, which has directly contributed to habitat expansion of Culex

mosquitoes.

Wild birds and domesticated pigs are the primary hosts of the JEV. Wading birds from

the family Ardeidae (herons, bi�erns, and egrets) are a natural reservoir for the virus. �ese

birds require shallow water bodies as feeding grounds (Sibley, 2000) and thus frequent areas

dedicated to rice agriculture. Species from the family Suidae, which include domesticated

pigs and wild boar, are the main amplifying hosts of JEV (World Health Organization, 2014c;

Erlanger et al., 2009; Le Flohic et al., 2013). When pigs are infected with JEV, they are able

to infect many additional mosquitoes. Increasing area dedicated to rice agriculture and the

growing pork industry in Asia presents a growing concern for JE transmission in the near future.

�e distribution of risk factors related to pig husbandry, mosquito life cycle development and

habitat, and interactions between hosts and vectors is extremely di�cult to track over large

areas. As such, this paper focuses on human and pig population trends as a way to forecast

future changes of JE in Asia.

3.2.2 �e State of Japanese Encephalitis in Asia

JE was �rst identi�ed in 1871 and the �rst recognized epidemic occurred in Japan in 1924

(Misra and Kalita, 2010). Since then, the geographic distribution of JE has been expanding

(Misra and Kalita, 2010). Misra and Kalita (2010) suggested that a changing landscape, involving

deforestation and increased agricultural area (especially rice agriculture and pig farming), has

promoted the spread of the disease. �ese landscape variables are associated with population

growth and change.

3.2.3 Japanese Encephalitis in Urban Areas

Kumari et al. (2013) recently demonstrated how JE is becoming increasingly urban. For

example, urbanized areas in the area of the National Capital Territory of Delhi, India provide
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su�cient breeding habitats for Culex mosquitoes that transmit the JE virus (Kumari et al.,

2013). �e presence of migratory Ardeidae birds and pig domestication in these urban se�ings

has ampli�ed JE transmission. Kumari et al. (2013) was the �rst to identify cases of JE in the

Delhi area and also provided evidence that JE is becoming increasingly an urban, rather than

just a rural issue.

Esteva and Vargas (1999) stated that rapid human population growth leading to crowding

and poor sanitation has resulted in the proliferation of Aedes mosquitoes, which have the

potential to carry the dengue virus (although this disease can be endemic within a human

population without any animal reservoirs). �ese types of urban landscape characteristics

have led to increased risk of vector-borne diseases in urban areas. It is for these reasons

that this study does not di�erentiating between rural and urban area in evaluating risk of

JE. We do however, di�erentiate between rural and urban population growth rates in Asia,

as urbanization is an increasingly important process transforming exposure opportunities in

Asia.

3.2.4 Land-use & Landcover Change

�e population in Asia is expected to increase from 4.342 billion in 2012 to 5.164 billion by 2050

(Department of Economic and Social A�ars: Population Division of the United Nations, 2014).

Land-use change and the expansion of agriculture, the key driving forces of JE transmission

are expected to intensify as population increases (Coker et al., 2011). Coker et al. (2011) stated

that during the period 1990-2008, agricultural land increased in area by over 8% in Southeast

Asia. Pig-farming is also intensifying in Asia. Erlanger et al. (2009) estimated that between

1990 and 2005, Cambodia, China, South Korea, Laos, Myanmar, Nepal, the Philippines, Sri

Lanka, �ailand, and Vietnam all experienced increased pork production by between 12 and

381%. Such environmental factors, as well as population increases, will undoubtedly lead to an

increased amount of JE cases unless otherwise managed.

3.2.5 Study Objectives

�e objectives of this paper are to;
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• Develop forecasts of populations vulnerable to JE across Asia for 2050.

• Develop forecasts under high, medium and low scenarios of amplifying hosts for JE

across Asia for 2050.

• Identify locations where overlapping risk reservoirs, host populations, and facilitating

contextual factors are present in 2050.

We aim to use to both present a methodology for anticipating future change in emerging

diseases, and speci�c to JE, anticipate future pa�erns of risk for data-driven health policy

formulation and disease management planning.

3.3 Materials and Method

3.3.1 Study Area

�e study area includes all countries where JE has been identi�ed. �is includes most countries

in South Asia, East Asia, and Southeast Asia as shown in Figure 3.1 (p. 21).

3.3.2 Data

Administrative boundaries were obtained from www.diva-gis.org (DIVA-GIS, 2013) and were

used for district-level level analyses.

Two sets of population data were obtained. �e �rst set was obtained from www.worldpop.

org.uk and is presented as people per pixel for the year 2015 and is adjusted to match the UN

Population Division estimates. �e gridded population data set was use to estimate districts

that were predominantly rural or urban, assuming that higher population densities occur in

urbanized areas.

�e second population set was obtained from GeoHive at h�p://www.geohive.com/ (Geo-

Hive, 2013). GeoHive data were retrieved at one level below the national level for each country’s

most recent census and spatially joined to the administrative boundaries. Population values

were matched to the same year (2010) by estimating mid-census values.

�e United Nations World Urbanization Prospects project (UN WUP 2014) estimated rural

and urban growth rates for �ve year intervals for each country (h�p://esa.un.org/unpd/wup/
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CD-ROM/). �ese growth rates were used to project district-level populations until the year

2050, this method will be discussed further in Section 3.3.4.

Two pig population datasets were obtained from the Food and Agriculture Organization of

the United Nations (FAO). Yearly pig head counts for the period 1961-2012 were obtained for

each country from the the ‘Livestock Primary’ database (Food and Agriculture Organization

of the United Nations, 2014). Data from this database is only available at the country level and

was not available for every country in the study area (Figure 3.1). A gridded livestock density

map for pigs for the year 2005 was obtained from h�p://www.fao.org/ag/againfo/resources/en/

glw/GLW dens.html (Animal Production and Health: Food and Agriculture Organization of

the United Nations, 2007). �e livestock density raster was used to determine district-level pig

populations, which was not available using 2013 data from the ‘Live Animals’ database.

Landcover data derived from MODIS satellite imagery was obtained from the Global Land

Cover Facility (GLCF) at h�p://glcf.umd.edu/data/lc/. �e GLCF classi�es MODIS imagery,

which classi�es landcover at spatial resolutions ranging from 250 m to 1000 m, into 16 landcover

types at a 5 arc-minute (0.08333 degrees) spatial resolution (Channan et al., 2014). �ese

landcover types were used to de�ne districts as being either rural or urban so that appropriate

growth rates could be applied.

3.3.3 District Classi�cation

Weeks (2010) noted that “urban means nonagricultural”. Regions that exhibit high population

densities may still focus on a rural way-of-life (e.g. agricultural activities), especially in Asia

where many countries have rural populations of over 50% of the total population (�e World

Bank, 2013a). �erefore, to classify districts as being predominantly urban or rural, landcover

characteristics from Channan et al. (2014) were considered.

For a district to be classi�ed as urban, two conditions were to be satis�ed. �e �rst condition

required population densities to exceed 500 persons per square kilometre and that the majority

pixel count was not ‘croplands’ as classi�ed by Channan et al. (2014). �e second condition

stated that the majority pixel count was ‘Urban and built-up’ as classi�ed by Channan et al.

(2014) within district boundaries.
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Figure 3.2: District classi�cation as predominantly urban or predominantly rural.

For a district to be classi�ed as being predominantly rural, it failed to meet the criteria

of being de�ned as urban. Landcover characteristics were also considered, and if a district

contained a majority of pixels classi�ed as ‘croplands’ (Channan et al., 2014), then that district

was classi�ed as rural. Final district classi�cation is shown in Figure 3.2.

3.3.4 Human Population Projections

�e rate of urban population growth and rural population growth o�en di�ers. According to

United Nations (2002), the urban growth rate for South-central Asia and South-eastern for the

period 1950-2000 was 3.34% and 4.02%, respectively. �e rural population growth rates for

these two regions were 1.84% and 1.53%, respectively (United Nations, 2002). For studies in

population projection at a subnational level, it is thus necessary to specify rural and urban

areas. However, the distinction between urban and rural areas is not always straightforward.

In many Asian countries, a high population density may not always suggest that a region is
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dominated by an urban lifestyle. Many Asian countries are still characterized by a rural way

of life, even though populations may be high (Tacoli, 1998). In this study, we use the most

recent rural and urban growth rates as determined by the Department of Economic and Social

A�ars: Population Division of the United Nations (2014) and apply them to districts classi�ed

in Section 3.3.3.

Five year average growth rates from WUP 2014 were used to project future population

values. Population values were estimated for each 5 year interval’s end year, which were then

used to estimate the next interval’s value. �e geometric population growth model was used

to estimate future populations as shown in Equation 3.1.

PopF = PopC(1 +
r

100
)T (3.1)

where PopF is the estimated population for the designated year, PopC is the value of the

population for the district’s most recent census, r is the population growth rate from UN WUP

2014, and T is the number of years between PopF and the country’s last census year.

Based on the classi�cation of each district being predominantly urban or rural, each

country’s most recent census, and population growth rates from the UN’s WUP 2014, population

at the district level was calculated for the year 2050. We estimated that population in the

study area increased from ≈ 3.9 billion for the year 2015 to ≈ 4.5 billion for the year 2050.

Considering that the study area comprises most, but not all of Asia, these estimates are roughly

in line with Department of Economic and Social A�ars: Population Division of the United

Nations (2014) estimates for the study area.

3.3.5 Pig Population Projections

Pig population data in raster format for the year 2005 were used to estimate district-level values.

A zonal statistics summary was performed on this raster dataset and used to estimate pig

population proportions at the district-level (i.e. zonal sum in district divided by country total).

Tabular data from the FAO’s ‘Live Animals’ database for each year for the period 1961-2013 at

the country level were then multiplied by district-level proportions devised from the raster

27



dataset.

Data for all countries in the study area were not available from the FAO’s Live Animals

database. Countries for which pig headcount data was obtained were; Bhutan, Brunei, Cam-

bodia, China, Japan, Hong Kong, Macao SAR, Taiwan, North Korea, India, Indonesia, Laos,

Malaysia, Myanmar, Papua New Guinea, South Korea, Sri Lanka, �ailand, Timor-Leste, and

Vietnam.

At the country-level, pig livestock data from the FAO were used to estimate future values

in low, medium, and high scenarios. Projections for the year 2050 were done using the

forecast package in R, which is used for analyzing univariate time series data. Forecasts

were calculated with a 75 percent prediction interval. �e upper bounds, mean, and lower

bounds of the prediction interval were used for high, medium, and low scenarios, respectively.

�e forecast function �ts an exponential smoothing state (ETS) model to the time series

data to predict future values (Yeasmin and Hyndman, 2008). Country-level pig projections

were then allocated to district administrative boundaries according to their 2005 proportions.

3.3.6 Highly Vulnerable Regions

Highly vulnerable regions (HVR) for JE in 2050 were identi�ed in two ways. Firstly we mapped

the spatial overlap of population and pig populations. Population changes were categorized as

either declining (% change < 0), stable (%change 0–5), low (%change 6–10), moderate (%change

7–20), and high (%change > 20). Pig populations were categorized using the same classi�cation,

and maps of growth classes were created and used to identify highly vulnerable regions.

Additionally, the percent change in the ratio of pig populations to human populations were

calculated and mapped. Spatial analysis of the percent change was used to derive hotspots

of signi�cant change using the local Getis-Ord spatial statistic. �e local Getis-Ord statistic

(Gi(d)) (Getis and Ord, 1992) takes a moving average of a numeric variable x within a spatial

neighbourhood de�ned by a spatial weight matrix wij(d) (where d is the maximum distance at

which nearby points are included as neighbours) as:
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Gi(d) =

∑
j

wij(d)xj

n∑
j=1

xj

(3.2)

over the total sum of x. In practice Gi(d) is de�ned as a standard normal deviate, and therefore

can be interpreted as a z-score. We employ the Gi(d) statistic to identify signi�cant spatial

clusters where the relationship between pigs and people are expected to change.

Results of HVR mapping were interpreted relative to contextual variables relevant for JE

risk, including landcover classi�cation, vaccination status of populations, and the current

distribution of JE incidence.
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Figure 3.3: Estimated human population density for the year 2050.
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Figure 3.4: Estimated human population change at the district-level. Areas with higher rates of change are those
classi�ed as ‘urban’ in this study, and therefore experience higher rates of change.

3.4 Results

3.4.1 Human Population Change in Asia

Figure 3.3 shows our estimated population density, using urban/rural growth rate distinction,

for the year 2050. Figure 3.4 shows our estimation of population change. While large regions of

rural China are projected to experience population loss which dominate the map, urban areas

in southeast Asia, and southern India are expected to experience positive change in population

by 2050, re�ecting the regional trend toward urbanization, described by the Department of

Economic and Social A�ars: Population Division of the United Nations (2014).

3.4.2 Pig Population Change in Asia

Figure 3.5 (p. 35) displays our estimated pig projection and distribution at the district-level for

the year 2050 under the three forecasted scenarios. Here, we see commonalities between the
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three forecasts. Central China, and pockets of Nepal, northern India, Japan, and North Korea

exhibit high densities in all three scenarios.

3.4.3 Highly Vulnerable Regions in Asia

Maps of pig populations and human populations in 2050 were combined to identify regions

that exhibit high human population densities (> 1,000 per sq. km) and high pig densities (> 50

per sq. km) for the year 2050 in Figure 3.6 (p. 36). Parts of eastern coastal China and urban

regions in southeast Asia are highlighted as particularly vulnerable in all three scenarios.

