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Abstract 
 

Rare earth elements (REEs) are a group of similarly reactive metals that are divided into 

two groups; the light (LREEs) and heavy (HREEs) rare earths. These metals are used in a variety 

of industries and are critical to the function of modern society. The demand for REEs is expected 

to increase and as a result new mining projects are being developed with a potential for future 

mining in Canada. The toxicological understanding of these metals in the aquatic environment is 

very limited. The objective of this research is to compare the toxicological effect of REEs to the 

freshwater invertebrates Daphnia pulex and Hyalella azteca and in the more sensitive Hyalella to 

understand the toxicity modifying influence of cationic competition (Ca2+, Mg2+, Na+, H+) and 

dissolved organic matter (DOM) complexation. In this study cerium (Ce; a light REE) and 

dysprosium (Dy; a heavy REE) were chosen as representative of the two REE groups. Standard 

methods (Environment Canada) were followed for testing and culture; acute Ce tests were 

performed at low hardness (12.5 mg CaCO3 mg/L, pH 7.0, Ca 0.18, Na 0.14, Mg 0.14 (mM) for 

D. pulex and 32 mg CaCO3/L, pH 7.2, Ca 0.1, Na 0.101, Mg 0.03 (mM) for Hyalella at 21oC) 

while Dy tests were completed at intermediate hardness (62.5 mg CaCO3 mg/L) adjusted to pH 

7.8 with Ca at 0.5, Na 0.5, Mg 0.125 (mM) and 23oC for both organisms. Acute toxicity tests 

were performed using <24 h old neonates for 48 h in the case of Daphnia and with 2-9 d old 

offspring for 96 h tests with Hyalella. Dissolved concentrations (0.45 µm filtered) for Ce and Dy 

were lower than total (unfiltered) which demonstrated precipitation over the course of the 

exposures. As a result, the LC50s based on end concentrations provided the most conservative 

estimates of toxicity. Daphnia was identified as the more resilient organism to REE exposures 

and thus further testing with toxicity modifying factors was performed using Hyalella. The 

protective effect of cationic competition was tested with Ca (0.1 to 2.0 mM), Na (0.1 to 2.0 mM) 
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and Mg (0.03 to 0.5 mM) and it was determined that Ca and Na (in the case of Dy exposures) 

were protective of acute REE toxicity while Mg had no effect. Moreover, tests where pH (6.5 - 

8.0) was altered showed a protective effect of increased H+ on acute Dy toxicity. The ability of 

dissolved organic matter (DOM) to complex Ce and Dy were tested with DOM additions (4 to 15 

mg C/L) and showed a dose dependent decrease in LC50s. Biotic ligand based parameters (Log 

K values) were calculated based on free ion relationships using geochemical equilibrium 

software (WHAM ver. 7.02). The Log K values derived from Ce3+ and Dy3+ LC50 to Hyalella 

were calculated as 7.3 and 7.75, respectively. The protective influence of Ca2+ was determined 

for Ce3+ (Log K = 3.9) and Dy3+ (Log K = 3.95) and in the case of Na+ and Dy3+ (Log K = 4.10). 

This study contributes data to the development of site specific water quality guidelines and 

criteria for Ce and Dy in freshwater.  
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1.0 Introduction 

1.1 Rare Earth Elements 
 

Rare earth elements (REEs) are a group of 17 similarly reactive metals that include 15 

lanthanides, yttrium (Y) and scandium (Sc) (Table 1; Environment Canada, 2012). Yttrium (Y) 

and Scandium (Sc) are included since they share much of the same chemical properties as 

lanthanides (Hirano and Suzuki, 1996). Lanthanides are divided into two groups: the light rare 

earth elements (LREEs), lanthanum (La) to samarium (Sm), and heavy rare earth elements 

(HREEs; Table 1) comprised of europium (Eu) to lutetium (Lu) as well as Y (Environment 

Canada, 2012). Scandium is not classified as either a light or heavy REE but because it shares 

similar chemical properties to other lanthanides it is included as a REE (Environment Canada, 

2012). Contrary to their name REEs are not rare; when compared to other metals, the soil REE 

concentrations are similar to iodine and cobalt and more abundant than those of mercury or silver 

(Environment Canada, 2012; Paul and Campbell, 2011). In general, the abundance of REEs 

decreases with increasing atomic number. Enriched deposits are limited and therefore there are a 

few areas where mining is economically viable particularly for HREEs (Paul and Campbell, 

2011).  

1.1.1 Production and uses of Rare Earth Elements 
 

Uses and applications of REEs have resulted in increased demand in recent years and this 

has altered global production patterns. Until 1985 a single mine, the Mountain Pass mine (in 

California currently owned by Molycorp), was the primary producer of REEs around the world 

(Environment Canada, 2012; Paul and Campbell, 2011). However in the early 1990’s there was a 

dramatic shift in production as a result of Chinese involvement in the market. As of 2007 
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approximately 95% of the global REE production has been from China (Environment Canada, 

2012; Paul and Campbell, 2011). The Chinese dominance is believed to be the result of minimal 

labor costs, low requirements for mining startup investment, abundant high grade reserves, and 

lax environmental regulations (Paul and Campbell, 2011). Rare earth element production is 

driven by demand for uses in a variety of sectors; oil industry (petroleum refining catalysts), 

automotive industry (catalytic converters and permanent magnets), glass production (pigments in 

ceramic manufacturing, polishers and colorizers), agriculture (chemical supplements and 

fertilizer), electronic industry (high temperature superconductors and lasers) and health care 

(anticancer treatment; Ng et al., 2011). Rare earth elements are also used in military equipment 

ranging from night vision devices to missile guidance systems (Paul and Campbell, 2011). This 

broad diversity of REEs uses and applications reflect their unique catalytic, magnetic and optical 

properties (Paul and Campbell, 2011). The electronics sector is the main user of REEs and within 

this sector the main industry that is predicted to drive future demand is the phosphorous industry 

from which efficient lighting technology is developed (Paul and Campbell, 2011).  

Increasing uses and applications has increased demand. In 2008 the global demand for 

REE was 125 000 tones and by 2014 it is expected to exceed 200 000 tons annually (Paul and 

Campbell, 2011). In recent years, however, the Chinese government has dramatically restricted 

its lanthanide production. In 2010 the Chinese HREE exports decreased by 40% in comparison 

to the previous year, resulting in massive price increases (Paul and Campbell, 2011). Due to the 

growing demand and restrictions in supply by 2014 it is expected that there will be a shortage of 

La, Y and Eu and a likely shortage of Nd, Dy, Tb and Pr. These shortages will likely affect 

numerous industries but would be more pronounced in the automobile and electronic sectors 

(United States Environmental Protection Agency (USEPA), 2012). As a result the price increases 
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caused by supply-demand restrictions, there has been an increased activity in exploration and 

development of potential REE deposits. In Canada the most developed mining project is located 

at Thor Lake, Northwest Territories and is owned by Avalon Rare Metals Inc. (Environment 

Canada, 2012). 

1.1.2 Inputs of REEs into aquatic environment and need for regulation 
 

Due to the increased production and use of REEs in multiple industries, there is also a 

growing interest in understanding the potential impact of REEs in the environment especially 

aquatic systems. As with other naturally occurring potential contaminants, lanthanides can enter 

aquatic environments and cause impacts via improper practices during mining, recycling and 

disposal (USEPA, 2012). The growing interest in the potential impacts of REEs in the aquatic 

systems is due to the fact that there are no water quality guidelines by the Canadian Council of 

Ministries of the Environment (CCME) and this is also the case in the US where the EPA has not 

developed water quality criteria. There is a strong need to develop a better understanding of 

discharge limits and effect thresholds in aquatic systems. Since there are no water quality 

guidelines or criteria this reflects the fact that there are limited data available on the toxicity of 

REEs. There is even less known on the influence of potential toxicity modifying factors (TMFs). 

1.2 Modifying factors for metal toxicity 
 

Toxicity modifying factors are factors that influence metal toxicity either by mitigating or 

increasing its effects. TMFs can be divided into two categories: biotic and abiotic factors (Wang, 

1987). The biotic factors are related to the biology of the species being studied and are 

influenced by size, life stage, tolerance as well as adaptability of the organism (Wang, 1987). 

Abiotic factors are often related to water chemistry and include the influence of temperature, 
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organic substances, inorganic ligands, pH, alkalinity, hardness, the presence of sediment (Wang, 

1987) and dissolved organic matter (DOM, quantified as additions of dissolved organic carbon 

(DOC); Di Toro et al., 2001). The abiotic TMFs reduce metal toxicity by decreasing the 

bioavailability of the most toxic metal form, the free-metal ion (Campbell, 1995), which in the 

case of rare earths is represented as REE3+ (Figure 1). Metal toxicity to aquatic organisms is 

influenced by pH, cationic competition, and complexation by inorganic and organic ligands (ie 

DOM) which influence the bioavailability of the free-metal ion.  

1.2.1 pH 
 

Solution pH is one of the main modifying factors influencing metal toxicity (Schubauer-

Berigan and Dierkes, 1993) by altering metal speciation and thus bioavailability to aquatic 

organisms (Campbell and Stokes, 1985). The most bioavailable and toxic form of metal species 

is the free-metal ion and which dominates at low pH (Campbell, 1995). In contrast, when pH is 

elevated there may be a decrease in toxicity because carbonates and hydroxides dominate at 

higher pH and may complex the majority of the free-metal ions (Meyer, 1999). However, for 

some metals (for instance Cu, Al, Hg, and Pb) decreased pH can also have a protective effect, 

mitigating toxicity because of decreased uptake. This is due to H+ competition for the same 

toxicity-inducing sites between metal free-ions and protons (Meyer, 1999). Importantly, while 

toxicity can vary with pH, the pH level at which toxicity is highest depends on the metal. 

Different metals have various modes of toxicity and the free-metal ion is not necessarily the only 

bioavailable form.    
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1.2.2 Cationic competition 
 

Cationic competition results from the competitive binding between the free-metal ions 

and major cations (Mg2+, Ca2+, Na+, H+) at sites of uptake and/or toxicity on the biological 

membrane (Di Toro et al., 2001). For example the free-metal ion can cause toxicity by 

antagonistically binding to the ionoregulatory channels that are normally utilized by essential 

cations thus disrupting normal function (Paquin et al., 2002). For instance, Ag and Cu act as 

antagonists of Na while Cd, Zn, Pb and Co are antagonists of Ca and in the case of Ni the 

presumed antagonist is Mg (McGeer et al., 2011). For instance, Erickson et al. (1996) 

demonstrated that Cu is an antagonistic inhibitor of Na to fathead minnows, Clifford and 

McGeer (2010) confirmed that Cd and Ca antagonistically bind in Daphnia pulex, and in the 

same organism Kozlova et al. (2009) showed that Ni is an antagonist of Mg. All three of these 

studies also found that water hardness (Ca and Mg) had a protective effect (Erickson et al., 1996; 

Clifford and McGeer, 2010; Kozlova et al., 2009). Rare earth elements share similar 

physiochemical properties with Ca and are known to be used as Ca probes in cellular membranes 

(Palasz and Czekaj, 2000). Therefore it is possible that their mode of toxicity towards aquatic 

invertebrates could be related to disruption of Ca channels.  

1.2.3 Toxicity mitigation by DOM 
 

Dissolved organic matter complexes with the free-metal ions and thereby reduces 

bioavailability (Di Toro et al., 2001). In freshwater systems DOM can vary in its composition 

and this can be important in its toxicity mitigation ability (Al-Reasi et al., 2011). Dissolved 

organic matter enters the freshwater environment from several sources including allochthonous 

(terrestrial), autochthonous (aquatic) and anthropogenic (Baken et al., 2011). Differences among 
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input sources result in each aquatic environment having a unique composition (referred to as 

DOM quality). Dissolved organic matter can be characterized based on the presence of humic, 

fulvic and hydrophilic acids and these are often measured using UV absorbance and absorbance-

to-fluorescence ratios (De Schamphelaere et al., 2004). Linkages between toxicity and UV 

absorbance have been shown by De Schamphelaere et al. (2004). A higher absorbance is 

associated with greater aromaticity which is indicative of elevated humic content. Dissolved 

organic matter with elevated humic content have stronger metal binding capacity. Higher humic 

content is found in allochthonous sources and this is important because site-specific differences 

in DOM quality may result in different toxicity mitigation capacities (Al-Reasi et al., 2011). For 

example the binding strength and complexation capacity among DOM sources can vary up to 

one order of magnitude for Cu.    

