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Abstract 

 
Fatigue is defined as any exercise induced reduction in strength or power, and can be attributed 
to central and peripheral components. Many central and peripheral mechanisms have been 
extensively studied, but few studies have looked at the changes in the intrinsic properties of 
motor neurons and their contribution to fatigue. Persistent inward current (PIC) is an important 
intrinsic property of motor neurons responsible for setting a large increase in the gain of motor 
output and may contribute to fatigue. Inhibitory inputs such as reciprocal inhibition (RI) have 
been shown to turn off PICs and reducing the gain of output. PIC measurements are typically 
done in animals but have recently been estimated in humans using the paired motor unit 
technique. Estimates of PIC were taken from paired motor unit recordings in the soleus. 
Estimates of PIC are calculated by using the difference (∆F) between the instantaneous firing 
frequency of a control unit at the recruitment and derecruitment of a test unit during an 
isometric triangular ramp contraction. Inhibitory input via electrical stimulation of the common 
peroneal nerve was used to reduce PIC in the soleus. These isometric triangular ramp 
contractions used to calculated ∆F were performed with and without electrical stimulation after 
sets of 20 fatiguing contractions in order to assess ∆F estimates of PIC before and after fatigue. 
Maximum voluntary contractions (MVC) were performed after each set of fatiguing 
contractions to quantify the amount of fatigue. The experiment was terminated after a 30% 
reduction in MVC. It was hypothesized that there would be a decline in ∆F estimates of PIC 
during a fatiguing protocol and no change in PIC during a control day in ramps without electrical 
stimulation. In ramps with inhibitory input via electrical stimulation (RI), ∆F estimates of PIC 
would not decline as significantly as ramps without electrical stimulation over the course of a 
fatiguing protocol. On a control day, the ramps with electrical stimulation would have a lower 
∆F than ramps without electrical stimulation, and also would not change over time. On the 
fatigue day, MVC dropped from 347.18N ± 96.54N to 220.57N ± 65.53N, t(9) = 4.23 (p<0.01) 
and did not change over a control day. △F decreased to 60.5% (F=15.52(1,9), p<0.01) from 
initial values on a fatigue day in ramps without electrical stimulation and did not change 
significantly on a control day. The ramps with RI were significantly lower (F=8.099 (1,9), p<0.05) 
on a control day than the ramps without electrical stimulation and did not change over time. 
On a fatigue day, there is a trend (p=0.068) between the initial pre-fatigue values from the 
stimulation to no stimulation ramps. These results show a decrease in ∆F over a fatigue 
protocol and the application of RI adds validity to the paired motor unit technique. Further 
research warrants investigation of whether the changes in ∆F over fatigue are due to increases 
in inhibitory inputs or decreases in monoaminergic drive. 
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List of terms and abbreviations 

 
PIC (Persistent inward current) – Long lasting inward current from monoaminergic-dependent, 
voltage-gated calcium and sodium channels located mainly on the dendrites of the motor 
neuron. PIC is responsible for amplifying and prolonging the effects of ionotropic inputs.  
 
STA (Spike threshold accommodation) – The current required to bring a motor neuron to 
threshold increases as the rate of rise of the input current decreases. 
 
SFA (Spike frequency adaption) - Decline in firing rate of a motor neuron in response to a 
constant current input over time. 
 
RI (Reciprocal Inhibition) – Inhibition pathway through a 1a afferent neuron which causes 
inhibition of the antagonistic α-motor neuron. An inhibitory interneuron inhibits the antagonist 
muscle from working against the working agonist muscle. 
 
PSTH (Post stimulus time histogram) – Histogram used to assess changes in motor neuron firing 
rates in relation to an external stimulus (e.g. reciprocal inhibition). 
 
EMG (Electromyography) – Used to measure the electrical activity of a specific muscle. 
 
ISI (Interspike interval) – The time between each successive action potential of one motor 
neuron. 
 
ΔF (estimate of PIC) – Delta F is the estimate of PIC in humans, calculated from the difference in 
the instantaneous firing frequency in the control unit at the onset and offset of the test unit. 
 
Fmax-Fmin - The difference between the maximal and minimal firing frequency of the control 
unit (discharge rate modulation). 
 
CPN (Common peroneal nerve) – Nerve to the antagonist muscle of interest (soleus muscle) 
used to elicit reciprocal inhibition 
 
MVC (Maximum voluntary contraction) – The greatest amount of force a muscle can generate. 
 
Tlim – The time required to produce a given amount of fatigue.  
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Literature Review 

Motor neurons were once thought to be passive conduits for synaptic inputs, as these 

ionotropic inputs would be summated resulting in a given motor output. However, it has been 

recently discovered that certain intrinsic properties of motor neurons modulated by the 

neuromodulatory system, highly increase the gain of the motor neuron (Heckman, Mottram, 

Quinlan, Theiss, & Schuster, 2009). Motor neuron excitability is very complex and altered in 

different states, such as in sleep, and disease, and for different tasks.  Understanding motor 

neuron excitability can give greater insight to the mechanisms of neuromuscular function. 

There are 2 types of input to the motor neuron; ionotropic input and neuromodulatory 

input (Heckman et al., 2009). Ionotropic inputs release neurotransmitters that bind to ligand-

gated ion channels. The opening of an ion channel allows ions to enter or exit the cell 

generating a synaptic current. These potentials are graded and are either excitatory 

(depolarizing) or inhibitory (hyperpolarizing).  The summation of ionotropic inputs result in brief 

changes in the membrane potential of motor neurons that last as long as the synaptic input 

lasts.  In contrast, neuromodulatory inputs have the potential to exert much longer-lasting 

effects on the motor neuron. For example, a persistent inward current (PIC) may increase the 

gain of motor excitability from 6 to 10 fold (Heckman, Johnson, Mottram, & Schuster, 2008) in 

response to serotoninergic or and noradrenergic neuromodulatory input. Neuromodulatory 

receptors are linked to G-proteins which activate a variety of intracellular signaling cascades. 

Some of these signaling cascades have a potent effect on motor neuron excitability that is 

slower to activate, but have a longer lasting effect.              



9 
 

There are several neurotransmitters that alter the gain of motor neurons, however the 

two monoamines; serotonin and norepinephrine are most influential on PIC (Heckman et al., 

2008). Serotonin is a neuromodulator synthesized by raphe nuclei in the brainstem.  

Serotonergic neurons project supraspinally to various brain regions as well as to dorsal and 

ventral areas of the spinal cord (Perrier, Rasmussen, Christensen, & Petersen, 2013). These 

projections to the spinal cord have been shown to increase with increasing motor output 

(Jacobs, Martin-Cora, & Fornal, 2002) and are highly involved in the wide range of gain control 

of spinal motor neurons (Johnson & Heckman, 2014). Norepinephrine, released by the locus 

coeruleus in the brainstem, is another monoamine that also has a major role in locomotion. In 

vivo (Jordan, Liu, Hedlund, Akay, & Pearson, 2008) and in vitro (Merrywest, Fischer, & Sillar, 

2002), norepinephrine has been shown to be extremely important for motor output and the 

modulation of reflexes. Increases in norepinephrine can also increase PIC and the excitability of 

a motor neuron (Lee & Heckman, 1999).  

Not only does the type of neurotransmitter affect the excitability of a motor neuron, but 

so does the type of membrane receptor. Membrane receptors have several different subtypes 

that exhibit markedly different effects on a cell. The membrane receptors of serotonin are 

classified into 7 different subtypes (5HT1, 5HT2, 5HT3 etc.) and 14 total subclasses (5HT1a, 

5HT1b, 5HT2a etc). Norepinphrine receptors are classified into alpha and beta. The different 

receptor subtype can have either excitatory or inhibitory effects on motor neuron excitability 

(Harvey, Li, Li, & Bennett, 2006). 5HT2 and norepinephrine alpha1 receptors have an excitatory 

effect and strongly facilitate PICs, while other receptor subtypes can have inhibitory actions 

such as 5HT1 receptors. The 5HT1 receptors are activated at high levels of serotonergic input 
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and is thought to serve as a braking mechanism for excessive excitability (Cotel, Exley, Cragg, & 

Perrier, 2013). Although these receptor subtypes have different actions on the motor neuron, 

the neurotransmitter that binds to them remains the same. Generally, receptors coupled to G-

proteins have excitatory effects while receptors coupled to the Gs system have inhibitory 

effects (Garraway & Hochman, 2001). Other effects such as posttranscriptional modification 

can induce changes in receptor behavior, and there are several other effects that have yet to be 

understood (Nichols & Nichols, 2008).  

PICs were first discovered in 1980 in reduced animal preparations (Schwindt & Crill, 

1980). They are generated by voltage-gated Na+, and Ca2+ channels and are activated by 

descending monoaminergic input (Alaburda, Perrier, & Hounsgaard, 2002). Channels 

responsible for mediating PICs reside mainly on the dendrites of spinal motor neurons but also 

on the soma of the motor neuron (Heckman et al., 2009). The channels responsible for 

generating PICs are a subtype of L-type Ca2+ channels (CaV1.2, 1.3), and fast-acting Na 

channels (NaV1.6) (Toledo-Rodriguez, El, Wallen, Svirskis, & Hounsgaard, 2005). The main 

function of PICs is to amplify and prolong the effects of synaptic inputs to the motor neuron. 

They are activated near spike threshold and stay active following removal of synaptic input. In 

Figure 1, steady excitatory input is generated by tendon vibration of muscle spindle 1a afferents 

in an animal model. When the cell is held or ‘clamped’ at a hyperpolarized potential in Figure 

1A (green tracings) and is not brought close to its firing threshold where PIC is activated, the 

current generated from the tendon vibration returns to baseline after the synaptic input 

(tendon vibration) is removed. However, when the cell is brought closer to its firing threshold 

(red tracings), there is a significant increase in the current generated across the membrane due 
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to the activation of PIC. Not only does the PIC amplify the effects of the synaptic input but also 

prolongs the effects of the synaptic input after the synaptic input has been removed. The 

functional significance of this is shown in Figure 1C where voltage is shown on the x-axis instead 

of current in 1A. The green tracings represent the voltage across the membrane when the cell is 

held below its firing threshold. In the red tracings where the cell is brought closer to its firing 

threshold, PIC is activated and amplifies the effects of the synaptic input to result in subsequent 

motor unit firing. The PIC also prolongs the effects of the tendon vibration (synaptic input) 

resulting in self-sustained firing after the tendon vibration has been removed. Motor neurons 

capable of self-sustained firing are considered to be “bistable”, one stable state at its resting 

potential, and the other during self-sustained firing (Hounsgaard, Hultborn, Jespersen, & Kiehn, 

1988). Brief excitatory inputs activate PIC which induce self-sustained firing, and brief inhibitory 

inputs deactivate PIC and return the motor neuron to the quiescent state (Bennett, Hultborn, 

Fedirchuk, & Gorassini, 1998).   

