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Abstract:  

Industrially important metals, such as Cu and Ni, sometimes are present at elevated 

concentrations in lakes, including those in the Sudbury, ON region. Although they are 

essential metals, their divalent-cation state (Cu
2+

 and Ni
2+

) can be toxic at high 

concentrations in the water. The free-ion toxicity of each of these metals has been studied 

in isolation, but rarely as a mixture. The economic importance of Cu
2+

 and Ni
2+

 makes 

them essential to study in the context of mixture toxicity. The objectives were to: (1) 

determine Cu and Ni mixture toxicity to Daphnia through acute LC50 tests; (2) 

determine the appropriate model (concentration addition, independent action, or toxic 

units) to analyze mixture effects; (3) determine how the toxicity modifying factor, 

dissolved organic carbon (DOC), influences toxic responses. These metals are transported 

across the membrane through different mechanisms, therefore mixture effects were 

hypothesized to be additive and follow an independent action (IA) model. Results 

indicate that Ni-Cu mixtures can be additive, synergistic or antagonistic depending on the 

concentration of metals. Most combinations tested produced a less-than-additive effect 

according to the IA model. This finding was also supported by the toxic unit approach. 

Single-metal acute tests revealed that the 48h LC50 for Cu was 2.43 µg/L (95% CI 2.15-2.82 

µg/L) while Ni LC50 was 995 µg/L (877- 1125 µg/L). DOC was protective against Cu only 

and Cu+Ni mixture exposures but not Ni alone. DOC protection for mixtures varied by 

source composition. Clearwater Lake DOC was the most protective, Daisy Lake was 

intermediate, and Luther Marsh was least protective against Ni-Cu mixtures.   
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1. Introduction:  

 

1.1 Copper and Nickel in the Environment  

 

 In natural environments, organisms are frequently exposed to mixtures of contaminants. 

Over 7000 lakes around Sudbury (Ontario, Canada) were contaminated by metal and acid 

emissions from long term mining and smelting activity (Keller et al., 2007). Consequently, many 

lakes in the region became unsuitable for aquatic life. For example, in 1974 the Cu and Ni 

concentrations in Hannah Lake, Sudbury, were over 1000 μg/L (Yan et al, 1996). Over the last 

three decades emission controls as well as whole lake and watershed treatment (e.g. liming) have 

improved water quality and much of the aquatic life, including zooplankton, has returned. 

However, metal contamination in this region is still ongoing and  Cu and Ni concentrations 

remain elevated in some lakes (Keller et al, 2007). Cu and Ni have been identified as factors 

limiting growth and the recovery of zooplankton diversity to return to levels found in reference 

lakes (Yan et al., 1996, 2004).   

 

It has been widely established that Cu and Ni are both essential micro-nutrients for the 

biological functioning and growth of organisms, particularly within enzymatic and metabolic 

reactions (Rainbow, 2002; Muyssen et al, 2004).  Cu plays a functional role in the respiratory 

protein haemocyanin, and thus is required in metabolically available form (Rainbow, 2002), 

while Ni is an essential component of enzymes (e.g. urease) and aids in processes such as lipid 

metabolism (Anke et al, 1984; Phipps et al, 2002; Anke et al, 1995; Stokes, 1988).  

Cu and Ni are naturally occurring elements that can be found in all environments and 

biota.  It is well-known that Cu speciation affects bioavailability and toxicity in a variety of 
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aquatic organisms. The free ion (Cu
2+)

 and Cu(OH)2 are considered to be highly toxic forms, 

whereas other complexes and particulate bound Cu are significantly less toxic (Cuppet et al, 

2006). In freshwater, naturally occurring Cu concentrations range between 0.2 µg/L to 30 µg/L 

(USEPA, 2012). The exposure concentration associated with 50% lethality (LC50) ranges from 

0.005 to 1 mg/L depending on the aquatic organism and its life stage (Hodson et al, 1979; 

USEPA, 2012). Similar to Cu, the divalent form of dissolved nickel (Ni
2+

) is the most toxic form 

found in surface waters (ATSDR, 2011b). Naturally occurring concentrations of Ni in surface 

waters are between 0.5 and 10 µg/L (CCME, 1987; ATSDR, 2011b; Astrom and Bjorklund, 

1996; Zwolsman and van Bokhoven, 2007). The Canadian Water Quality Guidelines (CWQG) 

for Ni and Cu vary according to water hardness. The CWQG is 25 µg/L and 2 µg/L for Ni and 

Cu respectively, when water hardness is not known (CCME, 1987a, b).  

Both Cu and Ni are industrially important metals. They are released into water systems 

from industrial and agricultural wastes leading to elevated metal concentrations in the 

environment. There are many sources of anthropogenic Cu inputs to the environment. For 

example, elevated Cu comes from mining and smelting for the production of metals and alloys 

(ATSDR, 2011 a). Agricultural inputs of Cu include Cu(SO4), which is used in fungicides, 

algaecides, and nutritional supplements (ATSDR, 2011a). Ni is used in conjunction with Cu, 

zinc, chromium, and iron for the production of nearly 3000 alloys, which have over 250,000 

applications including coins and jewelry (ATSDR, 2011b; CCME, 1999). Examples of other Ni 

uses are batteries, electroplating and ceramic colours (ATSDR, 2011a).  
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1.2   Mechanisms of toxicity 

 

The mechanism of toxicity differs for both metals, and in general mechanisms of chronic toxicity 

are not well understood. The acute toxicity of Cu is associated with disruption of Na balance. Cu 

crosses apical membranes through the Na
+
 channel, there is competition between Cu

2+
 and Na

+
 

ions and therefore increased Cu results in reduced Na uptake (Grosell and Wood, 2002; Leitao et 

al, 2013). While the uptake mechanisms for Cu are well studied in terms of toxicity, mode of 

action and bioavailability, these measures are not well understood for Ni (Keithly et al., 2004). 

Ni disrupts Mg
2+

 balance  in D. magna, for example exposure to 694 µg/L Ni in moderately soft 

water (45 mg/L CaCO3) for 48 h resulted in significant reduction in whole-body Mg (Pane, 

2003). Chronic Cu exposure can induce the generation of reactive oxygen species (ROS) that are 

responsible toxic responses (Pourahmad and O’Brien, 2000).  Ni is also identified as an oxidative 

stress inducer which causes depletion of glutathione (Rodriguez et al., 1996). It causes gene 

expression changes in cell growth, differentiation and apoptosis in Xenopus oocytes as a result of 

changes to intracellular Ca
2+

 balance (Valko et al., 2005).  In oocytes Ni is recognized as a Ca
2+ 

channel blocker in (Zamponi et al., 1996; Lee et al., 1999). The influence of external factors on 

toxic responses will vary as a result of different mechanisms of uptake and toxicity.  

 

1.3   Natural Organic Matter (NOM) 

 

Metals associated with inorganic or organic ligands are less bioavailable due to 

complexation, and thus are less toxic. Natural organic matter (NOM) plays an important role in 

controlling metal speciation and the potential for effects (Luider et al, 2004). NOM can sequester 

metals and determine their fate and transport throughout the aquatic system (Steinberg et al, 
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2003; Winter et al., 2007). The sequestration of metals such as Cu and Ni makes them less 

available for uptake through cellular membranes (Mandal et al, 2002; Meyer et al, 1999).   

The toxicity mitigating properties vary by NOM source because each ecosystem is 

unique, and the composition of NOM is linked to terrestrial characteristics as well as seasonal 

variation (Schwartz et al, 2004; Wood et al, 2012; Livingstone et al, 2013). Photochemical 

changes are also known to destroy NOM by reducing dissolved organic carbon (DOC) 

concentration and affecting NOM quality (Winter et al., 2007). In addition to mitigating metal 

toxicity, NOM can also affect light conditions in the water by absorbing ultraviolet (UV) and 

visible light (Jones and Arvola, 1984; Huovinen et al., 2000). Absorbing UV light can cause 

photodegradation, which alters the NOM composition (Steinberg et al, 2003; Winter et al., 2007; 

Reddy and De Laune, 2008). 

Natural organic matter (NOM) is found in water systems and is formed by the 

decomposition of plant and animal materials (Steinberg et al, 2003). Aquatic dissolved organic 

matter (DOM) primarily contains fulvic and humic acids (50-90%, Thurman, 1985). DOM is 

quantified as dissolved organic carbon (DOC) and is a term used to describe dissolved 

compounds below 0.45 micrometers. DOC can be classified as allochthonous (terrigenous) or 

autochthonous. Allochthonous DOC is primarily composed of humic and fulvic acids (McKnight 

et al., 2001). Autochthonous DOC is derived from bacteria and algae in the water column. This 

type of DOC has a lower aromatic content and is made from aliphatic and nitrogenous groups 

(Wood et al., 2011; McKnight et al., 2001).  The aromatic groups are associated with stronger 

binding of metals, hence allochthonous DOC is considered to be more protective against metal 

toxicity (Klink et al., 2005; Schwartz et al., 2004). 
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Although the mitigating effects of DOC are recognized, they are still poorly understood. 

Cu has stronger binding affinity for DOC (Schwartz et al, 2004; DeSchamphelere et al, 2002) 

than Ni (Kozlova et al, 2009; Deleebeeck et al, 2008). Numerous studies have shown that DOM 

source can cause up to a 4-fold difference in toxic effects of Cu  (Al-Reasi et al., 2012; Richards 

et al., 2001; Schwartz et al., 2004; Gheorghiu et al., 2010). Conversely, Doig and Liber (2006) 

showed that acute toxicity of Ni to H. azteca was not significantly affected by DOC source or 

composition. Algae is also used in in vitro studies and acts as an organic ligand thus playing an 

important role in regulating metal toxicity by binding to metals and reducing their bioavailability 

(Komjarova and Blust, 2009). Therefore, increasing the amount of carbon in a system through 

algae or DOC can reduce metal toxicity to daphnids. 

 

1.4 Mixture Toxicity 

 

Although free ion concentrations of Ni
2+

 and Cu
2+

 have been studied, the toxic effects of those 

two metals as a mixture is not well understood. The toxic effects of metal mixtures can be 

additive, synergistic, or antagonistic (ECETOC, 2001). The term additive is defined as an effect 

in which the combination of two substances produce a total effect which the same as the sum of 

the individual effect (Meyer et al, 2014). A synergistic interaction occurs when the effect is 

greater than additive, whereas an antagonistic interaction means that it is less than additive 

(ECETOC, 2001). Mixtures make environmental hazard assessment difficult due to possible 

interactions that can occur between chemicals (Loureiro et al, 2010). 

To understand mixture toxicity, there are six terms that are frequently used:  

(1) Interactive: one or more chemicals influence the biological activity of the other substance in 
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the mixture. Responses can be synergistic or antagonistic (Meyer et al., 2014).  

(2) Non-interactive: none of the chemicals in the mixture influence the biological activity of the 

other. Responses are additive and can follow a concentration addition or independent action 

model (Meyer et al., 2014). 

(3) Similar joint-action: both metals in the mixture have a similar site of toxic action 

(Olmstead and LeBlanc, 2005; Jonker et al., 2005).  

(4) Dissimilar joint-action: both metals in the mixture have different sites of toxic action 

(Olmstead and LeBlanc, 2005; Jonker et al., 2005). 

(5) Concentration addition: Occurs if the two metals are interactive with similar joint-action 

(Barata et al., 2006; Ferreira et al., 2008; Loureiro et al., 2009; Olmstead and LeBlanc, 2005).    

(6) Independent action: Also known as response addition, this occurs if the two metals are non-

interactive with dissimilar joint-action (Barata et al., 2006; Ferreira et al., 2008; Loureiro et al., 

2009; Olmstead and LeBlanc, 2005; Jonker et al., 2005).    

As mentioned previously, there are few studies available on the effects of Cu and Ni 

mixtures. In a recent study with the amphipod Gammarus pulex, Charles et al. (2014) showed 

that mixtures under some exposure conditions Ni-Cu mixtures behaved synergistically. However, 

under low Ni exposure conditions, the response was antagonistic (Charles et al, 2014).  

Therefore, understanding mixture toxicity becomes difficult because of the different interactions 

that can take place between the two metals and their respective ligand sites, or amongst the 

metals themselves. Two modes of action are proposed in Fig 1.1 and 1.2. If Ni
2+

 and Cu
2+

 enter 

the cellular membrane through different transport sites (Fig 1.1), then their toxicity is thought to 

be additive and non-interactive between metals. In this case, an independent action model may 

be used. If they enter through the same site (Fig 1.2) then their toxicity is can be synergistic or 
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antagonistic with a competitive interaction. In this scenario a concentration addition model may 

be used.  

 

1.5 . Test Organism 

 

Metal toxicity has been well documented in Daphnia spp. and they are a useful ecological model 

organism for toxicology testing (Lampert, 2010).  They are found in both lakes and ponds and 

considered keystone species in aquatic ecosystems. As Daphnia hybrids are common in nature 

(Hebert and Flinston, 1996) a Daphnia pulex-pulicaria hybrid native to McFarlane Lake in 

Sudbury was used in this study. This study is directed towards understanding the ongoing 

recovery of sensitive invertebrates in Sudbury lakes, and therefore this hybrid provides a relevant 

model for study. Sudbury lakes are soft-water lakes and none of the commercially available 

invertebrate organisms can tolerate the low levels of calcium associated with these lakes. It is 

standard knowledge that Ca and other hardness cations (e.g. Mg), can ameliorate toxic effects. 

Therefore conducting toxicity tests with low Ca levels allows a better representation of toxic 

effects in Sudbury and Canadian boreal lakes.  

This hybrid satisfies the other requirements for a good model organism for toxicity testing; it 

has a high survival rate, high reproduction rate, and good brood size (Environment Canada, 

1999). It becomes a mature adult around day 5-7 and has its first brood at day 10. Day 10 

onwards, it reproduces every second day with a brood size of approximately 8-10 neonates when 

fed algae at 2 mg C/L daily. Therefore, it is a good test species for acute and chronic bioassays. 
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1.6 Purpose and Hypotheses 

 

Sudbury has a history of mining and smelting activity which began before the turn of the 20
th

 

century and grew into one of the largest metal-producing complexes in the world (Keller et al, 

2007) and lakes in and around Sudbury have been contaminated by Ni
2+

 and Cu
2+

 (Keller et al. 

1999, 2007). The overarching goal of this study is to understand the effects of Ni and Cu 

mixtures in the context of these lakes. The objectives of this study are to: 

(1) Determine Ni and Cu mixture toxicity to Daphnia pulex-pulicaria hybrids. Ni and Cu are 

transported across the membrane through different transport channels, therefore their effects as a 

mixture are hypothesized to be additive. 

(2) Determine the type of mixture model (concentration addition or independent action). Cu 

uptake and toxicity will follow a Na
+
 channel pathway, whereas Ni toxicity will follow a Ca

2+
 

pathway. If Ni
2+

 and Cu
2+

 enter the cellular membrane through different transport sites (Fig 1), 

then their toxicity is hypothesized to be additive and non-interactive between metals. Therefore, 

an independent action model should be used.  

(3) Determine how the toxicity modifying factor, DOC, influences responses. Cu has a higher 

binding affinity to DOC than Ni, therefore, DOC should be more protective against Cu toxicity.  