1.3 Biotic ligand model (BLM) 
 

The biotic ligand model (BLM) is a tool for predicting metal toxicity in aquatic 

environments. The model predicts toxicity based on the interaction of the free-metal ions with 

the biotic ligand and it accounts for the influence of TMFs such as competing cations, and 

complexation with inorganic and organic ligands (Di Toro et al., 2001; Niyogi and Wood, 2004; 

Paquin et al., 2000; Paquin et al., 2002). Complexation reduces toxicity by binding chemical 

ligands to the free-metal ion thereby reducing bioavailability towards the organism while 

cationic competition reduces toxicity by antagonistically competing with the free-metal ions for 

uptake at the site of action (referred to as the biotic ligand; Di Toro et al., 2001; Paquin et al., 

2000; Paquin et al., 2002; Niyogi and Wood, 2004; Figure 1). The BLM simultaneously 

considers the effects of TMFs within a geochemical equilibrium context to predict metal 

speciation and subsequently toxicity to specific organisms. Mortality is predicted when the 
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concentration of the metal bound to the biotic ligand surpasses the threshold accumulation for 

that organism. This threshold is defined as the accumulation (at the biotic ligand) that is 

associated with 50% effect, for the lethality end point the LA50. The practical application of the 

BLM is to predict metal toxicity on a site-specific basis, as a function of local water chemistry 

conditions (Paquin et al., 2000). This approach can also be applied for developing water quality 

criteria/guidelines and in this case sensitive organisms are used so that the resulting policies are 

protective of all species at a given location. Currently BLMs have been developed for Cu, Ag, 

Zn and Ni (Niyogi and Wood, 2004), however no BLM has been developed for any of the REEs. 

There is limited data available on the effects of TMFs towards REE toxicity and no data 

indicating whether REEs would follow BLM predictions. The only study available is the survey 

of 63 elements by Borgmann et al. (2005a) which showed that for some REEs toxicity in hard 

water was less than in soft water. 

1.4 Sensitive organisms  
 

Invertebrates are often used to generate toxicological data and BLMs because they can be 

sensitive to environmental contaminants. In addition to its sensitivity other important factors to 

consider when selecting an organism for study are its ecological significance, its distribution, the 

existence of standard testing methods, the ease of culturing, and its ability to survive in most 

sensitive environmental conditions. Hyalella azteca and Daphnia pulex are some of the most 

commonly used invertebrates for assessing metal toxicity that meet all of the considerations 

stated above. 
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1.4.1 Hyalella azteca 
 

Hyalella azteca is small sediment burrowing detritivore and an epibenthic amphipod that 

is found in freshwater bodies including streams, ponds and lakes of North and South America 

(Borgmann et al., 2005b; Environment Canada, 2013; De March, 1977). There is noticeable 

sexual dimorphism between males and females. The males are larger than the females and 

possess a large second gnathopod. Mating occurs when the male uses the second gnathopod to 

adhere to the female in a union called amplexus. The fertilized eggs and hatching neonates are 

contained within the marsupium for a period of seven to eight days and are released once the 

female molts. The average brood size per female is 18 neonates while larger females produce 

bigger broods. Reproduction takes place sexually after each molt (Environment Canada, 2013).   

H. azteca is a suitable model organism for conducting toxicity testing because of its wide 

geographic distribution throughout North America, sensitivity towards contaminants, ease of 

culturing and ecological significance (Borgmann et al., 2005b; Environment Canada, 2013). 

Additionally, standard biological test methods are available in assessing metal toxicity 

(Environment Canada, 2013). More importantly, the organism is capable of thriving in soft 

waters (low hardness) representative of the Canadian Boreal Shield lakes that are associated with 

heightened toxicity due to increased metal bioavailability. 

1.4.2 Daphnia pulex 
 

Daphnia pulex, commonly known as the ‘water flea’, is a small planktonic crustacean 

that is distributed throughout the world’s freshwater streams, rivers and ponds (Environment 

Canada, 1996). The organism belongs to the order of Cladocera that is characterized by having a 

translucent shell called a carapace (Hebert, 1978). During normal environmental conditions 
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reproduction occurs asexually though the process called parthenogenesis in which the female 

produces identical female clones. During periods of stress, involving high population density and 

food shortage, the organism reverts to sexual reproduction (Stollewerk, 2010). The eggs are 

produced in the ovaries and are released by the oviduct into the brood chambers where they 

mature in one to three days. The neonates reach reproductive maturity within ten days and are 

reproductively viable for five weeks (Environment Canada, 1996). Daphnia is a primary 

consumer that filter-feeds on organic material and is a dominant herbivore (Hebert, 1978; 

Environment Canada, 1996). Ecologically, the organism is at the bottom of the food chain and is 

a food source for aquatic invertebrates as well as various fish species (Hebert, 1978; 

Environment Canada, 1996).  

The organism is ideal for soft water toxicity testing since it can be easily cultured in the 

laboratory, is sensitive to metals, has a short life-cycle, is ecologically significant and can be 

grown in soft waters that increase metal bioavailability (Environment Canada, 1996).  

1.5 Previous aquatic toxicity studies with REEs 
 

There exists a gap in understanding how REEs affect aquatic organisms. Currently there 

are a limited number of toxicity tests conducted with lanthanides and no clear understanding of 

how toxicity is modulated in natural waters. Out of the few published studies the most notable 

ones were conducted with algae (Tai et al., 2010; Hao et al., 1997), sea urchin (Oral et al., 2010), 

a microcosm of algae, protozoa, and bacteria (Fuma et al., 2005), Hyalella (Borgmann et al., 

2005a), and Daphnia (Barry and Meehan, 2000; King et al., 2003). These works, while relatively 

limited, offer some insight into REEs toxicity, particularly with respect to prioritizing further 

studies. 
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1.5.1 REE comparison studies 
 

Tai et al. (2010) examined the toxicity of 13 lanthanides towards the marine algae 

Skeletonema costatum. Individual lanthanides had the same 50% effect concentration (EC50) of 

29 µM for the whole series and mixtures had the same toxicological effect as individual elements 

indicating that algal cells do not discriminate between individual lanthanides. However, there 

were cases, for examples with Y and Sc where EC50 values varied (Tai et al., 2010). This 

suggests that lanthanides as a chemical group behave similarly to single celled algae in 

comparison to other REEs. In contrast, closely related lanthanides respond differently in 

multicellular organisms such as the sea urchin. Oral et al. (2010) examined the toxicity of La and 

Ce towards the sea urchin (Echinus melo) embryos using development and survival as test 

endpoints. At the highest concentration of 10 µM for both metals, toxicity was more pronounced 

for Ce than La since Ce-exposed embryos perished while the La-exposed ones survived but with 

defects (Oral et al., 2010). 

1.5.2 TMFs and REE toxicity 
 

There is limited information available on REE toxicity as it relates to TMFs such as pH, 

cationic competition, and organic ligand complexation. Fuma et al. (2005) confirmed that for 

REEs the free-metal ion is the metal species responsible for inducing toxicity and that its 

presence is influenced by pH fluctuations. The toxicity of Dy was assessed in a microcosm with 

species which included algae (Euglena gracilis), protozoa (Tetrahymena thermophile) and 

bacteria (Escherichia coli). The study revealed that the pure culture organisms were up to two 

times more sensitive than their microcosm counterparts. The decreased Dy toxicity within the 
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microcosm is believed to occur due to the lower concentration of Dy3+ that resulted from 

increased complexation with organic matter and hydroxides at elevated pH (Fuma et al., 2005). 

Barry and Meehan (2010) conducted acute and chronic toxicity La studies with Daphnia 

carinata using three different media that covered a range of water hardnesses. When the water 

hardness in the media increased from 22 to 160 mg CaCO3/L the acute EC50 values increased 

from 43.2 to 1180 µg La/L. Since Ca and La have physicochemical similarities they may behave 

similarly in biological systems and it was argued that low Ca would result in decreased 

competition among the two metals, greater La uptake and increased toxicity (Barry and Meehan, 

2010). Since the remaining REEs share much of the same chemical properties with La they may 

behave similarly to increases of Ca in solution.   

Hao et al. (1997) performed toxicity testing with La, Gd and Y on the alga Chlorella 

vulgaris Beijerinck in an attempt to see the influence of organic ligands on bioavailability. The 

addition of citrate, nitrilotriacetic acid (NTA) or ethylenediaminetetraacetic acid (EDTA) 

resulted in reducing the bioconcentration factor compared to solution without complexing 

ligands thus demonstrating that the biotic ligand principle of complexation may apply to La, Gd 

and Y (Hao et al., 1997).  

Environmental cases where metal toxicity is heightened often have low levels of TMFs. 

In Canada such conditions are representative of Boreal Shield waters which are low in hardness. 

Currently, there are two published studies which assess the toxicity of all the REEs in the water 

chemistry conditions representative of Boreal Shield soft waters. These studies use two sensitive 

freshwater invertebrates Daphnia pulex and Hyalella azteca (King et al., 2003; Borgmann et al., 

2005a) since they are capable in thriving under conditions of low hardness. King et al. (2003) 
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compared the toxicity of light and heavy REEs to Daphnia pulex in soft waters of 12 mg 

CaCO3/L. It was determined that the EC50 values exceeded the Canadian Domestic Substances 

criteria of 1 mg/L for the majority of the metals except for Nd, Lu and Yb. This study indicates 

that there is a need to establish concrete endpoints using D. pulex for the metals in which no 

EC50 is established. Moreover, there is a need to use a more sensitive organism in order to 

accurately assess lanthanide toxicity in extremely soft waters. Similarly, Borgmann et al. (2005a) 

assessed the toxicity of REEs using a more sensitive organisms Hyalella azteca in soft waters of 

18 mg CaCO3/L. This study established EC50 values for all of the lanthanides and determined 

that some of the most toxic REEs from both the light and heavy groups were Cerium (Ce) and 

Dysprosium (Dy), respectively. Since Ce and Dy were determined to be relatively toxic metals in 

their respective groups their toxicological profile in the environmentally sensitive conditions is 

of interest. 

1.6 Cerium and Dysprosium speciation  
 

In the aqueous environment REEs readily complex common anions such as fluorides (F-), 

sulfates (SO4
2-), phosphates (PO4

3-), hydroxides (OH-), carbonates (CO3
2-), silicates (SiO4

4-) and 

NOM; with carbonates and organic complexes being the most dominant forms of REE species 

(Janssen and Verweiji, 2003; Moermond et al., 2001; Sneller et al., 2000). In some instances the 

free-metal ion and sulfates can be included as the main REE fractions. Data obtained from the 

groundwater sites located in Vierlingsbeek, Netherlands demonstrates this notion since the 

predominant forms of REE species were REE3+, REE(SO4
+), REE(CO3

+) and REE(DOC) 

(Janssen and Verweiji, 2003). The persistence of the free-metal ion in natural environments is of 

particular interest since this form is believed to be most bioavailable and thus most toxic.  
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The notion that the free-metal ion is the most bioavailable species appears to hold true for 

REEs. Hao et al. (1997) confirmed that the most bioavailable form of these metals to algae 

Chlorella vulgaris Beijerinck is the free-metal ion and ranked the relative bioavailability of the 

dissolved metal fractions to be highest for the REE3+ and the lowest for the inorganic and organic 

complexes (Hao et al., 1997). Moreover, Moermond et al. (2001) suggested that the main 

bioavailable forms of lanthanides in estuaries are REE3+ and REE (OH). Since REEs are divided 

into light and heavy, Ce and Dy are of particular concern since they have been shown to exhibit 

higher toxicity in their respective groups to a sensitive amphipod Hyalella azteca (Borgmann et 

al., 2005a); thus the persistence of these free-metal ions is of interest.    