Self-sustained firing and ‘bistability’ are the main characteristic of PICs, quite active 

mainly in low-threshold ‘type S’ motor neurons during posture and gait (Heckman et al., 2008). 

There are three types of motor units: 1) type S (slow); 2) type FR (fast, fatigue resistant); and 3) 

FF (fast fatigable). Slow, type S motor neurons have low force outputs, lower conduction 

velocities, and high resistance to fatigue. Faster, type FF motor neurons have high force 

outputs, higher conduction velocities, and a lower resistance to fatigue (Kernell, 1965). Type S 

to type FF motor neurons exhibit a range of about 10-fold in the current required to reach 

recruitment threshold (Figure 2). Type S motor neurons are more capable of self-sustained 

firing because only a small amount of synaptic input is needed for spike threshold, due to its 
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high input resistance (Lee & Heckman, 1998). PICs prolong the effects of synaptic input, 

especially in type S and FR motor neurons highly active during posture. Type S motor neurons 

are highly involved in postural tasks, where the prolonged effects of PICs are particularly 

important. The PICs are also involved in type FF motor neurons, however they do not exhibit 

the long term self-sustained firing that type S motor neurons do because of their low resistance 

to fatigue. Likely the PICs in type FF motor neurons are more responsible for greatly amplifying 

the response to synaptic inputs. Type FF motor units are responsible for generating large 

amounts of force. It has been estimated that in the absence of monoaminergic input, motor 

neurons would only be able to produce about 30-40% maximum motor output (Figure 4) 

(Heckman, 1994). Thus, PICs are especially important not only for posture and gait, but also 

generating a large and high range of forces. 

A number of studies have quantified the magnitude of PIC in animal preparations 

through intracellular recordings, but this is not possible in humans. In humans, PIC can be 

estimated indirectly through a method called paired motor unit analysis (Gorassini, Yang, Siu, & 

Bennett, 2002). This method uses the difference between the firing rate of a lower threshold 

motor unit (control unit) at the time of the onset and offset of a higher threshold (test) motor 

unit. The control unit serves as indicator of net synaptic drive, and the difference in the firing 

frequencies of the control when the test unit turns on and off is mainly attributed to PIC This 

method is used during an isometric triangular ramp contraction and the control unit is 

compared to the test unit (Figure 3) (Heckman et al., 2008). 

There are a few assumptions and considerations to note when using the paired motor 

unit technique. The first assumption is that the control unit is a reliable indicator of changes in 
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the net excitatory input to the test motor unit. The later recruited, higher threshold test motor 

unit derecruits at a lower firing rate than which it recruits. The difference is thought to be 

mainly due to PIC as the net excitatory input drops below the level at which it needs to be 

recruited. To ensure that the control unit is a sensitive indicator of net excitatory input, the 

amount of discharge rate modulation of the control unit must not be within 0.5 pulses per 

second (pps) of △F (Stephenson et al., 2011). The discharge rate modulation is the difference 

between the maximal and minimal firing frequency of the control unit (Fmax-Fmin).  Anything 

below 0.5 pps may indicate that the test unit was recruited too close to the peak of the ramp 

thus any changes in firing rate would be too small, or the firing rate of the control unit was fully 

saturated (Stephenson et al., 2011). 

Another assumption is that the paired motor unit analysis is that both the control and 

test unit share similar synaptic input. To test common synaptic input, (Gorassini et al., 2002) 

have shown that the rate to rate correlation (r) between both units should be greater than 0.7 

showing common synaptic input.  Finally, for △F to be an accurate measure of PIC, the control 

motor unit PIC must be fully activated before the onset of the firing of the test unit. Full 

activation of PIC has been proposed to occur approximately 2s after recruitment motor unit 

(Udina et al., 2010).  

In addition to PIC, there are several intrinsic motor neuron properties that could 

contribute to △F. If △F is to be used as an estimate of PIC, then the contribution of other 

nonlinear firing properties must be minimized. Two other properties known to “contaminate” 

paired motor unit estimates of PIC include spike threshold accommodation (STA) and spike 

frequency adaptation (SFA).  STA is the process by which the current required to bring a motor 
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neuron to threshold increases as the rate of rise of the input current decreases. There can be as 

much as a 2-fold difference in the amount of input current needed to depolarize a motor 

neuron with varying rates of rise of the input current (Revill & Fuglevand, 2011).  SFA is a 

decline in firing rate of a motor neuron in response to a constant current input over time. SFA 

can inflate △F estimates in ramps of longer duration. Longer periods of time can lead to a 

decrease in firing rates, up to 60% of initial values (Button, Kalmar, Gardiner, Cahill, & Gardiner, 

2007). A recent study by Revill & Fuglevand(2011) assessed the contributions of STA and SFA by 

varying the rates of rise and duration of simulated ramps. Ramps 10 seconds in duration with 

no plateau served to minimize STA and SFA, leading to greater accuracy of △F. To further 

validate the simulation study, another study was conducted in humans using the paired motor 

unit technique (Vandenberk & Kalmar, 2014). This study assessed the contribution of STA and 

SFA to △F. Vandenberk and Kalmar (2014) demonstrated that △F increases with decreasing 

rates of ramp rise and increasing ramp duration, likely due to SFA. The study further validated 

the 10s ramp profile and no plateau to minimize STA and SFA. This study also investigated 

changes in reciprocal inhibition (RI) to determine the extent to which △F could be attributed to 

PIC. Two opposing sets of muscles work in synchrony; when one muscle contracts, the other 

one relaxes due to RI. The 1a afferent of the working muscle enters the spinal cord, one branch 

synapsing onto the homonymous alpha motor neuron causing the muscle to contract, and one 

branch synapsing onto a 1a inhibitory interneuron of the antagonist muscle causing the muscle 

to relax.  This RI pathway can be evoked through a sub-motor threshold electrical stimulus to 

the nerve to the antagonist muscle of interest. In this study RI was elicited through stimulation 

of the common peroneal nerve (CPN) to examine the influence on △F. There was a significant 
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correlation between RI and △F in shorter ramps with quicker rates of rise suggesting that PIC is 

the main contributor in △F, but also inversely correlated to RI. RI was found to be to be 

inversely correlated to △F, such that a greater increase in RI was associated with greater 

reductions in PIC as would be predicted by animal studies that have shown that PIC is “turned 

off” by hyperpolarizing inhibitory input (Hounsgaard et al., 1998). RI has been shown in other 

studies to deactivate PIC  (Kuo, Lee, Johnson, Heckman, & Heckman, 2003), and decrease PIC  

as much as 50% with as little as a 10 degree rotation in a joint through inhibitory pathways 

(Hyngstrom, Johnson, Miller, & Heckman, 2007). These inhibitory pathways serve as local gain 

control mechanisms in locomotion (Johnson & Heckman, 2014). 

The paired motor unit technique can be used to investigate the changes in PIC in 

humans during altered states, such as during fatigue. Neuromuscular fatigue is defined as the 

inability to produce maximal levels of force, and can be a result of central or peripheral 

mechanisms (Gandevia, 2001). Central fatigue refers to the inability of the CNS to drive muscle. 

Central mechanisms of fatigue include, but are not limited to, loss of recruitment of high 

threshold motor units, increased inhibitory input to the motor cortex, motor neuron dropout, 

increased negative feedback from muscle afferent types III and IV sensory neurons, loss of 

positive feedback from muscle spindle type I sensory afferents. There are many sites of fatigue 

in the CNS all the way from the basal ganglia, and down to the motor neuron in the spinal cord. 

There are many inputs onto the alpha motor neuron (Figure 4), both excitatory and inhibitory, 

that affect the excitability of the motor neuron. Several studies have investigated electrical 

stimulation of type 1a sensory fibers (RI pathway) on PIC, but little research has investigated 

group III/IV afferents influence on PIC. Previous studies have shown the role of group III/IV 
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afferents inhibitory effects on spinal motor neurons (Amann et al., 2008), but not directly on 

PIC. A study by (Gandevia, Allen, Butler, & Taylor, 1996) has also shown decreases in spinal 

motor neuronal output and voluntary activation after 2 minutes of maximal voluntary elbow 

flexor contractions. Since group III/IV afferents have inhibitory effects on the motor neuron, 

potentially during fatigue these group III/IV afferents are turning off or reducing PIC. Fatigue 

has several sites of origin that have been examined, however one area that has not been 

examined but have been proposed to contribute to fatigue are changes in the intrinsic 

properties of the motor neuron (Gandevia 2001). Changes in monoaminergic drive, afferent 

inhibition, and reciprocal inhibition can all alter PIC during fatigue, however we are only 

investigating changes in PIC during fatigue. Plausibly, decreases in PIC can be a major 

contributing factor to fatigue.  

 

 

Purpose and Hypotheses 

 
The primary purpose of this study is to investigate the effects of fatigue on estimates of PIC in 

humans during isometric contractions. There are three main hypotheses: 

1.  Estimates of PIC will decrease during the course of a fatiguing protocol and will recover 

to baseline following a recovery period. 