2. Methods  

2.1   Cultures 

 

Daphnia pulex-pulicaria were obtained from existing cultures at The Field Laboratory for the 

Assessment of Multiple Ecological Stressors (FLAMES) lab, Dorset Environmental Science 

Center, Ontario Ministry of the Environment, Dorset, Ontario. These cultures were established 

from samples collected from McFarlane Lake in Sudbury, ON in 2006. The cultures were 
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renewed with new neonates (<24 hrs old) every 2 weeks so that only third brood neonates were 

used in studies. The cultures were kept at a constant temperature of 21°C with 16:8 hour light: 

dark photoperiod (TPCB-19, BioChambers Inc.,Winnipeg, Manitoba). The daphnids were 

cultured in FLAMES medium (Celis et al., 2008; Table 2.1). The pH of culture water ranged 

from 6.3 to 6.7. They were fed daily with 70:30 ratio of Pseudokirchneriella subcapitata to 

Ankistrodesmus falcatus algae. The algal food was prepared to contain 3.5 x10
7
 cells/ml of 

Pseudokirchneriella, and 1.5x10
7
 cells/ml of Ankistrodesmus and it was fed to achieve 1mg C/L 

on days 1 and 2, 1.5 mg C/L on days 3 to 7, and mg C/L after the first week. The relationship 

between cell density and absorbance at 660 nm was used to establish the equivalent carbon count 

in order to calculate the volume of algae to feed (Porter et al, 1982; Mitchell et al, 1992; Goulet 

et al, 2007).  

 

The required optical density (OD) was calculated from the equation derived by monitoring the 

daily cell count for each algae species:  

 

Selenastrum:  y = 0.0063 x    Ankistrodesmus:  y = 0.0092 x         (1) 

  y = 0.0063*35         y = 0.0092*15 

  y = 0.22         y = 0.14 

Where 'x' is the required cell count (in 10
6
 cells/ml) for each algal species based on the 70:30 

ratio mentioned above and the constants (0.0063 and 0.0092) are slopes derived from the daily 

cell count monitoring.  
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The algae concentrate was resuspended into FLAMES culture medium when fed to cultures and 

into FLAMES test medium when fed to the chronic test subjects. The resuspension volume (RV) 

was calculated as:  

 

RV =  
                                                      

           
         (2) 

  

2.2   Acute Tests 

  

In order to determine the toxicity of these metals to Daphnia, a series of acute 48 h LC50 

tests were done generally following standard methodologies. A matrix of concentrations was 

tested to determine 5 things: (1) acute toxicity of Ni and Cu individually where daphnia were 

exposed to each metal separately; (2) acute toxicity of Ni:Cu mixtures, where daphnia were 

exposed to a combination of the two metals; (3) acute toxicity of single metals with DOC (4) 

acute toxicity of mixtures with DOC.  

 The general procedure for acute tests was to expose 5 neonates (< 24 hr old) in drosophila 

culture vials (Fisher Scientific, Mississauga, ON) with 30 ml of test solution without food. The 

FLAMES medium was modified for test solutions by removing the EDTA (~ 1mg/L EDTA in 

culture media). Ni solutions were made with NiCl2 6H2O salt, and Cu solutions were made with 

CuSO4 5H2O salt (Sigma Aldrich, Oakville, ON). Test solutions were equilibrated for 24 hrs 

prior to the test start. Samples of 10 ml were filtered using a 0.45 µm filter (Acrodisc HT tuffryn 

membranes, Pall Corporation, Ann Arbor, MI) to measure the dissolved metal content at the 

beginning and end of tests. To measure the total metal concentrations at test initiation and 
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completion, 10 ml water samples were obtained and not filtered. After 48h of exposure, 

mortalities were counted and recorded.  

There were 6 Cu (0.25, 0.5, 1, 3, 6, 12 µg/L Cu) and 7 Ni (0, 150, 250, 750, 500, 1000, 

2000 µg/L) concentrations with 8 replicates per concentration. The concentrations used in the 

mixture test were derived based on the survival response from the single-metal acute LC50 tests. 

In order to distinguish the potential effects of mixtures, only concentrations that had resulted in 

less than 50% mortality in the single-metal tests were used for the mixture test.  

Acute toxicity tests with the same Ni-Cu combinations were tested with a constant 

concentration of DOC at 4 mg/L. Three sources of DOC were used: Daisy Lake, Sudbury, 

Clearwater Lake, Sudbury, and Luther Marsh, Grand Valley (Table 2.2). All collections were 

done in October and November 2014.  The NOM was collected using a reverse-osmosis unit 

with 400 Da molecular mass-cutoff membranes (FilmTec FT30, Minneapolis, MN). Collected 

surface water was reduced to concentrate. These concentrates were resinated using H
+
 cation-

exchange resin (USF C-211 H cation resin, U.S. Filter Corporation, Rockford IL) to remove all 

residual metals and cations from DOM binding sites. After resinating, the concentrate was 

reduced to pH 2 and stored in the refrigerator in polyethylene acid-washed containers (Schwartz 

et al., 2004). 

DOC was characterized using absorbance at 340 nm (SAC340) and fluorescence 

excitation-emission matrix spectroscopy (FEEM). SAC340 measures the aromatic content in the 

solution. The absorbance was measured using a SpectramaxPlus 384 spectrophotometer 

(Molecular Devices, Sunnyvale, CA) and was converted to a specific absorbance coefficient 

(SAC) using the following formula from Curtis and Schindler (1997).   
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SAC340 =  
                                           

          
                                           (3) 

 

Where pathlength is in cm and NOM refers to the concentration of DOC in mg/L   

  

 FEEM contour plots show the presence of tyrosine, tryptophan, fulvic and humic acids 

depending on the intensity peaks. Since these contour plots could not be coupled with 

PARAFAC analysis, only the qualitative observations were recorded based on the appearance of 

peaks at the following locations on the excitation-emission diagrams (Gheorghiu et al, 2010): 

Emission (nm) Excitation (nm) Interpretation 

400 - 450 
320 - 340  

230 
Fulvic peak 

460 - 520 
360 - 390  

265 
Humic peak 

340 - 350 230 and 280 Tryptophan 

300 230 and 280 Tyrosine 

 

The DOC was also characterized using Fluorescence Indices (FI). FI can determine the 

original of the NOM, whether it is aquatic or terrestrially derived. FI is the ratio of fluorescence 

intensities at 370:450 and 370:500 (excitation: emission wavelengths in nm; McKnight et al., 

2001):  

FI = 
           

           
         (4) 
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2.3  Cu Ion Selective Electrode 

 

Cu free ion (Cu
2+

) measurements were conducted by using a Cu ion selective electrode (ISE; 

Orion Ionplus, Thermo Electron Corporation, Beverly, MA). A two-point calibration was 

conducted prior to the measurements. Two buffers were used for the calibration: glycine 

(0.001M) and ethylene diamene (0.001M) following the methods outline by Belli and Zirino 

(1993). The test solutions were passed through the electrode using a flow-through system. The 

millivolt (mV) response was documented when readings stabilized to ± 0.1 mV/min.  

 A total of 6 solutions were prepared and tested. The objective was to determine the 

interactions between the metals and DOC at the corresponding Ni and Cu LC50s. Each of the 

two DOC sources had a solution of DOC + Cu, DOC + Ni, and DOC + mixture. Solutions were 

prepared by spiking FLAMES medium with nominal concentrations of 3.7 µg/L Cu, 1000 µg/L 

Ni and 4 mg/L DOC from Luther Marsh and Clearwater Lake. Total Cu concentrations were then 

measured by GF-AAS. Test solutions were equilibrated for 24h prior to Cu
2+

 measurements.   

 

2.4 Chronic Tests 

 

In the chronic study, only 1 neonate was placed in 30 ml of solution per vessel, and each 

concentration had 10 replicates.  The neonates were less than 24 hr old at the start of the 21-day 

test. Each animal was fed daily with 2 species of algae, Ankistrodesmus and Selenastrum spp. 

The amount of algae fed to the daphnia varied over time depending on its age: 1 mg C/L on Day 

1-2, 1.5 mg C/L on Day 3-7, and 2 mg C/L on Day 8 onwards. Solutions were prepared 24 hr 

prior to start date and daphnids were placed in new solution every other day during the 21day 

testing period. There were 4 Cu (0.32, 1.0, 1.78, 3.18 µg/L) and 4 Ni concentrations (1.8, 5.6, 18, 
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56 µg/L) as well as control. The FLAMES medium was modified for test solutions by removing 

the EDTA (~ 1mg/L EDTA in culture media). 

To determine exposure concentrations for the chronic test, four factors were considered: 

CWQG, natural background range, Daisy Lake concentrations of Ni and Cu, and the results of 

the single-metal acute tests. CWQG for Cu is 2 µg/L and Ni is 25 µg/L. Natural background 

concentration for Cu ranges from 0.2-30 µg/L (USEPA, 2012) and for Ni it ranges from 0.5-50 

µg/L (WHO, 2005; ATSDR, 2011b).  The Ni and Cu concentrations from Daisy Lake in 

Sudbury were obtained from a lake survey (unpublished personal communication from Szkokan-

Emilson, 2014). Cu concentration in Daisy Lake is 8.4 µg/L while Ni is 43.7 µg/L. The 48h 

LC50 as derived from the single-metal acute tests was 2.425 µg/L Cu (CI 2.145-2.823 µg/L) and 

995 µg/L Ni (95% CI 877- 1125 µg/L). Hence for the chronic test, the four Cu concentrations 

that would encompass those four factors are: 10, 3.16, 1.0 and 0.32 µg/L; the Ni concentrations 

are: 56, 18, 5.6, and 1.8 µg/L.  

 

2.5 Processing Samples 

 

Cu samples were measured using graphite furnace atomic absorption spectroscopy (GF-AAS: 

PinAAcle 900T, Perkin Elmer, Waltham, MA). Samples for the AAS were acidified with 1% 

volume of 16N HNO3 (Trace Metal Grade, Fisher Scientific, Nepean, ON). Ni along with the 

concentration of ions (Ca
2+

, Na
2+

, and Mg
2+

) was measured via flame (AAS, PinAAcle 900T, 

Perkin Elmer, Waltham, MA). Certified multi-element standard reference solution  (TM 23-4, 

Environment Canada, Burlington, ON)was tested in between samples to assure correct 

concentrations by the AAS. For DOC analysis, 30 ml water samples were collected and filtered 

with the 0.45 μm filter (same as above). These samples were stored in the fridge at 4 °C until 
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measurement with a TOC analyzer (TOC-LCPH/CPN, Shimadzu, Kyoto, Japan).  

 

2.6 Statistical Analysis 

 

For the single-metal acute tests, a one-way ANOVA was conducted using IBM SPSS v. 22 to 

determine if Ni and Cu had a significant effect on Daphnia survival for the acute and chronic 

mixture experiments. This was followed by a Post-hoc Tukey-HSD test to differentiate between 

treatments when the ANOVA results displayed a significant effect. For acute and chronic 

mixture tests, a two-way ANOVA was conducted to determine whether there was a significant 

interaction between the two metals. This was also followed by a Post-hoc Tukey test to 

differentiate between treatments. SPSS was also used to derive the LC50 values with 95% 

confidence intervals through Probit analysis.  

 The degree of additivity was determined using three models: (1) Toxic units (TU), (2) 

Concentration Addition (CA) model, and (3) Independent Action (IA) model. As mentioned 

earlier, if Ni
2+

 and Cu
2+

 enter the cellular membrane through different transport sites, an IA 

model should be used. In addition to the IA and CA model, to understand whether the mixture 

effects are additive, the mixture LC50’s from the matrix were compared to the single metal LC50 

concentrations of Ni and Cu using the toxic unit approach (Khan et al., 2012).  

 In simple mixture tests, the TU sum is used as the expected response if additivity occurs 

and the actual mortality associated with the solutions is measured in an acute toxicity test to 

indicate whether the response is additive, synergistic or antagonistic (by comparing actual to  

calculated sum of TUs). For example, a sum of 1 TU means an expectation of 50% mortality if 

the response is additive, while if the actual test results for the mixture show less mortality occurs 
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then the response is antagonistic, and if greater than 50% mortality it indicates a synergistic 

response.  If the mixture concentrations sum to 0.5 TUs then there is an expectation of 25% (i.e. 

0.5 x 50%) mortality in the acute toxicity test with this solution if the response is additive and 

less or greater mortality if the response is antagonistic or synergistic (respectively).  In this series 

of tests it was possible to calculate the LC50 for each of the 6 different mixture combinations 

and from that determine whether the sum of the toxic units is greater than, less than or equal to 1.  

The formula for toxic units is given below (Khan et al., 2012): 

 

 ƩTU = 
                   

          
  

                   

          
        (5) 

 

The formula for the CA model is as follows (Hadrup et al., 2013):  

 Xmix = (PCu / XCu) + (PNi / XNi)            (6) 

  Xmix = concentration of the mixture LC50  

  P = Fractions of Ni or Cu in each mixture pair 

  X = Single-metal Ni or Cu LC50 

The formula for the IA model is as follows (Hadrup et al., 2013):  

 Y = 100*(1-[1-RNi]*[1-RCu])             (7) 

  Y = model mortality prediction (%) 

  RNi = proportion of Ni in LC50 

  RCu = proportion of Cu in LC50 
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The calculation of RNi was calculated as the Ni concentration, used in Cu-Ni mixture pair, 

divided by the single-metal Ni LC50. Same was repeated to calculated RCu with the 

corresponding Cu concentrations.  

 

3. Results  

 

 3.1 Acute Toxicity of Single Metals  

All acute tests reported here had less than 10% mortality of controls, therefore met the validity 

criteria (Environment Canada,1990). Measured total Ni concentrations were within 92 ± 1.1% 

SEM (n= 55) of  nominal values while Cu was within 86 ± 7.5% (n = 44). Dissolved Cu was 

100.6 ± 3.4% (n = 10) of total Cu, and Ni was 99.0 ± 1.4% (n = 10) of total measurements. Since 

total and dissolved were very similar, the total measured concentrations are reported. 

 In the tests with single metals, mortality increased as metal concentration increased (Fig 

3.1 and 3.2). The 48h LC50 for Cu was 2.43 µg/L (95% CI 2.15-2.82 µg/L) while 48h Ni LC50 

was 995 µg/L (877- 1125 µg/L; Fig 3.1 and 3.2 respectively). There was a significant effect of 

Cu on daphnid mortality (p < 0.05). There was also a significant effect of Ni on daphnid 

mortality ( < 0.05).  These tests were repeated 3 times, every 8-10 months, and the LC50 ranged 

from 2.43 - 2.65 µg/L (n= 3) for Cu , and 995-4680 µg/L Ni (n= 3, Table 3.1).  
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 3.2 Acute Toxicity of Mixtures  

The Ni and Cu mixture mortality response was compared to the single-metal mortality from 

acute 48h tests. The mortality within the mixture treatments was significantly higher than the 

mortality of single-metal treatments in some cases (Fig 3.3 B and C, and 3.4 B). Further 

exploration of additivity is made using the concentration addition and independent action models 

(Section 3.3).  Cu has a marked effect on mixture mortality. As Cu concentration increases at 

fixed Ni concentrations, the mixture mortality increases (Fig 3.3). The effects of Ni on the 

mixture mortality are less pronounced at low Ni concentrations. However, there is an increase in 

toxicity with increasing Ni (Fig 3.3 and 3.4). 

 Overall, 7 Ni treatments were tested with 5 Cu concentrations (Fig 3.5). As expected, 

mixture mortality increases as metal concentrations increased. With the addition of more Ni, the 

toxicity curve is shifted further to the left when compared to the Cu-only mortality, thus 

indicating that the mixtures are more toxic in the Ni-Cu combinations tested (Fig 3.5). There are 

some portions of the curve which dip below the Cu-only toxicity curve, indicating an anomaly 

likely caused by inherent variability. The grey box indicates the LC50 range for Cu without 

added DOC. Within this range, the 56 µg/L Ni curve spikes up to 100% mortality. This is likely 

due to a Cu effect since 6 and 12 µg/L Cu is nearly 3-6x higher than the Cu LC50.  