Cerium has two oxidation states: Ce3+ and Ce4+ (Table 1). In anoxic environments Ce can 

exist as the soluble, and thus more bioavailable Ce3+, which in oxic environments can be 

oxidized to the insoluble Ce4+ with the formation of CeO2 (Ng et al., 2011). Dysprosium does not 

have a second oxidation state and thus Dy3+ (Table 1) is believed to be the most bioavailable 

metal form (Ng et al., 2011). The abundance of these free-metal ions in aquatic environments can 

be estimated with the use of geochemical modeling programs.       

In aqueous solutions, metal speciation can be predicted with the use of geochemical 

equilibrium software which predicts metal speciation across a wide range of natural water 

chemistry parameters. One of the most advanced modeling packages is the Windermere Humic 

Aqueous Model (WHAM; model 7.02; Tipping et al., 2011) which takes into account lanthanide 

inorganic and organic complexation. Since Ce and Dy are the most relevant lanthanides, their 

speciation can be modeled using this software.  
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Modeling metal speciation using WHAM7 can be applied to predict various fractions of 

aqueous metal and to identify the most abundant species. Based on rearing and testing water 

chemistry (Table 2) and using equivalent Ce and Dy concentration (1mM) the most prevalent 

species (as predicted by WHAM7) are summarized in Table 3. Since Ce3+ and Dy3+ are the most 

relevant fractions investigating how variation in H+ effects speciation and toxicity is of interest.  

Variation in pH has a strong influence on REE3+ speciation and thereby toxicity. As pH 

increases from 6.3 to 8.3 WHAM7 predicts a substantial decrease in Ce3+ and Dy3+ (Table 3; 

Figure 2). On the basis of % of total aqueous metal, pH increase lowers the free-metal ion 

fraction from 88 to 10% and 24 to 0.3% for Ce and Dy, respectively (Table 3). The decrease in 

Ce3+ is offset with increasing carbonate formation which dominates Ce speciation at elevated pH 

and this is also true for Dy (Table 3; Figure 2). The elevated carbonate formation is supported by 

Sneller et al. (2000) and Moermond et al. (2001) who state that lanthanides in general 

predominantly form carbonate complexes at higher pH. Since lower pH produces more Ce3+ and 

Dy3+ the toxicity of these metals is expected to increase in these conditions. 

The change in Ce and Dy speciation is not limited to pH alterations and WHAM7 can be 

used to predict REE3+ speciation with the addition of other toxicity modifying factors such as 

salts of common cations and DOM. Changes in the salts of major cations are expected to change 

REE3+ speciation through complexation of the free-metal ion with inorganic salt anions (Figure 

1). For instance, increase in NaHCO3 should decrease the presence of REE3+ through inorganic 

complexation with the predominant HCO3
- anion at circumneutral pH. Furthermore, modeling 

Ce or Dy speciation with DOM additions above 4 mg C/L drastically decreased the presence of 

Ce3+ and Dy3+ in solution. Increase in DOM is known to complex metal thereby making it less 

bioavailable to the organism (Al-Reasi et al., 2011, Figure 1).   
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1.7 Objectives 
 

The overall objective of this research is to contribute data towards the development of 

water quality guidelines and/or criteria that are protective of freshwater organisms in the 

presence of REEs. In order to fulfil this broad goal the purpose of this study was to generate 

toxicological data based on acute exposures of two REEs to common freshwater invertebrates 

and in the more sensitive organism assess how water chemistry affects toxicity. The two metals 

used in this study are Ce (a LREE) and Dy (a HREE): the focus of Chapter 2 and Chapter 3, 

respectively. 

In both chapters the objectives of this research are to: 

1) Compare the relative sensitivity of Daphnia pulex and Hyalella azteca to acute Ce or Dy 

exposures and then in the more sensitive organism: 

2) Determine if changes in water chemistry (e.g. alteration of Ca2+, Mg2+, Na+, H+ and DOM) 

follow BLM principles of cationic competition and DOM complexation and if they do:   

3) Establish geochemical equilibrium binding parameters (e.g. Log K values) as a means to link 

speciation and REE toxicity.  
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1.8 Tables and Figures 
 

Table 1. Rare Earth Element chemical properties and occurrence in the Earth’s crust. 

Element1 Atomic 

number1 

Atomic 

weight 

(g/mol)1 

 Light/ 

Heavy 

REE2 

Oxidation 

state1 

Ionic 

radius 

(pm)1c 

Crustal 

abundance3 

        
Lanthanum (La) 57 138.91  

Light 

3+ 118 30 ppm 

Cerium (Ce) 58 140.12  3,4+ 114 60 ppm 

Praseodymium (Pr) 59 140.91  3+ 114 8.2 ppm 

Neodymium (Nd) 60 144.24  3+ 112 28 ppm 

Promethium (Pm) 61 145  3+ 110 b 

Samarium (Sm) 62 150.36  2,3+ 109 6 ppm 

Europium (Eu) 63 151.96  2,3+ 107 1.2 ppm 

Gadolinium (Gd) 64 157.25  

Heavy 

3+ 106 5.4 ppm 

Terbium (Tb) 65 158.93  3+ 104 0.9 ppm 

Dysprosium (Dy) 66 162.50  3+ 103 3 ppm 

Holmium (Ho) 67 164.93  3+ 102 1.2 ppm 

Erbium (Er) 68 167.26  3+ 100 2.8 ppm 

Thulium (Tm) 69 168.93  3+ 99 0.48 ppm 

Ytterbium (Yb) 70 173.04  2,3+ 98 3 ppm 

Lutetium (Lu) 71 174.98  3+ 97 0.5 ppm 

Yttrium (Y) 39 88.91  3+ 102 33 ppm 

Scandium (Sc) 21 44.96  a 3+ 87 22 ppm 

        
        
Magnesium (Mg) 12 24.30  - 2+ 89 2.33 % 

Calcium (Ca) 20 40.08  - 2+ 112 4.18 % 

Sodium (Na) 11 22.99  - 1+ 118 2.36 % 

Potassium (K) 19 39.10  - 1+ 151 2.09 % 

         

1 - (Lide, 2010). 2 - (Environment Canada, 2012). 3 - (Taylor, 1964). 

a - Scandium is classified as one of the rare earth elements but is not considered as light or heavy 

(Environment Canada, 2012). b - Promethium is not naturally present in the earth’s crust since is 

a byproduct of uranium decay (Ng et al., 2011). c - Data derived from coordination number 8. 
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Table 2. Base water chemistry from culture and test media. Tests with Ce and Dy were 

performed in two different mediums. 

Components Ce  Dy  units 

CaCl
2
 0.1 0.5  

MgSO
4
 0.025 0.125  

KCl 0.005 0.025 mM 

NaHCO
3
 0.1 0.5  

NaBr 0.001 0.005  

pH 7.3± 0.1 7.7± 0.1  
DOC 0.03 0.4 mg C/L 

Hardness 12.5 62.5 mg CaCO
3
/L 

Temperature 21± 1 23± 1 
o

C 
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Table 3. Ce and Dy speciation given as the % of the total concentration (1 mM) as predicted by 

WHAM7 (ver. 7.0.2) and based on Table 2 water chemistry with colloidal DOC (modeled 10% 

humic (HA) and 90% fulvic acid (FA)) and atmospheric pressure (1 atm). 

Ce speciation   pH     Dy speciation   pH   

  6.3 7.3 8.3     6.3 7.3 8.3 

         
Ce[3+] 88.7 53.7 10.3  Dy[3+] 24.4 4.2 0.3 

         
CeSO4[+] 6.4 3.9 0.7  DySO4[+] 9.7 1.7 0.1 

         
CeCO3[+] 3.3 37.8 79.0  DyCO3[+] 12.1 38.3 27.3 

         
CeHCO3[2+] 0.7 0.8 0.2  DyHCO3[2+] 1.3 0.4 0.0 

         
Ce(CO3)2[-] 0.0 0.1 3.2  Dy(CO3)2[-] 0.1 3.3 25.2 

         
CeOH[2+] 0.5 3.2 6.1  DyOH[2+] 0.8 1.4 0.9 

         
HA - Ce 0.0 0.0 0.0  HA - Dy 4.5 4.5 4.0 

         
FA - Ce 0.4 0.4 0.4  FA - Dy 47.0 46.2 42.1 
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Figure 1. Conceptual representation of the Biotic Ligand Model (modified from Di Toro et al., 

2001; Paquin et al., 2002). Metal toxicity is predicted based on the free-metal ion (REE3+) 

bioavailability to the organism as the parameters of water chemistry (cationic competition, 

inorganic and organic complexation) change.  
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Figure 2. Rare earth element speciation as % of total Ce (A) or Dy (B) and function of pH in 

Hyalella base medium. Modeled (WHAM ver. 7.02) based on Table 2 water chemistry with 

REEs (1 mM), colloidal DOC (10% humic) and pressure (1 atm). 
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Abstract 

 

The toxicological understanding of rare earth elements (REEs) in the aquatic 

environment is very limited but of increasing concern as the use of these metals continues to 

grow. The objective of this research is to compare the toxicological effect of the REE Cerium 

(Ce) to the freshwater invertebrates Daphnia pulex and Hyalella azteca and in the more sensitive 

organism, understand the toxicity modifying influence of Ca, Na, Mg and dissolved organic 

matter (DOM). Standard methods (Environment Canada) were followed for testing and culture: 

for D. pulex (32 mg CaCO3 mg/L) at pH 7.0 with Ca at 0.18, Na 0.14, Mg 0.14 (mM) and 21oC 

while for H. azteca  (12.5 mg CaCO3 mg/L) at pH 7.1 with Ca at 0.1, Na 0.1, Mg 0.03 (mM) and 

21oC. Acute toxicity tests were done with <24 h old neonates for 48 h in the case of Daphnia and 

with 2-9 d old offspring for 96 h tests with Hyalella. The potential protective effect of cationic 

competition was tested with Ca (0.1 to 2.0 mM), Na (0.1 to 2.0 mM) and Mg (0.03 to 0.5 mM). 

The effect of White River DOM complexation was tested with dissolved organic carbon (DOC) 

at nominal 6 and 12 mg C/L. Dissolved Ce concentrations were lower than total (unfiltered) 

indicating precipitation, particularly at higher concentrations. Acute toxicity of Ce to H. azteca 

and D. pulex revealed Hyalella to be 11 times more sensitive than Daphnia in hardness matched 

soft water. Additions of Ca but not Na and Mg provided significant protection against Ce toxicity 

to Hyalella. DOM also mitigated Ce toxicity in a concentration dependent matter. Biotic ligand 

based parameters (Log K values) were calculated based on free ion relationships as determined 

by geochemical equilibrium modeling software (WHAM ver. 7.02) and based on initial dissolved 

Ce concentrations. The log K value for Ce3+ toxicity to Hyalella was 7.3 while the protective 

influence of Ca was 3.9. This study contributes data towards the development of site specific 
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water quality guidelines and criteria for Ce and offers insight into the complex bio-geochemical 

nature of this element.  

Keywords: REEs; Hyalella azteca; TMFs; BLM; WQC; risk assessment  
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2.0 Introduction 
 

Rare earth elements (REE), are a group of 17 similarly reactive metals that include 15 

lanthanides as well as yttrium and scandium (Environment Canada, 2012; Migaszewski and 

Galuszka, 2015). These metals are divided into two distinct groups: the light rare earth (LREE) 

and heavy rare earth (HREE) elements. The more abundant LREEs are comprised of lanthanum 

to samarium while the less abundant HREEs consist of europium to lutetium in addition to 

yttrium (Environment Canada, 2012; Tyler, 2004; Migaszewski and Galuszka, 2015). Contrary 

to their name, REEs are not rare, but are named for limited areas where enriched deposits can be 

economically mined. In comparison to other metals, REEs have soil concentrations similar to 

iodine and cobalt and greater than those of mercury or silver (Environment Canada, 2012; Paul 

and Campbell, 2011).  

Rare earth element industrial applications are diverse, reflecting their unique set of 

catalytic, magnetic and optical properties (Paul and Campbell, 2011). Cerium (Ce), classified as 

a LREE, is the most abundant rare earth found in mineral deposits (Dahle and Arai, 2015). 