�e relationship between pigs and people is expressed in Figure 3.7 (p. 37) as the percentage

change in the ratio of pigs to people. �e Getis-Ord statistic highlights hotspots (signi�cant

increases) in pig:human populations and coldspots (signi�cant decreases) based on the local

Getis-Ord analysis.

3.5 Discussion

�is study considers potential population trends and JEV amplifying host projections at the

district-level in order to estimate regions of potential risk for acquiring Japanese Encephalitis.

By projecting future spatial pa�erns of susceptible human populations and risk factors (pigs),

we highlight regions that should be of special interest for disease intervention strategies.

Figure 3.6 (p. 36) displays regions where pig population densities and human population

densities are expected to be high based on our estimations. It should be noted that these

maps do not account for vaccination programs (Figure 3.8, (p. 38)) and countries that are

well-developed, such as Japan, may not be of particular risk.

Figure 3.7 (p. 37) highlights regions in which pig populations (under three di�erent scenar-

ios) and human populations are estimated to increase signi�cantly by the year 2050. Figure 3.8

(p. 38) displays the status of immunization programs at the country level (World Health Or-

ganization, 2014c; Centers for Disease Control and Prevention, 2013). Regions depicted in

green and pink either have no immunization program, or a program that operates at sentinel

sites. Many regions that are highlighted as high risk in Figure 3.7 and Figure 3.6 overlap with
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regions depicted in Figure 3.8 as having no immunization strategy. Because disease reporting

is required for diseases at a national scale, it is important to examine sub-national trends over

large areas to re�ect the underlying dynamics of the disease processes. Here, we have focused

on some key variables of interest, in order to map pa�erns of risk and risk change over time.

However, the transmission cycle of JE is incredibly dynamic; it is dependent on the presence

of vector breeding habitat, agricultural practices, climate, proximity of the population to

agricultural areas, as well as various social determinants. �e number of JE cases within

a country is also dependent on the presence of vaccination programs, the frequency and

distribution of these programs within the country (i.e. located in rural vs. urban areas), and

e�ective surveillance. Future large-area mapping e�orts may take into consideration some of

the main JE drivers at a more granular level of spatial detail, such as land-use change, paddy

areas, population movements, and pig raising. Examples of this approach in Nepal Impoinvil

et al. (2011); Robertson et al. (2013) have shed light on the regional distribution of risks, however

obtaining detailed data for such variables over large areas at granular geographies remains a

signi�cant challenge.

Countries in Asia are also at di�erent stages of development. Erlanger et al. (2009) suggested

that incidence of JE will increase mainly in low-income areas. Countries such as Cambodia,

Laos, and Myanmar will likely see JE outbreaks in the near future due to increases in irrigated

rice agriculture and pig rearing (Erlanger et al., 2009). For example, during the period 1990-

2005 Myanmar exhibited an increase of 47% in rice agriculture area as well as an increase of

381% in pork production (Erlanger et al., 2009). Centers for Disease Control and Prevention

(2013) stated that Laos and Myanmar do not have JE immunization programs in place and

that Cambodia only conducts surveillance in three of its twenty-three provinces. Considering

these factors, we might expect that the incidence of JE may be greater in these countries

than the current incidence as calculated by Campbell et al. (2011). In contrast, incidence may

decrease in regions where vaccination programs are in their early stages. Recent progress in

JE prevention has caused increased awareness of the disease, funding, and the availability of

improved vaccines, although only in more developed countries (Centers for Disease Control

and Prevention, 2013).
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3.5.1 Limitations

�e distinction between urban and rural districts is not always a dichotomy. Weeks (2010)

highlights the di�culties with this distinction. In this study, we choose to assign districts to

one of these classes based o� of landscape and population characteristics in order to project

future populations at the district-level. �e aim of this was to obtain a �ne-scale estimations

of susceptible human populations.

�is study is hindered by the quality of data used for analysis. We used the best available

data to estimate potential trends and distributions of susceptible populations as well as the

virus’s host. Using livestock data for the period 1961–2013 to project future trends is not

always straightforward and there is much uncertainty in these estimations. We have a�empted

to account for this uncertainty by forecasting pig populations under three scenarios using

the upper and lower bounds of a prediction interval. Pig farming is also highly contingent on

cultural factors that may not be represented in the data. For example, pig farming in Nepal has

signi�cantly increased a�er the year 1950 due to changing religious views and the tourism

industry (Dhakal et al., 2014). �us, the data shows an upward trend that may stabilize in

the near future. However, these relationships are incredibly di�cult to map at such a large

scale and are beyond the scope of this study. Also, we show how pig populations are expected

to decline in India. �is may not actually be the case and may be due to low-quality of data

obtained by the FAO. It should be noted that pig population estimations were conducted to the

best of our knowledge using the best data available.

Land-use and landcover change plays a prominent role in the transmission of vector-borne

diseases. �is study did not focus on land-use and landcover change as it was beyond the

scope of this study. �ere are many small-scale characteristics that contribute to mosquito

populations, which are not visible from large-scale remotely-sensed data such as Channan

et al. (2014). For example, Murty et al. (2010) found that certain species of Culex mosquitoes

are abundant in urban areas of India and suggested that control measures should equally focus

on urban and rural areas.
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3.6 Conclusion

�e (�e World Health Organization, 2008; World Health Organization, 2014c) recommends

that immunization is the most e�ective measure for preventing JE and should be extended to

regions where JE is a public health problem. For many countries, resource constraints prevent

the implementation immunization programs Centers for Disease Control and Prevention

(2013). �is study a�empts to identify regions with high susceptible populations and high host

populations. If regions with a high number of cases are identi�ed, this may warrant increased

a�ention for risk surveillance in this regions.

�is study examines disease risk factors at a large scale; however, many changes are

occurring at a much smaller scale. For example, pig farming in Nepal is increasing due to

the reduction of cultural biases against pigs (Dhakal et al., 2014) increasing the number of

amplifying hosts in this region. It is evident that much work is needed at a smaller scale to

fully understand the spatial dynamics of JE on a larger scale.

Pigs are involved in the transmission of other zoonotic diseases, such as Streptococcus suis,

which can cause meningitis and other serious symptoms (Go�schalk and Segura, 2000). Using

methods presented in this study, it is also possible to highlight regions where interventions on

other such diseases should be focused.

Although this study highlights regions where there could be high increases in both human

and pig populations, we do not discourage national-level interventions to prevent JE in other

regions in Asia. We a�empt to highlight regions that may be of importance in order to

appropriate resources to combat JE in the case that resources are limited.
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Figure 3.5: Estimated pig population density with high, medium, and low forecast scenarios for the year 2050.
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Figure 3.6: Regions with high pig densities (greater than 50/km2) and high human population densities (greater
than 1000/km2) for the year 2050.
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Figure 3.7: Gi∗ results. Red regions represent areas with high values of pigs per 100,000 people under the high,
medium, and low forecasted scenarios for the year 2050.
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Figure 3.8: Country-level status of immunization programs. Regions depicted in green have no immunization
strategies as of the year 2012 (World Health Organization, 2014c; Centers for Disease Control and Prevention,
2013).
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Chapter 4

Modelling the Risk Landscape of

Japanese Encephalitis in the

Kathmandu Valley, Nepal

4.1 Introduction

Japanese Encephalitis (JE) is a mosquito-borne disease prevalent throughout Asia. Globally,

the JE virus (JEV) causes approximately 67,900 cases of JE a year (Mackenzie et al., 2004; Misra

and Kalita, 2010; Campbell et al., 2011; CDC, 2013). �e case fatality rate of the disease ranges

between 20–30% and approximately 30–40% of survivors su�er from permanent neurological

sequelae, which results from to damage of the central nervous system (CDC, 2013; World

Health Organization, 2014b). It is estimated that between 107,435 and 1,859,170 disability-life

adjusted years (DALYs) result from JE globally (LaBeaud et al., 2011), and thus JE is a signi�cant

burden on the human population. JE is primarily acquired by children less than 15 years of

age and is also more common in rural and agricultural areas (Mackenzie et al., 2004; Campbell

et al., 2011; CDC, 2013; World Health Organization, 2014b). LaBeaud et al. (2011) stated that 57

per cent of the global population is currently as risk for contracting JEV.

As is the case for other vector-borne diseases, the JEV exists within a complex human-

environment system. �e primary vector of the JEV are mosquitoes of the genus Culex,
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speci�cally Culex tritaeniorhynchus and Culex vishnui (World Health Organization, 2015b;

Misra and Kalita, 2010). �ese mosquitoes lay their eggs as ra�s, which require clean stagnent

water. Irrigated rice paddy �eld provide this ideal habitat for Culex mosquitoes, and are thus

considered to be high-risk areas for contracting JE. A growing population (Department of

Economic and Social A�ars: Population Division of the United Nations, 2014) has lead to

increasing area dedicated to these agricultural areas, which are considered to be ideal habitat

for Culex mosquitoes (Keiser et al., 2005; Erlanger et al., 2009).

Populations of the virus’s amplifying host, Suidae (pigs, both domesticated and wild), are

also highly dependent on human population dynamics. Rising human populations in Asia have

increased the demand for meat, leading to rising pig livestock counts (Erlanger et al., 2009;

Food and Agriculture Organization of the United Nations, 2014). When species of the family

Suidae are present, the number of infected mosquitoes can increase dramatically. Van den Hurk

et al. (2009) summarized the primary reasons regarding the role of pigs in the transmission

cycle of the JEV and are stated as follows: (1) there is a high natural infection rate of pigs,

(2) pigs have a high viremia of the virus in the blood stream, (3) viremia in pigs remains

high enough for transmission to mosquitoes for about 4 days, (4) pigs are highly prone to be

fed upon by mosquitoes, and (5) pigs have a high birth rate, which provides new sources of

virus-susceptible pigs each year. Pigs are also frequently located near rice paddy �elds or in

peri-urban areas where they are close to an at-risk human population (Dhakal et al., 2012,

2014).

�e natural host of JEV are birds. Although over 90 species are known to be able to carry

the JEV (Van den Hurk et al., 2009), the primary natural hosts are from the family Ardeidae

(herons, bi�erns, and egrets) (Misra and Kalita, 2010). Ardeidae birds frequent rice paddy �elds

as they serve as feeding grounds, and are thus able to spread the virus when they contact

high density mosquito populations. Landscape factors that contribute to JE risk are highly

dependent on human activities and thus JEV exists within a human-environment complex

system. Land-use change, caused by population increases in Asia, will undoubtedly lead to

increasing amounts of rice agriculture and pig husbandry (Erlanger et al., 2009) and possibly

increase the rate of vector-borne disease trasmission (Keiser et al., 2005; Erlanger et al., 2009;
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Lambin et al., 2010).

Surveillance of disease cases is the primary source of data for examining virus transmission

within the human-environment complex system. However, previous research has demonstrated

that surveillance data does not provide a complete representation of virus distribution (Kakkar

et al., 2013; Shrivastava, 2014). �ere are many factors that contribute to the underreporting,

and thus lack of data points within surveillance. �is can include such instances as the

perceived low severity of symtoms (e.g. asymptomatic or mild �u-like illness) and/or the

lack of healthcare access. For example, Akiba et al. (2001) found that rural dwellers in Nepal

preferred traditional healers, as opposed to hospitalization. If an ill individual does not seek

medical a�ention at a sentinel surveillance site, then a potential JE case can go unrecorded.

Previous research demonstrates the need for methods that supplement surveillance records.

Risk maps and the identi�cation of high priority areas that implement transmission cycle and

risk factor knowledge would be of use to �ll in this gap. Such methods will provide more

informed grounds to inform control and prevention measures. In this paper, we examine

the JEV transmission cycle and its risk to the human population in the Kathmandu Valley,

Nepal. �is region possesses interesting characteristics that relate to JEV transmission. �is

region has undergone rapid change in recent years, involving remarkable land-use change

(�apa and Murayama, 2008, 2009, 2010). �e rate of urbanization in the Kathmandu Valley is

among the highest in the Asia-Paci�c region, with rates up to 6.6% during the 1990s (�apa and

Murayama, 2009). �is has led to increased area dedicated to rice agriculture in the peri-urban

areas surrounding the valley (�apa and Murayama, 2008, 2009, 2010), which has increased

the amount of vector habitat and Ardeidae feeding area in the region.

Nepal has also exhibited a rapid increase in JEV’s amplifying host. Pig husbandry and

livestock numbers have increased from about 180,000 in 1960 to about 1.16 million in the year

2013 (Food and Agriculture Organization of the United Nations, 2014). �e increase in JEV’s

amplifying host is due to factors such as increased tourism and associated demand for the diets

of other cultures, changing cultural beliefs (there are many castes that do not eat pork), and

programs such as the Pro-Poor Livestock Policy Initiative (Maltsoglou and Taniguchi, 2004)

that promote small-scale livestock agriculture to reduce poverty levels.
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One of the primary methods for mapping vector-borne disease risk is that of ecological

niche modelling. Ecological niche modelling involves identifying the environmental covariates

(e.g. temperature, precipitation, elevation, landcover, etc.) of a speci�c vector, such as Culex

in the case of JE. Some examples of ecological niche models are described in (Peterson, 2001;

Hart, 2010; Miller et al., 2012; Sallam et al., 2013) and speci�cally, (Peterson, 2015). However,

this bo�om-up approach does not o�en incorporate species interaction with the environment,

or human-environment interactions. �us, ecological niche models serve as a form of static

risk map, where regions of high risk can be assumed.

�e majority of research conducted on modelling infectious disease spread involves human-

to-human transmission (e.g. SIR and/or SEIR models). However, these models only consider

disease transmission within heterogeneous populations and do not explicitly incorporate

environmental factors or any other forms of spatial data. Vector-borne disease transmission

involves more components than simply a susceptible population, a pathogen, and an infected

subset of that population. �e environment plays a critical role in vector-diseases transmission,

and thus adds considerable complexity to vector-borne disease modelling.