2. Estimates of PIC will not decline during a control day without fatiguing contractions. 

3. When electrical stimulation is applied to the nerve of the antagonist (CPN) midway 

through a ramp contraction, initial estimates of PIC (before fatigue) will be lower, and 

will decline to a lesser extent during fatigue. 
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Methods 
 
Overview of Experimental Design 

 
In the current study, PIC was estimated in human soleus motor units on two different 

days. On one day, PIC was estimated before and after an isometric plantarflexion fatigue 

protocol. On a second day, PIC was estimated at the same time points, but without fatiguing 

contractions. To provide evidence that fatigue-induced changes in paired motor unit △F values 

reflect changes in PIC, the nerve to the antagonist (common peroneal nerve) was electrically 

stimulated during alternate ramps each day to inhibiting the motor neuron, and diminish PIC, 

via reciprocal inhibition. To provide evidence that electrical stimulation of the common 

peroneal nerve elicited reciprocal inhibition of the test motor unit, post stimulus time 

histograms (PSTH), were produced for each test unit. A rightward shift in the PSTH would 

indicate inhibition. 

 
Participant Recruitment 

14 participants (4 females) ages 22.7 ± 2.7 years were recruited from Wilfrid Laurier 

University for this study, with 10 motor unit pairs used for analysis (n=10). Participants had to 

have no known neurological disorder, leg trauma (right leg), concussion, neurotrauma or any 

other problem indicated via self-report using an exclusion criteria checklist (Appendix B). The 

participants were also required to abstain for strenuous exercise the night before the 

experiment, and not to consume coffee the morning of the experiment. The participants were 

required to fill out an informed consent (Appendix C) outlining the details of this study. This 

study attained ethics approval from the University Research Ethics Board (REB#3849).  
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Before the experimental or control day, a 30 minute orientation day was completed to 

familiarize the participants with MVC’s, electrical stimulation, and the isometric ramp 

contractions. The participants were informed about the details and procedures of the 

experiment during this orientation period. 

 

Experimental Apparatus and Procedure 

Participants were seated in a modified automobile chair with their right leg in a 

McComas boot dynamometer. Knee and ankle joint angles were each set to 90 degrees for this 

isometric protocol. An ankle brace was used to maintain the same foot position in the 

dynamometer to ensure that the participant’s foot did not slide forward, changing the lever 

arm. A padded clamp was placed just above the knee to ensure an isometric contraction, 

preventing the heel from rising during plantarflexion contractions. A foot clamp was also placed 

over the cuneiforms to maintain foot position and also to maintain isometric contractions 

during dorsiflexion.  

The hair from the skin of participants were shaved and cleaned with 99% isopropyl 

alcohol. surface electromyography (EMG) 0.5cm2 Ag-AgCl electrodes (x60 amplification) with an 

interelectrode distance of 2.0 cm (EQ, Chalfont, PA) were placed on the lateral aspect of the 

soleus and the tibialis anterior and input to a custom-built variable gain amplifier (x20 setting 

used) (York University). To optimize the signal to noise ratio, a ground with electrode gel was 

placed on the medial tibia. Surface EMG data was sampled at 2000 Hz (Micro 1401-3, 

Cambridge Electronic Design) and filtered offline with a high pass filter at 15 Hz. 
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For intramuscular electromyography, three 50.8-μm Formvar-insulated stainless steel 

wires (California Fine Wire Company, Grover Beach, CA, USA) with three fine wires were 

inserted into the muscle of the participant’s lateral aspect of the soleus using a 27-gauge 

sterilized hypodermic needle. Two of the three wires were input to an epoxy-embedded 

preamplifier assembly (x20 amplification, EQ Inc., Chalfont, PA) and connected to a second-

stage custom-built variable gain amplifier. The intramuscular signal was sampled at 20 000 Hz 

(Micro 1401-3, Cambridge Electronic Design), and band pass filtered (3,000-30,000Hz) through 

a Neurolog system (Digitimer Inc.) to reduce noise and optimize the signal-to-noise ratio for 

spike discrimination.  Motor unit mass action potentials in the intramuscular channel were 

sorted and coded offline as control or test motor units based on their distinct waveform shape 

and firing pattern (Figure 6) using Spike2 software (Cambridge Electronics Design).   

Plantarflexion force from the McComas boot dynamometer was digitized at 1000 Hz 

(Micro 1401-3, Cambridge Electronic Design), then amplified 30x (1902 Amplifier, Cambridge 

Electronic Design) and low-pass filtered with a 50Hz cut-off offline (Spike2, Cambridge 

Electronics Design).  

A 2.5cm2 carbonized rubber electrode was used to stimulate the nerve to the antagonist 

(CPN) during reciprocal inhibition. A Digitimer constant current stimulator, model DS7AH 

(Digitimer Inc., Hertfordshire, England) was used to deliver electrical stimulation (1ms duration) 

for reciprocal inhibition (Figure 5). 

    



21 
 

Protocol 

A schematic diagram of the protocol is shown in Figure 5. The experiment was run over 

2 days (minimum separation of 2 days in between), approximately 2 hours each day following 

an initial orientation day to familiarize participants with the protocol and procedures. The 2 

days involved one day with a fatiguing protocol and one day without a fatiguing protocol.  The 

‘fatigue’ day always occurred first.  This was necessary to determine the number of sets each 

participant had to complete to adequately fatigue the plantarflexors (30% decrease in isometric 

plantarflexion maximum voluntary force). The same protocol and the same number of sets 

(without fatiguing contractions) was then repeated on the control day.  

Participants began the experiment by steadily plantarflexing at varying force levels 

(10%,20%,30%) to ensure that good intramuscular motor unit recordings were observed. If the 

motor unit recordings were reliable and sortable, the experiment could commence.  The first 

part of the protocol was to determine the appropriate intensity needed to elicit RI (Figure 6). 

The RI intensity needed to be above the threshold to activate sensory neurons, but not high 

enough to activate the motor axon. The stimulus intensity (mA) was set to 80% of soleus motor 

threshold. After the stimulus intensity was set, the participant was asked to hold a force level 

low enough to only activate 1 motor unit. On a screen in front of the participant was shown the 

firing rate of that motor unit in real time. Once the force level could be steadily maintained, 80 

sub motor threshold stimuli were delivered to the CPN over 4 minutes. The participants were 

asked to maintain the current interspike interval as the firing rate was shown on a linear profile 

in front on them. 
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The participant would then begin by practicing plantarflexion triangular ramp 

contractions (Figure 5) needed to analyze estimates of PIC during the experiment. These 

triangular ramp contractions were 10s in duration (5s increasing plantarflexion force, 5s 

decreasing plantarflexion force), and the peak of the ramp set to 10% of the participant’s 

plantarflexion maximum voluntary contraction (MVC). The participants also practiced a series 

of MVCs, until a reliable value of MVCs and accurate triangular ramp force tracings were 

observed. They would then proceed to perform several ‘pre-fatigue’ ramps, with and without 

electrical stimulation to elicit RI. After a minimum of 2 acceptable (minor deviations from a 

linear profile) ramps were completed in both the stimulation and non-stimulation ramps, the 

fatigue protocol began. 20 repeated fatiguing contractions (45% of MVC, 3s duration, 1s rest) 

were performed, and then followed by an MVC. The PIC ramps, fatiguing contractions, and MVC 

made up 1 set. The participants repeated these sets until a 30% reduction in MVC was 

observed, or 10 sets total was reached. The same protocol was then repeated on the control 

day, except the participants did not perform the fatiguing contractions. 

 

Data Analyses 

Evaluating strength of reciprocal inhibition via post stimulus time histograms  

A post stimulus time histogram (PSTH) was used to quantify the amount of inhibition elicited by 

stimulating the nerve to the antagonist (Figure 6). 80 subthreshold stimuli were delivered to the 

CPN during a low level contraction.  These stimuli were delivered every 3s and were triggered 

by discharge of the test motor unit. A PSTH was generated from these stimuli to assess the 

interspike intervals following antagonist nerve stimulation.  80 control triggers (markers with 
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the same delay, but no electrical stimulation) were delivered to generate PSTHs of the 

interspike intervals without stimulation. If stimulation of the nerve to the antagonist elicited 

inhibition of the soleus test motor unit, then the stimulation PSTH should exhibit a rightward 

shift relative to the control PSTH (denoting longer interspike intervals). Both PSTHs were set-up 

to count motor unit discharges in 5-ms bins for 400ms after each trigger. To quantify this 

rightward shift a difference PSTH was generated by subtracting the control PSTH counts from 

the stimulation PSTH counts for each bin. Each bin of the difference PSTH was then added to 

form a cumulative sum.  The valley of the cumulative sum was used to quantify the amount of 

inhibition (Ellaway, 1978). 

Estimating PIC from paired motor unit recordings 

PIC was estimated using the paired motor unit technique (Gorassini, Yang, Siu, & Bennett, 2002) 

The firing rates of the control and test units were plotted over the course of each 10-s ramp 

contractions and fitted to a 4th order polynomials. The onset and offset of the test unit were 

used in the polynomic equation of the line fit to the firing rate of the control unit. The firing 

rate of the control unit at the offset of the test unit was subtracted from the firing rate of the 

control unit at the onset of the test unit to calculate △F (Figure 3). The paired motor technique 

relies on a number of assumptions (Stephenson & Maluf, 2011).  Therefore, only motor unit 

pairs that met the following criteria were included in analysis: 1) The test unit had to be 

recruited >1s after control unit recruitment to ensure that PIC was fully saturated in the control 

unit; 2) The rate-rate correlation had to be greater than 0.7 (r > 0.7) to ensure that there was 

common synaptic drive to the control and test units; and 3) When △F estimates were 
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subtracted from the control unit firing frequency range (Fmax-Fmin), the difference had to be ≥ 

0.5 to ensure that there was no control unit firing rate saturation.  

 

Statistical Analyses 

 

Differences between day (control, fatigue), and over time (pre-fatigue, 25% Tlim, 50% 

Tlim, 75% Tlim, Tlim, and recovery) were analyzed using a 2-way repeated measures ANOVA.  

Differences between ramps (stimulation, no-stimulation), and over time (pre-fatigue, 25% Tlim, 

50% Tlim, 75% Tlim, Tlim, and recovery) were also analyzed using a 2-way repeated measures 

ANOVA. Differences between means were detected using Tukey’s HSD test. Missing data (some 

participants had unusable ramps at a given time point during the fatigue protocol) were dealt 

with via mean substitution.  Differences in the decline in MVC (prefatigue to the Tlim) on the 

fatigue day compared to the control day were assessed using a dependent t-test.  A p-value of 

less than 0.05 was considered to be significant.  All data are presented as mean±SD. 
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Results 
 
MVC 

 On the fatigue day, MVC dropped from 347.18N ± 96.54N to 220.57N ± 65.53N t(9) = 

4.23 (p<0.01) at the end of the fatigue protocol and recovered to prefatigue values within the 

10-min recovery period (Figure 10). On the control day, there was no significant change in the 

MVC (p=1.00) over the course of the protocol.   