Compounds consisting of Ce based salts and oxides have been used in various applications 

(Dahle and Arai, 2015). For instance, Ce salts have been used to relive vomiting, decrease blood 

clotting, treat topical burns, enhance alloy oxidative resistance and mediate organic synthesis 

reactions (Dahle and Arai, 2015). Whereas Ce oxides, such as cerium dioxide (CeO2) 

nanoparticles, have been used to catalyze chemical reactions, manufacture solid oxide fuel cells, 

polish glass and absorb UV radiation (Dahle and Arai, 2015). The diversity in Ce uses is 

reflective of this metals distinct chemistry. 
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In comparison to other REEs, Ce and Eu are unique to the group since they have two 

oxidation states. Cerium can exist in two forms Ce3+ and Ce4+. Under conditions of elevated 

redox potential (Eh) Ce3+ tends to oxidize to Ce4+ and form the insoluble CeO2. In freshwaters of 

moderate Eh and pH values Ce is predicted to precipitate as CeO2 (Migaszewski and Galuszka, 

2015) and this has been speculated to be the primary process for the occurrence of negative Ce 

anomalies (Seto and Akagi, 2008).  

Rare earth elements occur at relatively low dissolved concentrations in freshwaters 

(usually ng/L to µg/L, Leybourne and Johannesson, 2008; Verplanck et al., 2001) and in most 

cases the dissolved Ce concentration is highest. Water samples from mining sites where REE 

concentrations were expected to be low had Ce concentrations documented below 161 µg/L 

(Verplanck et al., 2001) but for some mining projects Ce concentration has been recorded as high 

as 6270 µg/L in the surrounding groundwater (Miekeley et al., 1992). The toxic effects of Ce on 

aquatic organisms are not well understood. Currently, there are no water quality guidelines in 

Canada and this is also the case in the United States where there are no water quality criteria. 

The lack of regulatory development for Ce (or any REEs) in aquatic systems is reflective of the 

limited number of aquatic toxicity studies, especially those looking at the influence of water 

chemistry on Ce toxicity. 

Out of the few published REE toxicity studies the most notable were performed with 

algae (EL-Akl et al., 2015; Tai et al., 2010; Hao et al., 1997; Yang et al., 2014; Zhao and 

Wilkinson, 2015), sea urchin (Oral et al., 2010), a microcosm of algae, protozoa, and bacteria 

(Fuma et al., 2005), Daphnia (Barry and Meehan, 2000) and Hyalella (Borgmann et al., 2005). 

These studies although conducted with different REEs under various chemical conditions, 

demonstrate that toxicity is influenced by water chemistry. For example, Barry and Meehan 
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(2010) conducted acute La exposures to Daphnia carinata and showed that increased water 

hardness ameliorates toxicity. They reasoned that the chemical similarity of La3+ to Ca2+ reduce 

toxicity through the inhibition of many Ca dependent biological systems and that elevated Ca 

concentrations were protective of La toxicity through cationic competition. Recently, study by 

EL-Akl et al. (2015) examined Ce uptake by algae and demonstrated decrease in uptake with 

increasing dissolved organic matter (DOM). The study of Borgmann et al. (2005) performed 

acute Ce exposures to Hyalella azteca and showed that the LC50 in soft water was lower than in 

intermediate hardness water. These studies indicate that water chemistry can influence Ce 

toxicity and stress the need for further investigations of Ce effects in aquatic settings.  

It is well known that water chemistry can alter the acute toxicity of metals through the 

influence of toxicity modifying factors (TMFs; Paquin et al., 2002). The TMFs affect metal 

toxicity by either binding to the free-metal ion and/or antagonistically competing with the free-

metal ion for uptake at the site of toxic action (Di Toro et al., 2001). The free-metal ion is 

believed to be the most toxic metal form (Campbell, 1995) but it is unclear whether the trivalent 

Ce ion (e.g. Ce3+, Migaszewski and Galuszka, 2015) also induces toxicity. The influence of 

water chemistry on metal toxicity can be predicted with the use of geochemical equilibrium 

based model such as the biotic ligand model (BLM). 

The BLM is the most advanced method to comprehensively account the influence of 

water chemistry on metal toxicity. Biotic ligand model predicts toxicity based on the interaction 

of the free-metal ions with the site of toxic action called the biotic ligand. This model accounts 

for the influence of TMFs such as competing cations, and complexation with inorganic and 

organic ligands (Di Toro et al., 2001; Niyogi and Wood, 2004; Paquin et al., 2000; Paquin et al., 

2002). The BLM simultaneously accounts the influence of TMFs within a geochemical 
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equilibrium framework to predict metal speciation and toxicity to specific organisms. Mortality 

is predicted when the concentration of the metal bound to the biotic ligand exceeds the threshold 

accumulation for that particular organism. This threshold is defined as the accumulation (at the 

biotic ligand) that is associated with 50% effect, for the lethality end point called the LA50. 

Biotic ligand model can be used to predict metal toxicity on a site-specific basis, as a function of 

local water chemistry parameters (Paquin et al., 2000). 

The objective of this study was to develop data on the acute toxicity of Ce to sensitive 

aquatic invertebrates and to understand how water chemistry influences Ce toxicity. The initial 

step in this study was to compare the sensitivities to Ce between Daphnia pulex and Hyalella 

azteca and in the more sensitive organisms apply the BLM approach through the systematic 

investigation of potential TMFs, including Ca2+, Na+, Mg2+ and DOM.  
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2.1 Materials and Methods 

2.1.1 Invertebrate culturing 

2.1.1.1 Hyalella azteca 
 

Hyalella cultures were acquired in 2010 from Hannah Lake near Sudbury Ontario and 

cultured at Wilfrid Laurier University. The collected organisms were identified morphologically 

(Pennak, 1978) and genetically as H. azteca belonging to the inner Sudbury clade (Babin-Fenske 

et al., 2012). Procedures for culturing Hyalella followed Standardized Biological Test Methods 

EPS 1/RM/33 2nd edition (Environment Canada, 2013). Culturing solution, called reconstituted 

soft water (RSW) was designed to mimic Boreal Shield soft waters (Borgman et al., 2005) and 

was based on a 90% dilution of the standardized aquatic medium for Hyalella growth and 

reproduction (Borgmann, 1996). RSW was made with analytical grade salts (Sigma Aldrich, 

Mississauga, ON) of CaCl2, NaHCO3, MgSO4, KCl and NaBr which when diluted with deionized 

water (18 Mohm, Milli-Q A30, Millipore Corporation, Fisher Scientific Nepean, ON) were at 

nominal concentrations of 100, 100, 25, 5 and 1 µM, respectively. Culture medium was aerated 

and had a hardness of 12.5 mg CaCO3/L with solution pH 7.1 ± 0.1 (measured using Radiometer 

PHM240 meter equipped with pHC2701 electrode (ATI Scientific, Mississauga, ON)).   

Cultures were maintained in 2 L polypropylene beakers (VITLAB® Griffin, VWR 

International, Mississauga, ON) with approximately 60 adult organisms in at least 1.5 L of RSW. 

Beakers were covered with a plastic lid and a water change was done weekly using 650 and 275 

µm mesh to separate adults from neonates. After each water change a new piece cotton gauze of 

approximately 5 by 5 cm was placed in solution to act as substrate (Borgmann et al., 1989). 

Hyalella cultures were fed 5 mg ground fish flakes (TetraMin, Tetra Holding (US) Inc., 

Blacksburg, VA) three times weekly, on non-consecutive days. Neonates used for toxicity testing 



 
 

37 
 

were collected (into separate glass beaker containing RSW but no food) during water change and 

were 2 to 9 d of age at the beginning of tests. Cultures were kept at 21 ± 1oC with light intensity 

500-1000 lux and photoperiod 16 h light: 8 h dark.   

2.1.1.2 Daphnia pulex 
 

Daphnia pulex was acquired from Aquatic Research Organisms Inc. (Hampton, NH) and 

cultured in 1 L glass beaker. Procedures for culturing D. pulex followed standard methods 

(Environment Canada, 1996). Culturing was carried out in artificial soft water (ASW) which was 

made with analytical grade salts (Sigma Aldrich, Mississauga, ON) of CaSO4, NaHCO3, MgSO4 

and KCl which when diluted with deionized water (18 Mohm, Milli-Q A30, Millipore 

Corporation, Fisher Scientific Nepean, ON) were at nominal concentrations of 180, 140, 140 and 

30 µM, respectively. Culture medium was aerated and had a hardness of 32 mg CaCO3/L and 

solution pH of 7.0 ± 0.1. Water changes were carried out daily in order to separate neonates and 

adults. Daphnia feeding followed each water change and consisted of 10 mL of algae (30% 

Chlorella vulgaris and 70% Pseudokirchneriella subcapitata) and 5 ml of a yeast, cerophyl and 

trout chow mix (YCT, Aquatic Research Inc., Hampton, NH). Temperature, lighting and 

photoperiod were the same as for Hyalella cultures. Daphnia toxicity tests were carried out 

without food using neonates less than 24 h old.  

2.1.2 Acute toxicity testing with Ce 
 

Acute toxicity tests for Hyalella (96 h) and Daphnia (48 h) were carried out following 

standard methods (Environment Canada, 2013 and 1996, respectively). In brief, Ce exposure 

solutions were prepared in duplicate by adding the appropriate amount of Ce stock solution 

generated from a 1 g/L atomic absorption standard (Inorganic Ventures, Christiansburg, VA) to 



 
 

38 
 

culture medium (RSW for Hyalella and ASW for Daphnia) and then allowing 24 h of 

equilibration prior to test start. To allow for direct comparison of the two organisms, side-by-side 

tests were conducted, first in their respective rearing media and then in hardness matched 

conditions (Ca and Mg additions to RSW to match 32 mg CaCO3/L ASW). These tests revealed 

Daphnia as the more resistant organism and therefore subsequent TMF tests were performed 

with the more sensitive Hyalella.       

2.1.2.1 Tests with TMFs 
 

A series of tests were done for TMFs, beginning with the culture medium (RSW) and 

then in a progressive manner systematically modifying concentrations in order to understand 

how Ca, Mg, Na and DOM influence acute Ce toxicity to Hyalella. In each test series one 

chemical parameter was varied while keeping others constant. Test were done in duplicate in 400 

mL polyethylene beakers with 240 mL of exposure solution. Test solutions were equilibrated for 

24 h before the test started and during this time gauze pieces (5 cm x 5 cm) were also 

equilibrated but in a separate plastic beaker with the test medium. Exposures were initiated by 

adding the gauze and then 10 Hyalella 2-9 d of age to each beaker. Beakers were covered and 

held in the same environment as cultures (described above) without food for 96 h. 

Acute Ce exposures used concentrations ranging from 0.04 - 66 µM with the exact range 

in any test dependent on the degree of toxicity modification anticipated by the TMF. The culture 

medium was altered by sequentially changing the concentration of the selected TMF while 

keeping others constant. Ca was added as CaCl2, Mg as MgSO4 and Na as NaCl. The pH in 

experimental solutions were stabilized using 3.6 mM 3-(N-morpholino)propanesulfonic acid 

(MOPS) buffer (De Schamphelaere et al., 2004) with the additions of KOH. Each test included 

two controls, the modified media either with or without added MOPS. The control with MOPS 
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ensured that the buffer was not a contributing factor to toxicity and were at the same levels as the 

highest exposure concentration. The effect of DOM on Ce toxicity was evaluated by adding 

natural organic matter (previously collected as concentrate using reverse osmosis) from a site 

near White River, Ontario (WR-DOM) at either 6 or 12 mg C/L. Collection of DOM was 

performed based on the method described by Gheorghiu et al. (2010). Exposure water chemistry 

is summarized in Table 2.  

2.1.2.2 Ce sampling and characterization 
 

Water samples were collected shortly after solutions were made and when exposures 

ended (96 h) in order to characterize Ce content. For each sampling time and each exposure 

concentration, a pair of 10 mL samples were collected, one unfiltered and the other filtered (pre-

rinsed 0.45 µm, Acrodisc HT tuffryn membrane, Pall Corporation, MI). Samples were stored in 

15 mL centrifuge tubes (Celltreat, Mandel Scientific, Guelph, ON) and preserved with 2% v/v 16 

N HNO3 (trace metals grade, Fisher Scientific, Nepean, ON) before being analyzed. Additional 

samples (50 mL) from tests containing DOM were collected and 0.45 µm filtered for subsequent 

measurement of dissolved organic carbon (DOC) at the start or end of tests. DOC samples were 

stored at 4oC and not acidified before being measured with the total organic carbon analyzer 

(TOC-LCPH, Shimadzu, Mandel Scientific, Guelph, ON). Background DOC concentration in 

RSW was 0.272 mg C/L.  