 A two-way ANOVA was used to assess the effect of Cu (5 concentrations) and Ni (7 

concentrations) on Daphnia mortality (Table 5.1 Appendix). There is evidence of a significant 

interaction between Cu and Ni (F(24, 275) = 15.82, p <0.05). Follow-up analyses using simple 

effects were conducted to understand the nature of the interaction (Table 5.1 Appendix). 

Differences in mortality among different Cu concentrations within each Ni treatment were 
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considered. Statistically significant differences across the Cu conditions were observed for all 

conditions of Ni (Table 5.1 Appendix). Pair wise comparisons among the cell means using a 

Bonferroni adjustment for multiple comparisons revealed that in general, low Cu concentrations 

were significantly different to high Cu, but not to each other (Table 5.1 b Appendix). Further 

details on significant differences  between Cu concentrations at each Ni treatment are indicated 

by the letters (Table 5.1 b Appendix). 

 Another two-way ANOVA was conducted to test the effect of Ni at each Cu 

concentration (Table 5.1 c Appendix). There is evidence of a significant interaction between Cu 

and Ni (F(4,725) = 15.82, p<0.05). Analyses using simple effects were conducted to further 

understand this interaction. Statistical significant differences across the Ni conditions were 

observed for all concentrations of Cu (0, 1, 2, and 6 µg/L) except for 12 µg/L (Table 5.1 c 

Appendix).  Pair wise comparisons among the cell means using a Bonferroni adjustment for 

multiple comparisons are reported in (Table 5.1 c Appendix). Significant differences between Ni 

treatments at each Cu concentration are indicated by the letters.    

 

 3.3 Modeling Approaches: 

Three modeling approaches were explored to determine whether the mixtures were additive, or 

greater or less than additive: Toxic Units (TU), Concentration Addition (CA) model, and 

Independent Action (IA) model. The mixture combinations were additive, more than additive or 

less than additive depending on the individual metal concentration combinations. According to 

the toxic unit approach (Fig 3.6, Table 3.2), only one pair was greater than additive: 75 µg/L Ni 

at 1.392 µg/L Cu. The IA model predicted the mortality based on the fraction of each metal in 

the mixture. The predicted mortality was compared to the actual mortality observed in 48h acute 
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toxicity tests (Fig 3.7, Table 5.2 Appendix). Approximately 20% of pairs were more than 

additive. Their combinations are as follows: 500 µg/L Ni at 1 µg/L Cu, 1000 µg/L at 1, 3, and 12 

µg/L Cu, and 2000 µg/L Ni at 3 µg/L Cu. Approximately 30% of pairs, their combinations listed: 

75 µg/L at 1 and 3 µg/L Cu, 150 µg/L Ni at 1 and 3 µg/L Cu, and 250, 1000, and 2000 µg/L at 1 

µg/L Cu. 50% of the pairs fall on the line of strictly additive. These are the pairs which had both 

predicted and observed mortality of 100%.  The CA model predicts the concentration of the 

mixture at which 50% mortality will occur. This was compared to the calculated Probit LC50 of 

the mixture based on observed mortality from toxicity tests (Table 3.2). Based on this approach, 

only one pair was more than additive,  2000 µg/L Ni (Fig 3.8, Table 5.3 Appendix). All other 

combinations were less than additive: 75, 150, 250, 500, and 1000 µg/L Ni.  

 

 3.4 Acute Toxicity of Single-Metals with Added DOC  

The Daphnia survived well in positive controls for tests containing a nominal concentration of 4 

mg/L added DOC. There was a slight decrease in mortality compared to no added DOC when 

LM DOC was added to Ni solutions (Fig 3.10A). The 2 way ANOVA (Ni and DOC source) 

showed a significant interaction between Ni and DOC ( F(3, 56) = 446.43, p < 0.05). As CWL 

DOC was added, there was a slight decrease in mortality caused by Ni at certain concentrations.  

When comparing the effect of DOC at different Ni concentrations, we see that there is a 

significant protection of CWL DOC (compared to no added DOC)  at 1000 ug Ni/L. DOC did 

not have a significant effect on mortality at any other Ni treatments.  

 When comparing Ni treatments at different DOC concentrations (0 mg/L and 4 mg/L 

DOC; Fig 3.10),  2000 µg/L Ni treatment was significantly different to 250, 500 and 1000 µg/L 
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but those three concentrations were not significantly different from each other when there was 

added DOC. When there was no DOC added, 250 µg/L Ni was significantly different to 1000 

and 2000 µg/L Ni, and 1000 and 2000 µg/L Ni were significantly different to each other. There 

was a significant effect of Ni on daphnid mortality with and without the presence of DOC (F(3, 

28) = 18.37, p < 0.05, and F(3,28) = 48.92, p < 0.05 respectively; Fig 3.10 a).   

  There was a significant effect of Cu on daphnid mortality F(3, 20) = 118.33, p < 0.05 

only when there was no DOC present (Fig 3.10 b). Cu did not have a significant effect on 

mortality in the presence of DOC, F(3, 20) = 1.00, p > 0.05. There was also a significant 

interaction between Cu and DOC (F (3, 48) = 137.5, p < 0.05).  Cu treatments were compared to 

each other at different DOC concentrations. When there was no DOC added, Cu treatment of 1 

µg/L was significantly different than 6 and 12 µg/L. 1 and 3 µg/L were not significantly different 

to each other and 6 and 12 were not significantly different to each other either, when there was 

no DOC.  

 When comparing the effect of DOC at different Cu treatments, there was a significant 

decrease in mortality when DOC was added to Cu solutions (Fig 3.10 b).  The treatment of 1 

µg/L Cu was did not have a significant effect on mortality with and without the presence of 

DOC, according to the Post-Hoc Tukey test following a 2-way ANOVA. However, the Tukey 

test indicates that all other concentrations of Cu had a significant effect on mortality at the other 

three Cu concentrations (3, 6 and 12 µg/L Cu).   
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 3.5 Acute Toxicity of Mixtures with added DOC 

The Daphnia survived well in positive controls for tests containing added DOC. Three sources of 

DOC were compared to each other to observe source differences in protection: Luther Marsh 

(LM), Clearwater Lake (CL), and Daisy Lake (DL; Fig 3.9).   For tests done at 1 mg Ni/L the 

CWL source was the most protective and LM is the least with DL being intermediate. It is clear 

that the solutions with 2000 µg/L Ni resulted in very high mortalities at all Cu concentrations as 

well as Ni only and therefore meaningful comparisons of the relative protection of different 

sources was not possible (Fig 3.9). LC50 values were also calculated for each mixture toxicity 

curve (Table 3.3). The LC50 value for CWL + 2 mg Ni and DL + 2 mg Ni could not be 

calculated since the mortality was greater than 50% in all treatments. As indicated by a decrease 

in LC50,  it can be inferred that the toxicity increases with increased Ni for LM.   

 

 3.6 Cu Free Ion Measurements   

The addition of Ni to solutions containing DOC and Cu resulted in an increased of Cu free ions 

(Table 3.4). Of the two DOC sources tested (CWL and LM), LM had approximately 10x more 

Cu free ions when the same concentration of Ni was added to the solution containing DOC + Cu 

(Table 3.4). This increase in Cu free ions also corresponded to an increased mortality observed in 

the acute mixture tests (Fig 3.9).  
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3.7 DOC Characterization   

  3.7.1 Optical  Characterization  Plots 

 

Only a qualitative observation can be made using the FEEM optical characterization plots, since 

parallel factor analysis (PARAFAC) could not be done to confirm the identification of 

flourescent components and quantify their abundance. LM and CWL have fulvic substances 

since it peaks between 450-500 nm (Fig 3.11). DL has some humic compounds since it peaks 

around 360-390 nm, and a presence of tyrosine and tryptophan are also indicated by peaks at 300 

and 350 nm respectively (Fig 3.11). CWL has fulvic, humic, tryptophan and tyrosine-like 

fluorphores (Fig 3.11). Tryptophan-like and tyrosine-like fluorophores are labeled as 

proteinaceous compounds. Due to the presence of these peaks, DL and CWL likely contain 

protein compounds (Fig 3.11).  

  3.7.2  Absorbance  at  340 nm 

 

The measured absorbance readings at 340 nm were converted to a specific absorbance 

coefficient (SAC) using equation 3. Luther Marsh has darker coloured DOC than Clearwater 

Lake. This can be confirmed from the SAC340 absorbance coefficients in Table 3.5. Higher 

absorbance reading corresponds to a darker coloured DOC.  

  3.7.3 Fluorescence  Indices 

 

Fluorescence indices were calculated to determine the origin of the DOC from the three sources, 

CWL, LM and DL. The FI and excitation-intensities are reported in Table 3.6.  At an excitation 

of 370 nm, the maximal emission intensity ranged from 15.08 to 23.79. The FI for LM was 1.03, 
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CWL was 1.22, and DL was 1.41.  

 

 3.8 Chronic toxicity 

For 21-day chronic Ni and Cu exposures, overall mixture mortality increased as Cu 

concentration increased. A similar trend is evident for Ni that shows increased mortality with 

increased Ni concentrations, although some anomalies exist (Fig 3.12). All Cu treatments were 

significantly different from controls (p < 0.05) for Ni concentrations of 1.8 (F(4, 33) = 5.51), 5.6 

(F(4, 39) = 2.79) and 56 µg/L (F(4, 41) = 77.99). 

 No clear effects on reproduction were observed. The graph shows the average number of 

neonates produced by daphnids that survived after 21 days (Fig 3.13). The daphnids that 

survived produced similar number of neonates regardless of the metal concentration. The number 

of neonates produced in each Ni treatment were not significantly different from the control: F( 4, 

19)= 1.69 for 1.8 µg/L Ni, F(4, 30)= 0.61 for 5.6 µg/L Ni, and F(4, 30) = 1.17 for 18 µg/L Ni.  

 

4.0 Discussion:  

 4.1 Ni-Cu interactions  

 

 Ni was less toxic than Cu, and this finding is consistent with the literature (Table 4.1, Fig 3.1 

and 3.2). The D. pulex-pulicaria clone is a good organism to use in toxicity studies since it is 

very sensitive and survives in low Ca concentrations, which would provide a fairly conservative 

LC50.). Given the unique nature of the Daphnia pulex-pulicaria clone used in these studies, it 

was difficult to find comparable Cu and Ni LC50s conducted in similar water chemistry 
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conditions. Published Cu LC50s range from 2-249 µg/L, with Ca concentrations ranging from 

2.5-80 mg/L. Published Ni LC50s range from 510- 466,000 µg/L with Ca concentrations 

between 2.5-421 mg/L. (Table 4.1). There was only one other study that which reported similar 

Cu LC50s as this study. Long et al., (2004) conducted her test in similar Ca concentration (2.8 

mg/L Ca) at a fairly low pH (5.6) and reported a Cu LC50 of 2 ± 1.5 µg/L, which is consistent 

with the LC50, 2.43 µg/L, derived in the current study. There were only 2 studies that reported 

Ni LC50s lower than the present study: 510 µg/L (Biesinger and Christensen, 1972) and 750 

µg/L (Leonard and Wood, 2013). Both of these studies were conducted in Ca and DOC 

concentrations greater than FLAMES media so it is surprising that the reported LC50s are lower. 

It is likely that the D. magna and D. pulex clones used were highly sensitive organisms, or that 

the higher pH of 7.3-8 affected the bioavailability of Cu and Ni. It is also possible that a daphnid 

from a Sudbury lake developed toxic resistance due to water contamination over a long period.  

 As expected, the Ni-Cu mixtures were more toxic than single-metal responses (Fig 3.3, 

3.4, 3.5), with the exception of some anomalies. The addition of Ni produces left-shifted 

mortality curves, indicating a more toxic response which could be additive.  This degree of 

additivity was evaluated by the three modelling approaches: CA, IA and TU models. Published 

studies have reported that Ni-Cu mixtures are considered additive at specific combinations in the 

water and a blanket statement cannot be applied to explain their interaction (Meyer et al, 2015; 

Charles et al., 2013). Conclusions about the additive toxic effects are dependent on the 

concentration of tested combinations and the form of the metal (e.g. dissolved, free ions, biotic 

ligand-bound; Meyer et al., 2015; Santore et al., 2015; Nys et al., 2015).  

 The three modelling approaches (CA, IA and TU models) were used to evaluate the Ni-

Cu interaction, and each one gave slightly different answers as to which mixture combinations 
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were additive, more than additive or less than additive. In theory, it would be ideal to have a 

single model that is used universally and can be applied to all situations, especially since it is not 

possible to test all mixture combinations with every chemical in existence. This type of model 

would also be desirable in situations where the mechanism of action is unknown. Several 

reviews have been conducted to determine which of these approaches should be applied for risk 

assessment and predicting the outcomes of contaminants in the environment. The general 

consensus is that CA and IA modelling approaches give very similar outcomes (Hadrup et al, 

2013; Backhaus et al, 2004; Faust et al, 2003; Cremazy et al, 2015; Cedergreen et al., 2008).  

Cedergreen et al., 2008, found that 20% of the mixtures adequately predicted by IA and 10% by 

CA, but half of their experiments could not be correctly predicted by either model. Cedergreen et 

al., 2008, also suggest that IA is not considerably better than CA model predictions. According 

to the CA model in this study, 1 out 6 pairs show more than additive toxicity, and for the IA 

model there are 3 out of 9 combinations that show this (Fig 3.7 and 3.9). The presence of Ni 

increased the overall mortality in all mixture treatments. This was expected since the two metals 

are known to have two different mechanisms of toxic action. Ni disrupts Mg balance, while Cu 

disrupts Na balance. Therefore, both metals are likely entering the body and disturbing the 

required ion balance. 

 

 4.2 Ni-Cu Interactions with DOC 

 

The protective effect of DOC on single-metals and mixtures was explored. Both CWL and LM 

were significantly protective to Cu but not Ni (Fig 3.10). This is consistent with literature that 

states Cu binds strongly to DOC (Wood et al., 2011). All DOC sources were protective against 

Ni-Cu mixtures (Fig 3.9). As expected, there was variation of protection by source composition. 
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CWL is more protective than LM to the Cu-Ni metal mixture (Fig 3.9). A change in 1 mg of Ni 

made a significant difference in the mortality response in the presence of both DOC sources (Fig 

3.9). This indicates that the concentration of Ni likely exceeded the binding capacity of DOC 

and/or bound weakly, thus leading to increased mortality.  

 The DOC composition was determined to better understand the protective effects with 

these metals. The optical characterization of DOC was done through SAC340, fluorescence 

indices (FI) and fluorescence excitation-emission matrices (FEEM). The amount of Cu free ions 

in solution was also used for comparing the binding interactions between the metals and DOC 

sources.  

 The fluorescence index is used to determine the origin of the DOC, either allochthonous 

(terrestrial) or autochthonous (aquatic). Typical freshwater FI values range from 1.3-1.8 

(McKnight et al., 2001). High FI values indicate an autochthonous origin (McKnight et al., 

2001). Daisy lake (DL) had the highest FI value at 1.41 and LM had the lowest, 1.03 (Table 3.4). 

From FI analysis, it can be inferred that DL DOC is of autochthonous origin while LM is of 

allochthonous origin since it had a low FI value of 1.03. Since CWL has an intermediate FI 

(Table 3.4), it can be inferred that CWL can have autochthonous and/or allochthonous inputs. 