 

Reciprocal Inhibition Analysis (PSTH) 

 

On both days of the experiment, ramps were performed with and without electrical 

stimulation to the common peroneal nerve which was intended to elicit an inhibitory input to 

soleus motor neurons via the reciprocal inhibition pathway.  Negative values were evident in 

the cumulative sum of each difference post-stimulus time histogram at time points coinciding 

with the first and second interspike intervals following stimulation on both the control (mean= -

13.25 counts, SD=17.83), and fatigue day (mean =-28.5 counts, SD=14.62) (Table 1). 

 

Paired Motor Unit Validation Criteria 

 
 Only motor unit pairs that exceeded previously published validation criteria (Stephenson 

& Maluf, 2011) for the paired motor unit technique were used (Table 2). The average Pearson’s 

correlation (r2) for the motor unit pairs was (0.91 ± 0.09) to ensure control unit and the test 

units to shared common synaptic drive. Test units were recruited 2.14 ± 0.64 s after the control 

unit to ensure that control unit PIC was fully saturated prior to test unit recruitment. Finally, the 
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average difference between the control unit firing range (rate modulation, ffmax – ffmin) and test 

unit estimates of ∆F were 3.18 ± 1.22.   

 

Changes in △F estimates of PIC during fatigue without antagonist nerve 
stimulation 

 

Figure 7 illustrates the fatigue-induced changes in △F on the fatigue day in ramps 

without RI. △F decreased to 60.5% (F=15.52(1,9), p<0.01) of initial values by the end of the 

fatigue protocol, and returned to baseline following a 10 min recovery period. Post-hoc analysis 

(Tukey’s HSD) revealed significant differences at 50% tlim (p<0.05), 75% tlim (p<0.01), and 100 

tlim (p<0.01). Post-hoc analysis effect size was moderate (d = 0.480) and had low statistical 

power (α = 0.05, power = 0.295) due to the small sample size (n=10). 

 

Changes in △F estimates of PIC during fatigue with antagonist nerve stimulation 

 

 On the fatigue day, the initial pre-fatigue △F estimates of PIC were lower when the 

nerve to the antagonist was stimulated midway through the ramp compared to the ramps 

without antagonist stimulation (Figure 8). There is a trend (p=0.068) between the initial pre-

fatigue values from the stim to no stim ramps. The ramps with electrical stimulation were lower 

than the ramps without electrical stimulation.  

 
Changes in △F estimates of PIC during the control day 

  
 On the control day, △F values did not change from the start of the protocol until the end 

of the protocol. In addition, the ramps with antagonist nerve stimulation were significantly 
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lower (F=8.099 (1,9), p<0.05) than the ramps without stimulation and did not change over the 

course of the control protocol (Figure 9).  
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Background and Rationale 

There is a ‘wind-up’ effect or delayed activation of PIC in response to repeated 

depolarizations. PIC activation increases with each subsequent depolarization, provided there is 

minimal time lapse between each contraction (Alaburda et al., 2002). A question remains if 

similar PIC measurements, more specifically △F measurements will be highly variable in 

humans with closely repeated triangular ramp contractions. Results from an earlier study by 

(Gorassini, Yang, Siu, & Bennett, 2002) showed reduced synaptic input in subsequent 

contractions to recruit a motor unit.  However, there has been large calcium PIC variability in 

rat hypoglossal neurons in response to repeated brief stimuli (Moritz, Newkirk, Powers, & 

Binder, 2007). Amphetamine has been shown to double the calcium-mediated PIC in animals 

(Rank, Li, Bennett, & Gorassini, 2007) via increased presynaptic release of norepinephrine (Rank 

et al., 2007), and increase estimates of PIC by 62% in humans  (Udina, D'Amico, Bergquist, & 

Gorassini, 2010). 

Certain drugs have been shown to increase PIC due by increasing monoaminergic 

activity.  In a study by (Udina et al., 2010) amphetamines allowed the test unit to fire at lower 

levels of synaptic input and shortened the amount of time of test unit activation, which led to 

greater △F values. A clinically used amphetamine-containing drug commonly taken is Adderall.  

Adderall is a mixture of dextroamphetamine and levoamphetamine. It is mainly used to 

treat attention-deficit hyperactive disorder (ADHD) and narcolepsy (Heal, Smith, Gosden, & 

Nutt, 2013). ADHD is characterized by decreased cognitive abilities, such as reduced ability to 

focus (Froehlich 2000). Epidemiological data conservatively reveal that a staggering 5.3% of 

young adults are diagnosed with ADHD (Polanczyk & Rohde, 2007). Adderall affects the CNS by 
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increasing presynaptic release of norepinephrine in the prefrontal cortex and dopamine in the 

striatum. The drug is actively transported into the presynaptic terminal and releases 

norepinephrine and dopamine from newly synthesized and vesicular storage pools (Heal et al., 

2009). Adderall also acts synergistically as a monoamine reuptake inhibitor (Heal et al., 2013). 

The structure of Adderall closely resembles monoamine neurotransmitters which explain the 

action of Adderall. The time to peak plasma levels for Adderall is 2-3 hours, but the effects can 

be observed 15-60 minutes after oral ingestion. The half-life of Adderall is 10 hours (Angrist, 

Corwin, Bartlik, & Cooper, 1987). 

 One very interesting phenomenon that occurs with any potentially beneficial treatment 

is the placebo effect. The expectation of beneficial treatment can elicit powerful, diverse 

physiological benefits regardless if the treatment itself has physiological benefits (Fuente-

Fernandez, Schulzer, & Stoessl, 2002). Reward circuitry in the limbic system is activated with 

the sole expectation of a reward (Garris et al., 1999).The release of dopamine from the nucleus 

accumbens in the ventral striatum is associated with reward processing. Placebos have been 

used to treat numerous diseases such as Parkinson’s (Mercado et al., 2006). Although 

dopamine is not a major neurotransmitter involved in generating PICs, it has been suggested 

that serotonin has a role in mediating placebo rewards as well (Fuente-Fernandez & Stoessl, 

2004). Like most drugs, it is likely that Adderall elicits a placebo effect in addition to the 

intended clinical effects.  This is particularly likely given that the drug acts on neurotransmitters 

that play an important role in both the reward and anticipation circuitry as well as the neural 

control of movement and central fatigue.  We had originally intended to conduct dose-response 

placebo trials in this study, but time constraints will not permit this study design.  In addition, it 
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would be difficult to design an ethical experiment that could replace the prescribed dose of 

Adderall with a placebo. 

Purpose 

 The purpose of this study is to quantify the effects of Adderall and fatigue on motor unit 

firing rates, muscle activation, muscle contractile properties, and PIC. Since △F is an estimate of 

PIC, by adding a perturbation to the measure (adding a pharmacological drug), we can further 

validate the use of the paired motor unit technique. 

 

Hypotheses 

1) Estimates of PIC will increase following oral administration of Adderall due to an 

increase of presynaptic norepinephrine from the brainstem.  

2) Adderall will decrease fatigability, force sensation, perceived exertion, and increase 

motor unit firing properties and force production. 

Methods  

 
Participant Recruitment 

Participants were required to have a confirmed doctor’s diagnosis of a neurological 

disorder (ADHD) requiring the use of Adderall. A minimum of ten participants, ages 18-25 will 

be used for the study on 2 different days (currently n=1). The participants have been recruited 

through posters around the Wilfrid Laurier University campus. Participants have been recruited 

through word of mouth. The project has been approved from the Research Ethics Board at 

Wilfrid Laurier University. Participants were required to sign informed consent documents 

before participating in the study. Participants with any neurological disorder, leg injury, use of 
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selective serotonin reuptake inhibitors, or not diagnosed with ADHD have been excluded from 

this study. Participants must also take the immediate release Adderall drug as their form of 

medication and not any other ADHD drug.  

Set up and Procedures 
The experiment was conducted over 2 days (1 control and 1 experimental), lasting 

approximately 3 hours each day following an initial orientation day to familiarize participants 

with the protocol and procedures. On the experimental day the participant completed the pre-

test measures (described below), ingested their Adderall as prescribed, and one hour later 

complete the post-test measures. On the control day, the participant will complete pre-test 

measures, and one hour later complete the post-test measures. Once the control experiment is 

complete, the participant will be asked to take their Adderall as prescribed. Because Adderall is 

a stimulant and the drug is meant to be taken at the same time each morning, experiments will 

be scheduled around the participant’s usual drug administration time. As such, this experiment 

will not result in any change to the participant’s usual medication schedule (medication is not 

skipped, delayed, or adjusted in any way). 

Experimental Apparatus and Procedure 
Participants will be seated with their right leg in a McComas boot dynamometer for the 

triangular ramp contractions. Knee and ankle joint angles will be set to 90 degrees and 90 

degrees respectively. The skin of participants will be cleaned with alcohol pads and ultrasound 

gel is applied to the surface of the skin. Surface electromyography (EMG) Ag-AgCl electrodes 

(x60 amplification) will be placed on the lateral aspect of the soleus and the tibialis anterior and 

connected to a custom-built variable gain amplifier (York University). For intramuscular 

electromyography, a 27-gauge needle with three fine wires will be inserted into the muscle of 
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the participant’s lateral aspect of the soleus input to an epoxy-embedded preamplifier 

assembly (x20 amplification, EQ Inc., Chalfont, PA) and connected to a second-stage custom-

built variable gain amplifier. The intramuscular signal is then band pass filtered (3,000-

30,000Hz) through a Neurolog system (Digitimer Inc.) to reduce noise and optimize the signal-

to-noise ratio for spike discrimination. Surface electromyography data will be digitized at 

2000Hz and intramuscular at 20 000 Hz (Cambridge Electronic Design Micro 1401). 