Ce concentrations were determined for unfiltered (total Ce: Ce-T) and filtered (dissolved 

Ce: Ce-D) samples (from the initial and final sampling period) using inductively coupled plasma 

optical emission spectroscopy (ICP-OES, Optima 8000, PerkinElmer Inc., Woodbridge, ON). 

Analysis parameters and wavelengths followed manufacturer recommendations. Quality 

Water sampling for tests involving …..   

also included samples that 

sampling for tests involving 

…..   
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assurance procedures for Ce measurements involved analysis of reference standards (Standard 

26, Inorganic Ventures Inc., Christiansburg, VA) and reagent blanks (2% HNO3) throughout 

each run. The average measured concentrations for Ce in controls (RSW medium and sampled 

from initial timeframe) for Ce-T was 2.8 µg/L (stdev= 3.0, n=9) and for Ce-D was 2.3 µg/L (stdev 

=1.3, n=15). 

2.1.2.3 Calculations and statistics 
  

Measured Ce-T and Ce-D were compared by paired T-test assuming unequal variances. Ce 

concentration resulting in 50% mortality (LC50) was calculated based on nominal (Ce-N) and 

measured (Ce-T and Ce-D) exposure concentrations from the initial and final (96 h) sampling 

period with the Comprehensive Environmental Toxicity Information System software (CETIS, 

Tidepool Software, 2005) using the trimmed Spearman Karber method (Hamilton et al., 1977). 

Significant differences in LC50s were determined using the Litchfield and Wilcoxon method 

(1949, Environment Canada, 2005).   

The Ce3+ concentrations were estimated from LC50 values (Ce-D basis) using the 

Windermere Humic-Aqueous Model (WHAM ver. 7.02., Tipping et al., 2011) and nominal water 

chemistry (Table 2). DOC entered into WHAM was assumed to be in colloidal phase and at 90% 

fulvic and 10% humic acid (Santore et al., 2001). Speciation data from WHAM was used to 

develop stability constants for competitive interaction of cations (Ca2+) on Ce3+ toxicity. These 

were calculated according to the method developed by De Schamphelaere and Janssen (2002). 

Briefly, linear regression analysis of free cationic activities of Ca on Ce3+ LC50 were performed 

to derive the slope and intercept value and an estimate of Log K Ca-BL developed (De 

Schamphelaere and Janssen, 2002). The conditional equilibrium constant used to quantify Ce3+ 
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binding to the biotic ligand (Log K Ce-BL) was derived as the negative log of the intercept from 

the cation regression relationships of Ce3+ on Ca2+ (De Schamphelaere and Janssen, 2002).  

2.2 Results 

2.2.1 Exposure characterization 
 

Both Ce-T and Ce-D were measured and the overall results indicate increased precipitation 

at higher concentrations as well as during the course of the exposure (Figure 1, Supplementary 

data Table S1). The Ce-D concentrations from tests with added DOM indicated less precipitation 

(Figure 1). Ce-T concentrations measured immediately after solution preparation were closer to 

nominal concentrations in comparison to Ce-D from the same time period. These solutions were 

mixed before sampling and therefore could have contained precipitated Ce that was brought back 

into solution upon sample acidification. Dissolved concentrations in these initial samples of 

exposure solutions were 45% of total at the lowest exposure concentration and 58% at the 

highest (Figure 1). Measured Ce-T at the end of the test (collected without disturbing the 

solutions) were 5.8, 2.8, 9.5 and 33.3 fold less than initial Ce-T concentration in nominal 72, 384, 

2304 and 5760 µg/L, respectively (Figure 1). After 96 h of exposure, the total and dissolved Ce 

concentrations were not significantly different for all concentrations (Figure 1). In tests where 

DOM was added Ce-D were much closer to the matched Ce-T and both were close to nominal 

concentrations indicating less precipitation (Supplementary data Table S1, Figure 1).  

2.2.2 Species sensitivity to Ce 
 

Acute Ce exposure to Daphnia pulex and Hyalella azteca in side-by-side tests showed the 

latter organism to be more sensitive (Figure 2). It must be noted that test media were slightly 

different than their respective rearing media (Daphnia (ASW) and Hyalella (RSW)) and water 
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hardness matched conditions (Figure 2). Therefore, testing to quantify the potential influence of 

TMFs was done using the more sensitive Hyalella. 

2.2.3 Effect of cationic competition on Ce toxicity to Hyalella azteca 
 

Increases in Ca concentration significantly decreased acute Ce toxicity (Table 1, Figure 

3A). Based on Ce-T from the initial measurements the LC50 increased 11 times over the range of 

added Ca (from 0.1 to 2 mM) and more distinctly a 16.7 fold increase based on Ce-D. Increased 

Na, up to 1 mM, also significantly decreased Ce toxicity by a factor of 15 times based on 

measured Ce-T and 20.6 fold based on Ce-D. Further Na increase to 2 mM did not provide 

protection. Expressing LC50s based on final Ce-D concentrations show that Na had no protective 

effect up to 1 mM and that further Na increase elevated toxicity (Table 1, Figure 3B). Tests with 

added Mg generally indicated no consistent protective effect (Table 1, Figure 3C). The linear 

regression for the relationships of Ce3+ LC50 showed positive correlations to increasing Ca2+ 

(Figure 3A). 

2.2.4 Effect of dissolved organic matter complexation on Ce toxicity 
 

Addition of NOM to test solutions significantly decreased toxicity (Table 1, Figure 4). 

The LC50s based on initial Ce-T and Ce-D increased 29.9 and 61.4-fold respectively as DOC 

concentrations were increased 0.272 to 12.0 mg C/L (Table 1). There was a positive correlation 

in the linear relationship between DOC (mg C/L) and LC50 for Ce-D (Table 1, Figure 4A). 

Estimates of Ce3+ LC50 values with DOC concentration were not correlated (Figure 4B).  
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2.2.5 Estimating Log K values 
 

Estimates of conditional equilibrium constants for the interaction of free ion activities of 

Ca and Ce on the biotic ligand (see Table 2) were derived from geochemical speciation modeling 

using WHAM and based on water chemistry as given in Table 1. The derived Log K value for 

Ce-BL-Ca was 3.9 while the interaction of Ce3+ with the biotic ligand (Ce-BL) was 7.3 (Table 2).  
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2.3 Discussion 
 

In this study we were able to determine acute Ce toxicity in low hardness conditions to 

two sensitive freshwater invertebrate species and show that water chemistry can have a 

significant influence on toxic responses. Ce precipitated during the 96 h exposures and since 

dissolved concentrations tended to be lower at the end of the tests (Figure 1) we recommend that 

future LC50 calculations be based on end concentrations, but because our Ce data were complete 

from the initial timeframe the LC50s reported in this study are primarily based on initial 

concentrations. In the low hardness RSW medium, the solubility limit of Ce appeared to be less 

than 200 µg/L (Figure 1) and well above the LC50 for Ce-D. In tests with added DOM the 

solubility of Ce was higher (Supplementary data Table S1, Figure 1). Acute toxicity of Ce to H. 

azteca and D. pulex was compared and in the hardness matched soft water the LC50, based on 

Ce-D, showed H. azteca to be 11 times more sensitive than D. pulex (Figure 2). This may have 

been associated with the longer duration of the Hyalella standard test (96 h vs. 48 h for Daphnia 

spp.) in addition to inherent differences in sensitivity. Since, H. azteca was more sensitive, it was 

used for subsequent testing with toxicity modifying factors. Additions of Ca but not Na or Mg 

(Table 1, Figure 3) provided significant protection against acute Ce toxicity. Similarly, DOM 

also mitigated Ce toxicity over the range of DOC additions (Table 1).   

2.3.1 Precipitation of Ce in solution 
 

Characterizing exposures proved challenging because of significant loss of Ce in all test 

solutions except for DOM trials (Table 1, Figure 1). Ce-D was much lower than Ce-T for all 

exposures and at higher concentrations this was more pronounced. Whether Ce adhered to the 

exposure container walls or precipitated was not explored in this study but Ce equilibration in 
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solution appears not to be a rapid process since the initial Ce-D concentrations change 

substantially over the course of the exposures. Ce-T and Ce-D concentrations decreased 

dramatically between initial and final samples (Figure 1) and the difference increased with 

increasing concentrations. The difference in Ce-T can be explained by the fact that the initial 

solutions were stirred vigorously before sampling while final solutions were not. Therefore, 

initial Ce-T measurements undoubtedly contained precipitated forms of Ce. The most significant 

observation regarding Ce behavior in solution was the very low concentrations of Ce-D at the end 

of the test, which appear to plateau at approximately 200 µg/L in the RSW media (Figure 1). 

This approximate solubility limit in the culture and testing medium was above the LC50 for Ce-D 

(from 96 h) and often resulted in dramatic increases in mortality over a very narrow range of 

final Ce-D concentrations (Supplemental data Table S1).  

Precipitation in aquatic toxicity tests has been demonstrated previously for REEs (e.g. 

Borgmann et al., 2005; Barry and Meehan, 2000). Few studies on REEs provide measured 

concentrations and those that do (Bowmer et al., 1993; Borgmann et al., 2005) generally agree 

with our observations that using nominal Ce concentrations to calculate endpoints 

underestimates toxicity (Gonzalez et al., 2014). In their study with La exposures to Daphnia 

carinata, Barry and Meehan (2000) noted precipitation and decided to use the mean of the 

nominal and measured concentrations at the end of the test in order to derive their EC50 values. 

We base our LC50 calculations on Ce-D concentrations from the initial timeframe since our data 

set was more complete from that sampling period but acknowledge that the measured 

concentrations after 96 h of exposure would represent the most conservative estimates of 

toxicity. In experiments where final concentrations were sampled we include calculated LC50s 

for Ce-T and Ce-D (Table 1). Toxicity calculations based on Ce-T were included to provide 
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information for the Canadian regulatory context and Ce-N to illustrate the dramatic 

underestimation of toxicity if LC50s were based on nominal values. Given the differences 

between nominal and Ce-D, the use of nominal concentrations in LC50 determination would 

dramatically underestimate toxicity.   

The loss of Ce in test solutions increased with increased concentrations and this could 

have been due to adsorption and/or precipitation. Previously, Johannesson and Hendry (2000) 

indicated that the particular charge of the REE species is one of the factors controlling 

adsorption. For instance, the authors argue that the observed decrease in LREEs can result from 

adsorption to oppositely charged particulate or solid phases (Johannesson and Hendry, 2000). 

Thus adsorption to surfaces in our tests, such as the polyethylene beakers (Benes and Paulenova, 

1973), could have enhanced the loss of Ce-D from solution. The low Ce concentrations in this 

study may also be due to precipitation. Ce is unique to REEs since it has two oxidation states 

(Ce3+ and Ce4+) which favor formation of insoluble CeO2 in oxic conditions of moderate pH 

(Migaszewski and Galuszka, 2015). Since our exposures are representative of freshwater 

conditions it is likely that some Ce precipitated as solid CeO2 especially above pH 7.0. As 

reviewed by Gonzalez et al. (2014) and demonstrated by Gonzalez et al. (2015), precipitation is a 

feature of most REE toxicity studies and this is because of phosphate and/or carbonate 

complexes which have low solubility in artificial media (Jiang and Ji, 2012). It seems likely that 

some of these processes contributed to the loss of Ce-D in solution. These results highlight the 

importance of exposure characterization of test solutions (Gonzalez et al., 2014) and stress the 

need for further understanding of how total and dissolved Ce effect toxicity. 
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2.3.2 Sensitivity difference to Ce toxicity between H. azteca and D. pulex  
 

Acute Ce exposures to Daphnia pulex (48 h) and Hyalella azteca (96 h) in conditions of 

matched water hardness demonstrate greater sensitivity in the latter organism (Figure 2). There 

are very few published studies on the toxicity of Ce salts (Gonzalez et al., 2014). One notable 

study is that of Borgmann et al. (2005) where the 7 d LC50 for Ce-D (samples collected at the 

end of the test) was 32 µg/L (95% CI of 14-70 µg/L) and this compares well to our results 16.7 

µg/L (10.2-27.5) but because our LC50s are based on samples collected at the start of the test the 

96 h Ce-D would likely be much lower. The Borgmann et al. (2005) study was performed in 

slightly harder water (hardness of 18 mg CaCO3/L vs 12.5 for our RSW) and this may explain 

the lower toxicity value reported in our study. Borgmann et al. (2005) also conducted Ce tests in 

hard water (120 mg CaCO3/L) and the reported 7 d LC50 value was 651 (521-813) µg/L. This 

value was based on nominal concentrations and our study indicates that the use of nominal 

values may be misleading, Borgmann et al. (2005) did demonstrate that increasing hardness 

reduces toxicity. The dramatic change in Ce concentration over the course of the 96 h illustrates 

the need for future investigations with REEs to use similar exposure length and sampling periods 

as this would allow for direct comparison.       