Previous research have implemented agent-, or individual-based modelling to examine

vector-borne disease risk. Recent work by Linard et al. (2009) developed and agent-based model

to examine the spatiotemporal dynamics of mosquito biting rates in southern France to assess

malaria transmission. Malaria transmission was also examined using agent-based modelling

techniques by Gu and Novak (2009), who programmed mosquitoes as their primary agents in

e�orts to predict their mobility pa�erns. Alexander et al. (2012) highlighted the importance of

agent-based modelling in vector-borne and zoonotic diseases, as they are able to systematically

incorporate heterogenous populations and various types as agents (e.g. virus hosts, vectors,

and vulnerable human populations). Agent-based models to examine vector-borne disease

transmission have also been employed in de Almeida et al. (2010); Li et al. (2012); Ari�n et al.

(2014); Dommar et al. (2014).

In this paper, we develop an individual-based model for analyzing JEV transmission in

the Kathmandu Valley, Nepal. Environmental data, including remotely-sensed imagery, daily

precipitation and temperature measurements, and pig populations were used to create the
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risk-landscape of JEV in the Kathmandu Vally, Nepal. Nepal’s national census was used to

populate individuals in the model. We collate these data into a realistic model of the most

signi�cant JE-risk factors in Nepal. We then de�ne a set of rules that govern agent behaviour

and their interactions with the landscape in relation to vector-borne disease risk. Model results

and output show that this model represents a realistic system of JEV transmission, as it roughly

matches JEV surveillance data collect from the World Health Organization.

4.1.1 Japanese Encephalitis in Nepal

In Nepal, the �rst case of JE was reported in the district of Rupendehi during the year 1978

(Joshi and Gaidamovich, 1982). Initially, the disease was most prevalent in the Terai region – a

belt of relatively low-lying land dominated by grasslands, savanna, and forest, that borders

northern India (Akiba et al., 2001; Partridge et al., 2007; Impoinvil et al., 2011). Cases of JE

in this region usually peak during and shortly a�er Nepal’s monsoon season, which occurs

from June to August (Partridge et al., 2007). �is peak of JE cases is a�ributed to increased

mosquito breeding habitat (e.g. standing water) and feeding bahaviour (Impoinvil et al., 2011).

In the past, JE has only been a problem in the Terai region. In recent years, however, it has

been identi�ed at higher elevations in the hill regions of Nepal (Joshi et al., 1995; Bha�achan

et al., 2009; Impoinvil et al., 2011). �e Kathmandu Valley, which is the most populated region

in Nepal, is located in the hill region of Nepal and it has recently been suggested that JE is

endemic in this relatively small region (Partridge et al., 2007).

Joshi and Marg (2013) reported approximately 26,658 con�rmed cases of JE during the

period 1978–2003 in Nepal. Of those cases, 5,370 resulted in death (Joshi and Marg, 2013). �e

geographic distribution of JE in Nepal has shi�ed through time (Impoinvil et al., 2011). Since

1997, cases started to appear in the Kathmandu Valley (Akiba et al., 2001), which is the most

populated region in Nepal, home to over 2.52 million people (GeoHive, 2013). In more recent

years, Impoinvil et al. (2011) showed how JE cases were clustered in the Terai prior to the year

2006 and then shi�ed into the Kathmandu Valley region. �e geographic shi� is most likely

due to the dynamics and spatial connection of various environmental factors, land-use and

landcover changes, as well as shi�s in the human population. For example, rapid urbanization,
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Figure 4.1: �e steady increase in the number of pigs by year in Nepal. Data from the Food and Agriculture
Organization of the United Nations (2014).

which is in�uenced by internal immigration processes, with people from higher elevations

moving into the Valley. It’s likely that people from higher elevations in the mountain region

of Nepal have never been exposed to the JE virus, making them more susceptible as they do

not possess JEV antibodies.

As mentioned in Section 4.1, pigs play an important role in the JEV transmission cycle.

Rayamajhi et al. (2007) demonstrated that an individual’s risk of acquiring JE increases if

they reside near a pig farm. Rayamajhi et al. (2007) performed a hospital-based prospective

cross-sectional study examining the proportion of children in Nepal, aged 1 month to 14 years,

diagnosed with Acute Encephalitis Syndrome (AES) as having JE. �ey determined that the

majority of those diagnosed under the umbrella-term ‘AES’, were actually a�icted with JE.

�ey found that residing near pigs farms what the primary indicator factor related to those

who acquired JE (Rayamajhi et al., 2007).

Rice agriculture and pig farming in Nepal has increased considerably in recent years.

Figure 4.1 demonstrates the increase for total number of pigs in Nepal (Food and Agriculture

Organization of the United Nations, 2014). Dhakal et al. (2014) stated that pig farming in

Nepal has increased by 48% in the past 14 years due to reduced cultural biases against the
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consumption of pigs as food. Dhakal et al. (2014) also stated that there is an increased demand

for pig meat in urban areas, thus increasing the number of small pig farms in peri-urban

areas. Area dedicated to agriculture is also increasing (�apa and Murayama, 2008, 2009, 2010).

�apa and Murayama (2010) quanti�ed land-use change in the Kathmandu Valley and found

signi�cant increases in land dedicated to urban areas and agriculture during the period 1967 to

2000.

Table 4.1: Summary of the top ranking risk factors, and their e�ect on the transmission of JEV, as determined by
Hecker et al. (2013). Magnitude was derived by how many experts in the �eld agreed on the e�ects of a certain
variable, with a maximum possible value of 32.

Variable (increase/decrease) E�ect (increase/decrease) Magnitude

Vectors+ Pig JE cases+ 32

Vectors+ Human JE cases+ 31

Pigs+ Pig JE cases+ 31

Pigs+ Human JE cases+ 31

Poverty rate+ Human JE cases+ 29

Pig JE cases+ Human JE cases+ 28

Rice �elds+ Mosquito net use+ 27

Temperature– Vectors– 27

Pig JE cases– Human JE cases– 29

Vectors– Human JE cases– 29

Vectors– Human JE cases– 30

Hecker et al. (2013) explored expert knowledge on JE risk factors in Nepal using network

analysis. �ey asked participants (those who were considered to be JE experts) to link various

JE risk factors with potential e�ects (e.g. Would there be an increase/decrease/no change if the

human population in the area increased by 20%?) (Hecker et al., 2013). Variables were ranked

the highest if there was consensus among all experts.

�e strongest relationships between JE risk factors and their e�ects from Hecker et al. (2013)

are summarized in Table 4.1. Relationships are described by their magnitude, or the quantity

of same responses among researchers, thus a magnitude of 32 indicates that all 32 participants

in the study agreed upon that relationship. For example, all but one expert responded that
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an increase in vectors would lead to an increase in human JE cases. Authors did not delve

into questions as to why there was disagreement between risk factor and e�ect relationships.

Results of Hecker et al. (2013) showed that the most important link between variables was the

increase in vectors and their e�ect on the increase of infected pigs in the area. Many of the

decisions and submodels in the individual-based model presented in this research are based on

the research conducted by Hecker et al. (2013).

4.2 Methodology

In this section, we introduce the study area – the Kathmandu Valley, Nepal – and summarize

its environmental and demographic characteristics. �e methodology, including a detailed

description of the model in terms of the Overview, Design Concepts, and Details Protocol (ODD)

(Grimm et al., 2006) is given in Section 4.2.2, descriptions on how and why speci�c modelling

methods are also introduced, including the employment of a variation of the Susceptible-

Exposed-Infected-Removed model and the development of Culex mosquito habitat creation

(Section 4.2.3).

4.2.1 Study Area

�e Kathmandu Valley is located at approximately 27.64◦ north and 85.36◦ east (Figure 4.2).

It is located in the hill region of Nepal, a belt of transition zone between the low-lying Terai

region and the Himalayan mountain region. �e Kathmandu Valley is comprised of three

districts; Kathmandu, Lalitpur, and Bhaktapur, covering approximately 932 km 2. Terrain in

the Kathmandu Valley is highly varied, ranging from about 375 meters above sea level to about

2771 meters above sea level.

�ere are two primary seasons in Nepal, the dry season (October-June) and the wet season

(June-September). �e climate is considered subtropical, with mild temperatures ranging from

19–27◦C in the summer and 2–20◦C in the winter (Mountain GeoPortal, 2012). �e monsoon

season starts mid-June and reaches a monthly average total of about 363.4 mm for the month

of July. It is during this season that Nepali rice farmers start irrigating and planting their rice
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Sources: Esri, DeLorme, NAVTEQ, TomTom, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS,
NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong),
swisstopo, and the GIS User Community
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Figure 4.2: Location of the Kathmandu Valley, Nepal.

crops, unintentionally creating perfect breeding habitat for Culex mosquitoes and feeding

grounds for JEV’s natural reservoir, Ardeidae birds.

As of 2011, the population of the three districts that make up the Kathmandu Valley was

about 2.46 million (Government of Nepal, 2014). Population density is greatest in the district

of Kathmandu, and especially in the Kathmandu Metropolitan City, which had a population

of about 975,453 in 2011 (Government of Nepal, 2014). �e Kathmandu Metropolitan City is

the most urbanized region of the valley, and although population growth has slowed since

2001, the urbanization rate has remained at about 3.9% per year (�e World Bank, 2013b). Over

the past few decades the population of the three districts has grown considerably. Figure 4.3

shows the population increases by district between the years 1981 and 2011. �is increase has

in�uenced land-use and landcover change (�apa and Murayama, 2008, 2009, 2010), expanding

agriculture and fragmentation of the landscape, which in�uences mosquito breeding habitat

(Lambin et al., 2010). �e growing population not only determines land-use and landcover
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change, but increases the number of at-risk people in the valley. �is is especially important if

people have migrated from the mountainous region of Nepal, where the altitude is too great

for Culex mosquitoes to survive.

Figure 4.3: Population growth in the three districts that comprise the Kathmandu Valley, Nepal. Bars show
populations for the years 1981, 2001, and 2011, respectively.

Pig populations have also increased in Nepal. According to the Food and Agriculture

Organization of the United Nations (2014), livestock counts of pigs have increased from about

1.8 million in the year 1960 to over 1.16 billion in the year 2013. Programs such as the ‘Pro-Poor

Livestock Policy Initiative’ have promoted small-scale pig farming to help alleviate poverty in

Nepal (Maltsoglou and Taniguchi, 2004). Cultural biases against pig meat have been reduced

in recent years, leading to pork being a more acceptable source of food. Figure 4.1 (p. 44)

graphically displays the increase in pig population from the year 1961 to 2013.

�e recent changes in Nepal, including the rapidly changing landscape due to urbanization

driven by a growing population, frame the Kathmandu Valley as an interesting study area

for examining JEV transmission. In this research, we create an individual-based model that

examines JE landscape risk factors in the Kathmandu Valley and their in�uence on the human
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population. It is hoped that that construction of a basic human-landscape risk model for

contracting JEV will aid in the development of public health initiatives and spatial planning of

livestock.

4.2.2 �e Overview, Design Concepts, and Details Protocol

�e current model is described in this section according to the recent textbook by Railsback and

Grimm (2012) titled ‘Agent-Based and Individual-Based Modeling: A Practical Introduction’.

�e ODD Protocol is a standard developed by Grimm et al. (2006) as a way to facilitate agent-

based model replication. Descriptions of each standard are included in Appendix A (p. 105).

Purpose: �e purpose of the current model is to demonstrate how landscape factors con-

tribute to the risk of acquiring the JE virus. A realistic representation of landscape characteris-

tics and population dynamics can then be used to analyze various scenarios, such as changes in

climate and implementation of vaccination programs. Although many environmental datasets

have been utilized, the model represents a simpli�ed version of landscape complexity.

Entities, State Variables, & Scales: �e primary entities, their state variables, and the

spatial and temporal scales in this model are summarized in Table 4.2 (p. 50). If state variables

were derived from data sources, those sources are labeled in the table. States variables of

landscape entities are shown in Table 4.3 (p. 53).

Process Overview & Scheduling:

Overview: �ere are three primary processes in the model; 1) mobility, 2) agent-environment

interaction, and 3) the evaluation of agents’ SEIR state. �ese processes are shown in Figure 4.4

(p. 51). Firstly, human agents move around the landscape, following a few basic mobility rules

(e.g. move from current location to random location within a certain radius, returning to home

location at the end of the time-step). Because this research lacks mobility data, such as done

in Hawelka et al. (2014) and Noulas et al. (2012), we have made assumptions regarding the

general mobility behaviour of agents, rather than basing them on actual data. Mobility issues
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Table 4.2: Model entities, their state variables, spatial and temporal scales used in the model. Data used to
characterize state variables is also speci�ed.

Agent Entities State Variables

Humans 1. Age (2011 Census)
2. Sex (2011 Census)
3. Home VDC (2011 Census)
4. SEIR State (Susceptible, Exposed, Infected, or Recovered)
5. Time exposed - Number of days between contraction

of virus and onset of symptoms - used to represent the
incubation period of the JEV

6. Time infected - Number of days between onset of symp-
toms and transition to either state ‘Recovered’ or termi-
nation of that agent

Pigs 1. Age
2. Infected?