Plantarflexion force from the McComas boot dynamometer is digitized at 1000 Hz (Cambridge 

Electronic Design Micro 1401), then amplified 30x and low-pass filtered with a 50Hz cut-off 

(Cambridge Electronic Design, 1902).  

 The data is analyzed through a program by Cambridge Electronics Design called Spike2. 

Spike2 allows for single and multi unit recordings online, and offline. It allows for motor unit 

action potential sorting based on their distinct waveform pattern (Figure 6). During each 

triangular ramp contraction each motor unit can be characterized by its unique action potential 

shape and spikes individually sorted and coded into control and test motor units. 

Protocol 
Participants will begin in the McComas boot dynamometer seated and will start by 

practicing a series of plantarflexion MVCs, and perform triangular ramp contractions until a 

reliable value of MVCs and good ramp force tracings are observed. Participants can see an 

increase in force with plantarflexion, and a decrease in force with dorsiflexion on a computer 

screen placed in front of them. Figure 15 shows a schematic diagram of the steps involved in 

the protocol. First, 3 sets of MVCs will be performed, measures of % voluntary activation, and 

twitch properties will be measured. Secondly, a series of 30 triangular ramp contractions with 

1-2s rest in between will be performed to measure △F and see the ‘wind-up’ effect of PIC. The 
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ramps will be 10s in duration and set to 10% of the participants MVC. After a series of triangular 

ramps, an acute fatigue protocol will be performed, followed by a force sensation task. The 

acute fatigue protocol will be set to 70% of each participant’s MVC and participants will be 

asked to hold for 10s for 5 repetitions. Participants will then be asked to hold a target force 

level (50% of MVC) with visual feedback, and asked to hold the same force level with the 

removal of the visual feedback. The target force level is seen on a computer screen in front of 

them and the screen turns blank after a few seconds of holding the target force level. 

Adderall will be ingested immediately after the force sensation task and participants will 

be asked to wait an hour to allow for time to achieve elevated plasma levels of the drug. Blood 

pressure and heart rate will be recorded as a proxy measure for elevated drug plasma levels. 

The same steps will be repeated to observe the effects of the drug or the placebo on measures 

of the neuromuscular system such as % voluntary activation, motor unit firing rates and on 

subjective components of fatigue such as perceived exertion. Each participant will be tested on 

two separate days with either 100% of the drug, and the other day without the drug. 

Analysis 
 Fatigue can occur centrally or peripherally. Central changes due to fatigue can be 

assessed using a twitch interpolation technique. A supramaximal stimulus is applied to a mixed 

nerve during an MVC, and immediately after the contraction. Voluntary activation can be 

measured by expressing the first twitch as a function of the second twitch after the MVC to 

estimate the percentage of the motor unit pool activated during that MVC.  

Peripheral changes due to fatigue can be assessed by eliciting a mass action potential 

(M-wave) via supramaximal stimulation to the peroneal nerve. The maximum M-wave (Mmax) 

increasing stimulus intensities until no increase in the M-wave are seen. Mmax is the maximum 
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electrical activity that can be produced in a muscle, and is calculated from the peak-to-peak 

amplitude. Declines in Mmax can be attributed to peripheral transmission failure.  

To assess changes in spinal excitability induced by fatigue, the ratio of the slopes from 

the H reflex and M-wave recruitment curves are used. The protocol involves using a series of 

increasing intensity stimulations to 1a afferents to create an H-reflex recruitment curve. The 

peak of the H reflex recording is compared to the M-wave and the ratio represents the % of 

motor neurons activated by 1a afferent stimulation. The amplitudes of the H reflex and M 

waves are normalized to the maximum M wave amplitude and is plotted as a function of 

stimulus intensity. This creates H reflex and M wave recruitment curves that assess net spinal 

excitability.  

A supramaximal stimulation to the peroneal nerve elicits a maximal twitch in the soleus. 

The half relaxation time (HRT) can be used to assess the rate of calcium reuptake. During 

fatigue there is a reduced rate of dissociation of cross-bridges after the removal of calcium back 

into the sarcoplasmic reticulum, or a reduced rate of calcium pumping by the sarcoplasmic 

reticulum (Dawson, Gadian, & Wilkie, 1980). It is calculated be taking the negative change in 

force over the change in time from the half of the peak tension. The time to peak tension 

following a supramaximal twitch indicates calcium availability in the sarcoplasmic reticulum 

(Figure 16). 

 The force sensation target will be set to 50% of participants MVC. Force sensation data 

will be fitted to an exponential decay function, y = y0 + ae-bx. The constant b is an estimate of 

sense of force.  
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Results 

 
There were several variables investigated in this study. In all three cases, there was a 

decline in the MVC over the course of a fatigue protocol, from pre and post drug time periods 

(Table 1), and in both the Adderall and control group. 

 

 The △F values pre and post fatigue with the ingestion of Adderall were much higher 

compared to a control day where no Adderall was taken (Table 3). On either the drug or control 

day, there change in △F after fatigue declined in both the Adderall and control group. 

Comparing Ramp 2 to Ramp 4 to Ramp 7 pre-fatigue there was an increase in △F in the Adderall 

and control group (Figure 13). 
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Discussion 

In this study, ∆F estimates of PIC derived from paired motor unit recordings decreased 

over the course of a fatigue protocol compared to a control protocol that did not elicit fatigue.  

To determine whether changes in ∆F were due to changes in PIC, we used stimulation of the 

nerve to the antagonist during some ramps to elicit an inhibitory stimulus via the reciprocal 

inhibition pathway.  As predicted, ∆F values were lower in ramps with electrical stimulation and 

declined much less over the course of the fatigue protocol.  Therefore, fatigue-induced changes 

in the ∆F are likely to be due, at least in part, to changes in PIC.  The fatigue-induced changes in 

PIC may be due to either a reduction in monoaminergic drive, or an increase in inhibitory input, 

but likely it is the latter of the two.  

There several possible sites of failure during fatigue from central or peripheral origin, as 

high as the motor cortex and higher brain centers, and all the way down to the level of the 

muscle (Gandevia 2001). Corticospinal excitability is markedly reduced during fatigue (Pitcher et 

al. 2001), and can be due to spinal or supraspinal factors. During fatigue, an increase in the 

cortical motor evoked potential relative to the cervicomedullary motor evoked potential 

indicates an increase in motor cortex excitability, while a lengthening of the cortical silent 

period suggests intracortical inhibition (Fuhr, Agostino, & Hallett, 1991). Several experimental 

approaches have provided experimental evidence of a fatigue-associated decline in excitability 

at a spinal level.  Evidence of reduced spinal excitability from these studies include a fatigue-

induced reduction in H reflex (e.g. Kuchinad et al., 2004), cervicomedullary motor evoked 

potential (McNeil et al., 2009), and a reduction in group 1a (muscle spindle) activity (for review 

see Hagbarth and Macefield, 1995).  In a 2001 review, Gandevia suggested that a reduction in 
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intrinsic motor neuron excitability may also contribute to a reduction in spinal motor neuron 

excitability following fatigue (Gandevia 2001).  Persistent inward current (PIC) is an intrinsic 

motor neuron property that plays a key role in the gain of the motor neuron and may therefore 

contribute to the spinal motor neuron excitability changes that Gandevia proposed in 2001.  

This study is the first to assess fatigue-induced changes in estimates of PIC in human motor 

neurons. 

At the level of the motor neuron there are many inputs that either excite or inhibit the 

cell. The inputs include, but are not limited to descending inputs from cortical and propriospinal 

inputs, ascending inputs from group I, II, III, and IV afferents, and local inputs in the spinal cord 

(Figure 4). PICs have been thoroughly examined in animal models (Hounsgaard et al. 1988), and 

was first shown in the decerabrate cat to be activated by descending monoaminergic input. 

These PICs increased the gain of the motor neuron and resulted in self-sustained firing. 

Descending monoaminergic input to the spinal cord is diffuse, meaning it affect many motor 

neuron pools simultaneously, including agonist-antagonist pairings. Reciprocal inhibition from 

1a afferents and other inhibitory pathways act to reduce or completely turn off PICs.  These 

local inhibitory circuits serve to act as a gain control mechanism for these diffuse and non-

specific descending monoaminergic inputs to spinal motor neurons (Johnson & Heckman, 

2014). In several animal studies, reciprocal inhibition via electrical stimulation to the nerve of 

the antagonist muscle (Kuo et al., 2003), and joint rotation which alters reciprocal inhibition 

(Hyngstrom et al., 2007), have been shown to reduce PIC. Accordingly, we report lower values 

for △F estimates of PIC for the ramps with electrical stimulation compared to the ramps 

without electrical stimulation.  Furthermore, there was a greater decline in △F over the course 
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of the fatigue protocol in ramps without stimulation compared to ramps with stimulation.  

Thus, the inhibitory stimulus to the soleus motor neuron pool elicited by electrical stimulation 

was likely reducing the PIC, dialing down the gain of the motor neuron so further changes in 

fatigue would not decrease the PIC as sharply.  

Group III/IV input from muscle also inhibits the motor neuron (Woods et al. 1987) and 

may contribute to fatigue-associated changes spinal excitability that have been demonstrated 

using the H reflex. However, modulation of PIC by group III, IV afferents has not been 

investigated. One of the main findings in this study was the decrease in ΔF estimates of PIC 

during fatigue. Plausibly, the decreases in ΔF during ramps without electrical stimulation are 

due to increased group III/IV inhibitory input to the motor neuron over the course of the 

fatigue protocol. Future studies should investigate group III/IV inhibitory activity and PIC during 

fatigue using ischemia (discussed in Future Studies). It is also possible that reciprocal inhibition 

changed over the fatigue protocol, as there could be increased coactivation or decreased 

reciprocal inhibition. However, this would be contrary to the findings of this study as decreased 

reciprocal inhibition would increase PIC (Vandenberk & Kalmar, 2014). The problem with 

analyzing reciprocal inhibition after fatigue is that the length of RI protocol makes it difficult to 

implement over a fatigue protocol. 