2.3.3 Toxicity of Ce to H. azteca and the toxicity modifying effects of water chemistry 

 

The protective effect of waterborne Ca on Ce toxicity to H. azteca was demonstrated for 

Ce-T and Ce-D (Table 1, Figure 3A). Our results show that the protective effects of waterborne 

Ca are generally in agreement with the studies of Borgmann et al. (2005) and Barry and Meehan 

(2000) which indicated that REE toxicity was reduced as water hardness increased. For example, 

in the study of Borgmann et al. (2005) acute tests were performed in very soft and intermediate 
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hardness water and demonstrated that exposures in soft water can increase Ce toxicity 5 fold. 

This change in toxicity cannot be attributed to Ca entirely since Borgmann et al. (2005) altered 

test solution chemistry by dilution of the hard water with deionized water. The protective effect 

of Ca on the uptake of REEs into algae has been previously demonstrated. Increasing Ca 

concentration (10,000 fold) resulted in a 30% reduction in uptake for La to the algal species 

Scenedesmus pannonicus (subsp. Berlin) but the same change had no effect on the fungus 

(Aureobasidium pullulans; Demon et al., 1989). More recently, EL-Akl et al. (2015) working 

with the freshwater algae (Chlamydomonas reinhardtii) showed a threefold decrease in Ce 

uptake as Ca2+ increased from 0.01 to 1 mM but only at pH 5.0 and not 7.0 like our study. 

Although there are limited number of studies investigating competitive effects of REEs with Ca, 

our results with Ce support the hypothesis of a competitive interaction between Ce and Ca.    

In this study, we use WHAM for speciation modeling of measured Ce-D concentrations to 

estimate Ce3+ content in solution. If Ce3+ and Ca2+ compete for uptake at the biotic ligand then 

the LC50 concentrations for Ce3+ would have been positively correlated with Ca2+ concentration 

and this was observed (Figure 3A). It was not surprising to observe the protective effect of Ca on 

Ce toxicity to Hyalella since lanthanides and Ca share similar chemical properties. For example, 

lanthanides share similar ionic radii with Ca2+ (Hirano and Suzuki, 1996) and have been 

previously demonstrated to block Ca channels (Sandvig and Olsnes, 1982; Lansman, 1990). In 

this study, we demonstrate that Ce toxicity decreases with increasing waterborne Ca 

concentration. 

Increased waterborne Na and Mg show no clear protective effect, interestingly LC50s 

based on initial Ce-D showed a significant reduction in toxicity with increasing Na and Mg (up to 

0.1 mM) but when calculations were based on final Ce-D there was no change for Na (up to 1 
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mM) and Mg (Table 1). These results were expected since Ce does not share physiochemical 

properties with Na+ or Mg2+. Previous studies with Cd, Co, Cu, Pb, Ag and Zn show that acute 

metal toxicity is caused by inhibition of one of the major cation transporters. For example Cd2+, 

Co2+, Pb2+ and Zn2+ affect the Ca transporter and block Ca2+ uptake while Cu2+ and Ag+ inhibit 

the Na transporter and impedes Na+ and Cl- uptake across the fish gill (Niyogi and Wood, 2004). 

It is not known whether Ce interferes with the ion uptake process on the respiratory surface but 

this study provides evidence to suggesting that Ce affects Ca uptake.   

Tests with White River DOM at nominal concentrations of 6 and 12 mg DOC/L 

demonstrated decrease in toxicity to Hylaella (Table 1, Figure 4). The chosen concentrations in 

our exposures are representative of Canadian Shield soft waters (David et al., 1997). The 

protective effects of DOM are well established for metals (Wood et al., 2011) and while little is 

known about how they influences REE toxicity in natural waters, at circumneutral pH the REEs 

are known to bind organic molecules (Tang and Johannesson, 2003; Johannesson et al., 2004). 

Our hypothesis was that while LC50 values for Ce-D increase with added DOC, when toxicity 

was expressed on Ce3+ basis, the values would be similar across DOC trials. Indeed, the Ce3+ 

LC50s were relatively consistent across DOC additions (Figure 4B) demonstrating that DOM 

complexes Ce and that Ce3+ is associated with acute toxicity. Modeling of exposure chemistry 

for the lowest DOC concentration (nominal 6 mg C/L) indicated that 98.9% of Ce-D in solution 

was bound to humic and fulvic complexes. This suggests that small amounts of Ce are 

bioavailable (Supplemental data Table S2). Fuma et al. (2005) demonstrates that the decrease in 

Dy toxicity to microbial microcosm results from reduction in Dy3+ through complexation with 

organic matter. Recently, EL-Akl et al. (2015) showed decreased Ce bioavailability to algae 

under increasing presence of Suwannee River DOM but also concluded that some REE-organic 
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complexes may be bioavailable (Yang et al., 2014; Zhao and Wilkinson, 2015). The mitigating 

effect of NOM to Ce toxicity in our study is generally consistent with other REE investigations 

and indicates that Ce bioavailability is strongly influenced by DOM complexation.  

2.3.4 BLM development for Ce 
 

This study illustrates that Ca and DOM can influence acute Ce toxicity and therefore we 

suggest that the BLM approach could be useful in estimating Ce toxicity on a site specific basis. 

Previous investigation has concluded that some REEs, such as Lu, also follow BLM principles 

(Weltje et al., 2004) and this is also the case with Ce. More recently, conditional equilibrium 

constants for REEs have been developed for algae (Yang et al., 2014; El-Akl et al., 2015) but no 

Log K values exist in determining Ce interaction with Hyalella. Our Ce-BL (Log K = 7.3, Table 

2) correlate well with values from other REEs such as Ce-BL (7.3), Sm-BL (7.0), Eu-BL (7.0) and 

Tm-BL (7.1, Yang et al., 2014; El-Akl et al., 2015) and our calculation for Ca binding to the BL 

(3.9, Table 2) is similar to the value of 4.3 obtained by El-Akl et al. (2015) in Ce exposure to 

algae and different since their study only produced values at pH 5.0 and not 7.0. This is the first 

study where equilibrium binding constants for Ce and Hyalella azeca have been calculated and 

the data derived in this investigation are applicable for the development of BLM in very soft 

waters. This study calculates Ce binding constants based on the initial dissolved concentrations 

which are likely under protective of toxicity and future investigations should examine how 

sampling period influences acute Ce toxicity to Hyalella. 
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2.4 Conclusion 
 

This study shows significantly influence of water chemistry on acute Ce toxicity to 

Hyalella azteca. Increased Ca and DOM decreased toxicity whereas Na and Mg had no clear 

effect. Data presented here is consistent with BLM principles since Ce toxicity correlates to the 

presence of Ce3+. We have determined Log K values for the interaction of Ce3+ on the biotic 

ligand as well as for the protective effect of Ca but these values were based on the dissolved 

concentrations from the initial sampling period and likely overestimate toxicity. We have also 

included regression constants based on end concentrations for some tests where sampling was 

performed. We recommend basing future tests on standardized exposure length and calculating 

LC50s on end concentrations as this will allow for direct comparison between treatments and 

permit lethal calculations to be based on the most conservative values.       
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2.6 Tables and Figures 
 

Table 1. Acute Ce exposures and the corresponding LC50s to Hyalella based on nominal (Ce-N), 

total (Ce-T) and dissolved (Ce-D) values. Nominal water chemistry parameters (mM) except for 

pH, DOC (mg C/L) and for Ce-N, Ce-T and Ce-D (µM). The m superscript represents MOPS 

addition and the LC50s labeled with the same letter are not significant in each test series. 

 Ca Na Mg DOC pH  Initial  Final 

       Ce-N  Ce-T  Ce-D  Ce-T  Ce-D 

                  
Base 

condition 
0.1 0.101 0.025 0.272 7.1  0.79a  0.29a  0.12a  -  - 

       (0.60-1.05)  (0.20-0.40)  (0.070-0.20)     

                
Ca 

added 
0.5 0.101 0.025 0.272 7.0  3.48b  2.18b  0.99b  0.3a  0.23a 

       (2.30-5.29)  (1.51-3.17)  (0.68-1.45)  (0.20-0.46)  (0.16-0.33) 

                

 1 0.101 0.025 0.272 7.2  3.22b  2.07b  -  -  - 

       (1.18-8.78)  (1.60-2.68)       

                

 2 0.101 0.025 0.272 7.2  5.07b  3.17b  2.00c  1.2b  1.01b 

       (3.54-7.26)  (2.10-4.77)  (1.33-3.00)  (0.75-1.90)  (0.65-1.55) 

                     
Na 

added 
0.1 0.5 0.025 0.272 7.2  2.67b  1.83b  0.96b  0.28a  0.33a 

       (1.39-5.16)  (0.95-3.50)  (0.53-1.74)  (0.14-0.57)  (0.18-0.62) 

                     

 0.1 1 0.025 0.272 7.3m  6.14b  4.36b  2.46b  0.33ab  0.19a 

       (2.98-12.67)  (2.07-9.14)  (1.17-5.19)  (0.23-0.46)  (0.188-0.19) 

                     

 0.1 2 0.025 0.272 7.2m  0.90a  0.47a  0.30c  0.15ac  0.09b 

       (0.47-1.72)  (0.23-0.95)  (0.15-0.61)  (0.09-0.23)  (0.07-0.12) 

                     
Mg 

added 
0.1 0.101 0.1 0.272 7.2m  2.56b  2.43b  1.28b  0.41a  0.41a 

       (1.60-4.10)  (1.52-3.87)  (0.82-2.01)  (0.28-0.59)  (0.29-0.59) 

                     

 0.1 0.101 0.3 0.272 7.2m  0.72a  0.78c  0.40c  0.3a  0.2a 

       (0.35-1.45)  (0.37-1.63)  (0.19-0.87)  (0.17-0.51)  (0.10-0.38) 

                     
DOC 
added 

0.1 0.101 0.025 6 7.2m  6.69b  6.31b  6.08b  -  - 

       (4.09-10.95)  (3.81-10.46)  (3.77-9.81)       

                     

 0.1 0.101 0.025 12 7.2m  8.12b  7.99b  7.32b  6.83  6.96 

       (7.79-8.47)  (7.61-8.39)  (7.03-7.63)  (6.55-7.11)  (6.69-7.23) 
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Table 2. Linear regression coefficients calculated for the effect of Ca2+, Na+ and Mg2+on acute 

Ce3+ toxicity based on the dissolved data from initial and final time periods. The units of slope 

and intercept are on a molar basis. 