The FI value for CWL is 1.22, which is on the lower side of the typical freshwater range of 1.3-

1.8 (McKnight et al, 2001), thus meaning that it could be of allochthonous origin. The SAC340 

value is also lower than that of the terrestrially derived LM DOC, at 15.99. This could mean that 

it has more fulvic content and is tyrosine rich if it is allochthonous DOC (Wood et al, 2011).  

 SAC340 is an indicator of the aromaticity of the DOC sample and is also used to 

determine the sample origin. LM has a high SAC340 value, 38.86 (Table 3.3), while CWL is less 
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than LM at 15.99.  A high SAC340 value indicates a higher humic content (Wood et al, 2011). 

This also corresponds to having darker coloured DOC, increased aromatic rings and phenolic 

groups as well as larger molecules (Wood et al, 2011). LM had a darker colour than CWL at the 

same DOC concentration, so a higher SAC340 was expected.  

 Usually, a darker DOC colour corresponds to an increased amount of humic fractions in 

the sample (Wood et al., 2011). LM has darker coloured DOC than CWL or DL. The 

composition of the DOC was determined through the FEEM analysis. The contour plots (Fig 

3.11) of the two lakes indicates that CWL is very similar to but slightly more proteinaceous than 

LM, due to the presence of tyrosine and tryptophan amino acid peaks  in CWL which are absent 

in the LM plot. CWL has fulvic-like compounds, indicated by the peaks at 400-450 nm emission, 

with a small peak at 300 nm emission indicating the presence of tyrosine. Tyrosine rich sources 

are more protective towards Ni toxicity (Cooper et al, unpublished, 2014; McKnight et al, 2001).  

Since CWL contains some protein compounds, in theory it should be more protective towards Ni 

toxicity than LM. Having an increased amount of humic fluorophores correlates to greater 

protection against Cu toxicity (Wood et al, 2011).   

 There were some inconsistencies with the optical characterization, Cu free ion 

measurements and toxicity tests. The single-metal toxicity tests agree with SAC340, FI, and 

FEEM because LM DOC was more protective against Cu than Ni toxicity. SAC340 and FI 

indicates that LM comes from allochthonous origin, meaning it contains humic content. Humic 

fluorophores were observed in LM DOC through the FEEM analysis so this agrees with the 

mortality results from  single-metal toxicity tests. There was zero mortality when only Cu was 

added to LM DOC.  When only Ni was added to LM DOC, the mortality was at 90% (Fig 3.9 
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and Table 3.2). Therefore, singe-metal toxicity tests are consistent with the optical 

characterization and free-ion measurements.  

 A conflicting picture emerges in the mixture toxicity tests with DOC. SAC340 and FI 

indicated that CWL comes from autochthonous and LM comes from allochthonous origin. The 

FEEM analysis indicated that LM had more humic content than CWL, therefore Cu was 

expected to bind more strongly to CWL than LM. The Cu free ion measurements indicated an 

increase in Cu
2+

 when Ni was added, with LM having more Cu
2+ 

than CWL. Cu
2+

 ions in the 

'mixture + LM DOC' solution are approximately 10x greater than the free ions in 'mixture + 

CWL DOC' solution. This is not typical since humic-rich sources, such as LM DOC, should bind 

more strongly to Cu than Ni. In the toxicity tests with LM DOC, the concentration of Cu
2+

 was 

34x greater in the solution after Ni was added (Table 3.4).  This could mean that the Cu was 

displaced by the addition of Ni, and the Ni was binding to the LM DOC. Two reasons can 

explain this: (1) The concentration of Ni was 360x higher than Cu (1800 ug/L Ni and 5 ug/L Cu; 

Table 3.4), therefore the competition favoured the binding of Ni to LM DOC; (2) Ni was binding 

more strongly than Cu to LM DOC, which would disagree with the literature that indicates Cu 

binds strongly to humic-rich DOC (Wood et al., 2011).  An increase of Cu
2+  

 in the LM solution 

was not expected. Therefore, the SAC340, FI, and FEEM results do not agree with toxicity tests. 

However, the Cu
2+

 measurements agree with the mixture toxicity tests. Increased Cu
2+ 

in the 'LM 

DOC + mixture' solution correlates to an increased mortality as well since there was more Cu 

available to cause toxicity (Table 3.4).  

 The Cu free ions were also measured in the CWL DOC solutions (Table 3.4). It can be 

inferred that Cu binds strongly to CWL DOC as well since there was zero mortality in the acute 

tests with Cu-only + CWL DOC (Fig 3.9, Table 3.4). Similar to the LM solutions, the 'Ni + CWL 
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DOC'  solution produced a similar mortality to the 'mixture + CWL DOC' solution (80% and 

100% mortality respectively), at the Cu LC50 (Fig 3.10), which could mean that the Ni is 

causing the toxicity. The CWL DOC had a slightly lighter colour than the LM DOC at ~ 4 mg/L 

DOC. Lighter coloured DOC is characteristic of lower SAC340 values, is microbial-derived 

(autochthonous), has smaller molecules, and lower aromatic content (Wood et al, 2011).  It is 

recognized that metals bind strongly to the phenolic (aromatic) groups found in darker DOC 

(Luider et al., 2004; Schwartz et al., 2004; Winch et al., 2002). It is also presumed that 

autochthonous DOC provides more protection against Ni toxicity in marine samples (Cooper et 

al., unpublished document, 2014). In two studies (Cooper et al, 2015 unpublished; McKnight et 

al 2001) it was reported that tyrosine rich DOC sources are characteristic of autochthonous 

origin, created by biological activity within the water. In contrast, humic acid rich DOC was 

allochthonous and created by the decomposition of plant material. Allochthonous DOC provides 

the least protection against Ni toxicity (Cooper et al, unpublished, 2014). Since CWL has fulvic 

and tyrosine content, it can be inferred that it is of autochthonous origin. This also matches what 

is found in the SAC340 and FI analysis. Being autochthonous, it should be the most protective 

towards Ni toxicity. However, the Cu free ion measurements indicate that there was more free 

Cu in the LM samples than CWL, indicating that Ni is likely binding more strongly to LM 

(Table 3.2). The presence of tyrosine indicates that the origin of DOC could be from sewage 

inputs (Baker et al., 2001; Her et al., 2003) or bacterial origin (Determann et al., 1998; Cammack 

et al., 2004).  

 Daisy lake (DL) also contained protein compounds (Fig 3.11). DL contains fulvic 

compounds as well as tryptophan and tyrosine. The presence of tryptophan indicates that the 

DOC could have come from algae (Determann et al., 1998). This matches the interpretation of 
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the FI value (1.41, Table 3.4) indicating an autochthonous origin. DL had the lightest coloured 

DOC yet it provided intermediate protection to the metal mixture as observed by the mortalities 

from acute toxicity tests (Fig 3.10). This matches the findings of Schwartz et al, (2004) who 

claims that colour does not always track with metal binding and this approach will not always 

work.  

 In conclusion, LM is of allochthonous origin while CWL and DL are autochthonous.  The 

toxicity tests with mixtures and DOC (Fig 3.9) indicate that CWL was more protective to the 

metal mixtures than LM. However, this is inconsistent with the SAC340 and FI analyses. Both 

solutions of LM and CWL contained the same concentration of Ni (1800 µg/L). The presence of 

Ni displaced more Cu free ions in LM solution than CWL, meaning that it likely bound more 

strongly to LM. This is not typical since Ni is presumed to bind more strongly to autochthonous 

DOC. Therefore more Cu is bound to CWL DOC and perhaps more Ni is suspended in solution. 

This contradicts the findings of Cooper et al. (unpublished, 2014) and Wood et al, (2011).  

However, Schwartz et al., (2004) noted that colour does not always correlate with metal binding 

and this assumption does not always work. The binding of CWL DOC to Cu has also been noted 

by Taylor et al., (2016), who used the same D. pulex-pulicaria clone from this study.  Further 

analysis should be done to quantify the amount of fulvic, humic and protein content in the DOC. 

Additional tests to measure the amount of total nitrogen should be conducted. Since 

proteinaceous sources bind strongly to Ni, this could explain the interactions of Ni to LM DOC. 

 

 

 

4.3 Summary: 
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 Ni was toxic at higher concentrations than Cu, and this is consistent with the peer 

reviewed literature. As expected, the mixtures were more toxic than single-metal 

responses, with the exception of some anomalies. 

 The three modelling approaches (CA, IA, and TU model) gave slightly different answers 

as to which mixture combinations were additive, more than additive or less than additive. 

This is consistent with other literature that report conclusions about the additive toxic 

effects are dependent on the concentration of tested combinations and the form of the 

metal (e.g. dissolved, free ions, BL-bound; Meyer et al., 2015; Santore et al., 2015; 

Cedergreen et al., 2008; Nys et al., 2015) 

 DL had the lightest coloured DOC while LM had the darkest for the same concentration 

of 4 mg/L DOC. LM is of allochthonous origin, CWL can have allochthonous and 

autochthonous inputs, and DL is autochthonous. The presence of Ni displaced more Cu 

free ions in LM solution than CWL, meaning that it likely bound more strongly to LM. 

This is not typical since Ni is presumed to bind more strongly to autochthonous DOC.   

 There were no clear trends seen regarding the effects on reproduction in chronic tests. 

Out of the daphnids that survived after 21 days¸ all were producing roughly the same 

amount of neonates regardless of metal treatment. The quality of those neonates could be 

different in each treatment. This hypothesis can be tested in future studies.   
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4.4 Significance:    

 

The integrative aspect of this research was achieved through addressing the objectives by using a 

variety of biological and chemical tools. For example, acute toxicity tests with live animals was 

compared to the Cu free ion measurements obtained from chemical analyses. Chemical analyses 

were also used for characterizing the DOC and deriving the biological origins of the different 

sources. Being an ecotoxicology project, nearly all aspects of this work integrated biology with 

chemistry.  

 Furthermore, metal contamination was studied at the organism level but connections to 

the ecosystem level are made by applying this research in the understanding of ecosystem 

recovery processes in the Sudbury region.  This research was part of a 5 year TALER 

(Terrestrial-Aquatic Linkages for Ecosystem Recovery) project. Understanding the connections 

between DOC and metal mixtures can be useful in advising industries and policy-makers 

regarding innovative remediation strategies to overcome the ecological stresses from metal 

contamination. The current study highlights an important area of research that needs to be further 

understood since metals in the environment are present as mixtures rather than in isolation. It 

was discovered through this work that, at certain concentrations, the toxicity of Ni and Cu can be 

greater when combined, in comparison to their individual metal toxicity. Metal mixtures may be 

integrated into modelling tools, such as the Biotic Ligand Model (BLM), used in environmental 

policy-making.  By understanding toxicity of metal mixtures, it is likely that future harmful 

effects on aquatic ecosystems can be diminished.  
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6.     Figures 
 

 

Figure 1.1: Proposed mode of action for nickel and copper cations entering the cellular 

membrane at the respiratory interface. In this diagram, nickel and copper enter at different ion 

transport sites. Question marks represent possible unknown sites of competition with other 

cations passing through the same channel.  

 

 

Figure 1.2: Alternative mode of action for nickel and copper cations entering the cellular 

membrane at the respiratory interface. In this diagram, nickel and copper are thought to enter 

through the same ion channel. Question marks represent possible unknown sites of competition 

with other cations passing through the same channel. 
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Figure 3.1: Mortality rate as a result of Cu exposure over 48h to D. pulex-pulicaria.  Probit 

analysis yields a LC50 is 2.43 (95% CI 2.12-2.82) µg/L. Mean mortality is shown with SEM 

(n=8) and * indicates significant difference (p < 0.05) from controls with no added Cu. 

 

 

Figure 3.2: 48h acute Ni exposure to D. pulex-pulicaria. The 48h LC50 is 995 µg/L (95% CI 

877- 1125 µg/L). Error bars represent SEM(n = 8)and * indicates significant difference from 

unexposed controls (p < 0.05).  
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Figure 3.3: 48h acute effect of Ni and Cu mixtures to D. pulex-pulicaria in comparison to 

exposure to the individual metal at high Ni concentrations. From left to right, panels show 

increased Cu exposure. Error bars represent SEM. Within each graph, bars labelled with the 

same letter are not significantly different (p < 0.05).  

 

 

Figure 3.4: 48h acute effect of Ni and Cu mixtures to D. pulex-pulicaria in comparison to 

exposure to the individual metal at low Ni concentration. From left to right, panels show 

increased Cu exposure. Error bars represent SEM. Within each graph, bars labelled with the 

same letter are not significantly different (p < 0.05).  
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Figure 3.5:  Mean mortality over 48 h of exposure to Ni-Cu mixtures.  Means are shown with n=8 for each Ni-Cu combination and 

error bars have been left off for clarity.  The grey box provides the range of LC50 values for single-metal Cu only exposures.  
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Figure 3.6:  Toxic units plotted for each Cu-Ni mixture pair. Points that fall on the blue line 

indicate an additive response. Points that fall to the left of the blue line are greater than additive, 

and to the right are less than additive. 
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Figure 3.7: Independent Action model predicts the mortality based on the fraction of each metal 

in the mixture. This was compared to the actual mortality observed in toxicity tests. All mixture 

pairs to the left of the line are less than additive, and to the right are greater than additive.  

 

Figure 3.8: Concentration Addition model predicts the concentration at which the effect occurs 

based on the fraction of each metal in the mixture divided by the concentration at which it exerts 

this effect. This was compared to the actual LC50s from toxicity tests. All mixture pairs above 

the black line are less than additive, and below are more than additive.  

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

0.38 0.385 0.39 0.395 0.4 0.405 0.41 0.415 

A
ct

u
al

 M
ix

tu
re

 C
o

n
ce

n
tr

at
io

n
 (

u
g/

L)
 

Predicted Mixture Concentration (ug/L) 

less than additive 

more than additive 

strictly additive (1:1 Line) 



50 
 

 

 

 

Figure 3.9: DOC from Luther Marsh (LM), Clearwater Lake (CWL), and Daisy Lake (DL) in solution with metal mixtures at 1000 

and 2000 µg/L Ni. The grey box indicates the Cu LC50 range without added DOC.  
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A)    

B)    

Figure 3.10 : Effect of adding 4 mg/L DOC from Luther Marsh to a solution with A) only Ni, 

and B) only Cu. There is a significant effect of Ni on daphnid mortality, with and without DOC 

(p < 0.05). There is a significant effect of Cu on daphnid mortality (p < 0.05) only when there is 

no DOC present. Cu does not have a significant effect on mortality in the presence of DOC ( p > 

0.05).  
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 (A) Clearwater        (B) Daisy Lake    

   

 

(C) Luther Marsh 

 

Figure 3.11: Spectral contour plots of fluorescence intensities from 

excitation-emission matrices for the NOM isolates from three different 

sources: A) Clearwater Lake, B) Daisy Lake, C) Luther Marsh.   
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 A)                   B) 

   
 C)                    D) 

Figure 3.12: 21-day chronic effects of Ni and Cu mixtures on D. pulex-pulicaria.  Each of the four panels show the response across a 

gradient of Cu exposure at different Ni concentrations and each bar is the mean for n = 10 daphnids.  Error bars indicate the SEM for 

mortality. All Cu treatments were significantly different from controls for Ni concentrations of 1.8, 5.6 and 56 µg/L. A) F(4, 33) = 

5.51, p < 0.05; B) F(4, 39) = 2.79, p < 0.05, C) F (4, 40) = 1.61, p > 0.05; D) F(4, 41) = 77.99, p < 0.05.    