Landscape Entities State Variables

Elevation 1. Metres above sea level (WorldClim)

Temperature 1. Weekly mean maximum temperature (Nepal’s DHM)
2. Weekly mean minimum temperature (Nepal’s DHM)

Landcover Type 1. Agriculture
2. Forest
3. Urban/Built-up

Precipitation 1. Weekly mean precipitation (Nepal’s DHM)

Other 1. District
2. VDC boundaries
3. Road Network (ICIMOD)
4. Se�lements (ICIMOD)
5. River zone (5 grid cell bu�er from rivers, ICIMOD)

Scales

Spatial 1. Kathmandu Valley (≈ 932.41 km2)
2. Patch size ≈ 65 metres

Temporal 1. Time steps represent daily processes
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Figure 4.4: �e primary process of the model. At each time-step, the environment grid is updated based on
precipitation, temperature, and whether or not rice �elds are planted. Agents then interaction with those
landscape characteristics, which may alter their SEIR state. Each of these processes involves submodels that are
de�ned in proceeding sections.

are further discussion in Section 4.11.1 (Limitations, p. 92) of this thesis.

�e second main process is human agent interaction with the environment. An agent’s

transition from SEIR stated ‘Susceptible’ to ‘Exposed’ is determined by the types of landscape

variables it encounters. Agents traverse the landscape and interact with landscape patches,

which possess a risk probability value. At each agent-patch interaction, the agent generates

a random �oat value, which is then compared with the patch’s risk probability value. If

the random �oat is less than the risk value, then that agent moves from the ‘Susceptible’

compartment of the SEIR model to the ‘Exposed’ compartment. �e transition to other states is

guided by incubation period estimation and the likelihood of displaying serious JE symptoms.

�e transition between SEIR states (‘Susceptible’ to ‘Exposed’) represents an agent con-

tracting the JE virus. Because the likelihood of full-blown JE (encephalitis symptoms) is

approximately 1 : 250 as stated by World Health Organization (2014c), another evaluation

of an ‘Exposed’ agent’s SEIR state is conducted between 5 and 15 days, which is the virus’s

incubation period. If the result of this evaluation returns TRUE, then that individual’s SEIR

state is changed to ‘Infected’. If the result returns FALSE, then that individual is assumed to

possess JEV antibodies and it’s SEIR state is set to ‘Removed’, meaning that it cannot become

infected with JEV at a later period. �e date at which an agent moves into the ‘Infected’ state

is then recorded and used for model validation and spatiotemporal analyses.
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Environmental Processes: As stated in the Overview section of the Process Overview &

Scheduling, agents interact with the environment at each time-step and potentially transition

to new SEIR compartments depending on a landscape risk probability value. �e landscape risk

probability value can be thought of as the probability that an agent contracts JEV on a given day.

�is value is calculated by considering landscape a�ributes, such as landcover and a particular

region’s temperature and precipitation conditions for the current, and previous two weeks

(three weeks in total). �is is meant to capture adequate conditions for mosquito life cycle

processes (e.g. Culex development from egg, to larva, to pupa, to adult takes approximately

7-13 days with speci�c climatic conditions (Rozendaal, 1997)). How this value is determined is

explained in this section.

At the start of each iteration of the model, each patch’s ‘risk-probability-value’ is updated.

�e ‘risk-probability-value’ of each patch is dependent on four factors: 1) distance to rice

paddy �eld, 2) temperature, 3) precipitation, and 4) distance to pig farm. �ese environmental

variables are represented as patch state variables, and shown in Table 4.3.

To compute the each patch’s distance-to-rice value, a distance to rice paddy �eld raster was

created using the Euclidean distance tool in ArcMap v.10.2. �is tool uses Euclidean distance

to compute a raster of distance values to the source cells (source cells = rice paddy �elds).

Because rice paddy �elds are where Culex mosquitoes breed, population density of the vector

is assumed to be highest in patches that are classi�ed as ‘Agriculture’. Risk values of patches

that were not classi�ed as agriculture, were computed using the inverse-square law, which

states that as distance increases from a source the intensity (risk according to rice paddy �eld)

is inversely proportional to the square of the distance and is denoted by:

RiskRice =
1

distance2
× 0.04. (4.1)

To compute each patch’s precipitation and temperature components of risk, the maximum

possible value in each dataset was used to normalize it’s relative probability. �e maximum

weekly precipitation value for the year 2007 was 347.98mm and the maximum weekly mean

temperature was 39.70◦C. Values from the current and the past two weeks were used to

determine risk, as conditions need to be within a certain range for at least a week to account
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Table 4.3: Table displaying all patch state variables, which were derived from variable environmental datasets.

State Variables De�nition

VDC Represents the Village Development Commi�ee (VDC) to which it belongs. Deter-
mines the number of agents initialized within VDC boundaries.

District Represents the district to which a certain patch belongs.

Landcover-type Determined by landcover classi�cation of RapidEye imagery, there are three
prominent landcover types; ‘Agricultural’ (high-risk areas due to higher densi-
ties of mosquito populations), ‘Urban’ (low-risk areas due to lack of breeding
habitat for mosquitoes), and ‘Forested Area’ (not associated with signi�cant in-
creases/decreases in risk).

is-river? Determined by the rivers shape�le obtained from ICIMOD (International Centre
for Integrated Mountain Development, 2013). All patches are initially set to is-
river? FALSE, then patches that intersect this shape�le are set to is-river? TRUE.

river-zone? If a patch lies within 50 meters of a river (patch with is-river? TRUE), that patch is
determined as being river-zone? TRUE. �is variable is important in determining
the initial locations of pig farms, which require the use of river water.

elevation-m-asl A numeric value which represents the altitude (meters above sea level) of a partic-
ular location.

weekly-maxtemp �e average maximum temperature (◦C) for a given week at that location ac-
cording to the interpolation of station maximum temperature data from Nepal’s
Department of Meteorology and Hydrology.

weekly-mintemp �e average minimum temperature (◦C) for a given week at that location ac-
cording to the interpolation of station minimum temperature data from Nepal’s
Department of Meteorology and Hydrology.

weekly-precipitation �e amount of rain (mm) that a particular location received according to the
interpolation of station precipitation data from Nepal’s Department of Meteorology
and Hydrology.

max-temp-list A three item list which holds maximum temperature values for the current, and
previous two weeks. With the �rst item holding the value for two weeks previous,
the second item being the previous week, and the third item holding the value for
the current week: [Tmaxi(t1), Tmaxi(t2), Tmaxi(t3))].

min-temp-list A three item list which holds minimum temperature values for the current, and
previous two weeks. With the �rst item holding the value for two weeks previous,
the second item being the previous week, and the third item holding the value for
the current week: [Tmini(t1), Tmini(t2), Tmini(t3))]

rain-list A three item list which holds the cumulative precipitation values for the current
and previous two weeks. With the �rst item holding the value for two weeks
previous, the second item being the previous week, and the third item holding the
value for the current week: [Pi(t1), Pi(t2), Pi(t3)]

rice-paddy-planted? A logical value (TRUE/FALSE), that, when set to TRUE, increases the risk proba-
bility of a patch and increases risk. �is value is set to TRUE during the monsoon
months, and Nepali farmer have planted their rice �elds, which promote mosquito
habitat, breeding, and biting behaviour.

distance-to-rice If a patch is not classi�ed as ‘Agriculture’, then it possesses a distance-to-rice value
that is greater than 0, which represents the distance of that patch to the closest
‘Agriculture’ patch.

risk-probability-value A probability value which is computed by incorporating weekly-precipitation,
weekly-temperature, landcover-type, distance-to-rice, rice-paddy-planted? variables.
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for the minimum amount of time needed for Culex development. Weekly precipitation and

temperature (minimum and maximum) values were stored as a list of length three for each

patch ([week1, week2, week3]). As time progressed, the list was updated to include a new

week’s ptrecipitaion or temperature value at the end of the list, and the �rst value was removed.

Risk values associated with precipitation were calculated using the following rules and

formulas;

If

Pi(t1) ≥ 100, (4.2)

then;

RiskPrecipitation =
Pi(t2) + Pi(t3)

347.98× 2
. (4.3)

If

Pi(t1) < 100, (4.4)

then;

RiskPrecipitation =
Pi(t2) + Pi(t3)

347.98× 2
× 0.5. (4.5)

where Pi(t1), Pi(t2), and Pi(t3) are the precipitation values for the �rst, second, and third

items in the precipitation list corresponding to the weekly precipitation values, where Pi(t3)

is the current week.

Risk values associated with temperature were calculated using the following rules and

formulas;

If

Tmaxi(t1) < 25, (4.6)

then;
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RiskTemperature =
Tmaxi(t2) + Tmaxi(t3)

39.7(2)
× 0.75, (4.7)

if

Tmaxi(t1) ≥ 25, (4.8)

then;

RiskTemperature =
Tmaxi(t2) + Tmaxi(t3)

39.7(2)
. (4.9)

If the average weekly temperature for the last three weeks is less than 10◦C;

Tmini(t1) + Tmini(t2) + Tmini(t3)

3
< 10, (4.10)

then RiskTemperature is updated using;

RiskTemperature = RiskTemperature × 0.1, (4.11)

and if the average weekly temperature for the last three weeks is less than, or equal to 20◦C;

10 <
Tmini(t1) + Tmini(t2) + Tmini(t3)

3
≤ 20, (4.12)

then RiskTemperature is updated using;

RiskTemperature = RiskTemperature × 0.75, (4.13)

and if the average weekly temperature for the last three weeks is greater than 20◦C;

Tmini(t1) + Tmini(t2) + Tmini(t3)

3
> 20, (4.14)

then RiskTemperature is updated using;

RiskTemperature = RiskTemperature × 1.2, (4.15)
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where Pi and Ti are the respective weekly-precipitation and weekly-temperature values of a

patch.

�e Equation 4.16 include model parameters; rain-weight (10−3), temperature-weight

(10−8), and rice-weight (10−5). �ese values were chosen to reduce each patch’s risk-probability-

value so that at each time step in the model run, the randomly generated number for each

individual would likely be greater than risk-probability-value. Parameter values were chosen

due to their a�ect on

To calculate each patch’s overall risk value (Risk, as shown in Equation 4.16), the previous

three risk values are then summed:

Risk = RiskRice × 10−5 +RiskPrecip × 10−3 +RiskTemp × 10−8. (4.16)

To incorporate the risk of contracting JEV in proximity to pig farms, the risk-probability-

value of patches within 2400 meters of a pig farm were increased. �is increase was dependent

upon how many pigs were JEV seropositive at a given pig farm (Totalpigs), which was then

added to the previously calculated risk value shown in Equation 4.16. Risk associated with the

number of infected pigs on a pig farm was obtained by;

RiskPig = Totalpigs × 0.001 + Risk, (4.17)

where Totalpigs is the number of pigs at a given pig farm that are JEV seropositive. �e number

of JEV seropositive pigs is determined by user input (set 50% of all pigs to ‘infected?’ = TRUE),

which is randomized at each model initialization.

Design Concepts: Grimm et al. (2006) discussed several design concepts that should be

clari�ed when using the ODD Protocol. �e design concepts – emergence, sensing, interactions,

and observation – are discussed in the following enumeration.

1. Emergence: �e phenomena of interest is the spatial and temporal distribution of agents

with SEIR state set to ‘Infected’. �is trait will be validated to the disease incidence data

collected from the World Health Organization’s reporting system.

2. Sensing: Individuals in the model will ‘sense’ environmental conditions. Encounters
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with environmental conditions that contribute to JEV transmission (i.e. rice paddy �elds

and/or pig farms) will lead to a greater probability of an individual contracting the JE

virus.

3. Interaction: Individual’s in the model interact with the environment. At each time-

step, an agent will move to a di�erent location in the environment. �e environmental

characteristics that determine landscape risk will determine the new location’s risk of

contracting the JEV as a risk probability value. �erefore, if environmental determinants

of JEV risk are ideal, then there will be a greater probability of an agent becoming

exposed to the JE virus.

4. Observation: �e model will run daily time-steps and evaluate weekly cases of JE. Weekly

totals will be stored in a comma separated value �le that also contains agent/individual

a�ributes (e.g. age, sex, home VDC). �ese data will then be imported into ArcMap v.10.2

for further spatial analysis and validation.

Initialization: �e initial state variables of human agents are based on data from the 2011

Nepal Census (Government of Nepal, 2014). Table 4.4 (p. 58) shows the state variables of human

agents and how they are initialized. �ese variables are not intended to change for each model

run.

Pig agents possess two state variables, ‘Age’ and ‘Infected?’. �e ‘Age’ state variable is

initialized as a random �oating point number below 8, as the average age of domesticated pigs

is approximately 8 years. �e ‘Infected?’ state variable is set to either TRUE or FALSE based

on user input. Data regarding pig population numbers by VDC was obtained via the National

Zoonoses and Food Hygiene Research Centre (NZFHRC), who obtained VDC values from the

Ministry of Agriculture Development (MOAD), Nepal. Pig location is initialized according to

VDC counts from MOAD data. Pig farms are setup at random locations, but are in proximity

(5 grid cells) to rivers, in a�empt to represent the preference of pig farmers to locate to areas

with water access.

Table 4.5 (p. 59) displays the model parameters. Human and pig populations were based on

Government of Nepal (2014) and VDC level pig population data.
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Table 4.4: Human agent initialization state variables. Population-related variables were initialized according
to trends estimated from Government of Nepal (2014). State variables relating to the epidemiology of JE were
estimated from literature and previous work regarding the JEV.

State Variables De�nition

Age Determined by the number of agents within each age group
according to the census. Due to knowledge of the number of
people within each age interval (i.e. 0-4, 5-9, 10-14…), agents are
randomly assigned a �oating point age value between the end
points of that interval. �is state variable governs how long the
agent will live within the environment.

Sex A�ribute which is determined by the 2001 Nepal Census (Gov-
ernment of Nepal, 2014).