                      
 Relationship  Slope  Intercept  r  

Derived 

Log K   

                                            
  Initial                   

  Ca2+ to Ce3+   4.01x10-04   5.25x10-08   0.94   3.9   

  Na+ to Ce3+   2.73x10-06   2.76x10-07   0.01   NA   

  Mg2+ to Ce3+   -2.13x10-04   1.65x10-07   0.12   NA   

  BL to Ce3+   -   -   -   7.3   

                      
  Final                   

  Ca2+ to Ce3+   2.37x10-04   -7.27x10-08   1.00   NA   

  Na+ to Ce3+   -2.00x10-05   3.49x10-08   0.84   NA   

  Mg2+ to Ce3+   -2.84x10-04   7.80x10-08   1.00   NA   

  BL to Ce3+   -   -   -   NA   
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Figure 1. Comparison of nominal and measured Ce measurements for total (Ce-T) and dissolved 

(Ce-D) concentrations from the initial and final time periods. Tests involving cationic 

competition are summarized and exclude data from the 32 mg CaCO3/L test, initial Ce-T tests 

<384 μg/L (underlined in table S1) and DOM alterations except for the 12 mg C/L final Ce-D 

data fitted to the simple spline curve (in red and showing stars as data points). Error bars 

represent standard error of the mean (n = 2 - 20).     
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Figure 2. The LC50 values (with upper 95% confidence interval) for Hyalella azteca and 

Daphnia pulex exposure to Ce. The LC50 values are based on 48 h (Daphnia) and 96 h 

(Hyalella) tests and measured total (Ce-T black bars) and dissolved (Ce-D white bars) 

concentrations. Acute Ce tests with Hyalella were performed under two conditions: condition 

(A) exposures were performed in RSW water and in condition (B) the RSW modified to the 

water hardness of 32 mg CaCO3/L found in the Daphnia test media. Different letters indicate 

LC50 values that are statistically different for either Ce-T or Ce-D. 

 

 

Hyalella

cond. A 

Hyalella

cond. B 

Daphnia Hyalella

cond. A

Hyalella

cond. B

Daphnia

L
C

5
0
 (

µ
g
 C

e/
L

) 

0

200

400

600

800

1000

1200

1400

A

B

C

a
b

c



 
 

56 
 

 

Ca2+ (mM)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

L
C

5
0

 C
e3

+
(n

M
)

0

200

400

600

800

1000

1200

Na+ (mM)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

L
C

5
0

 C
e3

+
(n

M
)

0

500

1000

1500

2000

2500

Mg2+ (mM)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

L
C

5
0

 C
e3

+
(n

M
)

0

100

200

300

400

500

600

700

(A)

(B)

(C)



 
 

57 
 

Figure 3. The LC50 values (with 95% confidence interval) and the competitive effect of Ca2+ 

(A), Na+ (B) and Mg2+ on Ce3+ to Hyalella azteca. Linear regression line is shown and ion 

activities were calculated from measured dissolved Ce concentrations from the initial (black 

circles) and final (gray diamonds) sampling periods and modelled using WHAM 7 (ver. 7.02). 

See Table 2 for linear regression coefficients and associated Log K values. 
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Figure 4. The LC50 values (with 95% confidence intervals) and the protective effect of DOM 

(quantified as DOC) on Ce toxicity to H. azteca. Both panels are from initial measured dissolved 

and (A) shows regression as a function of Ce toxicity while (B) as a function of Ce3+ activity. 

Single source of DOM was used from White River (WR-DOM). Regression panel (A) LC50 Ce-

D = 85.57 (WR-DOM) + 110.25 (r = 0.93) and panel (B) LC50 Ce3+ = 1.29*10-10 (WR-DOM) + 

1.15*10-8 (r = 0.04). 
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2.8 Supplementary data 
 

Table S1. Exposure chemistry with mortalities for all H. azteca tests. Measured values for 

nominal, Ce-T (T) and Ce-D (D) in µg Ce/L and mortality are averages of two replicates per 

concentration. Underlined tests are concentrations sampled from 0 h.  

Test 

type: 
 

MOPS/NO 

MOPS 
 

Valid 

Test 
 Nominal  Initial  Final  Initial  Final  

% 

mortality 

        T  D  T  D  D/T%  D/T%  

                     
RSW 

trial 1 

 NO MOPS  YES  0  2.7  3.6  -  -  NA  -  5 

     8  2.2  2.1  -  -  95.0  -  25 

      16  3.5  3.4  -  -  96.5  -  5 

      32  14.3  3.1  -  -  21.9  -  25 

      64  35.4  12.0  -  -  33.9  -  20 

      128  79.3  50.6  -  -  63.8  -  55 

      256  163.8  129.8  -  -  79.2  -  60 

                     

RSW 

trial 2 

 NO MOPS  YES  0  3.2  2.6  -  -  NA  -  0 

     8  4.6  2.6  -  -  58.0  -  15 

      16  4.5  2.8  -  -  63.2  -  15 

      32  8.4  3.5  -  -  42.4  -  30 

      64  24.6  4.9  -  -  20.1  -  50 

      128  48.9  25.0  -  -  51.2  -  65 

      256  156.3  126.5  -  -  80.9  -  70 

      512  317.6  279.0  -  -  87.8  -  65 

                     

RSW 

trial 3 

 NO MOPS  NO  0  3.1  3.0  -  -  NA  -  25 

     12  3.8  2.3  -  -  61.4  -  25 

      24  8.2  6.3  -  -  77.3  -  40 

      48  19.2  16.2  -  -  84.5  -  45 

      96  60.7  54.0  -  -  89.0  -  70 

      192  119.9  110.2  -  -  91.9  -  90 

      384  291.4  257.1  -  -  88.2  -  100 

      768  621.9  549.2  -  -  88.3  -  95 

                     

RSW 

trial 4 

 NO MOPS  NO  0  0.5  0.5  -  -  NA  -  45 

     6  0.7  3.6  -  -  505.5  -  15 

      30  14.6  10.6  -  -  72.4  -  65 

      72  42.0  39.1  -  -  93.1  -  35 

      144  91.9  94.5  -  -  102.8  -  75 

      384  305.3  306.2  -  -  100.3  -  100 

      1152  1030.1  1019.7  -  -  99.0  -  100 

                     

RSW 

trial 5 

 NO MOPS  YES  0  1.6  2.6  -  -  NA  -  10 

     6  2.0  1.8  -  -  91.1  -  25 

      30  7.3  2.9  -  -  39.4  -  23.81 

      72  12.4  6.1  -  -  49.0  -  40 

      144  43.6  28.7  -  -  65.8  -  75 

      384  97.7  106.2  -  -  108.7  -  90 

      1152  338.2  272.2  -  -  80.5  -  95 
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Table S1. Continued.                 

Test 

type: 
 

MOPS/NO 

MOPS 
 

Valid 

Test 
 Nominal  Initial  Final  Initial  Final  

% 

mortality 

        T  D  T  D  D/T%  D/T%  

                     
RSW  MOPS  NO  0  1.2  2.0  1.2  1.7  NA  NA  10 

      0+MOPS  2.0  0.9  0.9  1.2  NA  NA  100 

      30  23.0  14.5  3.6  3.1  63.1  87.1  10 

      72  59.0  25.4  3.1  2.8  43.0  92.1  25 

      144  99.7  41.3  14.8  11.5  41.5  77.4  50 

      384  292.5  100.7  30.2  19.1  34.4  63.4  60 

      1152  788.1  244.5  35.8  20.3  31.0  56.7  85 

      2304  1562.3  336.0  47.7  19.9  21.5  41.7  100 

                     

32 mg 

CaCO3/L 

 MOPS  YES  0  1.7  2.2  1.2  0.7  NA  NA  20 

     0+MOPS  2.0  1.3  2.1  1.6  NA  NA  10 

      36  36.0  16.0  4.9  4.3  44.3  88.1  15 

      72  77.3  41.0  13.1  12.2  53.1  93.6  50 

      288  276.6  136.4  115.5  111.8  49.3  96.8  70 

      1152  1022.5  532.3  225.0  241.7  52.1  107.4  95 

      4608  3245.9  1436.7  137.9  128.6  44.3  93.3  100 

                     

1mM 

CaCl2 

 NO MOPS  YES  0  3.3  4.1  -  -  NA  -  15 

     0+Ca  1.5  2.4  -  -  NA  -  10 

      6  1.5  0.0  -  -  0.0  -  30 

      30  7.9  6.5  -  -  82.1  -  20 

      72  28.4  25.3  -  -  89.0  -  55 

      144  40.5  36.1  -  -  89.1  -  40 

      384  212.3  178.2  -  -  84.0  -  40 

      1152  357.2  265.1  -  -  74.2  -  70 

                     

1mM 

CaCl2 

 NO MOPS  NO  0  2.1  2.7  -  -  NA  -  5 

     0+Ca  2.0  1.6  -  -  NA  -  90 

      30  13.6  2.5  -  -  18.7  -  60 

      72  33.0  23.3  -  -  70.7  -  5 

      144  48.5  37.5  -  -  77.2  -  40 

      384  156.5  128.8  -  -  82.3  -  60 

      1152  351.3  270.9  -  -  77.1  -  80 

      2304  597.9  403.5  -  -  67.5  -  100 

      4608  1178.7  342.7  -  -  29.1  -  100 

1mM 

CaCl2 

                    
 NO MOPS  NO  0  2.1  1.4  1.7  2.4  NA  NA  15 

     0+Ca  0.8  1.2  1.6  0.7  NA  NA  35 

      30  26.1  21.2  2.9  2.5  81.0  87.7  15 

      72  48.0  39.9  17.8  18.1  83.3  101.4  25 

      144  94.8  79.3  47.0  44.0  83.6  93.7  20 

      384  230.4  204.1  115.5  103.0  88.6  89.2  45 

      1152  783.8  660.1  171.8  149.9  84.2  87.3  80.95 

      2304  1565.6  1392.6  185.7  152.4  88.9  82.1  100 

      4608  3082.1  2479.3  304.2  255.4  80.4  84.0  100 

                     

1mM 

CaCl2 

 NO MOPS  NO  0  2.4  0.0  -  -  NA  -  50 

     0+Ca  1.4  1.2  -  -  NA  -  45 

      30  22.9  3.4  -  -  14.7  -  45 

      384  211.1  30.1  -  -  14.2  -  45 

      768  444.7  33.2  -  -  7.5  -  35 

      1152  614.0  43.0  -  -  7.0  -  40 

      1728  927.8  57.9  -  -  6.2  -  80 

      2304  1185.8  80.0  -  -  6.7  -  85 
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Table S1. Continued. 

Test 

type: 
 

MOPS/NO 

MOPS 
 

Valid 

Test 
 Nominal  Initial  Final  Initial  Final  

% 

mortality 

        T  D  T  D  D/T%  D/T%  

                    
0.5mM 

CaCl2 

 NO MOPS  YES  0  10.1  4.4  1.0  0.8  NA  NA  20 

     0+Ca  4.7  3.0  2.9  0.0  NA  NA  10 

      30  30.8  7.7  3.4  4.1  25.2  119.3  15 

      72  55.4  29.6  6.0  5.4  53.4  89.8  20 

      144  97.2  46.2  9.7  9.1  47.5  93.8  40 

      384  237.3  102.4  51.7  42.8  43.2  82.8  45 

      1152  696.1  291.7  109.8  73.2  41.9  66.6  60 

      2304  1169.7  572.8  152.0  98.8  49.0  65.0  95.24 

                     

2mM 

CaCl2 

 NO MOPS  NO  0  2.0  2.9  3.0  1.9  NA  NA  35 

     0+Ca  1.4  2.2  1.8  1.3  NA  NA  50 

      30  34.0  4.8  2.8  2.0  14.1  70.7  20 

      144  104.2  24.7  5.1  4.8  23.7  93.4  15 

      384  260.4  46.5  22.9  7.0  17.9  30.5  25 

      1152  810.9  118.5  38.8  7.3  14.6  18.7  50 

      2304  1538.6  224.8  53.3  8.4  14.6  15.8  90 

      4608  3180.9  414.6  66.8  29.3  13.0  43.8  100 

                     

2mM 

CaCl2 

 NO MOPS  YES  0  3.3  2.3  1.3  1.6  NA  NA  5 

     0+Ca  2.3  0.7  0.9  0.2  NA  NA  10 

      30  11.1  7.4  2.6  2.0  67.1  75.2  0 

      384  247.5  147.0  133.2  136.8  59.4  102.7  25 

      768  508.3  327.5  231.5  230.5  64.4  99.6  65 

      1152  738.7  521.4  198.5  183.6  70.6  92.5  50 

      1728  1143.6  771.2  238.6  214.5  67.4  89.9  75 

      4608  3388.9  1880.4  2408.1  697.9  55.5  29.0  100 

                     

0.1mM 

MgSO4 

 MOPS  YES  0+Mg  2.8  3.0  2.4  2.3  NA  NA  30 

     0+Mg+MOPS  2.9  3.1  1.7  2.6  NA  NA  20 

      30  26.3  11.5  3.4  3.8  43.9  113.8  0 

      72  72.8  38.3  20.4  19.0  52.6  93.3  30 

      144  134.0  91.2  40.0  44.7  68.1  111.8  35 

      1152  1117.8  519.1  159.3  166.6  46.4  104.6  75 

      2304  2057.7  1002.0  122.0  109.1  48.7  89.4  95 

                     

0.3mM 

MgSO4 

 MOPS  YES  0+Mg  1.3  1.9  2.8  2.0  NA  NA  15 

     0+Mg+MOPS  2.7  1.6  3.2  1.8  NA  NA  10 

      30  29.2  15.5  11.4  6.2  53.2  54.5  30 

      144  167.4  81.3  78.4  58.4  48.6  74.5  65 

      1152  1253.6  846.8  2021.3  446.9  67.5  22.1  90 

      2304  2261.4  962.3  188.1  177.1  42.6  94.2  100 

      4608  4534.9  1941.3  128.3  112.6  42.8  87.8  100 
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Table S1. Continued. 