0 

20 

40 

60 

80 

100 

control 1.8 / 0.32 1.8 / 1.0 1.8/ 1.78 1.8/3.16 

M
o

rt
al

it
y 

(%
) 

Ni/ Cu (µg/L) 

0 

20 

40 

60 

80 

100 

control 5.6 / 0.32 5.6 / 1.0 5.6/ 1.78 5.6/3.16 

M
o

rt
al

it
y 

(%
) 

Ni/ Cu (µg/L) 

0 

20 

40 

60 

80 

100 

control 18 / 0.32 18 / 1.0 18/ 1.78 18/3.16 

M
o

rt
al

it
y 

(%
) 

Ni/ Cu (µg/L) 

0 

20 

40 

60 

80 

100 

control 56 / 0.32 56 / 1.0 56/ 1.78 56/3.16 

M
o

rt
al

it
y 

(%
) 

Ni/ Cu (µg/L) 



54 
 

0 

20 

40 

60 

80 

100 

control 18 / 0.32 18 / 1.0 18/ 1.78 18/3.16 

A
vg

. N
e

o
n

at
e

s 
 

Ni/ Cu (µg/L) 

     
A)              B) 

   

 

 

Figure 3.13: Average neonates produced by daphnids surviving after 21 

days of chronic Ni-Cu exposure. Error bars indicate SEM for number of 

neonates produced. All Cu treatments from each of the three Ni were not 

significantly different from controls (p > 0.05). F( 4, 19)= 1.69 for 1.8 

µg/L Ni, F(4, 30)= 0.61 for 5.6 µg/L Ni, and F(4, 30) = 1.17 for 18 µg/L 

Ni. 
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7.     Tables 

 

Table 2.1: Chemical composition of the FLAMES medium (Celis et al., 2008).  

Compound Name Formula 
Concentration 

(g/L) 

Calcium sulfate dihydrate CaSO4.2H2O 0.547 

Ferric chloride hexahydrate FeCl3.6H2O 0.082 

Borid Acid H3BO3 0.715 

Sodium metasilicate nonahydrate Na2SiO2.9H2O 4.573 

Potassium Chloride KCl 0.705 

Magnesium sulfate heptahydrate MgSO4.7H2O 7.6 

Potassium phosphate monobasic KH2PO4 0.044 

Sodium nitrate NaNO3 0.082 

Disodium EDTA Na2EDTA 1.00 

Biotin From Lynch et al. 1986 0.100 

Animate See Table 6 in Celis et al. 2008 -- 

Vitamin Mix See Table 1 in Lynch et al. 1986 -- 
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Table 2.2: Location coordinates for DOM sampling sources.  

Lake Sampling Location GPS Coordinates 

Luther Marsh 43°54'16.4"N 80°24'34.1"W 43.904621, -80.409556 

Daisy Lake 46°26'37.4"N 80°54'14.8"W 46.443922, -80.904342 

Clearwater Lake 46°22'14.8"N 81°03'12.1"W 46.370766, -81.053368 

 

Table 3.1: Ni and Cu single-metal  acute test LC50's over time. LC50 values were calculated in 

SPSS. Cu measured via Graphite furnace and Ni via Flame-AAS.    

Nominal Total Dissolved   

Ni (µg/L) 
Cu 

(µg/L) 

Ni 

(µg/L) 

Cu 

(µg/L) 

Ni 

(µg/L) 

Cu 

(µg/L) 

n 

Avg 

Mortalit-

y (%) 

Prob-

it 

LC50 

Lowe-

r CI 

Upp-

er CI 

0 0 0 0 
 

0 

8 

0 

2.65 2.15 3.2 

0 2 0 1.008 
 

0.873 15 

0 4 0 3.339 
 

2.893 
42.5 

0 8 0 6.823 
 

5.144 
100 

0 16 0 14.19 
 

14.02

4 
100 

0 32 0 31.6 
 

30.22

4 
100 

0 0 0 0.12 
 

0.09 

10 

2 

2.968 2.536 3.452 

0 1 0 1.05 
 

0.782 18 

0 2 0 2.25 
 

1.985 
30 

0 3 0 2.89 
 

2.114 
38 

0 4 0 4.27 
 

3.121 54 

0 6 0 6.44 
 

5.823 90 

0 12 0 11.62 
 

10.98

2 
100 

0 0 0 0.265 
 

0.102 

10 

3.33 

2.425 2.145 2.823 0 1 0 1.151 
 

0.927 6.67 

0 2 0 1.669 
 

1.362 
10 
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0 3 0 1.737 
 

1.625 
13.33 

0 4 0 1.788 
 

1.657 
30 

0 6 0 3.406 
 

2.996 90 

0 12 0 7.317 
 

6.852 
100 

0 0 0 0 
  

10 

0 

4.68 3.86 5.74 

500 0 486 0 455 
 

0 

1000 0 1140 0 1129 
 

17.5 

2000 0 2560 0 2381 
 

37.5 

4000 0 3948 0 3192 
 

55 

8000 0 9655 0 8768 
 

97.5 

16000 0 14785 0 12478 
 

100 

0 0 0 0 
  

8 

0 

1.37 1.115 1.64 

500 0 486 0 477 
 

16 

1000 0 1210 0 1082 
 

52 

2000 0 2340 0 2084 
 

58 

4000 0 4110 0 4022 
 

86 

8000 0 8790 0 7972 
 

100 

16000 0 15030 0 14268 
 

100 

0 0 0 0 
  

 0 

0.995 0.877 1.125 

100 0 74 0 68 
 

 0 

250 0 240 0 256 
 

 0 

500 0 394 0 391 
 

8 10 

1000 0 773 0 704 
 

 37.5 

1500 0 1051 0 989 
 

 52.5 

2000 0 1436 0 1274 
 

 62.5 
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Table 3.2: 48h acute LC50 values for Ni-Cu mixture combinations with no added DOC. Cu 

concentrations are 0, 1, 3, 6, and 12 µg/L. Probit LC50 values were calculated in SPSS.  

Sample ID LC50 Upper CI Lower CI Ni TU Cu TU Sum of TU 

75 µg/L Ni + Cu 1.392 1.199 1.639 0.076 0.57 0.65 

150 µg/L Ni + Cu 2.469 2.074 2.884 0.15 1.02 1.17 

250 µg/L Ni + Cu 4.01 3.35 4.78 0.25 1.65 1.91 

500 µg/L Ni + Cu 2.23 1.84 2.65 0.51 0.92 1.42 

1000 µg/L Ni + Cu 2.65 2.32 2.96 1.01 0.029 1.04 

2000 µg/L Ni + Cu 0.129 0.06 0.191 2.02 0.0062 2.03 

 

Table 3.3: 48h acute LC50 values calculated for mixtures with DOC from 3 different sources: 

LM, CWL, DL. The Probit value for CWL + 2 mg Ni and DL + 2 mg Ni could not be calculated 

since the mortality was greater than 50% in all treatments. 

Sample ID LC50 Lower CI Upper CI 

LM DOC + 1 mg Ni 3.97 3.206 4.852 

LM DOC + 2 mg Ni 0.569 0.005 1.273 

CWL DOC + 1 mg Ni 8.3 5.5 38.6 

DL DOC + 1 mg Ni 6.3 4.05 16.52 

DL DOC + 2 mg Ni NA NA NA 

CWL DOC + 2 mg Ni NA NA NA 

 

 

 

3000 0 2819 0 2608 
 

 97.5 

4000 0 3689 0 3216 
 

 100 
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Table 3.4: Cu free ion concentrations in solutions containing DOC from either Clearwater Lake 

(CWL) or Luther Marsh (LM). DOC concentrations were kept constant throughout the 

treatments. Free ions were measured using the Cu ISE.  Actual Cu and Ni concentrations were 

measured using the Spectra AA Flame and Graphite Furnace.  

Number 
Source 

ID 

Ni 

(µg/L) 

DOC 

(mg/L) 

Cu 

(µg/L) 

Cu Free 

ions 

(ng/L) 

Cu 

free 

ions 

(%) 

Cu Free 

Ions 

(logCuT) 

SD Mortality 

1 

CWL 

+ Cu + 

Ni 

1800 5.1 5 134 2.7 - 8.68 0.23 100 

2 
CWL 

+  Cu 
1800 5.1 2.23 41 1.8 - 9.19 0.08 0 

3 
CWL 

+ Ni 
1800 5.1 4.0 114 2.9 - 8.75 0.26 80 

4 

LM + 

Cu + 

Ni 

1800 4.9 3.1 1423 45.9 -7.653 1.56 85 

5 
LM + 

Cu 
1800 4.9 3.0 42 1.4 - 9.187 0.08 0 

6 
LM + 

Ni 
1800 4.9 0.32 2 0.6 -10.42 0.31 90 
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Table 3.5: Absorbance for DOC solutions corresponding to the Cu ISE test solutions in Table 

3.2. Absorbance was measured using a spectrophotometer. DOC was measured using TOC-L. 

SAC340 coefficients were calculated using equation 3.  

Sample ID Absorbance  DOC (mg/L) SAC340 

LM + 3.7 Cu 0.074 4.8 35.50 

LM + 1 Ni 0.082 4.8 39.34 

LM + Mixture 0.087 4.8 41.74 

CWL + 3.7 Cu 0.032 4.8 15.35 

CWL + 1 Ni 0.034 4.8 16.31 

CWL + Mixture 0.034 4.8 16.31 

 

Table 3.6: Fluorescence Indices (FI) for the three sources of DOC: LM, CWL, and DL. 

Excitation intensities at 370 nm are reported for the emission intensity wavelengths of 450 and 

500 nm, which were used for calculating the FI value (equation 4). Predicted composition is 

based on FEEM optical characterization plots.  

DOC 

Source 

Wavelength 

(nm) 

Emission 

Intensity 

(a.u.) 

FI 
Predicted 

Origin 

Predicted 

Composition 

LM 
450 23.53 

1.03 Allochthonous Fulvic 

500 22.94 

CWL 
450 18.44 

1.22 

Allochthonous 

and/or 

Autochthonous 

Fulvic, 

Humic, 

Tryptophan, 

Tyrosine 500 15.08 

DL 
450 33.52 

1.41 Autochthonous 

Humic, 

Tryptophan, 

Tyrosine 500 23.79 
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Table 4.1:  Data published on the toxicity of Ni and Cu to G. pulex and Daphnia species.  

Author Organism Metal Age Duration Water 
Measured 

Effect 

Effect 

Concentration 

(µg/L) 

Ca 

(mg/L) 
pH 

DOC 

(mg/L) 

Biesinger 

and 

Christensen, 

1972 

D. magna Ni < 24h 48 h 
Lake 

Superior 
LC50 510 18.045 7.3-7.6 1 

Leonard and 

Wood, 2013 
D. pulex Ni 6-8 d 48 h 

dechlorinated 

Hamilton tap 

water 

LC50 750 134.736 7.8–8.0 2.3 

Present 

Study 

D. pulex-

pulicaria 
Ni < 24h 48 h 

FLAMES 

Media 
LC50 995 2.5 6.3-6.6 1 

Pane et al., 

2003 
D. magna Ni < 24h 48 h 

Ottawa city 

tap water 
LC50 1,068 18.045 7.3-7.6 3.6 

Leonard and 

Wood, 2013 
D. pulex Ni 6-8 d 48 h 

dechlorinated 

Hamilton tap 

water 

LC50 2600 421.451 7.8–8.0 2.3 

Charles et 

al., 2013 

Gammarus 

pulex 
Ni 

Adult >6 

mm/male 
48h 

mineral 

water 

Evian® 

LC50 466,000 80 7.5±0.02 NA 

           
Present 

Study 

D. pulex-

pulicaria 
Cu < 24h 48 h 

FLAMES 

Media 
LC50 2.43 2.5 6.3-6.6 1 

Long et al., 

2004 
D. magna Cu < 24h 48 h 

laboratory 

water with 

salts 

LC50 2 ± 1.5 2.8471 5.6 NA 

Long et al., 

2004 
D. magna Cu < 24h 48 h 

laboratory 

water with 

salts 

LC50 2.0 ± 0.5 8.2606 5.5 NA 
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Long et al., 

2004 
D. magna Cu < 24h 48 h 

laboratory 

water with 

salts 

LC50 2.8 ± 1 2.8471 7 NA 

Stoddard 

and Harper, 

2007 

D. magna Cu < 24h 48 h 
reconstituted 

hard water 
LC50 4.72 46.115 7.8-8.2 NA 

Dave, 1984 D. magna Cu 
< 24h 

(unfed) 
48 h 

carbon 

filtered well 

water 

EC50 6.5 48.12 8-8.1 NA 

Long et al., 

2004 
D. magna Cu < 24h 48 h 

laboratory 

water with 

salts 

LC50 7.4 ± 1.3 8.2606 7 NA 

Biesinger 

and 

Christensen, 

1972 

D. magna Cu 
< 24h 

(unfed) 
48 h 

Lake 

Superior 
LC50 9.8 18.045 7.3-7.6 1 

Dave, 1984 D. magna Cu 
< 24h  

(fed) 
48 h 

carbon 

filtered well 

water 

LC50 18.5 48.12 8-8.1 NA 

Biesinger 

and 

Christensen, 

1972 

D. magna Cu 
< 24h 

(fed) 
48 h 

Lake 

Superior 
LC50 60 18.045 7.3-7.6 1 

Guilhermino 

et al., 2000 
D. magna Cu < 24h 48 h 

ASTM hard 

water 
LC50 82.6 

 
NA NA 

Meyer et al., 

2015 
D. magna Cu < 24h 48 h 

moderately 

hard 

reconstituted 

water 

EC50 103 36.09 7.4-7.8 3 

Charles et 

al., 2013 

Gammarus 

pulex 
Ni 

Adult >6 

mm/male 
48 h 

mineral 

water 

Evian® 

LC50 249 80 7.5±0.02 NA 
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8.     Appendix 

 

 

Table 5.1a: 2-way ANOVA was conducted for Ni-Cu mixtures without added DOC, where mortality was the dependent 

variable.  

 

Source 
Type III Sum of 

Squares 
df Mean Square F Sig. 

Corrected Model 531840.968a 34 15642.381 99.876 .000 

Intercept 882996.252 1 882996.252 5637.891 .000 

Ni 80694.301 6 13449.050 85.872 .000 

Cu 390506.503 4 97626.626 623.342 .000 

Ni * Cu 59474.409 24 2478.100 15.823 .000 

Error 43070.000 275 156.618   
Total 1524800.000 310    
Corrected Total 574910.968 309    
a. R Squared = .925 (Adjusted R Squared = .916) 

 

Table 5.1b: Pairwise comparisons from Post-Hoc Tukey test corresponding to the 2-way ANOVA for mixtures without added 

DOC. The difference between Cu treatments at each Ni treatment are indicated by the letters (A, B, C ...). 