Home VDC �e ‘Home VDC’ state variable is assigned in accordance with
the 2011 census and is initialized in a similar manner as ‘Age’
and ‘Sex’ a�ributes of individuals.

SEIR Initialization of this state is in accordance to the incidence rate
as determined by Campbell et al. (2011). Agents are born with
SEIR state set to ‘Susceptible’.

time-since-exposed �is state variable represents the number of days since an indi-
vidual’s SEIR state was changed to ‘Exposed’. �e virus’s incu-
bation period is 5-15 days, so at a randomly generated number
between 5 and 15, the infection calculation will be performed.

time-infected If an individual’s state is ‘Infected’, the state variable time-
infected will increase by one each time-step.
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Table 4.5: Initial parameters of the model.

Parameter Value Source

Agent Parameters:

Human Population 21235 Author’s estimation

Symptomatic to asymp-
tomatic ratio

1:10 Author’s estimation

Pig Population 201 Author’s estimation

Pig Infection Rate Kathmandu: 41.95% , Lalitpur: 91.4%,
Bhaktapur: 75%

Pant (2006)

Landscape Parameters:

Number Pig Farms 50 Author’s estimation

rain-weight 1× 10−3 Author’s estimation

temperature weight 1× 10−8 Author’s estimation

rice weight 4× 10−5 Author’s estimation

pig-weight 1× 10−8 Author’s estimation

Rice �eld irrigation weight 1.0008 Author’s estimation

Input Data: Numerous environmental datasets were obtained from a variety of sources in

order to develop the model’s landscape. �e ‘Landscape Entities’ section of Table 4.2 (p. 50)

gives a brief summary of these data and their sources. Data preparation is discussed further in

Section 4.6. Input data includes all data that build the model’s environmental conditions, such

as; precipitation, temperature, elevation, and landcover type (Table 4.2). �ese environmental

variables contribute to the imposed dynamics of the model run.

Static landscape data include rivers, roads, and se�lement locations, which were obtained

as ESRI shape�les from the the International Centre for Integrated Mountain Development’s

Mountain GeoPortal at h�p://geoportal.icimod.org/ International Centre for Integrated Moun-

tain Development (2013). �ese data did not require processing and thus will not be mentioned

in the chapter entitled ‘Data Preparation’ (Section 4.6).

Submodels: Individual behaviour is dependent on two primary submodels. �e �rst sub-

model is shown in Figure 4.5 (p. 60) and controls how individual’s move. Individuals perform mo-

bility behaviours dependent on their age. In our model, we assume that young children (those

under the age of 5) stay at home. School-aged individuals make daily commutes to urban areas
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Agent

Figure 4.5: Mobility submodel that determines how agents traverse the landscape.

for school. �e number of individuals in an age group that make these daily commutes is based

on data from UNdata (2015) at h�p://data.un.org/CountryPro�le.aspx?crName=Nepal#Social.

We also use statistics regarding the percentage of males and female within the labour force

from the same source. �e model assumes that locations of employment are within urban

areas and that the remaining population work in agricultural areas.

Figure 4.6 (p. 61) displays the primary process of the model. Agents traverse the land-

scape and encounter various types of landscape variables that in�uence the probability of an

individual contracting the JEV.

4.2.3 Epidemiological Modelling

A variation of the Susceptible-Exposed-Infected-Recovered (SEIR) compartmental model is

used in this research to represent the dynamics of the JEV transmission cycle and it’s e�ect

on disease incidence. Other geographic disease evaluation that utilizes this epidemiological

model can be seen in research conducted by Hailegiorgis and Crooks (2012). �e SEIR model is
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Figure 4.6: Submodel that determines an agent’s SEIR state. Agents move throughout the landscape, then evaluate
a randomly generated �oat against their current patch’s risk-probability-vale (see Equation 4.16). If the �oat is
less than the patch’s probability value, then that agent sets it’s SEIR state to ‘Exposed’. It also allows for the
virus’s incubation period to pass, then performs infection calculation, which determines that agent will move to
either SEIR state ‘Infected’ or ‘Removed’. 61



Susceptible Exposed Infected Recovered

Birth

Death Death Death Death

Figure 4.7: Epidemiological Susceptible-Exposed-Infected-Removed model �ow. Agents move from the ‘Suscepti-
ble’ compartment to the ‘Exposed’ compartment if the evaluation

used instead of the simpler SIR model due to it’s ability to capture the incubation period of the

virus, which is capture in the ‘Exposed’ compartment of the model. Figure 4.7 shows the �ow

between the model compartments and Table 4.6 summarizes the variation between SEIR states.

4.3 Ecological Niche of Culex Mosquitoes

�ere are approximately 550 species of Culex mosquitoes worldwide (Rozendaal, 1997), of

which about 34 have been seen for in Nepal (Darsie Jr et al., 1990). Culex tritaeniorhynchus is the

primary vector of the Japanese Encephalitis virus, although there has been evidence that other

species are able to transmit the virus (Solomon and Winter, 2004). Like all other arthropods,

Culex mosquitoes require speci�c environmental conditions to proliferate. Temperature,

precipitation, and landcover/use are primary characteristics of the environment on which

Culex mosquitoes depend on certain ranges and/or types. Previous research, such as Miller et al.

(2012), have modelled the distribution of Culex mosquitoes throughout Asia using ecological
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Table 4.6: Explanation of how an individual moves through SEIR compartments in relation to the Japanese
Encephalitis virus.

SEIR State Determinants of SEIR State

Susceptible All individuals are born with SEIR state set to Susceptible. In-
dividuals each possess a probability state variable which is in-
creased as they traverse the landscape and encounter JEV risk
factors. Individual’s remain in this state if the Infection Calcu-
lation, as shown in Figure 4.6 (p. 61), returns false.

Exposed If the infection calculation returns TRUE, then an individual’s
SEIR state is changed to ‘Exposed’. Individuals remain in the
‘Exposed’ stated for a random number of days between 5 and
15, which is the virus’s incubation period. When this period is
over, another infection calculation is preformed that represents
the World Health Organization’s estimate of 1:250 of those
infected with JEV displaying full-blown JE symptoms World
Health Organization (2014c).

Infected If the second infection calculation returnsTRUE, then that indi-
vidual’s state is changed to ‘Infected’. �is state assumes that
the individual is displaying full-blown JE symptoms and it’s
condition is recorded as a case in output results.

Removed If the second infection calculation returns FALSE, then that
individual’s state is changed to ‘Removed’. It is assumed that
this individual has been exposed to the virus, did not display
encephalitis symptoms, and now possess JEV antibodies that
cause an individual to be immune to JEV.

niche modelling techniques. In this section, the ecological niche of Culex mosquitoes is

described as well as it’s potential geographic distribution in the Kathmandu Valley, Nepal.

Reeves et al. (1948) showed how various species of Culex mosquitoes can travel up 4

kilometers but generally occupy a range of about 325 meters from their habitat of origin.

Masuoka et al. (2010) stated that the typical �ight range for Culex tritaeniorhynchus is less

than 1km and Verdonschot and Besse-Lototskaya (2014) showed how Culex tritaeniorhynchus

have an average �ight distance of about 68.4 meters and an average maximum �ight distance

of about 2214 metres, but generally stay within 1km of their breeding grounds.

Hecker et al. (2013) found that, among JE experts (researchers, medical professionals, and

veterinary personelle) mosquito vector abundance was the most important factor in�uencing

the seroprevalance of JEV in both the human population and pig populations. Other factors
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that were deemed the most important in the JE transmission cycle are shown in Table 4.1

(p. 45).

4.4 NetLogo

NetLogo is a platform for developing ABM simulations that has increased in popularity in

recent years. Developed by Wilensky (1999), NetLogo is an open source so�ware that uses a

Logo language dialect, which is easy to learn for new modellers. NetLogo can also incorporate

GIS data, such as raster grid �les (.asc and .grd) and ESRI vector �les (.shp).

�is research applies NetLogo 5.2 due to its accessibility and its ability to implement GIS

data. �e NetLogo online community is also extensive. Sites such as h�ps://www.openabm.org/

provide open access to hundreds of agent-based models in NetLogo, which aid learning and

sharing of code.

4.5 Model Interface

Figure 4.8 (p. 4.8) displays the model’s interface. On the le� are the controls for se�ing up,

starting, and clearing the model. �e date and number of agents are also shown. To the right

of the main display (in NetLogo terminology, the “world”), are the landscape variables, which

can be turned on or o�, depending on user preferences. To the right of the landscape are the

plots that show the number of agents in each SEIR compartment. Environmental variables,

such as temperature and precipitation are also plo�ed.

4.6 Data

�is chapter describes all data used in the current model, where it was obtained, and how it

was prepared. �ere are two primary sections of this chapter; 1) environmental data and 2)

population data. �e environmental data section summarizes how the model’s landscape was

created and the population data describes how agents were created.
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4.6.1 Environmental Data

RapidEye Imagery

RapidEye imagery was used to create a two-dimensional grid to represent the environment

for the model. �e RapidEye constellation consists of �ve satellites carrying a Jena-Optronik

multi-spectral imager. �is sensor records high-resolution, multi-spectral imagery in �ve

bands (blue, green, red, the red-Edge, and near-infrared), which are displayed in Table 4.7.

RapidEye imagery was chosen for this project due its ability to acquire spectral data in the red

edge band (690-730nm).

Table 4.7: Table displaying spectral range of RapidEye bands.

Band Wavelength (nm)

1 Blue 440-510

2 Green 520-590

3 Red 630-690

4 Red Edge 690-730

5 Near Infrared 760-880

Previous research has shown the bene�ts of using the Red Edge band when identifying

areas of rice agriculture. Recio et al. (2011) demonstrated higher accuracy when identifying

areas of cropland and grassland when conducting a landcover classi�cation with RapidEye

imagery. Recio et al. (2011) a�ributed this high accuracy to the availability of data in the Red

Edge region of the spectrum. Other work by Ichikawa et al. (2014) exempli�ed the use of

RapidEye imagery to accurately identify rice paddy �elds in rural areas of Japan and work by

Conrad et al. (2012) showed that using metrics composed of the Red Edge, Red, and NIR bands

were very e�ective to delineate between various crop types.

A total of eight RapidEye images were needed to cover the entire Kathmandu Valley. To use

only cloud-free images, the eight images were from di�erent dates. Dates ranged from years

2010 to 2013, all from the month of October. Information regarding these images is shown in

Table 4.8 (p. 67).
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Table 4.8: Tile numbers and dates for images of RapidEye images.

Image Tile ID Date (yyyy/mm/dd)

1 4551908 2010/10/30

2 4551708 2011/10/22

3 4551808 2012/10/19

4 4551907 2013/10/23

5 4551807 2013/10/23

6 4551707 2013/10/23

7 4551909 2013/10/24

8 4551809 2013/10/24

A mosaic of the images in Table 4.8 was created using PCI Geomatica’s OrthoEngine

Automatic Mosaicking tool. ArcMap v.10.2 was then used to perform a supervised image

classi�cation of the RapidEye mosaic. A total of 51 training sites were used to classify three

di�erent landcover types; ‘Urban/Built-up’, ‘Agriculture’, and ‘Forest/Hills’. �e resulting raster

is shown in Figure 4.9 (p. 68). �e maximum likelihood classi�er was used to perform image

classi�cation.

To determine the accuracy of the supervised image classi�cation, a confusion points matrix

was created in ArcMap v.10.2. References points from the confusion matrix were then combined

into a single raster to calculate the number of accurately assigned pixels. Accuracy assessment

results of the classi�ed image are shown in Table 4.9. A minimal number of landcover classes

were used to generalize the environment. Only landcover types that were considered to be a

primary in�uence on JEV transmission were included in this study.

Table 4.9: Accuracy assessment of the supervised image classi�cation for the Kathmandu Valley.

Landcover Class Total Reference Pixels Accurate Reference Pixels Accuracy

Urban/Built-up 50 45 90%

Forest/Hills 65 64 98%

Agriculture 45 41 91%
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Figure 4.9: Results of RapidEye image classi�cation into four landcover types (Agriculture, Urban/Built-up,
Forested Land, and Water.)
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Temperature & Precipitation

Climate variables from Nepal’s Department of Hydrology and Meteorology, including daily

rainfall and daily minimum and maximum temperature, were collected from 27 meteorological

stations (Figure 4.10, p. 70) in and around the Kathmandu Valley. Daily measurements were

used to interpolate surface values throughout the study area. �ese daily measurements were

aggregated into weekly totals (rainfall) and averages (temperature) to lessen computation

during the simulation.

A leave-one-out cross validation was performed for each interpolated surface. �is method

removes a data point (station), performs the surface interpolation, then compares the observed

value to the predicted value. Appendix B (p. 109) shows the mean of the residuals and the

variance of the Krigging cross validations.

Daily Rainfall Daily rainfall measurements from 27 stations located in or near the Kath-

mandu Valley were obtained from Nepal’s Department of Hydrology and Meteorology. Data

for the period 01 January 2007 to 30 September 2014 were used to interpolate raster grids

for each week. Daily rainfall data were aggregated into weekly totals and then interpolated

using cokriging techniques to account for the variety of elevation in the valley. Figure 4.11

(p. 71) shows the weekly precipitation dynamics from the meteorological station located at the

Tribhuvan International Airport, in the district of Kathmandu (about 6 kilometres east of the

city centre).

A cross-correlation analysis between weekly recorded AES cases and weekly precipitation

values at Tribhuvan International Airport, Kathmandu and is shown in Figure 4.12 (p. 71).

Figure 4.12 (p. 71) shows that the highest correlation value (0.288) occurs at a lag of 13 weeks.