 Alternatively, the decreases in ΔF during ramps without electrical stimulation could have 

been due to decreases in monoaminergic input for supraspinal centers. However, likely this is 

not the case as reductions in neuromodulatory drive are likely to be a factor during whole body 

fatigue, and not from single joint fatigue during isometric contractions. One way to test if there 

is a reduction in neuromodulatory drive is to use a pharmacological agent that alters 
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monoaminergic input. Serotonin and NE are crucial in modulating gain control in the spinal 

cord, as the serotonergic system covaries with the intensity of the motor output system 

(Rasmussen et al. 1998), and the noradrenergic system covaries with arousal state (Aston et 

al.2002). In the case study we estimated PIC before and after fatigue in a participant who was 

prescribed a pharmacological agent (Adderall) known to increase presynaptic release of 

serotonin from the brainstem. △F values were significantly higher after ingestion of Adderall 

compared to a control where no Adderall was taken (Appendix A).  Given these preliminary 

results, a full study using a stimulant such as Adderall may shed light on the role of 

neuromodulatory drive in spinal motor neuron excitability during acute bouts of neuromuscular 

fatigue.  

There are several components of this study note considerable mention, although this is 

a case study from two participants. The first finding worth mentioning is there was a large 

increase in △F from the Adderall group on the experimental day after ingestion of Adderall as 

compared to the pre-fatigue measures. The △F values are also much higher than the control 

day (with no ingestion of Adderall), and also compared to the control group. This finding 

supports our original hypothesis, by using a pharmacological agent that alters monoaminergic 

input, specifically Adderall increase presynaptic release of norepinephrine, △F values should 

increase. The main purpose of this study was to test if monoaminergic drive was reduced during 

a fatigue protocol and likely this was not the case from our results. The △F still declined 

following a fatigue protocol after oral ingestion of Adderall suggesting that fatigue is not due to 

declines in monoaminergic drive. These findings support the notion that the fatigue may be 

caused by group III/IV inhibitory afferent input that is reducing PIC.  



43 
 

The second finding worth noting is the warm up effect of PIC. PIC has been shown in 

animal models to increase with closely repeated stimuli (Gorassini et al., 2002b), and the same 

effect occurred in this study. Due to the nature of large variability in the accuracy of the 

isometric triangular ramp contractions, selective ramps had to be chosen that were consistent 

in all three groups. In a series of ten ramps, ramp 2, ramp 4, and ramp 7 were selected to 

compare in both participants as they were the most reliably accurate and suitable to analyze 

△F.  The pre-fatigue values comparing ramp 2 to ramp 4 to ramp 7 in either the Adderall group 

(experimental or control) and in the control group saw an increase in △F values. Interestingly, 

there was no major increase in △F post fatigue in the Adderall group, from ramp 2 to ramp 4 to 

ramp 7, but there was an increase in △F post fatigue in the control group. Future participants 

will reveal if this finding proves to be a significant one.  

 Future studies can continue to investigate the contributors to neuromuscular fatigue, 

building off the current study. Group III/IV afferent inhibitory input is a likely a key player in 

reducing PIC, an intrinsic motor neuron property responsible for increasing the gain of a motor 

neuron. Also, the present study used a pharmacological agent to alter monoaminergic drive. 

Reward circuitry in the limbic system is activated with the sole expectation of a reward (Garris 

et al., 1999).The release of dopamine from the nucleus accumbens in the ventral striatum is 

associated with reward processing. The placebo effect may exist with the use of a 

pharmacological agent as it is a powerful phenomenon. Future studies should also look at the 

placebo effect of these drugs on neuromuscular function. 

 One limitation to this study was that there was no counterbalancing of the days in this 

study, as the fatigue day was always done before the control day. This was to determine the 
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number of sets until fatigue, so that could be replicated on the control day. However, this is 

unlikely to be a confounding variable in this study as there was a minimum of 2 days separation 

between the fatigue and control day. Also, the pre-fatigue ∆F and MVC measure were fairly 

consistent among participants. Another limitation is the number of participants in the study, 

however the same motor unit was followed throughout the whole protocol which increases the 

statistical power. 

In summary, no study to date has investigated how fatigue is modulated by PIC. This 

study found that PIC is a significant contributor to fatigue, possibly due to group III/IV 

inhibition.  Also, we found that electrically stimulating the nerve to the antagonist of the soleus 

(CPN) decreased ∆f values, which suggest that the ∆F changes were due to changes in PIC. In 

the future, this contributes to the understanding of PIC in the neural control of movement. 

Hopefully in the future this study will serve a platform to investigate PICs in other populations 

such as aging and disease states.  
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Future Directions 

 
This present study found that changes in ∆F is a major contributor to fatigue, potentially 

due to group III/IV afferent input. Future studies should investigate the role of group III/IV 

afferent input and also changes in neuromodulatory inputs. There are many different excitatory 

and inhibitory inputs onto the motor neuron that may increase or decrease PIC. Many studies 

have looked at these inputs in isolation, but further studies require investigation of the 

interaction between these inputs and PICs. The present study found that the reductions in PIC 

may have been a contributor to fatigue, likely due to group III/IV inhibition. However, this study 

did not rule out other mechanisms that may have reduced PIC such as reduction is 

neuromodulatory input or an increase in afferent inhibition. Future studies can tackle both 

scenarios by 1) altering neuromodulatory input pharmacologically, and 2) altering afferent 

inhibition. Adderall is a known pharmacological agent that increases norepinephrine from the 

prefrontal cortex (Heal, Cheetham, & Smith, 2009). If decreases in PIC are due to reductions in 

monoaminergic drive, then a pharmacological agent such as Adderall that increases 

monoaminergic drive should be able to offset it. A case study (below) using Adderall has not 

seen this effect, as the reductions in the estimates of PIC will decline to a similar degree. A 

previous study by Garland SJ (2001) has shown there is some reflex inhibition during fatigue 

that decreases motor neuron activity, likely due to small diameter group III/IV afferents. This 

study used partial compression to block large diameter afferent input (group I,II) during a 

fatigue protocol. The EMG activity and MVC declined following a fatigue protocol even with the 

blockage of large diameter afferents, suggesting that group III/IV afferents was responsible for 
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mediating this reflex inhibition. A similar study should be done in the future investigating if this 

is the cause for the reductions in PIC. 

 While the current study provides insight in the role of PIC in the neural control of force 

production in young, healthy people during fatigue, future work could apply these findings to 

aging, pathology, and injury.  PICs have been speculated to be involved in many diseases and 

injuries, such as amyotrophic lateral sclerosis (Kuo et al. 2004), hemiparetic cerebral stroke 

(Mottram et al. 2009), and in both acute and chronic spinal cord injury (Bennett et al. 1999). 

PICs have been shown to be minimized after acute spinal cord injury in an animal model 

(Hounsgaard et al. 1988), and show dramatic recovery in chronic spinal cord injuries in an 

animal model (Button et al. 2008) and in humans (Gorassini et al. 2004). The initial decrease in 

PIC is due to loss of neuromodulatory inputs from supraspinal centers, particularly serotonin 

and norepinephrine highly involved in activating PIC (Heckman et al. 2005). The rapid increase 

in PICs after several weeks of spinal cord injury is mainly due to increase in receptor sensitivity 

which can trigger muscle spasms (Bennett et al. 2004), although the mechanisms remain 

unknown (Heckman et al. 2010). The residual monoamines in the spinal cord are responsible 

for reactivating PIC, since descending monoaminergic input is no longer possible. Both the Ca2+ 

PIC and Na+ PIC adapt over time, but to what amplification remains to be seen in humans. 

These PIC channels are specific (Nav1.6, CaV1.2, CaV1.3) and potentially are expressed 

differently in different diseases (Toledo et al. 2005) making them suitable drug targets for 

rehab. Drugs that target 5HT2 and NE a1 receptors that activate PIC can be potentially be used 

in conjunction with 5HT1b and NE a2 receptors that inhibit PIC can be useful in controlling 

these spams. People with Parkinson’s disease have degenerative monoaminergic inputs to the 
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spinal cord (Braak et al. 2003), and also lower strength in extensor muscles in the upper limb 

(Robichaud et al. 2004). Further understanding in the differences in PIC behavior between 

extensors and flexors may be useful for pharmacological and rehabilitation interventions for 

the upper limb. Previous studies (Wei et al.2014) have shown that modulating the efficacy of 5-

HT through pharmacological agents on volitional and reflexive pathways is mainly of spinal 

mechanisms. Serotonin and other potentially other neurotransmitters are highly involved in 

gain control, and future studies should look at neuromodulatory gain control in the spinal cord 

as it is an important area for rehabilitation and motor control.  

 Finally, the method for estimating PIC in humans (paired motor unit technique) is not 

direct, and has certain limitations that will hopefully can be resolved in the future.  The first 

limitation is that ∆F estimates of PIC are typically done seated, and isometrically. In an attempt 

to address this limitation, our lab recently investigated PIC during a standing forward sway 

postural task (unpublished work). This has been the first study known to estimate PIC in 

humans during a functional task, and is another step further in understanding PIC modulation in 

humans. Further studies should investigate PIC during a functional task, as it is unknown as 

what degree the change in PIC amplitude affects the overall gain of the entire motor pool. To 

what degree and what role does PIC play in functional tasks in humans remains to be seen.  A 

second limitation of using the paired motor unit technique is that ∆F estimates of PIC may be 

due to other intrinsic motor neuron properties such as spike frequency adaptation, spike 

threshold accommodation, and after-hyperpolarization (AHP). Revill et al. (2011) used a 

simulation study to show that the contribution of spike frequency adaptation, spike threshold 

accommodation to ∆F estimates of PIC could be minimized by using short ramps with faster 
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rates of rise. Vandenberk et al. (2014) verified this in human soleus motor neurons and further 

strengthen the argument that PIC is a major contributor to ∆F by showing that altering joint 

angle to increase reciprocal inhibition diminished ∆F estimates of PIC. However, no study has 

definitively shown that ∆F estimates of PIC are influenced by AHP. A simulation study by 

(Powers & Heckman, 2015) have shown the changes in the AHP has little effect on ΔF, and ΔF is 

largely  due to  PIC. One way to further verify this is to estimate AHP duration using death-rate 

analysis in humans (MacDonell, Ivanova, & Garland, 2007) and correlating these estimates with 

∆F estimates of PIC.  Another method to further verify the paired motor unit technique is to use 

a pharmacological agent that reduces PIC. Baclofen, GABAb receptor agonist used as a muscle 

relaxer and antispastic agent used to treat muscle problems has been examined in animal 

studies and has been shown to reduce Ca2+ PIC (Li et al. 2004). Further studies can investigate if 

the same result occurs in humans, as △F should theoretically be zero, or close to zero after 

ingestion of Baclofen.  
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Tables 
 
Table 1: PSTH results from reciprocal inhibition analysis. Reciprocal inhibition was analyzed from the 
difference in the control PSTH and stimulation PSTH, creating a cumulative sum (Figure 6). The 1st and 
2nd valleys in the cumulative sum represent the reciprocal inhibition for the 1st and 2nd ISI. The fatigue 
and control day RI values are shown below. 