Ni (I) Cu (J) Cu 
Mean Difference 

(I-J) 
Std. Error Sig. ҂ 

Significance 

Comparison 

95% Confidence Interval for Difference҂ 

Lower Bound Upper Bound 

.00 

.00 

1.00 -3.333 7.225 1.000 A -23.780 17.113 

3.00 -10.000 7.225 1.000 A -30.447 10.447 

6.00 -86.667* 7.225 .000 B -107.113 -66.220 

12.00 -96.667* 7.225 .000 B -117.113 -76.220 

1.00 

.00 3.333 7.225 1.000 A -17.113 23.780 

3.00 -6.667 7.225 1.000 A -27.113 13.780 

6.00 -83.333* 7.225 .000 B -103.780 -62.887 

12.00 -93.333* 7.225 .000 B -113.780 -72.887 

3.00 

.00 10.000 7.225 1.000 A -10.447 30.447 

1.00 6.667 7.225 1.000 A -13.780 27.113 

6.00 -76.667* 7.225 .000 B -97.113 -56.220 

12.00 -86.667* 7.225 .000 B -107.113 -66.220 

6.00 
.00 86.667* 7.225 .000 A 66.220 107.113 

1.00 83.333* 7.225 .000 A 62.887 103.780 
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3.00 76.667* 7.225 .000 A 56.220 97.113 

12.00 -10.000 7.225 1.000 B -30.447 10.447 

12.00 

.00 96.667* 7.225 .000 A 76.220 117.113 

1.00 93.333* 7.225 .000 A 72.887 113.780 

3.00 86.667* 7.225 .000 A 66.220 107.113 

6.00 10.000 7.225 1.000 B -10.447 30.447 

55.86 

.00 

1.00 -4.000 5.597 1.000 A -19.838 11.838 

3.00 -8.000 5.597 1.000 A -23.838 7.838 

6.00 -100.000* 5.597 .000 B -115.838 -84.162 

12.00 -100.000* 5.597 .000 B -115.838 -84.162 

1.00 

.00 4.000 5.597 1.000 A -11.838 19.838 

3.00 -4.000 5.597 1.000 A -19.838 11.838 

6.00 -96.000* 5.597 .000 B -111.838 -80.162 

12.00 -96.000* 5.597 .000 B -111.838 -80.162 

3.00 

.00 8.000 5.597 1.000 A -7.838 23.838 

1.00 4.000 5.597 1.000 A -11.838 19.838 

6.00 -92.000* 5.597 .000 B -107.838 -76.162 

12.00 -92.000* 5.597 .000 B -107.838 -76.162 

6.00 

.00 100.000* 5.597 .000 A 84.162 115.838 

1.00 96.000* 5.597 .000 A 80.162 111.838 

3.00 92.000* 5.597 .000 A 76.162 107.838 

12.00 2.442E-14 5.597 1.000 B -15.838 15.838 

12.00 

.00 100.000* 5.597 .000 A 84.162 115.838 

1.00 96.000* 5.597 .000 A 80.162 111.838 

3.00 92.000* 5.597 .000 A 76.162 107.838 

6.00 -2.442E-14 5.597 1.000 B -15.838 15.838 

131.22 

.00 

1.00 -4.000 5.597 1.000 A -19.838 11.838 

3.00 -22.000* 5.597 .001 B -37.838 -6.162 

6.00 -100.000* 5.597 .000 C -115.838 -84.162 

12.00 -100.000* 5.597 .000 C -115.838 -84.162 

1.00 

.00 4.000 5.597 1.000 A -11.838 19.838 

3.00 -18.000* 5.597 .015 B -33.838 -2.162 

6.00 -96.000* 5.597 .000 C -111.838 -80.162 

12.00 -96.000* 5.597 .000 C -111.838 -80.162 

3.00 

.00 22.000* 5.597 .001 A 6.162 37.838 

1.00 18.000* 5.597 .015 B 2.162 33.838 

6.00 -78.000* 5.597 .000 C -93.838 -62.162 

12.00 -78.000* 5.597 .000 C -93.838 -62.162 

6.00 
.00 100.000* 5.597 .000 A 84.162 115.838 

1.00 96.000* 5.597 .000 A 80.162 111.838 
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3.00 78.000* 5.597 .000 A 62.162 93.838 

12.00 2.720E-14 5.597 1.000 B -15.838 15.838 

12.00 

.00 100.000* 5.597 .000 A 84.162 115.838 

1.00 96.000* 5.597 .000 A 80.162 111.838 

3.00 78.000* 5.597 .000 A 62.162 93.838 

6.00 -2.720E-14 5.597 1.000 B -15.838 15.838 

228.87 

.00 

1.00 5.000 6.257 1.000 A -12.707 22.707 

3.00 -1.421E-14 6.257 1.000 A -17.707 17.707 

6.00 -70.000* 6.257 .000 B -87.707 -52.293 

12.00 -80.000* 6.257 .000 B -97.707 -62.293 

1.00 

.00 -5.000 6.257 1.000 A -22.707 12.707 

3.00 -5.000 6.257 1.000 A -22.707 12.707 

6.00 -75.000* 6.257 .000 B -92.707 -57.293 

12.00 -85.000* 6.257 .000 B -102.707 -67.293 

3.00 

.00 1.421E-14 6.257 1.000 A -17.707 17.707 

1.00 5.000 6.257 1.000 A -12.707 22.707 

6.00 -70.000* 6.257 .000 B -87.707 -52.293 

12.00 -80.000* 6.257 .000 B -97.707 -62.293 

6.00 

.00 70.000* 6.257 .000 A 52.293 87.707 

1.00 75.000* 6.257 .000 A 57.293 92.707 

3.00 70.000* 6.257 .000 A 52.293 87.707 

12.00 -10.000 6.257 1.000 B -27.707 7.707 

12.00 

.00 80.000* 6.257 .000 A 62.293 97.707 

1.00 85.000* 6.257 .000 A 67.293 102.707 

3.00 80.000* 6.257 .000 A 62.293 97.707 

6.00 10.000 6.257 1.000 B -7.707 27.707 

474.37 

.00 

1.00 -27.500* 6.257 .000 A -45.207 -9.793 

3.00 -25.000* 6.257 .001 B -42.707 -7.293 

6.00 -95.000* 6.257 .000 C -112.707 -77.293 

12.00 -95.000* 6.257 .000 C -112.707 -77.293 

1.00 

.00 27.500* 6.257 .000 A 9.793 45.207 

3.00 2.500 6.257 1.000 B -15.207 20.207 

6.00 -67.500* 6.257 .000 C -85.207 -49.793 

12.00 -67.500* 6.257 .000 C -85.207 -49.793 

3.00 

.00 25.000* 6.257 .001 A 7.293 42.707 

1.00 -2.500 6.257 1.000 B -20.207 15.207 

6.00 -70.000* 6.257 .000 C -87.707 -52.293 

12.00 -70.000* 6.257 .000 C -87.707 -52.293 

6.00 

.00 95.000* 6.257 .000 A 77.293 112.707 

1.00 67.500* 6.257 .000 A 49.793 85.207 

3.00 70.000* 6.257 .000 A 52.293 87.707 
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12.00 7.661E-15 6.257 1.000 B -17.707 17.707 

12.00 

.00 95.000* 6.257 .000 A 77.293 112.707 

1.00 67.500* 6.257 .000 A 49.793 85.207 

3.00 70.000* 6.257 .000 A 52.293 87.707 

6.00 -7.661E-15 6.257 1.000 B -17.707 17.707 

950.97 

.00 

1.00 .000 5.597 1.000 A -15.838 15.838 

3.00 -44.000* 5.597 .000 B -59.838 -28.162 

6.00 -74.000* 5.597 .000 B -89.838 -58.162 

12.00 -72.000* 5.597 .000 B -87.838 -56.162 

1.00 

.00 .000 5.597 1.000 A -15.838 15.838 

3.00 -44.000* 5.597 .000 B -59.838 -28.162 

6.00 -74.000* 5.597 .000 B -89.838 -58.162 

12.00 -72.000* 5.597 .000 B -87.838 -56.162 

3.00 

.00 44.000* 5.597 .000 A 28.162 59.838 

1.00 44.000* 5.597 .000 A 28.162 59.838 

6.00 -30.000* 5.597 .000 A -45.838 -14.162 

12.00 -28.000* 5.597 .000 A -43.838 -12.162 

6.00 

.00 74.000* 5.597 .000 A 58.162 89.838 

1.00 74.000* 5.597 .000 A 58.162 89.838 

3.00 30.000* 5.597 .000 A 14.162 45.838 

12.00 2.000 5.597 1.000 B -13.838 17.838 

12.00 

.00 72.000* 5.597 .000 A 56.162 87.838 

1.00 72.000* 5.597 .000 A 56.162 87.838 

3.00 28.000* 5.597 .000 A 12.162 43.838 

6.00 -2.000 5.597 1.000 B -17.838 13.838 

1849.05 

.00 

1.00 -16.000* 5.597 .046 A -31.838 -.162 

3.00 -32.000* 5.597 .000 B -47.838 -16.162 

6.00 -36.000* 5.597 .000 B -51.838 -20.162 

12.00 -36.000* 5.597 .000 B -51.838 -20.162 

1.00 

.00 16.000* 5.597 .046 A .162 31.838 

3.00 -16.000* 5.597 .046 A -31.838 -.162 

6.00 -20.000* 5.597 .004 B -35.838 -4.162 

12.00 -20.000* 5.597 .004 B -35.838 -4.162 

3.00 

.00 32.000* 5.597 .000 A 16.162 47.838 

1.00 16.000* 5.597 .046 B .162 31.838 

6.00 -4.000 5.597 1.000 A -19.838 11.838 

12.00 -4.000 5.597 1.000 A -19.838 11.838 

6.00 
.00 36.000* 5.597 .000 A 20.162 51.838 

1.00 20.000* 5.597 .004 B 4.162 35.838 
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3.00 4.000 5.597 1.000 A -11.838 19.838 

12.00 -7.838E-14 5.597 1.000 A -15.838 15.838 

12.00 

.00 36.000* 5.597 .000 A 20.162 51.838 

1.00 20.000* 5.597 .004 B 4.162 35.838 

3.00 4.000 5.597 1.000 A -11.838 19.838 

6.00 7.838E-14 5.597 1.000 A -15.838 15.838 

 Based on estimated marginal means 

 *. The mean difference is significant at the .05 level. 
 ҂. Adjustment for multiple comparisons: Bonferroni. 

 

Table 5.1 c: Pairwise comparisons from Post-Hoc Tukey test corresponding to the 2-way ANOVA for mixtures without added 

DOC in 5.1a. The difference between Ni treatments at each Cu treatment are indicated by the letters (A, B, C ...).  

Cu (I) Ni (J) Ni 
Mean Difference 

(I-J) 
Std. Error Sig.҂ 

Significance 

comparison 

95% Confidence Interval for Difference҂ 

Lower Bound Upper Bound 

.00 

.00 

55.86 3.333 6.463 1.000 A -16.485 23.151 

131.22 3.333 6.463 1.000 A -16.485 23.151 

228.87 -11.667 6.759 1.000 A -32.393 9.059 

474.37 -1.667 6.759 1.000 A -22.393 19.059 

950.97 -22.667* 6.463 .011 B -42.485 -2.849 

1849.05 -60.667* 6.463 .000 C -80.485 -40.849 

55.86 

.00 -3.333 6.463 1.000 A -23.151 16.485 

131.22 .000 5.597 1.000 A -17.163 17.163 

228.87 -15.000 5.936 .253 B -33.204 3.204 

474.37 -5.000 5.936 1.000 A -23.204 13.204 

950.97 -26.000* 5.597 .000 C -43.163 -8.837 

1849.05 -64.000* 5.597 .000 C -81.163 -46.837 

131.22 

.00 -3.333 6.463 1.000 A -23.151 16.485 

55.86 .000 5.597 1.000 A -17.163 17.163 

228.87 -15.000 5.936 .253 B -33.204 3.204 

474.37 -5.000 5.936 1.000 A -23.204 13.204 

950.97 -26.000* 5.597 .000 C -43.163 -8.837 

1849.05 -64.000* 5.597 .000 C -81.163 -46.837 

228.87 

.00 11.667 6.759 1.000 A -9.059 32.393 

55.86 15.000 5.936 .253 B -3.204 33.204 

131.22 15.000 5.936 .253 B -3.204 33.204 

474.37 10.000 6.257 1.000 A -9.189 29.189 

950.97 -11.000 5.936 1.000 A -29.204 7.204 
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1849.05 -49.000* 5.936 .000 C -67.204 -30.796 

474.37 

.00 1.667 6.759 1.000 A -19.059 22.393 

55.86 5.000 5.936 1.000 A -13.204 23.204 

131.22 5.000 5.936 1.000 A -13.204 23.204 

228.87 -10.000 6.257 1.000 A -29.189 9.189 

950.97 -21.000* 5.936 .010 B -39.204 -2.796 

1849.05 -59.000* 5.936 .000 C -77.204 -40.796 

950.97 

.00 22.667* 6.463 .011 A 2.849 42.485 

55.86 26.000* 5.597 .000 B 8.837 43.163 

131.22 26.000* 5.597 .000 B 8.837 43.163 

228.87 11.000 5.936 1.000 C -7.204 29.204 

474.37 21.000* 5.936 .010 D 2.796 39.204 

1849.05 -38.000* 5.597 .000 B -55.163 -20.837 

1849.05 

.00 60.667* 6.463 .000 A 40.849 80.485 

55.86 64.000* 5.597 .000 A 46.837 81.163 

131.22 64.000* 5.597 .000 A 46.837 81.163 

228.87 49.000* 5.936 .000 A 30.796 67.204 

474.37 59.000* 5.936 .000 A 40.796 77.204 

950.97 38.000* 5.597 .000 A 20.837 55.163 

1.00 

.00 

55.86 2.667 6.463 1.000 A -17.151 22.485 

131.22 2.667 6.463 1.000 A -17.151 22.485 

228.87 -3.333 6.759 1.000 A -24.059 17.393 

474.37 -25.833* 6.759 .003 B -46.559 -5.107 

950.97 -19.333 6.463 .064 C -39.151 .485 

1849.05 -73.333* 6.463 .000 D -93.151 -53.515 

55.86 

.00 -2.667 6.463 1.000 A -22.485 17.151 

131.22 -4.263E-14 5.597 1.000 A -17.163 17.163 

228.87 -6.000 5.936 1.000 A -24.204 12.204 

474.37 -28.500* 5.936 .000 B -46.704 -10.296 

950.97 -22.000* 5.597 .002 C -39.163 -4.837 

1849.05 -76.000* 5.597 .000 B -93.163 -58.837 

131.22 

.00 -2.667 6.463 1.000 A -22.485 17.151 

55.86 4.263E-14 5.597 1.000 A -17.163 17.163 

228.87 -6.000 5.936 1.000 A -24.204 12.204 

474.37 -28.500* 5.936 .000 B -46.704 -10.296 

950.97 -22.000* 5.597 .002 C -39.163 -4.837 

1849.05 -76.000* 5.597 .000 B -93.163 -58.837 

228.87 
.00 3.333 6.759 1.000 A -17.393 24.059 

55.86 6.000 5.936 1.000 A -12.204 24.204 
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131.22 6.000 5.936 1.000 A -12.204 24.204 