�is relationship coincides with the time it takes to plant rice for agriculture, the virus’s

incubation period, and reporting of a JE case.

Elevation Data

Elevation data for the Kathmandu Valley was obtained from WorldClim.org at h�p://www.

worldclim.org/current. �e global altitude ESRI grid at a spatial resolution of 30 arc second
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Figure 4.11: Weekly precipitation dynamics recorded from Tribhuvan International Airport, Kathmandu. Data
from one station is used to demonstrate the seasonal dynamics of rainfall in Kathmandu, Nepal.

Figure 4.12: Cross-correlation analysis of weekly rainfall and weekly reported AES data. Results show that the
strongest correlation value (0.288) appears at a temporal lag of 13 weeks between rainfall and reported AES cases.
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(≈ 1km) was downloaded and clipped to the spatial extent of the study area. Due to NetLogo

processing speeds, the elevation raster was then converted into a shape�le to be used in the

model.

Other Landscape Data

Other landscape data, including rivers, road networks, and se�lement locations where retrieved

from the International Centre for Integrated Mountain Development (ICIMOD) (International

Centre for Integrated Mountain Development, 2013). �ese datasets were downloaded as

shape�les and remained unmodi�ed for implementation into the model. �ese data were used

to de�ne agent behaviour. For example, pig farmers are known to set up their farms along

river banks in peri-urban areas. For this reason, it is estimated in this research that most (95%)

of pig farms will locate within 50 metres of a river. �e remaining 5% will initialize at random

locations. �is estimation a�empts to account for the uncertainty of the exact locations of

some pig farms, although common knowledge in Nepal states that pig farms are most likely to

be located on, or very close to, a riverbank.

4.6.2 Population Data

Human Data

Human agents in the model were populated at the VDC level using Nepal’s 2011 census

(Government of Nepal, 2014). During model initialization, a proportional (actual population /

100) number of agents populate each VDC at a random location within that VDC. �e actual

population value (≈ 2.5 million) was not used due to computing power limitations.

�e age and sex of each agent is also speci�ed from the census data. A probability density

function was created for each sex group. �e 2011 Nepal census reports the number of people

in each age group (0-4, 5-9, 10-14, 15-19, etc.)

Pig Data

Pig population data was obtained at the VDC level from Nepal’s Ministry of Agricultural

Development (MoAD). Data was collected from MoAD by the National Zoonoses and Food
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Hygiene Research Centre in Kathmandu, Nepal and passed along to us. Because pig population

was obtained at an administrative boundary level, rules are de�ned in the model to determine

their initial locations (mostly near the banks of rivers).

4.7 Surveillance Data

In this section, we brie�y describe the data used to validate the model. Acute Encephalitis

Syndrome (AES) and JE data were obtained from the AES Surveillance System as part of

the World Health Organization’s Programme for Immunization Preventable Diseases (h�p:

//www.who.int/immunization/monitoring surveillance/en/). In the following subsections, the

temporal and spatial distribution of both these datasets are described.

Figure 4.13: Country-level temporal dynamics of reported Acute Encephalitis Syndrome cases for Nepal during
the period 2007-2011. Number of cases are shown as monthly totals.

4.7.1 Acute Encephalitis Syndrome Data

Acute Encephalitis Syndrome (AES) is an all-encompassing term used to describe the sudden

onset of clinical symptoms of encephalitis. Symptoms may include; fever, headache, nausea,
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changes in mental state, such as confusion and/or disorientation, seizures, and loss of con-

sciousness. Symptoms are caused by in�ammation of the brain, which may be caused by a

wide range of pathogens, of which viruses are the primary cause. Viruses such as rabies, West

Nile, measles, and the Human papillomavirus, along with others, may cause encephalitis in

rare/extreme cases. Bacterial infections may also cause AES. However, recent research has

shown that cases of AES in Nepal may actually be uncon�rmed cases of JE (Robertson et al.,

2013). Although the ratio of viral infections to full-blown encephalitis cases caused by such

viruses is quite low (Whitley, 1990), it is a life-threatening condition that must be treated.

Figure 4.14: Temporal dynamics of reported Acute Encephalitis Syndrome cases for the Kathmandu Valley
(districts of Kathmandu, Lalitpur, and Bhaktapur) for the period 2007-2011. Number of cases are shown as
monthly totals.

Over the period 2007 to 2011, there were a total of 7993 reported cases of AES. �e mean age

was 15.22 (SD = 18.69, range = 0− 545,median = 9), with more males (4703) than females

(3288). Most cases were not vaccinated (6597), with 819 cases with the vaccination status of

‘Unknown’, and 441 stating that they were vaccinated. �e Kathmandu district reported the

highest number of cases at 1048 with the district of Morang reporting the second highest

value at 538. �ere were a few missing values/errors in the data. For example, three Case ID’s

occurred twice in the data with di�ering entries. �ere was one missing ‘Sex’ classi�cation,
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136 missing vaccination status entries, 127 ‘Date Onset’ entries, and a maximum age of 545

years of age.

Figure 4.13 (p. 73) shows the temporal dynamics of reported AES cases at the country-level

for Nepal. �e graph shows the number of monthly reported cases of AES. �ere is a peak

in the number of cases around month 8 (August), which roughly corresponds to the time it

takes to plant rice, the life-cycle of Culex mosquitoes, and the virus’s incubation period. �ese

events and their time periods are shown in Table 4.10 (p. 75).

Figure 4.14 (p. 74) shows the temporal dynamics of reported AES cases in the three districts

that comprise the Kathmandu Valley; Kathmandu, Lalitpur, and Bhaktapur. Seasonal dynamics

are less apparent due to the reduced number of reported cases at the smaller spatial scale.

Table 4.10: Rice agricultural events and their corresponding time periods.

Agricultural Event Time Period

Rainy Season/Monsoon June to August

Rice Production Mid-June to the �rst week of September

AES Peak August

Figure 4.15 (p. 76) shows the spatial distribution of reported AES cases in Nepal during the

period 2007-2011. AES data was available only at the district-level, making spatial analysis less

accurate than when analyzing JE data. It is apparent that the district of Kathmandu contains

the most cases of AES (1048 reported cases for this time period). �is is partially due to it’s

high population density and availability of healthcare facilities in the most urban region of

Nepal. It is in the more populated regions where individuals are more likely to seek healthcare

due to greater accessibility.

4.7.2 Japanese Encephalitis Surveillance Data

Japanese Encephalitis case data was also obtained from the WHO’s AES Surveillance System.

Suspected cases of JE must undergo laboratory testing for con�rmation. Laboratory testing for

JE involves a JE virus-speci�c Immunoglobulin M (IgM) capture enzyme-linked immunosorbent

assay (ELISA) test on the cerebrospinal �uid (CSF) or serum of a patient. �e ELISA test uses
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Figure 4.15: �e spatial distribution of reported acute encephalitis syndrome cases in Nepal, highlighting the
number of reported cases in the Kathmandu Valley, during the period 2007-2011.

antibodies to test for the presence of the pathogen (JEV). �is test is o�en costly and involves

technical training (Joshi and Stephen, 2013).

Data for the years 2007-2013 are used for analysis, two more years than the AES data. For

this period, a total of 1576 JE cases were reported for all of Nepal, 248 of these occurred in the

three districts that make up the Kathmandu Valley. �e mean age for reported cases was 18.17

(SD = 19.7, range = 0− 90,median = 5), with more males (928) than females (648) testing

positive for JE.

Figure 4.16 (p. 77) displays the temporal dynamics of reported JE at the country-level for

Nepal cases during the period 2007-2013 and Figure 4.17 shows the temporal dynamics of

reported cases in the Kathmandu Valley for the same time period. Just as shown in the AES

data, there is a peak in the number of cases in the months of August and September for all

years, exemplifying the seasonal dynamics of the disease. �is seasonality is more apparent

when country-wide statistics are analyzed. Reported cases in the Kathmandu Valley do peak
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in the late summer months, although the seasonal trends is less apparent due to the reduced

number of cases.

Figure 4.16: Temporal dynamics of reported Japanese Encephalitis cases at the country level for Nepal for the
period 2007-2012. Number of cases are shown as monthly totals.

Figure 4.18 (p. 84) shows the spatial distribution of reported JE cases at the VDC level. It is

apparent that most reported cases of JE are within the most populated VDC, the Kathmandu

Metropolitan City. �e VDCs surrounding the Kathmandu Metropolitan City also have higher

population densities and greater access to healthcare.

4.8 Model Output

In this section, the temporal and spatial characteristics of our model output are described

and compared to the AES and JE surveillance data. Section 4.8.1 will evaluate the temporal

characteristics of the model’s output. To do this, the spatial variation/distribution is excluded.

�e primary goal of this analysis is to view the seasonal variation in the number of reported

cases per week, which is associated with increases in vector prevalence. Section 4.8.2 will

show the spatial distribution of model output. �e number of cases for the entire model run

period (the year 2007) are shown spatially in Figure 4.21 (p. 86).
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Figure 4.17: Temporal dynamics of reported Japanese Encephalitis Syndrome cases for the Kathmandu Valley
(districts of Kathmandu, Lalitpur, and Bhaktapur) for the period 2007-2013. Number of cases are shown as monthly
totals.

4.8.1 Temporal Analysis

Figure 4.19 (p. 85) displays the temporal distribution of 50 runs of the model. Initial values of

the model were stated in Section 4.2.2, and were static for all model runs. �e plot displays

the number of cases reported at a weekly time scale. It can been seen that there is a seasonal

variation of cases. Figure 4.20 (p. 85) shows the results for four random model runs, to give

readers a sense of the variability.

�e root mean square error (RMSE) is de�ned as the sample standard deviation of the

di�erences between predicted and observed values. It is generally used to report a measure of

the di�erences between model output and observed data. �e RMSE is obtained by;

RMSE =

√√√√ 1

n

n∑
t=1

(x̂i − xi)2, (4.18)

where n is the number of di�erent predictions, x̂i − xi represents the residuals between actual

observed values and model output (x̂i de�ned as the predicted values from the model output

and xi de�ned as the observed value).
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To compute the RMSE for both AES and JE surveillance data, the reported cases were

aggregated to totals per week, using the stats package in R and compared to the aggregated

weekly model output cases. Mean number of weekly cases for all 30 runs were used to compute

the RMSE, instead of computing the RMSE for each model run. �e rmse function in the

hydroGOF package in R were used to compute the RMSE. �is measure is shown in Table 4.11

and was used to measure the di�erence between the model output and the surveillance data.

An RMSE of 0 would indicate that there is no di�erence between the observed surveillance

values and predicted model values. Table4.11 indicates the magnitude of di�erence between

the model output and the surveillance data.

Table 4.11: �e root mean square error and the mean squared error between temporal model output (cases per
week) and the weekly number of reported Japanese Encephalitis and Acute Encephalitis Syndrome cases.

JE Surveillance Data AES Surveillance

RMSE 3.171 4.395

4.8.2 Spatial Pattern Analysis

Figure 4.21 (p. 86) shows the spatial distribution of the mean number of cases at the VDC level

for 50 model runs. To analyse the spatial pa�ern of the output distribution, a Moran’s I, which

represents the degree to which features are spatially autocorrelated, was calculated. In typical

analyses of spatial pa�ern, the null hypothesis states that features exhibit Complete Spatial

Randomness (CSR), of either the features themselves and/or their associated values. In this

section, we will look at the spatial autocorrelation of the number of JE cases reported at the

VDC level for both the JE surveillance data (AES data is aggregated at larger administrative

boundaries, so will not be used for this analysis).

Spatial Autocorrelation

Moran’s I is a measure of the degree to which a set of features, and their associated data values,

tend to be clustered together in space (Moran, 1950)). Moran’s I is obtained by;
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I =
n

SO

∑n
i=1

∑n
j=1wi,jzizj∑n
i=1 z

2
i

, (4.19)

where zi is the deviation between an a�ribute’s value from its mean, wi,j is the spatial weight

between i and j, n is the total number of features (number of VDCs), and SO is the aggregate of

the spatial weights (Moran, 1950). Moran’s I value was calculated for both the JE surveillance

data and the model’s mean of 50 model runs.

�e ‘Spatial Autocorrelation (Moran’s I)’ tool was used in ArcMap v.10.2 to compute the

Moran’s I value. �e ‘contiguity edges only’ method of spatial relationship conceptualization

was used. �is method computes the Moran’s I based on feature adjacency, rather than a

distance threshold. Table 4.12 shows the Moran’s I values, and associated spatial autocorrelation

statistics for both datasets.

Table 4.12: Spatial autocorrelation statistics for JE surveillance data and the model output.

JE Surveillance Data Model Output

Moran’s Index 0.152082 0.321913

Variance 0.000977 0.001429

z-score 5.137046 8.739759

p-value 0.00000 0.00000

Moran’s I values and their associated statistics are shown in Table 4.12 for both JE surveil-

lance data and the model’s output. Both z-scores and p-values returned from the Moran’s I

analysis for both JE surveillance data and model output data indicate that the null hypothesis

can be rejected. In other words, the spatial pa�ern of the number of cases reported at the VDC

level is not considered to be due to CSR. In both datasets (JE surveillance data and the model’s

output), there is some degree of positive spatial autocorrelation. �ere is a slightly higher

degree of spatial autocorrelation for the model’s output than the JE surveillance data. �e

Moran’s Index was used here to give the reader a sense of similarity, or di�erence, between

the surveillance data and the model’s output.
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Hot Spot Analysis

�e local Getis-Ord statistic (Gi(d)) (Getis and Ord, 1992) takes a moving average of a numeric

variable x within a spatial neighbourhood de�ned by a spatial weight matrix wij(d) (where d

is the maximum distance at which nearby points are included as neighbours) as;

Gi(d) =

∑
j

wij(d)xj

n∑
j=1

xj

(4.20)

over the total sum of x. In practice Gi(d) is de�ned as a standard normal deviate, and therefore

can be interpreted as a z-score. We employ the Gi(d) statistic to identify signi�cant hotspots

in both the model’s output and the JE surveillance data.