 
FATIGUE 

 

 
 

CONTROL 
 
 Valley in Cumsum for 1st ISI Valley in Cumsum for 2nd ISI 

SSR1 -2 -14 

SSR2  -34 -54 

SSR3 4 -17 

SSR4 -22 -48 

SSR5 N/A N/A 

SSR6 -1 -17 

mean -13.25 -30 

SD 17.83956 19.32615 

 
 
 

 Valley in Cumsum for 1st ISI Valley in Cumsum for 2nd ISI 

SSR1 -15 -41 

SSR2  -60 -25 

SSR3 -6 -12 

SSR4 -19 -51 

SSR5 -20 -23 

SSR6 4 -19 

mean -19.3333 -28.5 

SD 21.88759 14.61164 
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Table 2: Criteria for the paired motor unit technique. For both the stimulation and no stimulation 
ramps, the criteria had to be met before final analysis. The table shows the time between control and 
test unit onset, Pearson’s correlation between the control and test unit, and the difference between the 
control unit firing range (max-min firing rate) and ΔF. 

 
Ramp Type Time between control 

and test unit onset (s) 
Pearson’s correlation 
(r2) (common synaptic 
drive) 

Test unit ΔF - control 
unit firing range (max-
min firing rate) (imp/s) 

No Stimulation 2.34 ± 0.88 s r2=0.94 ± 0.06 3.02 ± 1.42 

With Stimulation 2.01 ± 0.52 s r2=0.88 ± 0.12 3.61 ± 0.88 

 
 
Table 3: MVC (Adderall Case Study). MVC values are shown below in Newtons for all three conditions, 
Adderall (experimental day), Adderall (control day), and the control (control day) from pre to post 
fatigue in both the pre drug and post drug time periods (no drug was taken during the Adderall control 
day or the control case).  

  
 Pre Drug Period Post Drug Period 

Group Type Pre Fatigue Post Fatigue Pre Fatigue Post Fatigue 

Adderall (Experimental Day) 378.6483 346.0395 373.0103 320.3762 

Adderall (Control Day) 359.5016 321.3374 366.473 349.5303 

Control (Control Day) 341.776 305.6014 335.399 290.8318 

 
 
Table 4: Contractile Properties (Adderall Case Study). The contractile properties are shown below 
before and after the pre and post drug ‘periods’. These contractile properties are analyzed after the 
twitch. 
 

 Pre Drug Post Drug 

 ADD CON ADD CON  

Superimposed Twitch 0.005615 0.004162 0.010256 0.003791 

Potentiated Twitch 0.130652 0.150651 0.2593 0.149222 

Time to Peak Tension 0.140672 0.131572 0.10617 0.121576 

Half-Relaxation Time 0.061286 0.060124 0.079189 0.065929 

Peak Tension 0.130652 0.127432 0.37946 0.114412 

M-wave amplitude 4.27158 4.12549 4.2602 4.10511 

.+dF/dt 32.16029 28.1253 36.1291 26.1343 

.-dF/dt -11.646 -12.211 -13.8212 -11.921 
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Figures 
 
 

 
 
Figure 1 - PIC demonstrated in intracellular recording of cat hindlimb motor 
neuron during voltage-clamp 

 
Synaptic input is generated from tendon vibration of 1a afferents in an animal model. The 
green tracings represent when the cell is held at a hyperpolarizing holding potential (not 
brought close enough to firing threshold, and the red tracings represent when the cell is 
unclamped, and brought closer to its firing threshold A) The x-axis represents time, while the y-
axis represents current. The current generated across the membrane lasts. (Lee & Heckman, 
1996). 
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Figure 2: Ionotropic vs monoaminergic input for muscle force 

 
Without monoaminergic input maximal muscle force output is substantially lower. 
Monoaminergic input allows for increased motor neuron excitability and much greater motor 
output. PIC is primarily responsible for the increase in motor output and is active even in low 
monoaminergic input. PIC is particularly important for locomotion such as walking and basic 
motor activity (Heckman, 1994). 
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Figure 3: Paired motor unit technique 

 
This sample recording for our laboratory illustrates the process of data acquisition and spike 
sorting used in the paired motor unit technique.  In panel A, intramuscular recordings (green 
trace at bottom) are made from the soleus during a 10s isometric triangular plantarflexion 
contraction (5s to increase force and 5s to decrease force). Spike2 (version7, CED) is used to 
sort each action potential based on shape and amplitude (see insert figure at top of A). An 
earlier recruited motor unit (the reference unit in blue) and a later recruited motor unit (test 
unit in pink) are identified and used for the paired motor unit analysis is specific criteria are met 
(described in the review of literature and Methods). B) The instantaneous firing frequencies 
(Hz) are plotted and are fitted to a 4th order polynomial. The difference between the 
instantaneous firing frequency of the control unit at the onset and offset of the test unit is the 
estimate of △F. 
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Figure 4: Levels of input from peripheral, spinal, and supraspinal sites of the 
neuromuscular system. 

 
This diagram published in an extensive review of neuromuscular fatigue by Gandevia (2001) 
summarizes the pathways involved in muscle contraction including key afferent input to the 
motor neuron (panel B), as well as upstream drive to the motor neuron. In panel B, the solid 
circles are inhibitory while the clear circles are excitatory. This diagram illustrates the potential 
complexity of neuromuscular fatigue with multiple sites at which motor output can be 
regulated (Gandevia, 2001). As illustrated in both panel A and B, the alpha motor neuron is the 
final common pathway.  Thus changes in the excitability of this neuron may contribute to 
changes in motor output during fatigue. 
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Figure 5: Experimental Protocol 

 
A schematic diagram of the experimental protocol. A) The fatigue and control day will run 2 
hours total time. The fatigue day will always begin before the control day to determine the 
number of sets until ‘fatigue’. After a few plantarflexion MVCs and practice isometric ramp 
contractions, the protocol will begin with 20 fatiguing contractions. The intermittent fatiguing 
contractions will be set to 45% of maximum plantarflexion force, and will be 3s in duration with 
1s of rest in between each contraction. After the fatiguing contractions, an MVC will be 
performed and then several PIC ramps will be performed with and without electrical 
stimulation to the CPN (RI). This protocol will be repeated until the participants declined to 70% 
of initial MVC force. The same protocol will be repeated on the control day, but without the 
fatiguing contractions. The same time period between each ‘set’ will remain the same 
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Figure 6: Steps involved in quantifying reciprocal inhibition of each test unit. 

 
A) Subthreshold electrical stimulation of the nerve to the antagonist (the CPN was used to elicit 
inhibition of the soleus test unit for each paired motor unit recording. The stimulation was 
triggered every 3 seconds by a soleus motor unit discharge.  The timing was such that a 
stimulus was delivered to the CPN 130ms after a spike.  The PSTH technique was used to 
determine the extent to which stimulation of the antagonist nerve delayed the next two spikes 
via reciprocal inhibition.  B) A ‘control’ trigger was used to create a PSTH of interspike intervals 
(ISI) in the absence of electrical stimulation.  C) The stimulation PSTH was derived from 80 
subthreshold stimulations to the CPN. The number of spikes or ‘counts’ were placed in 5ms 
‘bins’ for 400ms following the stimulus. D) The control PSTH was derived from 80 ‘control’ 
triggers, or triggers placed with the same delay following a spike, but without electrical 
stimulation.  E) The difference between the control PSTH and the stimulation PSTH was used to 
calculate a difference PSTH to quantify the amount of inhibition (a rightward shift from control 
to stimulation would denote inhibition or lengthening of the interspike intervals).  F) The 
cumulative sum was derived from the difference PSTH, and a negative peak in the 2nd ISI 
indicates a stimulus-induced delay (inhibition). 
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Figure 7: Change in △F over a fatigue protocol 

 
Comparison of △F estimates of PIC (normalized to pre-fatigue values) made during ramps 
without electrical stimulation on both the control day and fatigue day. The x-axis represents the 
time normalized to the total time to fatigue (Tlim or a 30% decline from the pre-fatigue MVC). 
△F is significantly lower at50% tlim (p<0.05), 75% tlim (p<0.05), and tlim (p<0.01).  After the 
recovery period, △F is not significantly different from the prefatigue value. There are no 
significant changes in △F on the control day. 
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Figure 8: Change in △F estimates of PIC over a fatigue protocol (raw values) 

 

Comparison of △F estimates of PIC made during ramps with and without electrical stimulation. 
Prefatigue estimates of PIC tended to be lower during ramps with stimulation compared to 
ramps without stimulation (p=0.068). Estimates of PIC made during ramps with stimulation did 
not change over the course of the fatigue protocol. 
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Figure 9: Change in △F during the control day (raw values) 

 
Comparison of the raw data for PIC estimates on the control day with and without electrical 
stimulation.  △F estimates of PIC during ramps with stimulation are significantly lower than the 
ramps without stimulation on the control day. 
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Figure 10: Changes in plantarflexion MVC over the fatigue protocol 

 
MVC values on the fatigue day compared to control day. There is a significant drop in MVC on 
the fatigue day at 75% tlim (p<0.05) and tlim (p<0.01).  After a recovery period, MVC force is 
not significantly different than the prefatigue value. 
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Figure 11: Experimental Protocol for Adderall Case Study 