474.37 -22.500* 6.257 .008 B -41.689 -3.311 

950.97 -16.000 5.936 .157 C -34.204 2.204 

1849.05 -70.000* 5.936 .000 D -88.204 -51.796 

474.37 

.00 25.833* 6.759 .003 A 5.107 46.559 

55.86 28.500* 5.936 .000 B 10.296 46.704 

131.22 28.500* 5.936 .000 B 10.296 46.704 

228.87 22.500* 6.257 .008 C 3.311 41.689 

950.97 6.500 5.936 1.000 D -11.704 24.704 

1849.05 -47.500* 5.936 .000 B -65.704 -29.296 

950.97 

.00 19.333 6.463 .064 A -.485 39.151 

55.86 22.000* 5.597 .002 B 4.837 39.163 

131.22 22.000* 5.597 .002 B 4.837 39.163 

228.87 16.000 5.936 .157 C -2.204 34.204 

474.37 -6.500 5.936 1.000 D -24.704 11.704 

1849.05 -54.000* 5.597 .000 E -71.163 -36.837 

1849.05 

.00 73.333* 6.463 .000 A 53.515 93.151 

55.86 76.000* 5.597 .000 A 58.837 93.163 

131.22 76.000* 5.597 .000 A 58.837 93.163 

228.87 70.000* 5.936 .000 A 51.796 88.204 

474.37 47.500* 5.936 .000 A 29.296 65.704 

950.97 54.000* 5.597 .000 A 36.837 71.163 

3.00 

.00 

55.86 5.333 6.463 1.000 A -14.485 25.151 

131.22 -8.667 6.463 1.000 A -28.485 11.151 

228.87 -1.667 6.759 1.000 A -22.393 19.059 

474.37 -16.667 6.759 .300 B -37.393 4.059 

950.97 -56.667* 6.463 .000 C -76.485 -36.849 

1849.05 -82.667* 6.463 .000 C -102.485 -62.849 

55.86 

.00 -5.333 6.463 1.000 A -25.151 14.485 

131.22 -14.000 5.597 .272 B -31.163 3.163 

228.87 -7.000 5.936 1.000 A -25.204 11.204 

474.37 -22.000* 5.936 .005 C -40.204 -3.796 

950.97 -62.000* 5.597 .000 D -79.163 -44.837 

1849.05 -88.000* 5.597 .000 D -105.163 -70.837 

131.22 

.00 8.667 6.463 1.000 A -11.151 28.485 

55.86 14.000 5.597 .272 B -3.163 31.163 

228.87 7.000 5.936 1.000 A -11.204 25.204 

474.37 -8.000 5.936 1.000 A -26.204 10.204 

950.97 -48.000* 5.597 .000 C -65.163 -30.837 

1849.05 -74.000* 5.597 .000 C -91.163 -56.837 

228.87 .00 1.667 6.759 1.000 A -19.059 22.393 
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55.86 7.000 5.936 1.000 A -11.204 25.204 

131.22 -7.000 5.936 1.000 A -25.204 11.204 

474.37 -15.000 6.257 .361 B -34.189 4.189 

950.97 -55.000* 5.936 .000 C -73.204 -36.796 

1849.05 -81.000* 5.936 .000 C -99.204 -62.796 

474.37 

.00 16.667 6.759 .300 A -4.059 37.393 

55.86 22.000* 5.936 .005 B 3.796 40.204 

131.22 8.000 5.936 1.000 C -10.204 26.204 

228.87 15.000 6.257 .361 D -4.189 34.189 

950.97 -40.000* 5.936 .000 E -58.204 -21.796 

1849.05 -66.000* 5.936 .000 E -84.204 -47.796 

950.97 

.00 56.667* 6.463 .000 A 36.849 76.485 

55.86 62.000* 5.597 .000 A 44.837 79.163 

131.22 48.000* 5.597 .000 A 30.837 65.163 

228.87 55.000* 5.936 .000 A 36.796 73.204 

474.37 40.000* 5.936 .000 A 21.796 58.204 

1849.05 -26.000* 5.597 .000 A -43.163 -8.837 

1849.05 

.00 82.667* 6.463 .000 A 62.849 102.485 

55.86 88.000* 5.597 .000 A 70.837 105.163 

131.22 74.000* 5.597 .000 A 56.837 91.163 

228.87 81.000* 5.936 .000 A 62.796 99.204 

474.37 66.000* 5.936 .000 A 47.796 84.204 

950.97 26.000* 5.597 .000 A 8.837 43.163 

6.00 

.00 

55.86 -10.000 6.463 1.000 A -29.818 9.818 

131.22 -10.000 6.463 1.000 A -29.818 9.818 

228.87 5.000 6.759 1.000 A -15.726 25.726 

474.37 -10.000 6.759 1.000 A -30.726 10.726 

950.97 -10.000 6.463 1.000 A -29.818 9.818 

1849.05 -10.000 6.463 1.000 A -29.818 9.818 

55.86 

.00 10.000 6.463 1.000 A -9.818 29.818 

131.22 -1.110E-14 5.597 1.000 A -17.163 17.163 

228.87 15.000 5.936 .253 B -3.204 33.204 

474.37 4.774E-15 5.936 1.000 A -18.204 18.204 

950.97 1.710E-14 5.597 1.000 A -17.163 17.163 

1849.05 1.055E-13 5.597 1.000 A -17.163 17.163 

131.22 

.00 10.000 6.463 1.000 A -9.818 29.818 

55.86 1.110E-14 5.597 1.000 A -17.163 17.163 

228.87 15.000 5.936 .253 B -3.204 33.204 

474.37 1.588E-14 5.936 1.000 A -18.204 18.204 

950.97 2.842E-14 5.597 1.000 A -17.163 17.163 

1849.05 1.166E-13 5.597 1.000 A -17.163 17.163 
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228.87 

.00 -5.000 6.759 1.000 A -25.726 15.726 

55.86 -15.000 5.936 .253 B -33.204 3.204 

131.22 -15.000 5.936 .253 B -33.204 3.204 

474.37 -15.000 6.257 .361 C -34.189 4.189 

950.97 -15.000 5.936 .253 B -33.204 3.204 

1849.05 -15.000 5.936 .253 B -33.204 3.204 

474.37 

.00 10.000 6.759 1.000 A -10.726 30.726 

55.86 -4.774E-15 5.936 1.000 A -18.204 18.204 

131.22 -1.588E-14 5.936 1.000 A -18.204 18.204 

228.87 15.000 6.257 .361 B -4.189 34.189 

950.97 1.243E-14 5.936 1.000 A -18.204 18.204 

1849.05 1.007E-13 5.936 1.000 A -18.204 18.204 

950.97 

.00 10.000 6.463 1.000 A -9.818 29.818 

55.86 -1.710E-14 5.597 1.000 A -17.163 17.163 

131.22 -2.842E-14 5.597 1.000 A -17.163 17.163 

228.87 15.000 5.936 .253 B -3.204 33.204 

474.37 -1.243E-14 5.936 1.000 A -18.204 18.204 

1849.05 8.837E-14 5.597 1.000 A -17.163 17.163 

1849.05 

.00 10.000 6.463 1.000 A -9.818 29.818 

55.86 -1.055E-13 5.597 1.000 A -17.163 17.163 

131.22 -1.166E-13 5.597 1.000 A -17.163 17.163 

228.87 15.000 5.936 .253 B -3.204 33.204 

474.37 -1.007E-13 5.936 1.000 A -18.204 18.204 

950.97 -8.837E-14 5.597 1.000 A -17.163 17.163 

12.00 

.00 

55.86 4.852E-14 6.463 1.000 A -19.818 19.818 

131.22 4.019E-14 6.463 1.000 A -19.818 19.818 

228.87 5.000 6.759 1.000 A -15.726 25.726 

474.37 3.653E-14 6.759 1.000 A -20.726 20.726 

950.97 2.000 6.463 1.000 A -17.818 21.818 

1849.05 5.118E-14 6.463 1.000 A -19.818 19.818 

55.86 

.00 -4.852E-14 6.463 1.000 A -19.818 19.818 

131.22 -8.327E-15 5.597 1.000 A -17.163 17.163 

228.87 5.000 5.936 1.000 A -13.204 23.204 

474.37 -1.199E-14 5.936 1.000 A -18.204 18.204 

950.97 2.000 5.597 1.000 A -15.163 19.163 

1849.05 2.665E-15 5.597 1.000 A -17.163 17.163 

131.22 

.00 -4.019E-14 6.463 1.000 A -19.818 19.818 

55.86 8.327E-15 5.597 1.000 A -17.163 17.163 

228.87 5.000 5.936 1.000 A -13.204 23.204 
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474.37 -3.664E-15 5.936 1.000 A -18.204 18.204 

950.97 2.000 5.597 1.000 A -15.163 19.163 

1849.05 1.099E-14 5.597 1.000 A -17.163 17.163 

228.87 

.00 -5.000 6.759 1.000 A -25.726 15.726 

55.86 -5.000 5.936 1.000 A -23.204 13.204 

131.22 -5.000 5.936 1.000 A -23.204 13.204 

474.37 -5.000 6.257 1.000 A -24.189 14.189 

950.97 -3.000 5.936 1.000 A -21.204 15.204 

1849.05 -5.000 5.936 1.000 A -23.204 13.204 

474.37 

.00 -3.653E-14 6.759 1.000 A -20.726 20.726 

55.86 1.199E-14 5.936 1.000 A -18.204 18.204 

131.22 3.664E-15 5.936 1.000 A -18.204 18.204 

228.87 5.000 6.257 1.000 A -14.189 24.189 

950.97 2.000 5.936 1.000 A -16.204 20.204 

1849.05 1.465E-14 5.936 1.000 A -18.204 18.204 

950.97 

.00 -2.000 6.463 1.000 A -21.818 17.818 

55.86 -2.000 5.597 1.000 A -19.163 15.163 

131.22 -2.000 5.597 1.000 A -19.163 15.163 

228.87 3.000 5.936 1.000 A -15.204 21.204 

474.37 -2.000 5.936 1.000 A -20.204 16.204 

1849.05 -2.000 5.597 1.000 A -19.163 15.163 

1849.05 

.00 -5.118E-14 6.463 1.000 A -19.818 19.818 

55.86 -2.665E-15 5.597 1.000 A -17.163 17.163 

131.22 -1.099E-14 5.597 1.000 A -17.163 17.163 

228.87 5.000 5.936 1.000 A -13.204 23.204 

474.37 -1.465E-14 5.936 1.000 A -18.204 18.204 

950.97 2.000 5.597 1.000 A -15.163 19.163 

 Based on estimated marginal means 

 *. The mean difference is significant at the .05 level. 

 ҂. Adjustment for multiple comparisons: Bonferroni. 
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Table 5.2: Predicted mortality calculations for the IA model. Actual mortalities are taken from toxicity tests (Fig 3.5).  

    
RNi RCu Y Actual Predicted 

Ni (µg/L) Cu (µg/L) Ni LC50 Cu LC50 Ni Fraction Cu Fraction 
 

Mortality Mortality 

75 1 995 2.425 0.075 0.412 45.67 4 45.66648 

75 3 995 2.425 0.075 1.237 121.92 8 100 

75 6 995 2.425 0.075 2.474 236.32 100 100 

75 12 995 2.425 0.075 4.948 465.084 100 100 

150 1 995 2.425 0.151 0.412 50.096 4 50.09584 

150 3 995 2.425 0.151 1.237 120.137 22 100 

150 6 995 2.425 0.151 2.474 225.197 100 100 

150 12 995 2.425 0.151 4.948 435.321 100 100 

250 1 995 2.425 0.251 0.412 56.002 46.66667 56.00166 

250 3 995 2.425 0.251 1.237 117.754 100 100 

250 6 995 2.425 0.251 2.474 210.382 100 100 

250 12 995 2.425 0.251 4.948 395.638 100 100 

500 1 995 2.425 0.503 0.412 70.766 86.66667 70.7662 

500 3 995 2.425 0.503 1.237 111.796 100 100 

500 6 995 2.425 0.503 2.474 173.341 100 100 

500 12 995 2.425 0.503 4.948 296.431 100 100 

1000 1 995 2.425 1.00 0.412 100.293 70 100 

1000 3 995 2.425 1.00 1.237 99.881 100 99.88085 

1000 6 995 2.425 1.00 2.474 99.259 100 99.25918 

1000 12 995 2.425 1.00 4.948 98.016 100 98.01585 

2000 1 995 2.425 2.01 0.412 159.354 95 100 

2000 3 995 2.425 2.01 1.237 76.050 100 76.05035 

2000 6 995 2.425 2.01 2.474 148.904 100 100 

2000 12 995 2.425 2.01 4.948 398.814 100 100 
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Table 5.3: Predicted mortality calculations for the CA model. Actual probit concentrations were obtained from Table 3.2.  

  

Ni + 

Cu 

PNi PCu XNi XCu X 

Actual 

Mortalit

y 

Predicted 

conc. 

Actual 

conc. 

Ni 

(µg/L) 

Cu 

(µg/L) 

Ni Fractio-

n 

Cu Fractio-

n 

Ni 

LC50 

Cu 

LC50 

Mixture 

(µg/L) 
(avg of X's) 

Probit LC50 

for mixture 

75 1 76 0.987 0.013 995 2.425 0.407 4 

0.385 1.392 
75 3 78 0.962 0.038 995 2.425 0.397 8 

75 6 81 0.926 0.074 995 2.425 0.382 100 

75 12 87 0.862 0.138 995 2.425 0.356 100 

150 1 151 0.993 0.007 995 2.425 0.410 4 

0.398 2.469 
150 3 153 0.980 0.020 995 2.425 0.404 22 

150 6 156 0.962 0.038 995 2.425 0.397 100 

150 12 162 0.926 0.074 995 2.425 0.382 100 

250 1 251 0.996 0.004 995 2.425 0.411 46.66667 

0.404 4.01 
250 3 253 0.988 0.012 995 2.425 0.407 100 

250 6 256 0.977 0.023 995 2.425 0.403 100 

250 12 262 0.954 0.046 995 2.425 0.394 100 

500 1 501 0.998 0.002 995 2.425 0.412 86.66667 

0.408 2.23 
500 3 503 0.994 0.006 995 2.425 0.410 100 

500 6 506 0.988 0.012 995 2.425 0.407 100 

500 12 512 0.977 0.023 995 2.425 0.403 100 

1000 1 1001 0.999 0.001 995 2.425 0.412 70 

0.410 2.65 
1000 3 1003 0.997 0.003 995 2.425 0.411 100 

1000 6 1006 0.994 0.006 995 2.425 0.410 100 

1000 12 1012 0.988 0.012 995 2.425 0.407 100 

2000 1 2001 1.000 0.000 995 2.425 0.412 95 

0.411 0.129 
2000 3 2003 0.999 0.001 995 2.425 0.412 100 

2000 6 2006 0.997 0.003 995 2.425 0.411 100 

2000 12 2012 0.994 0.006 995 2.425 0.410 100 



75 
 

Table 5.4: Measured Cu values using GF-AAS. Total Cu samples were not filtered, while dissolved Cu samples were 

filtered using 0.45 µm filter.  

Nominal Cu 

(µg/L) 

Total Cu (µg/L) 

n = 10 

Dissolved Cu (µg/L) 

n = 10 
Percent Difference 

1 1.47 ± 0.22 1.39 ± 0.56 97.72 ± 3.49 

3 2.47 ± 0.31 2.34 ± 0.33 97.54 ± 6.52 

6 4.45 ± 0.63 4.34 ± 0.62 97.21 ± 3.76 

12 10.37 ± 0.57 10.08 ± 0.54 97.69 ± 2.71 
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Table 5.5: Measured Ni values taken via Flame-AAS. Total Ni samples were not filtered, while dissolved Ni samples were 

filtered using 0.45 µm filter.  

Nominal Ni 

(µg/L) 

Total Ni (µg/L) 

n = 10 

Dissolved Ni (µg/L) 

n = 10 
Percent Difference 

75 56.04 ± 0.19 54.36 ± 1.00 97.02 ± 0.75 

150 132.73 ± 1.92 132.73 ± 1.92 98.21 ± 0.82 

250 228.34 ± 0.33 227.82 ± 0.35 99.77 ± 0.06 

500 474.78 ± 0.51 464.84 ± 2.54 99.49 ± 0.16 

1000 956.91  ± 2.51 944.255 ± 2.39 99.73 ± 0.07 

2000 1891.65 ± 8.72 1882. 26 ± 8.97 99.51 ± 0.27 

 

Table 5.6: Total and Dissolved measurements for water chemistry cations. Measurements taken via Flame-AAS.  