�e Getis-Ord statistic was used to identify spatial clusters of signi�cantly high disease

in both the surveillance data and the model’s output. Figure 4.22 (p. 87) shows the results

of the Getis-Ord analysis. Results of both analyses show clustering around the VDC of the

Kathmandu Metropolitan City and that the signi�cant hot spot clusters are roughly similar for

both model output and the JE surveillance data.

Figure 4.23 (p. 88) shows VDCs where our model predicts the likelihood of JE cases, or

possibly any form of landscape-in�uenced case of AES, which was not apparent in the JE

surveillance data obtained from the World Health Organization. �is shows that these areas

are of potentially high-risk due to their landscape, climatic, and population characteristics.
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4.9 Alternative Scenario Analysis

To assess model parameters shown in Table 4.5 (p. 59), alternative analyses were examined

by modifying author-estimated parameters. �ese parameters include the rain-weight, tem-

perature weight, and the rice weight, which were introduced in Table 4.5. Table 4.13 displays

how these initial parameters where adjusted and how the adjustments a�ected output results

of the model. For each alternative scenario, the models was run 30 times and the mean total

number of infected individuals, as well as other measures of central tendency, were reported

(Table 4.13).

Table 4.13: Alternative scenario analysis parameter adjustment and subsequent model output. For each scenario,
the model was run 30 times and measures of central tendency were reported for the number of infected individuals.
�e mean, median, and standard deviation are reported for the number of infected agents per model run. All
parameter values have been scaled by 105.

Scenario rain temp rice Mean Median SD

Initial Parameters 100 0.001 1 207.07 203.5 15.78

Scenario 1 0.01 0.001 1 179.0 180.5 13.04

Scenario 2 0.001 0.01 1 176.46 179.5 17.33

Scenario 2 0.01 0.01 1 177.80 172.5 21.94

Scenario 3 0.001 0.001 0.1 64.50 63.0 13.21

Scenario 4 0.001 100 1 432.67 435.5 22.45

Scenario 5 0.001 0.001 1 176.03 178.5 16.96

Table 4.13 shows the initial parameters with which the model was run and adjusted values

for various scenarios, which were used to assess the sensitivity of these parameters. �e

columns labelled ‘Mean’, ‘Median’ and ‘Standard Deviation’ show how modi�cations to the

model parameters in�uence the model output.

Initial values of the model parameters are shown in row one of Table 4.13. It is apparent

that rain receives a much greater weight than does temperature. �is is due to the raw values

of each variable and how they were normalized. For example, throughout the year in Nepal,

rain is generally low (e.g. 25-50 mm per week). To normalize, these values were divided by the

maximum value for that variable (e.g. 25 / 350), resulting in a very low value. Temperature, on

the other hand, was less variable and normalized values were generally larger (e.g. 22 / 37).
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Hence, the weighting scheme shown in Table 4.13.
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Figure 4.18: Spatial distribution of Japanese Encephalitis cases reported to the World Health Organization’s
Programme for Vaccine Preventable Diseases for the year 2007.
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Figure 4.19: Temporal model output. Graph displaying the mean number of cases per week from 30 model runs.

Figure 4.20: Results of randomly chosen set of 4 model runs. Temporal pa�er shows an increase of infected
individuals in the later months, which roughly corresponds to the surveillance data.
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Figure 4.21: Spatial distributions of model output results. �e current maps shows the mean number of cases at
the VDC level for 50 model runs.
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Figure 4.23: VDCs that exhibit cases of JE in the model run, but not in the JE surveillance data. VDCs represented
by gray colour are those in which both model output and the surveillance data repot cases of JE (or lack of), and
VDCs represented by red are those that our model predicts cases, but the JE surveillance data shows no cases.
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Alternative scenarios show what happens to the model output, which is shown in Figure

4.25 on page 90. For example, when the weighting for rain and temperature variables are

switched, the mean number of cases per model run, as well as variability, dramatically increases.

Figure 4.24: Boxplots of sensitivity scenarios displaying output variance (number of infected individuals per
model run) for 30 iterations of the model with adjusted parameter values.

4.10 Null Model Evaluation

To assess the quality of the model presented in this study, a null model was employed. �e

‘risk surface’, which was discussed in Section 4.2.2 (p. 49), was set to a constant value and

did not change according to temporal dynamics of temperature and precipitation values. All

grid cells for this analysis were set to the mean risk-probability-value for all patches, for the

entire year, for 30 model runs (1.6205× 10−4). �is method was employed in order to test the

validity of the dynamic cell values, which were in�uenced by weather and landscape variables.

Figure 4.26 (p. 97) displays the mean number of cases reported at the VDC level for 30

null model runs. Results indicate a similar spatial distribution as the original model output.

However, this was expected due to higher population densities in these regions. A greater

population leads to a higher probability that individuals will be randomly selected to be set to
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Figure 4.25: Histograms for total infected individuals per sensitivity scenarios. �e mean and median for the
number of infected individuals per model run are shown as red and green vertical lines, respectively.
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infected.

Figure 4.27 (p. 98) shows the temporal dynamics of the mean number of cases at the VDC

level for 30 null model runs. It is apparent that the seasonal dynamics of infections is not

present as shown in the initial model output (Figure 4.19 on page 85). Results from the null

model analysis indicate that the temporal dynamics in the initial model, which are in�uenced

by seasonal variation in weather variables, are important components of this research.

4.11 Discussion

�is research presents an individual-based modelling perspective to analyzing the epidemiology

of Japanese encephalitis in the Kathmandu Valley. By employing environmental data and a few

basic rules that govern how landscape factors can lead to and individual’s increased probability

of contracting JEV, we are able to reproduce temporal and spatial characteristics similar to

JE and AES surveillance data. �is model can be used to analyze various scenarios, such as

the impacts of climate change or immunization programs on the human incidence of JE in

the Kathmandu Valley. It is hoped that this model can be slightly modi�ed to examine the

dynamics of JEV in other regions and also applied to similar vector-borne diseases, such as the

West Nile virus.

One of the primary �ndings of this research is that the spatial distribution of the model out-

put was more dispersed than the surveillance data. As shown in Figure 4.18 (p. 84), Figure 4.21

(p. 86), and Figure 4.23 (p. 88) more cases were reported in rural VDCs in the model output than

in the surveillance data. Peri-urban VDCs that did not show any cases of JE in the surveillance

data, where landscape and population characteristics were roughly similar to regions that

did report cases, were more likely to produce JE cases in the model. �is was a hypothesized

outcome of the model as it potentially represents the issue of non-reporting in rural regions.

Non-reporting in rural regions may be caused by di�erent medicinal treatment preferences

(e.g. preference for traditional healers rather than hospital treatment) and/or limited access to

healthcare facilities.
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4.11.1 Limitations

One of the primary concerns with model validation lies with inherent issues of AES and JE

surveillance data. AES surveillance data, although possessing a greater number of reported

cases and thus providing be�er reliability than the JE surveillance data, is only reported at

the district level (Figure 4.15, p. 76). Spatial analysis and accuracy are thus sacri�ced. For

these reasons, the use of JE surveillance data is valuable due to it’s greater precision. However,

there are also issues in reporting JE cases. Many cases of JE go unreported due to lack of

healthcare facilities in rural areas and/or cultural beliefs (preference for traditional healers

over hospital care). For example, Kakkar et al. (2013) showed that JE surveillance data was

highly unreliable for decision-making and prevention strategies. Because of these issues with

both sets of surveillance data, and due to previous research by Robertson et al. (2013), this

research makes the assumption that the number of JE cases should lie between JE and AES

surveillance numbers.

Another limitation with the present model is that many assumptions are made regarding

population mobility within the Kathmandu Valley. Infectious disease transmission is highly

dependent on human mobility, involving both internal/external migration as well as daily

mobility pa�erns. Interaction between virus amplifying host and other landscape factors are

the primary in�uence on the presence/absence of JE. �e current model would be considerably

improved if micro- and macro-scale human mobility pa�erns were incorporated.

�e spatial distribution of JEV’s amplifying hosts is a crucial component in determin-

ing landscape risk of many vector-borne diseases. In the current model, we implement pig

population data obtained from Nepal’s Ministry of Agricultural Development, which reports

the number of pigs at the VDC level. �e precise actual location of pig farms, however, was

unknown. We based our initial placement of pig farms on knowledge obtained by JE experts in

Nepal from the National Zoonoses and Food Hygiene Research Centre in Kathmandu, Nepal.

JE experts stated that pig farms are more likely to be located near river banks, where pig

farmers can access river water for various farm activities. �us, in the presented model, pigs

were stationary entities located, at a random location within 50 m of a river.

Agents that represented JEV’s amplifying host – pig agents – did not exhibit dynamic
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behavioural rules. Pigs remained stationary throughout the duration of the model. Although

the model period was only one year, potential mobility of pigs was not included. Joshi

(2006) outlined the pig farm and pig meat market system. �is work described how pigs are

transported from the farm and distributed throughout the market system. An infected pig is

thus able to transmit the JEV along this route, adding complexity and increasing risk to urban

areas. �is subsystem has not been included in this model. Although it was omi�ed due to

lack of accurate data on this subsystem and thus to reduce uncertainty, such a process can

play an important role in JEV transmission.

Section 4.8.2 describes the spatial distribution of the model’s output, which was similar to

the spatial pa�ern of the JE surveillance data. Although this was a positive outcome of the

simulation, there may be other factors contributing to this similarity. One interpretation of

this result is that the population density in VDCs where most cases were reported in the model

output is much higher, a�ecting the ratio of non-infected to infected agents. Although this is

inherent in incidence estimations (incidence being a measure of probability), and it is quite

possible that the higher rates in the number of cases in high population-dense regions in the

model output is the main contribution to the similar spatial pa�ern to actual JE surveillance

data, this could be the reason why the spatial pa�ern of JE surveillance data is the way it is.

�e current model does not incorporate human behaviours and their in�uence on micro-

scale land-use practices. Agent-based models have been used to investigate the e�ects of

human behaviours and land cover/land-use change (Deadman et al., 2004; Rindfuss et al., 2008;

Brown and Robinson, 2011; Robinson et al., 2012). Micro-scale processes may be in�uencing

land-use pa�erns that are not represented in the current model. We a�empt to account for this

by incorporating the primary land-use factor that leads to mosquito-borne disease risk (i.e. the

planting of rice-paddy �elds, which occurs during the monsoon season (Hecker et al., 2013)).

4.11.2 Future Research

Scenario analysis regarding issues such as climate change, land-use and landcover change,

and the evaluation of vaccination programs can be implemented using the model presented

in this thesis. JE is highly dependent on the presence/absence of it’s mosquito vector. An
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increase in vector abundance is probably the most important factor in determining the number

of JE cases, both in humans and in pigs (Hecker et al., 2013). Increases in temperature will

undoubtedly a�ect Culex numbers, increasing their feeding/biting behaviours and speeding

up life-cycle development. Increases in temperature can also increase the at-risk human

population, in�uencing the amount of time spent outdoors. Our model currently uses climate

data that can easily be modi�ed to in�uence vector abundance. �e following three paragraphs

discuss possible scenario analyses that can be implemented with the presented model.

Increasing temperatures and seasonal variation of rainfall, will undoubtedly have an e�ect

on human JE incidence. Hecker et al. (2013) showed how Nepali experts in the �eld of JE

epidemiology anticipate increases in temperature and precipitation will positively in�uence

the number of human JE cases in Nepal. Also, a thorough review of the literature conducted

by Dhimal et al. (2015) concluded that climate change will intensify vector-borne disease

epidemics in the mountain regions of Nepal. �e model has the potential to analyze climatic

scenarios under varying conditions. By increasing temperatures up to 2◦C, we will show how

the spatial distribution of human JE cases may change; most importantly, showing how JE

cases may increase in areas of higher elevation.

�e spatial con�guration of pig farms will in�uence the rate of JEV transmission. In our

model, we assumed that non-infected pigs that are in proximity to infected pigs are at higher

risk of becoming infected themselves. �us, a higher density of pigs, especially near rice paddy

�elds, where mosquito density is higher, will increase the risk of acquiring the JEV.

Vaccination programs for livestock are especially costly for resource poor countries such

as Nepal. �us they are rarely implemented, undoubtedly in�uencing the rate of transmission

within the system. Considering that the number of infected pigs contributes to landscape

risk, a useful implementation of this model would be to examine pig vaccination programs.

�estions regarding the spread of JEV and the in�uence of infected ampli�cation hosts could

be examined using such a model.

�e implementation of human behaviours into the present model would provide valuable

information for analyzing JE education programs. Individual-scale behaviours, such as the use

of insect repellent and/or mosquito nets, reduce an individual’s likelihood of contracting the
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JEV. Educational programs, such as those implemented by the National Zoonoses and Food

Hygiene Research Centre in Nepal, could be assessed. Educational programs, which involve

dedicated teachers and �nancial assistance, could target regions of greater risk as identi�ed in

the current model’s spatial output.

A recent project called ‘FlowMinder’ (h�p://www.�owminder.org/) was initiated for the

purposes of disaster response and disease outbreak management. FlowMinder combines

billions of data points from mobile operator, satellite imagery, and household survey data to

assess at-risk human populations. FlowMinder recently used mobile data from Ncell, Nepal’s

primary mobile provider, to track displaced populations a�er the 7.8 magnitude earthquake

that occurred on 25 April 2015. FlowMinder estimated that approximately 1.8 million people

above normal levels were displaced from their home districts, causing dependence on sources

such as Government of Nepal (2014) to be obsolete. �e implementation of FlowMinder data

would considerably improve the validity of the current model’s output.