 
A schematic diagram of the experimental protocol. The experimental protocol (B) was 
completed before and 1 hour after administration of Adderall to allow the drug to reach peak 
plasma levels (experimental day).  The same protocol was repeated by the Adderall case 
participant without Adderall ingestion during the one-hour rest period (control).  The protocol 
was also completed by a control participant who is Adderall-naïve. B) On the control or 
experimental day, with the protocol begins with 3 sets of MVCs and measures of twitch 
properties, followed by a series of 30 ramp contractions. This is followed by an acute fatigue 
protocol and a force sensation task.  
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Figure 12: Changes in △F Estimates of PIC for Adderall Case Study 

 
Comparison of the estimates of PIC in the Adderall case study. Prior to fatigue, there is a large 
increase in ∆F estimate of PIC after Adderall ingestion by the Adderall case participant 
compared to day when Adderall was not ingested by this participant and compared to the 
control participant. The data presented here was taken from ramp 2 in the experiment, prior to 
the potential warm-up of the PIC. In both the Adderall case (with Adderall), and the control 
participant, there is a large decrease in ∆F from pre to post fatigue in both the pre and post 
drug ‘periods. However, there is no decrease in the Adderall case (without Adderall) after a 
fatigue protocol in either the pre or post drug ‘periods’. 
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Figure 13: Warm-up of PIC during repetitive ramps 

 
The warm-up effect of PIC during repetitive ramps is illustrated by the changes in ∆F from ramp 
2, to ramp 4, to ramp 7. ∆F was always higher following Adderall ingestion, but in all three 
cases, increases in ∆F from ramp 2 to ramp 7 were evident.  
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Appendix B – Exclusion Criteria 

Exclusion and Contraindication Checklist 
 

Participant:   _____________      Age:   ___________      Date:   _______________________ 
 

Please circle yes or no for the following activities, devices, or diagnosed medical conditions 
that are listed below. If uncomfortable or unsure about answering certain questions, direct 

your questions to the primary investigator. 
  

Epilepsy                                                                                            YES                          NO 
 
Seizures                         YES                          NO 
 
Pacemaker        YES                          NO 
 
Heart arrhythmias       YES                          NO 
 
Cochlear implant(s)       YES                          NO 
 
Metal implants       YES                          NO 
 
Diabetes        YES                          NO 
 
Neurological disorder      YES                          NO 
 
Recent ankle or knee injury      YES                          NO 
 
Recent head injury       YES                          NO 
 
Ergogenic aids (sport supplements)    YES                          NO 
       
Use of centrally active drugs     YES                          NO 
(serotonergic/dopaminergic drugs) 
 
Smoking        YES                          NO 
 
Pregnancy        YES                          NO 
 
Caffeine consumption      YES                          NO 
If “YES” how often (per day): ________________ 
 
Serious Allergy       YES                          NO 
If “YES” please indicate:  _____________ 
 
Investigator Initials: ___________ 
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Appendix C – Participant Instructions 

Instructions for Experimental Subjects 
 

Do not consume any of the following on the day of each experiment: 

 Coffee 
 Tea 
 Chocolate 
 Medications containing caffeine (e.g. diet pills, cold medications) 
 Cola beverages (e.g. Coca-Cola, Pepsi etc.)  
 Nutritional supplements (other than multivitamins), recreational drugs, and 

performance enhancing drugs 
 

 
Please abstain from these activities for 24 hours prior to the experiment: 

 Strenuous physical activity of the right calf muscle (i.e. running, cycling, swimming, 
and weight lifting using the lower body such as squats, lunges, and toe raises) 

 Excessive alcohol consumption 
 
Contact the experimenter to reschedule your appointment if you: 

 Fail to follow the above instructions 
 Have been sick in the 48 hours prior to the experiment 
 Have not had an adequate sleep the night before the experiment 
 Simply need to reschedule due to a new and urgent commitment 

 
Your experimental sessions have been scheduled for the following days: 
 
Day 1: ____________________________________ from: ______________to_______________ 
 
Day 2: ____________________________________ from: ______________to_______________ 
 
 
 
Please arrive on time to Northdale campus off of Hickory Street. If you are running late please 
contact the experimenter. If you are running very late, the appointment may have to be 
rescheduled. 
You can reach Kirby Mendes at mend2950@mylaurier.ca or at 519-884-0710 ext. 3334.  
 
 

Note: Be honest about your caffeine intake with the experimenter. Caffeine intake prior 
to the experiment may alter the results. However, if you are regular coffee drinker each 
day, you may maintain this activity on the test day. 
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Appendix D – Informed Consent 

 
WILFRID LAURIER UNIVERSITY 

INFORMED CONSENT STATEMENT  
The Relationship between Fatigue and Persistent Inward Current 

 
You are invited to participate in a research study at Wilfrid Laurier University. The purpose of 
our study is to provide further insight into the relationship between fatigue and a motor neuron 
property known as persistent inward current.                                                                                                                           
 
Student Investigator: 
Name:  Kirby Mendes 
Institution: Wilfrid Laurier University 
Phone:  (519) 884-0710 ext. 3334 
Email:  mend2950@mylaurier.ca 
 
Supervisor: 
Name:  Dr. Jayne Kalmar 
Institution: Wilfrid Laurier University 
Phone:  (519) 884-0710 ext. 2033 
Email:  jkalmar@wlu.ca 
 
INFORMATION 
 
Fifteen participants will take part in this research study.  The aim of our study is to investigate 
the relationship between lower leg fatigue and a property of spinal motor neurons.  Specifically, 
we will be studying the effects that muscle fatigue has on the properties of motor neurons. We 
are interested in how this fatigue acts to adjust the excitability of motor neurons during a 
fatigue task.  The experiment will take place in room NC119 of the Northdale Campus at Wilfrid 
Laurier University, which is located on the corner of Hickory Street and Hazel Street. Upon 
arrival, you can dial the lab extension (3334) from the outdoor keypad at the main entrance and 
a member of the laboratory will meet you there at the entrance. Electrodes will be attached to 
the skin over a nerve in your leg and when stimulated it will cause muscles in your leg to 
contract. Intramuscular electrodes that are made out of very fine wires will be inserted into 
your leg to record the electrical activity within the muscle when you contract your leg 
voluntarily. These procedures are safe and have been used routinely in research settings for 
more than 40 years; however, some participants may find them unpleasant. If you find these 
procedures uncomfortable, you may withdraw from the study at any time. The first day that 
you visit our laboratory will be an orientation day.  During this orientation session you will be 
introduced to the techniques employed in this study (nerve stimulation and intramuscular 
recordings).   Following this orientation session, we will assess these preliminary recordings.  If 
the recordings meet our criteria, we will contact you to schedule the experimental day.  Each 
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experimental protocol will take approximately 1 hour; there will be two experimental protocols.  
You will be paid $20.00 for completing the experiment. 

 
Initials________ 

RISKS 
 
The electrical stimulation applied to the mixed nerve through a constant current stimulator will 
cause an involuntary muscle “twitch” in the target muscle. You may find this stimulation 
unpleasant; however, constant current stimulation is a noninvasive procedure that does not 
cause damage to the nerve or other tissues. 
 
The initial insertion of the intramuscular electrodes may be associated with a stinging sensation 
due to the alcohol used to clean your skin.  There is also a remote risk of infection with the 
insertion of intramuscular electrodes. To reduce this risk the needles and electrodes are 
sterilized using an autoclave and your skin is prepared with alcohol. The researcher will also be 
wearing latex gloves during the protocol.  Needles and electrodes are never reused. 
There occasionally may be localized bruising (<0.5cm diameter) around the site of electrode 
insertion similar to what you might observe following a blood test. This bruising subsides within 
48 hours and is not typically associated with any discomfort.  
 
BENEFITS 
 
You will not benefit directly from participating in this study.  However, this study will help us 
understand the neural control of muscles in healthy populations, which can later be applied to 
pathophysiological models such as aging and injury. 
 
EXCLUSION CRITERIA 
 
Ankle/knee injury, or have been diagnosed with a neurological disorder. Multiple sclerosis and 
sciatic nerve impingement would be two examples of neurological disorders that would 
confound our data (but not pose a risk to you as a participant.   
 
 
CONFIDENTIALITY  
 
All data collected in this study will be stored indefinitely in NC119 and will only be accessible by 
the investigators. All measures will be taken to ensure your privacy and all your data will be 
coded and identified by a participation code. Group results will be submitted for publishing in 
various research journals. Individual results will remain completely confidential and not 
published to ensure your privacy. 
 
COMPENSATION  
 
To compensate you for your participation you will receive $20 upon completion of this study. 
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CONTACT  
 
If you have questions at any time about the study or the procedures you may contact the 
researcher or supervisor. 
This project has been reviewed and approved by the University Research Ethics Board.  If you 
feel you have not been treated according to the descriptions in this form, or your rights as a 
participant in research have been violated during the course of this project, you may contact 
Dr. Robert Basso, Chair, University Research Ethics Board, Wilfrid Laurier University, (519) 884-
1970, extension 4994 or rbasso@wlu.ca. 
 
Initials________ 
 
 
PARTICIPATION 
 
Your participation in this study is voluntary; you may decline to participate without penalty.  If 
you decide to participate, you may withdraw from the study at any time without penalty and 
without loss of benefits to which you are otherwise entitled. 
 
FEEDBACK AND PUBLICATION 
 
The results will be presented for completion of the undergraduate thesis project and at various 
neuroscience conferences. We will also be making submissions to appropriate scientific journal, 
such as the Journal of Neuroscience.  IF YOU WISH, YOU MAY RECEIVE A BRIEF SUMMARY OF 
THE FINDINGS OF THIS STUDY AFTER IT IS COMPLETED. IF YOU WISH TO RECEIVE THIS 
SUMMARY, IT WILL BE SENT TO YOU IN JUNE 2014 (8). 
 
If you would like to receive a summary of the results of this study, please indicate below: 
 
          No Feedback              Please email feedback to ______________________ 
   
 
CONSENT  
 
I have read and understand the above information.  I have received a copy of this form.  I agree 
to participate in this study. 
 
 
Participant's signature____________________________________ Date _________________ 
 
 
Investigator's signature___________________________________Date _________________ 
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