Ion 
Nominal 

(mg/L) 
Total (mg/L) Dissolved  (mg/L) n 

Ca 2.53 2.84 ± 0.47 2.76 ± 0.23 12 

Mg 0.77 0.67 ± 0.07 0.65 ± 0.15 25 

Na 0.78 1.09 ± 0.21 0.87 ± 0.34 23 
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Table 5.7: Raw Data for 48h Acute Mixture tests without DOC added. Replicate mortality is calculated as the number of deaths out of 5 

total daphnids per rep.   

 

Nominal Total Replicate Mortality (out of 5) 
  

   
 

Ni 

(µg/L) 

Cu 

(µg/L) 

Ni 

(µg/L) 

Cu 

(µg/L) 
1 2 3 4 5 6 7 8 9 10 Total 

Average 

Mortality 

(%) 

SD pH n SEM 

0 0 0 0 0 0 0 0 0 0 0 0 
  

0 0 0 6.54 

8 

0 

0 2 0 1.008 0 0 0 0 1 0 3 2 
  

6 15 1.15 6.55 0.41 

0 4 0 3.339 2 1 4 0 3 0 5 2 
  

17 42.5 1.81 6.56 0.64 

0 8 0 6.823 5 5 5 5 5 5 5 5 
  

40 100 0 6.51 0 

0 16 0 14.19 5 5 5 5 5 5 5 5 
  

40 100 0 6.52 0 

0 32 0 31.6 5 5 5 5 5 5 5 5 
  

40 100 0 6.58 0 

0 0 0 0 0 0 0 0 0 0 0 0 
  

0 0  6.51 

8 

 
500 0 486 0 0 0 0 0 0 0 0 0 

  
0 0 0 6.49 0 

1000 0 1140 0 0 1 0 1 0 0 2 3 
  

7 14 1.13 6.46 0.4 

2000 0 2560 0 2 1 3 1 3 2 1 2 
  

15 30 0.83 6.44 0.3 

4000 0 3948 0 3 3 3 3 2 2 1 5 
  

22 44 1.16 6.49 0.41 

8000 0 9655 0 5 5 5 4 5 5 5 5 
  

39 78 0.35 6.51 0.13 

16000 0 14785 0 5 5 5 5 5 5 5 5 
  

40 80 0 6.47 0 

0 0 0 0 0 0 0 0 0 0 0 0 
  

0 0 0 6.47 

8 

0 

100 0 74 0 0 0 0 0 0 0 0 0 
  

0 0 0 6.43 0 

250 0 240 0 0 0 0 0 0 0 0 0 
  

0 0 0 6.47 0 

500 0 394 0 2 0 0 0 0 0 1 1 
  

4 10 15.12 6.48 5.3 

1000 0 773 0 3 2 0 0 3 3 2 2 
  

15 37.5 24.93 6.47 8.8 

1500 0 1051 0 0 5 3 4 2 1 3 3 
  

21 52.5 31.96 6.47 11.3 

2000 0 1436 0 4 3 3 4 4 1 3 3 
  

25 62.5 19.82 6.49 7.0 

3000 0 2819 0 5 5 5 4 5 5 5 5 
  

39 97.5 7.071 6.45 2.5 

4000 0 3689 0 5 5 5 5 5 5 5 5 
  

40 100 0 6.47 0 

0 0 0 0.265 1 0 0 0 0 0 
    

1 3.3 0.41 6.52 6 0.17 
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0 1 0 1.151 0 1 1 0 0 0 
    

2 6.7 0.52 6.55 0.21 

0 2 0 1.669 0 0 0 1 1 1 
    

3 10 0.55 6.54 0.22 

0 3 0 1.737 0 0 1 1 1 1 
    

4 13.3 0.52 6.57 0.21 

0 4 0 1.788 3 1 2 1 0 2 
    

9 30 1.05 6.57 0.43 

0 6 0 3.406 5 5 5 5 3 4 
    

27 90 0.84 6.52 0.34 

0 12 0 7.317 5 5 5 5 5 5 
    

30 100 0 6.51 0 

75 0 55.86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.56 

10 

0 

75 1 
55.86 

0.356 0 0 0 0 0 0 0 1 0 1 2 4 0.42 6.54 0.13 

75 3 
55.86 0.9825

01762 
0 1 0 2 0 0 0 0 0 1 4 8 0.69 6.56 0.22 

75 6 
55.86 2.8813

0262 
5 5 5 5 5 5 5 5 5 5 50 100 0 6.51 0 

75 12 
55.86 7.0334

28203 
5 5 5 5 5 5 5 5 5 5 50 100 0 6.51 0 

150 0 131.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.57 

10 

0 

150 1 
131.2 

0.474 0 1 0 0 0 0 0 0 1 0 2 4 0.42 6.58 0.13 

150 3 
131.2 

2.26 1 1 1 1 0 2 1 1 1 2 11 22 0.57 6.53 0.18 

150 6 
131.2 

4.99 5 5 5 5 5 5 5 5 5 5 50 100 0 6.57 0 

150 12 
131.2 

9.88 5 5 5 5 5 5 5 5 5 5 50 100 0 6.53 0 

250 0 228.87 0 2 1 1 1 1 0 0 0 
  

6 15 0.71 6.57 

10 

0.2 

250 1 
228.87 

1.13 2 0 0 0 1 0 1 0 
  

4 10 0.76 6.57 0.24 

250 3 
228.87 

3.48 2 0 1 2 0 0 0 1 
  

6 15 0.89 6.55 0.28 

250 6 
228.87 

5.74 5 3 5 4 5 5 4 3 
  

34 85 0.89 6.55 0.28 

250 12 228.87 11.77 3 5 5 5 5 5 5 5 
  

38 95 0.71 6.53 0.22 

500 0 474.37 0 1 0 1 0 0 0 0 0 
  

2 5 0.46 6.54 
10 

0.15 

500 1 
474.37 

1.21 1 1 0 2 2 0 3 4 
  

13 32.5 1.41 6.57 0.44 
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500 3 
474.37 

2.66 0 3 1 3 1 1 3 0 
  

12 30 1.31 6.52 0.42 

500 6 
474.37 

5.19 5 5 5 5 5 5 5 5 
  

40 100 0 6.49 0 

500 12 
474.37 

10.83 5 5 5 5 5 5 5 5 
  

40 100 0 6.51 0 

1000 0 951 0 2 2 3 2 1 0 1 2 0 0 13 26 0.92 6.46 

10 

0.33 

1000 1 
951 

2.04 1 2 1 1 1 1 1 2 2 1 13 26 0.48 6.47 0.17 

1000 3 
951 

3.38 2 4 4 3 4 4 3 5 2 4 35 70 0.97 6.46 0.34 

1000 6 
951 

5.60 5 5 5 5 5 5 5 5 5 5 50 100 0 6.48 0 

1000 12 
951 

11.66 5 5 5 4 5 5 5 5 5 5 49 98 0.32 6.48 0.11 

2000 0 1849 0.19 4 3 4 4 4 3 3 3 2 2 32 64 0.79 6.51 

10 

0.28 

2000 1 
1849 

1.01 5 5 5 5 4 4 2 2 4 4 48 96 0.42 6.52 0.15 

2000 3 
1849 

2.84 4 4 5 5 5 5 5 5 5 5 50 100 0 6.51 0 

2000 6 
1849 

7.56 5 5 5 5 5 5 5 5 5 5 50 100 0 6.51 0 

2000 12 
1849 

11.68 5 5 5 5 5 5 5 5 5 5 50 100 0 6.53 0 

1000 0 957.5 0 1 2 1 
       

4 26. 7 0.58 6.47 

3 

0.2 

1000 1 
957.5 

1.18 2 3 2 
       

7 46. 7 0.58 6.44 0.2 

1000 2 
957.5 

0.424 4 4 3 
       

11 73.3 0.58 6.45 0.2 

1000 3 
957.5 

0.857 5 5 5 
       

15 100 0 6.47 0 

1000 4 
957.5 

1.09 5 5 5 
       

15 100 0 6.46 0 

1000 6 
957.5 

1.78 5 5 5 
       

15 100 0 6.48 0 

2000 0 1906 0.042 3 4 4 
       

11 73.3 0.58 6.44 3 0.2 
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2000 1 
1906 

0.059 5 5 3 
       

13 86.67 1.15 6.46 0.41 

2000 2 
1906 

0.197 4 5 5 
       

14 93.3 0.58 6.48 0.2 

2000 3 
1906 

1.19 5 5 5 
       

15 100 0 6.51 0 

2000 4 
1906 

0.893 5 5 5 
       

15 100 0 6.49 
0 

2000 6 
1906 

1.47 5 5 5 
       

15 100 0 6.47 
0 

  

 

 

Table 5.8: Raw Data for 48h Acute Mixture tests with DOC added. Replicate mortality is calculated as the number of deaths out of 5 total 

daphnids per rep.  DOC from 3 sources was tested: Luther Marsh (LM), Clearwater Lake (CWL), and Daisy Lake (DL).  

 Nominal Total 
 

Replicate Mortality 
   

  
 

DOC 

Sourc

e 

Cu 

(µg/

L) 

Ni 

(µg/L

) 

DO

C 

Cu 

(µg/L

) 

Ni 

(µg/L) 

DO

C 
1 2 3 4 5 6 7 8 

To-

tal 

Avg 

Mortalit

y (%) 

SD 

pH 

n SEM 

LM + 

1 mg 

Ni 

0 1000 4 0 951 5.0 0 0 0 0 0 0 1 0 1 2.5 0.354 6.53 

8 

0.125 

1 1000 4 1.92 951 5.0 0 1 0 0 1 1 0 0 3 7.5 0.516 6.54 0.183 

3 1000 4 3.52 951 5.0 3 4 2 1 5 2 2 3 22 55 1.282 
6.58 0.453

3 

6 1000 4 4.49 951 5.0 3 5 2 4 4 5 3 3 29 72.5 1.06 6.61 0.474 

12 1000 4 10.60 951 5.0 4 4 4 4 2 4 5 3 30 75 0.886 6.56 0.396 

LM + 

2 mg 

Ni 

0 2000 4 0 1923 5.0 5 3 5 3 4 3 5 4 32 80 0.926 6.53 

8 

0.327 

1 2000 4 1.88 1923 5.0 5 3 5 5 4 3 5 4 34 85 0.886 6.58 0.313 

3 2000 4 4.40 1923 5.0 5 4 5 4 5 3 4 4 34 85 0.707 6.63 0.25 

6 2000 4 5.23 1923 5.0 5 5 5 5 5 5 5 5 40 100 0 6.61 0 

12 2000 4 10.06 1923 5.0 5 5 5 5 5 5 5 5 40 100 0 6.67 0 

CWL 0 1000 4 1.67 973 4.6 0 0 0 0 
    

0 0 0 6.52 4 0 
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+ 1 

mg Ni 

1 1000 4 1.99 973 4.6 0 1 1 0 
    

2 10 0.577 6.55 0.204 

3 1000 4 4 973 4.6 2 1 1 1 
    

5 25 0.5 6.59 0.177 

6 1000 4 6.3 973 4.6 3 1 1 2 
    

7 35 0.957 6.54 0.334 

DL + 

1 mg 

Ni 

0 1000 4 0 968 4.9 0 1 0 0 0 0 0 0 1 2.5 0.354 6.51 

8 

0.125 

1 1000 4 1.56 968 4.9 2 0 2 1 2 2 1 2 12 30 0.756 6.46 0.263 

3 1000 4 3.46 968 4.9 4 2 1 1 2 3 2 0 15 37.5 1.25 6.54 0.441 

6 1000 4 5.37 968 4.9 1 2 2 2 2 2 3 2 16 40 0.535 6.48 0.239 

12 1000 4 10.98 968 4.9 5 4 1 5 2 3 3 3 26 65 1.389 6.48 0.621 

DL + 

2 mg 

Ni 

0 2000 4 0 
 

4.9 5 5 5 5 5 5 5 5 40 100 0 6.53 

8 

0 

1 2000 4 1.56 
 

4.9 4 5 5 5 5 4 5 5 38 95 0.463 6.57 0.164 

3 2000 4 3.46 
 

4.9 5 5 5 5 5 5 5 5 40 100 0 6.59 0 

6 2000 4 5.71 
 

4.9 5 5 4 5 4 5 5 5 38 95 0.463 6.55 0.164 

12 2000 4 10.97 
 

4.9 5 5 5 5 5 5 5 5 40 100 0 6.55 0 

CWL 

+ 2 

mg Ni 

0 2000 0 0 1942 1.2 0 0 0 0 0 0 0 0 0 0 0 6.50 

8 

0 

0 2000 4 0 1942 5.8 0 0 0 0 0 0 0 0 0 0 0 6.51 0 

6 2000 4 0 1942 5.6 5 5 5 5 5 5 5 5 40 100 0 6.48 0 

12 2000 4 11 1942 5.6 5 5 5 5 5 5 5 5 40 100 0 6.47 0 

25 2000 4 21 1942 5.6 5 5 5 5 5 5 5 5 40 100 0 6.44 0 

50 2000 4 52 1942 5.6 5 5 5 5 5 5 5 5 40 100 0 6.42 0 

100 2000 4 115 1942 5.6 5 5 5 5 5 5 5 5 40 100 0 6.44 0 

200 2000 4 222 1942 5.6 5 5 5 5 5 5 5 5 40 100 0 6.47 0 

LM + 

Ni 

only 

0 250 4 0 217 5.1 0 0 1 0 1 0 0 0 2 5 0.463 6.53 

8 

0.164 

0 500 4 0 453 5.1 0 0 0 1 0 0 4 5 10 25 2.05 
6.52 0.725

8 

0 1000 4 0 931 5.1 0 1 1 3 1 1 2 0 9 22.5 0.991 
6.56 0.350

0 

0 2000 4 0 1840 5.1 5 4 4 4 5 4 4 5 35 87.5 0.516 6.52 0.183 

LM + 

Cu 

0 0 4 0 0 5.0 0 0 0 0 0 0 0 0 0 0 0 6.51 

8 

0 

0 0 4 0 0 5.0 0 0 0 0 0 0 0 0 0 0 0 6.43 0 

1 0 4 0.51 0 5.0 0 0 0 0 0 0 0 0 0 0 0 6.47 0 
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only 3 0 4 2.65 0 5.0 0 0 0 0 0 0 0 0 0 0 0 6.46 0 

6 0 4 5.43 0 5.0 0 0 0 0 0 0 0 0 0 0 0 6.48 0 

12 0 4 11.75 0 5.0 0 0 0 0 0 1 0 0 1 2.5 0.354 6.47 0.125 

CWL 

+ Ni 

only 

0 0 4 0 0 5.2 0 0 0 0 0 
   

0 0 0 6.49 

5 

0 

0 250 4 0 214 5.2 0 0 0 0 0 
   

0 0 0 6.53 0 

0 500 4 0 525 5.2 0 0 0 0 0 
   

0 0 0 6.54 0 

0 1000 4 0 972 5.2 1 0 1 1 0 
   

3 12 0.5 6.52 0.177 

0 2000 4 0 1960 5.2 3 4 4 4 5 
   

20 80 0.5 6.53 0.177 

CWL 

+ Cu 

only 

0 0 4 0 0 5.2 0 0 0 0 0 0 0 0 0 0 0 6.47 

8 

0 

1 0 4 1.03 0 5.2 0 0 0 0 0 0 0 0 0 0 0 6.51 0 

3 0 4 3.54 0 5.2 0 0 0 0 0 0 0 0 0 0 0 6.46 0 

6 0 4 5.76 0 5.2 0 0 0 0 0 0 0 0 0 0 0 6.49 0 

12 0 4 11.09 0 5.2 0 0 0 0 0 0 0 0 0 0 0 6.51 0 
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