Landscape characteristics remain static in the presented model. Satellite imagery retrieved

from the RapidEye constellation was used to classify landcover of the study area. �is provided

high spatial resolution of the landscape. However, high temporal resolution was sacri�ced for

high spatial resolution. Future research, or adjustments to the current model should implement

Landsat imagery, which would allow for a changing landscape throughout the study period.

Another limitation relating to landcover is that satellite imagery for many regions in Nepal

is not available during the monsoon season due to constant cloud cover. It is essentially

impossible to obtain a satellite image of this region during the rainy season. Beneath-cloud

cover, or drone obtained imagery, would be too costly and time-intensive for the purposes of

this study.

As stated in Section 4.11.1, market systems for the transportation of pigs and pig meat

could potentially spread JEV. �is system was omi�ed from the current model due to lack of

data on this system. Future work should assess the impact of this system on the transmission of

JEV. �e inclusion of an estimated system could be bene�cial for analyzing potential scenarios,

however the omission of this system reduces added complexity and introduced uncertainty

due to this complexity.
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4.11.3 Conclusions

�e agent-based model presented in this research, although needing re�nement, closely re-

produces the temporal and spatial characteristics of reported JE surveillance data. �e initial

hypothesis presented in Section 1 stated that we expected output results to be less similar

to JE surveillance. It was expected that model results would show a more dispersed spatial

pa�ern of cases, representing the variation in disease reporting behaviours between rural and

urban populations (e.g., rural poor seeking traditional healers regarding an illness rather than

making a hospital visit, or issues of healthcare accessibility). �is is a positive outcome of the

model, as there is potential for it to identify high-risk regions.

�e presented model in this thesis is a relatively simplistic representation of the complete

JEV transmission system. �e primary factors that dictate JEV risk to humans in this model

were landscape factors (proximity to agricultural land and pig farms) and climatic variables

(maximum and minimum temperatures, as well as weekly precipitation values). Although

it is necessary to mode such a complex system with only the most important components,

other factors that in�uence JE risk in humans were omi�ed. Factors such as occupation and

mosquito avoidance behaviours, are not included in this model. �e necessary data needed to

inform individual agent behaviour was not available.
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Figure 4.26: �e spatial distribution of the mean number of cases from 30 null model runs. risk-probability-values
of patches were all set to 1.6205× 10−4 and remained static throughout the simulation.
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Figure 4.27: Temporal dynamics of the mean number of cases per week for 30 null model runs. risk-probability-
values of patches were all set to 1.6205× 10−4 and remained static throughout the simulation.
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Chapter 5

Conclusion

Japanese Encephalitis is a relatively rare disease to contract, even for those living in high-

risk regions. It is estimated that about 67,900 cases occur annually (Campbell et al., 2011;

LaBeaud et al., 2011). To put this into perspective, approximately 198 million cases of malaria

were reported for the year 2013, which caused approximately 584,000 deaths (World Health

Organization, 2015a). Access to JE and AES surveillance data, as well as an established research

connection with the National Zoonoses and Food Hygiene Research Centre in Kathmandu,

Nepal, directed the research focus of this thesis. �e study and the development of disease

risk mapping and modelling techniques play a large role for guiding prevention and response

strategies, and the allocation of resources for developing, or resource-poor regions. It is hoped

that the methods presented in this thesis can be used to supplement current methods that

guide intervention strategies to reduce the burden of disease caused, not only by JEV, but other

vector-borne diseases as well.

�e transmission cycle of the JEV is similar to that of other arboviruses and vector-borne

diseases. For example, the West Nile Virus, which recently expanded into North America, is

ampli�ed by bird hosts and transmi�ed by Culex pipens mosquitoes. Landscape characteristics

that contribute to promote mosquito populations would certainly in�uence the incidence of the

disease within the human population. Other vector-borne diseases that would require a similar

risk landscape as the one proposed in this thesis are yellow fever, Dengue, chikungunya, Ri�

Valley fever, and the zika virus, among others. �e methods presented in this thesis, which
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examine JE risk at various geographic scales, in theory, could be applied to o

Chapter 3 proposed a method for mapping potential future disease risk at the population

level in relation to JEV’s ampli�cation hosts, pigs. �e purpose of this method was to identify

regions that will have high population densities and potential high virus host populations. �e

major assumption supporting this research was that a higher number of cases of JE will be

reported if the at-risk human population is high in conjunction with high host populations.

�is generalization is one approach to accounting for the uncertainty or the probability of an

individual contracting the disease.

Chapter 4 presented a method for examining the risk of contracting JEV at the individual

level, using the Kathmandu Valley as a case example. �e primary research goal of this paper

was to develop a method for analyzing disease risk in association to landscape characteristics

and weather pa�erns. It is hoped that this method can be used to examine various scenarios,

such as the e�ects of precipitation or temperature shi�s on disease incidence. �e individual-

based approach to disease risk modelling will also be useful for analyzing various interventions,

such as the e�ects of vaccination programs. However, the focus of this thesis was to develop a

model that is able to replicate the spatial and temporal distribution of surveillance data, so

that future scenarios can be tested.

A �nding of Chapter 4 from the null analysis (Section 4.10) showed that, even without

a changing risk surface, more cases of JE occurred in more densely populated VDCs. �is

is most likely due to the higher probability of a case occurring within a greater population,

even though the rate may be similar to VDC with lower case counts. �is suggests that the

motivation of Chapter 3, regarding the at-risk human population, is reasonable to assume.

Future work regarding Chapter 4 should implement human behaviours. For example,

mosquito avoidance behaviours learned through Japanese Encephalitis education programs

implemented by the National Zoonoses and Food Hygiene Research Centre, can be programed

at the individual level. �e presented model could then map the emergent spatial pa�erns of

disease.

�e ideal disease surveillance scenario for Japanese Encephalitis would involve the accurate

and timely reporting of all laboratory-con�rmed cases. Accurate and timely surveillance data
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promote and inform appropriate and e�ective response strategies to reduce, or even eliminate,

disease incidence. However, this ideal scenario is a costly endeavor and it is o�en the case that

resource-poor countries do not prioritize surveillance e�orts for a disease that, although serious

and o�en fatal, portrays a relatively low incidence rate, considering other life-threatening

diseases. Many countries have improved surveillance e�orts in recent years. For example,

Nepal now collects JE case data from 125 sentinel sites, up from 64 sites when their surveillance

program was started in 2004 (Shrivastava, 2014). Methods that supplement disease surveillance

e�orts are a valuable tool for low-resource countries. Modelling disease risk and transmission

according to dynamic environmental variables (temperature and rainfall) allow for be�er

predictions of potential outcomes.

5.1 Research Contributions

Previous research has delved into various methods for vector-borne disease risk mapping.

For the case of Japanese Encephalitis, and the transmission cycle of its virus, the primary

risk mapping technique has been that of ecological niche modelling (Masuoka et al., 2010;

Miller et al., 2012). �is method for estimating risk, although valuable, can potentially omit

important inter- and intra-species behaviour that in�uences the transmission cycle. Another

approach to disease mapping, is the Susceptible-Infected-Removed model and it’s many po-

tential variations. �ese types of models are shown to be most valuable when examining

human-to-human transmission. However, SIR models inherently do not account for population

heterogeneity, inter-species interaction (transmission between vector, host, and human), and,

most importantly when studying the geographic distribution of disease transmission, space.

�is work presents two methods that can be used to supplement disease surveillance data

by mapping disease risk for Japanese Encephalitis. �e �rst chapter of this thesis details a

generalized method for mapping JE risk at a very small scale (large area) using population

projections and virus host populations to infer the regions of potentially high risk in the near

future. �is generalized method may be useful for estimating trends over a large area. �is

method does not consider individual behaviours, such as exposure to landscape risks that
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contribute to one’s probability to contracting the JEV.

�e second method of this thesis presents an agent-, or individual-based model that takes

into account the spatial characteristics of the environment, including climatic and landcover

variables, as well as a realistic representation of the human population in the Kathmandu Valley

of Nepal. A rule-based Susceptible-Exposed-Infect-Removed (SEIR) model was implemented

in this model to capture the incubation period of the virus. Agents transition between SEIR

compartment according to a few simple rules, which dictate the overall incidence rate produced

by the model. Methodology presented in this thesis was able to reproduce the temporal and

spatial dynamics of JE cases reported in the Kathmandu Valley, Nepal.

In the model presented in Chapter 4, an individual’s (agent’s) likelihood of transitioning to a

new SEIR compartment is in�uenced by their mobility and encounters with dynamic landcover,

temperature, and precipitation variables. �us, the transition parameters are dynamic and vary

from individual to individual. �e primary research contribution of this paper is the approach

used to analyze risk.
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Appendix A

�e Overview, Design Concepts, and

Details Protocol

Grimm et al. (2006) devised a standard protocol for developing agent-based models. �is

protocol is termed ‘Overview, Design Concepts, and Details’ (ODD) and consists of seven

elements that are intended to guide modellers for describing their ABM processes. �e purpose

of this standard is to organize and present information in a consistent form (Grimm et al., 2006).

�e protocol also facilitates reimplementation of models and replication of results (Grimm

et al., 2006). In their recent textbook titled ‘Agent-Based and Individual-Based Modelling: A

Practical Introduction’, Railsback and Grimm (2012) describe the seven elements of the ODD

protocol as follows:

Purpose: �e purpose of this element is to clearly de�ne the research question that will be

addressed by the ABM. Although this is a seemingly unchallenging step, it identi�es what

system will be modelled and what knowledge will be gained from the model. �is step outlines

the What, Where, and Why portions of a research question.

Entities, State Variables, & Scales: In this element of the ODD protocol, the modeller

de�nes what types of things will be represented in the model. �e landscape and the agents

are the more common types of entities. �is section de�nes the agents in the ABM and what

types of state variables these agents possess. �ere may be multiple types of agents within the
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model and each type may possess di�erent state variables that de�ne them. State variables

are used to characterize the agents within the model. For example, age, sex, income, etc. are

such a�ributes that an individual agent might have. State variables may be static, such as

sex/gender, or they may change through time, such as income and occupation.

�e scale of the model is also de�ned in this element of the ODD protocol. Temporal and

spatial scales are important components of an ABM and must be de�ned by the modeller.

ABMs o�en for a speci�ed period of time, and this must de�ned in a way that make sense with

the research question. In this element of the ODD protocol, the modeller decides how time

will be simulated in the model and what each time step represents (i.e. days, weeks, or years)

and how long the model will run for.

Process Overview & Scheduling: In this element of the ODD protocol, the dynamics of the

ABM are de�ned. Processes within the model describe how the state variables of the model’s

agents change through time (excluding static variables, such as sex). Processes are how the

modeller de�nes the behaviours of the individual agents and agent types. More speci�cally,

processes of an ABM de�ne what the agents are doing within the model.

�e schedule of an ABM is the order in which the processes are executed. By clearly

outlining the schedule of the model, a clear description of the model is obtained. Within this

element of the ODD protocol, the sequence of actions that the entities undertake are clearly

outlined.

Design Concepts: �e purpose of this ODD element is to asked key questions on various

concepts of the model. A unique quality of ABMs is that they produce multiple outcomes.

�erefore, the modeller may want to ask various questions related to these outcomes. Railsback

and Grimm (2012) list eleven key concepts of an ABM, including: basic principles, emergence,

adaptation, objectives, learning, prediction, sensing, interaction, stochasticity, collectives,

observations. Each concept relates to the various agents’ processes (behaviours) and the other

elements of the ODD protocol. Various questions �estions relating to each of these concepts

are explained in more detail in Railsback and Grimm (2012, p. 41).
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Initialization: �is element of the ODD protocol describes how the modeller will set up

the environment of the model at the beginning of the simulation. It also describes the initial

values of the entities’ state variables. �e modeller can de�ne where agents are located, what

initial a�ributes the agents posses, and what the initial conditions of the environment are. It is

common that the results of ABMs are dependent on the initial conditions of a model.

Input Data: Input data o�en consists of data on conditions that change over time, but are not

necessarily in�uenced by the agents within the model. �is may include data on temperature,

rainfall, or government policy. Such information may in�uence the individual behaviour of an

agent and a�ect the overall outcome of the ABM.

Submodels: All major processes within the ABM are submodels. Submodels are what

speci�cally determine an agent’s behaviour. A submodel consists of several if/then statements

that depend on the current state of an agent. If the a certain set of conditions are met, the

agent returns a speci�c behaviour.
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Appendix B

Interpolation Cross Validation Results

Figure B.1: �e mean of the residuals obtained by a leave-one-out cross validation between predicted and observed
values for weekly interpolated minimum temperatures surfaces.
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Figure B.2: �e mean variances obtained by a leave-one-out cross validation between predicted and observed
values for weekly interpolated minimum temperature surfaces.

Figure B.3: �e mean of the residuals obtained by a leave-one-out cross validation between predicted and observed
values for weekly interpolated maximum temperatures surfaces.
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Figure B.4: �e mean variances obtained by a leave-one-out cross validation between predicted and observed
values for weekly interpolated maximum temperature surfaces.

Figure B.5: �e mean of the residuals obtained by a leave-one-out cross validation between predicted and observed
values for weekly interpolated precipitation surfaces.

111



Figure B.6: �e mean variances of the residuals obtained by a leave-one-out cross validation between predicted
and observed values for weekly interpolated precipitation surfaces.
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