Test 

type: 
 

MOPS/NO 

MOPS 
 

Valid 

Test 
 Nominal  Initial  Final  Initial  Final  % 

mortality 

        T  D  T  D  D/T%  D/T%  

                     
0.5mM 

NaCl 

 NO MOPS  YES  0  0.0  1.5  0.9  1.4  NA  NA  45 

     0+Na  1.2  0.8  1.5  1.2  NA  NA  5 

      30  14.7  7.3  3.2  2.3  49.8  70.6  15.0 

      72  46.1  33.9  8.2  6.1  73.5  74.4  40.0 

      144  107.1  66.8  21.1  18.3  62.4  86.8  65.0 

      384  294.9  176.7  140.1  122.0  59.9  87.1  60.0 

      1152  1071.9  593.2  306.9  275.8  55.3  89.9  66.67 

      2304  1698.6  1133.7  370.9  340.7  66.7  91.9  75 

                     

0.5mM 

NaCl 

 NO MOPS  NO  0  0.7  0.4  0.0  0.6  NA  NA  20 

     0+Na  1.0  0.3  1.1  0.2  NA  NA  30 

      30  9.9  6.2  2.0  1.5  62.7  78.3  30 

      72  68.3  23.1  5.0  5.3  33.9  105.3  20 

      144  115.3  72.4  23.5  18.1  62.8  77.1  75.0 

      384  317.7  179.0  134.8  104.9  56.3  77.8  60.0 

      1152  978.2  601.9  182.6  193.9  61.5  106.2  81.0 

      4608  3424.0  2147.6  286.1  253.1  62.7  88.5  85.0 

                     

0.5mM 

NaCl 

 NO MOPS  YES  0  3.0    2.2  1.2  NA  NA  5 

     0+Na  2.7  1.0  1.1  0.6  NA  NA  20 

      30  23.8  15.0  1.2  2.2  63.0  187.3  10 

      384  236.3  130.8  77.4  80.2  55.4  103.7  60 

      4608  3417.8  1351.6  288.8  299.7  39.5  103.8  95 

                     

0.5mM 

NaCl 

 MOPS  NO  0+Na+MOPS  2.1  2.4  2.2  2.6  NA  NA  25 

     30  25.2  17.5  3.0  2.6  69.3  86.5  20 

      384  223.4  114.3  88.1  84.3  51.2  95.6  60 

      4608  3055.1  995.8  42.5  31.5  32.6  74.2  100 

                     

1mM 

NaCl 

 MOPS  NO  0+Na  2.3  1.5  1.7  1.2  NA  NA  20.0 

     0+Na+MOPS  2.0  0.0  0.7  1.9  NA  NA  25.0 

      30  20.0  11.9  3.0  2.3  59.2  77.2  0.0 

      144  68.6  39.8  17.2  16.1  58.1  93.7  25 

      384  194.8  93.0  60.3  55.4  47.8  91.9  40 

      1152  857.8  307.3  103.4  81.6  35.8  78.9  40 

      4608  3894.8  857.2  56.2  39.3  22.0  69.8  90 

                     

1mM 

NaCl 

 MOPS  YES  0+Na  3.3  2.2  3.2  2.3  NA  NA  15 

     0+Na+MOPS  3.3  2.8  2.4  2.1  NA  NA  5 

      30  17.9  8.9  3.3  2.2  50.0  66.9  10 

      144  103.7  65.9  30.0  26.4  63.5  88.0  35 

      1230  879.5  632.9  98.9  79.4  72.0  80.2  55 

      4608  3384.1  1823.8  66.9  44.0  53.9  65.8  55 

      5760  4158.0  1966.7  64.9  27.1  47.3  41.7  90 
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Table S1. Continued. 

Test 

type: 
 

MOPS/NO 

MOPS 
 

Valid 

Test 
 Nominal  Initial  Final  Initial  Final  % 

mortality 

        T  D  T  D  D/T%  D/T%  

                     
1mM 

NaCl 

 MOPS  NO  0+Na  3.3  1.9  1.8  1.9  NA  NA  15 

     0+Na+MOPS  3.5  2.2  1.6  0.9  NA  NA  25 

      30  13.8  11.1  5.2  4.2  80.8  80.4  45 

      144  99.6  90.7  34.6  30.6  91.1  88.5  85 

      1230  768.8  738.9  169.6  183.6  96.1  108.3  65 

      4608  1516.6  1205.9  103.7  106.1  79.5  102.3  80 

      5760  2133.5  1681.8  123.9  117.8  78.8  95.1  100 

                     

2mM 

NaCl 

 MOPS  YES  0+Na  2.6  2.7  2.4  2.0  NA  NA  10 

     0+Na+MOPS  1.4  1.7  1.9  1.6  NA  NA  5 

      30  12.4  6.9  5.2  4.9  55.6  95.5  15 

      144  87.9  63.2  37.7  29.9  71.9  79.3  85 

      1230  809.3  644.0  170.9  146.4  79.6  85.7  70 

      4608  2988.4  1701.4  96.7  80.8  56.9  83.5  85 

      9216  6636.3  2651.1  852.6  77.3  39.9  9.1  100 

                     

6mgC/L 

DOM 

 MOPS  YES  0+DOM  1.6  1.6  -  -  NA  -  10 

     0+DOM+MOPS  0.7  2.5  -  -  NA  -  15 

      36  35.0  31.4  -  -  89.5  -  40 

      144  130.9  127.7  -  -  97.5  -  25 

      576  531.4  592.1  -  -  111.4  -  35 

      2304  2260.4  1725.3  -  -  76.3  -  95 

      9216  5550.7  2274.5  -  -  41.0  -  100 

                     

12mgC/L 

DOM 

 MOPS  YES  0+DOM  0.7  0.8  0.0  0.7  NA  NA  0 

     0+DOM+MOPS  2.2  1.7  1.0  0.5  NA  NA  5 

      36  15.7  18.5  14.5  14.6  118.0  100.6  10 

      144  141.7  127.3  109.3  105.5  89.8  96.5  5 

      576  505.8  527.6  493.4  520.2  104.3  105.4  5 

      2304  2549.1  2042.3  1899.5  1868.6  80.1  98.4  100 

      9216  8587.8  2469.2  3070.0  2407.5  28.8  78.4  100 
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Table S2. Cerium speciation in H. azteca testing media (RSW) given as the % of total aqueous 

Ce concentration (from initial dissolved measurements) and predicted by WHAM (ver. 7.0.2). 

Cerium bound to colloidal Humic and Fulvic acids are represented as HA-Ce and FA-Ce, 

respectively. The units for nominal concentrations of Ca, Na and Mg trials are (mM) while DOM 

(mg C/L) and total Ce-D (µg/L). 

 
Test  

type: 

Nom. 

Conc. 

Total 

Ce  
 % Ce 

    Ce3+ CeCO3
+ CeHCO3

2+ CeOH2+ Ce(CO3)2
- CeCl2+ CeSO4

+ Ce(SO4)2
- 

HA 

-Ce 

FA 

-Ce 

              
Ca  

 
0.1 16.7  1.2 0.5 0.0 0.0 0.00 0.0 0.1 0.0 10.0 88.1 

 0.5 139  49.6 13.5 0.6 1.4 0.02 0.1 2.7 0.0 2.7 29.3 

 1 -  - - - - - - - - - - 

 2 280  59.3 20.5 0.6 2.2 0.1 0.6 2.0 0.0 1.3 13.6 

              

Na 
  

0.101 16.7  1.2 0.5 0.0 0.0 0.0 0.0 0.1 0.0 10.0 88.1 

 0.5 135  37.7 19.1 0.5 1.7 0.1 0.1 2.5 0.0 3.2 35.2 

 1 345  47.4 29.0 0.6 2.6 0.1 0.2 2.8 0.0 1.4 15.8 

 2 41.6  13.1 5.7 0.2 0.5 0.0 0.1 0.7 0.0 7.6 72.1 

              

Mg  

 
0.025 16.7  1.2 0.5 0.0 0.0 0.0 0.0 0.1 0.0 10.0 88.1 

 0.1 180  38.0 19.7 0.5 1.7 0.1 0.0 10.1 0.0 2.5 27.3 

 0.3 56.2  17.1 8.1 0.2 0.7 0.0 0.0 11.7 0.1 5.6 56.4 

              

DOM 

 
0.272 16.7  1.2 0.5 0.0 0.0 0.0 0.0 0.1 0.0 10.0 88.1 

 6 852  0.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 8.9 90.0 

 12 1026  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.8 90.1 
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CHAPTER 3 
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Abstract 
 

The toxicological understanding of rare earth elements (REEs) in the aquatic 

environment is very limited but of increasing concern. The objective of this research is to 

compare the toxicological effect of the REE dysprosium to the freshwater invertebrates Daphnia 

pulex and Hyalella azteca and in the more sensitive organism, understand the toxicity modifying 

influence Ca, Na, Mg, pH and dissolved organic matter (DOM). Standard methods (Environment 

Canada) were followed for testing and culture in media of intermediate hardness (60 mg CaCO3 

mg/L) at pH 7.8 with Ca at 0.5, Na 0.5, Mg 0.125 (mM) and 23oC. Acute toxicity tests were done 

with <24 h old neonates for 48 h in the case of D. pulex and with 2-9 d old offspring for 96 h 

tests with Hyalella. The potential protective effect of cationic competition was tested with Ca 

(0.5 to 2.0 mM), Na (0.5 to 2.0 mM) and Mg (0.125 to 0.5 mM). The effect of pH (6.5 – 8.0) and 

Suwannee River DOM complexation (dissolved organic carbon (DOC) concentrations of 9 and 

13 mg C/L). Dissolved Dy concentrations were lower than total (unfiltered) indicating 

precipitation, particularly at higher concentrations. Acute toxicity of Dy to H. azteca and D. 

pulex revealed Hyalella to be 1.4 times more sensitive than Daphnia. Additions of Ca and Na but 

not Mg provided significant protection against Dy toxicity to Hyalella. Similarly, low pH was 

associated with reduction in toxicity. Exposures which were pH buffered with and without 

MOPS were significantly different and indicated that MOPS enhanced Dy toxicity. DOM also 

mitigated Dy toxicity. Biotic ligand based parameters (Log K values) were calculated based on 

free ion relationships as determined by geochemical equilibrium modeling software (WHAM 

ver. 7.02).  The log K value for Dy3+ toxicity to Hyalella was 7.75 while the protective influence 

of Ca and Na were 3.95 and 4.10 respectively. This study contributes data towards the 
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development of site specific water quality guidelines and criteria for Dy and possibly REEs in 

general and offers insight into the complex bio-geochemical nature of this element.  

Keywords: Rare earth elements; invertebrates; toxicity modifying factors; biotic ligand model; 

water quality; risk assessment  
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3.0 Introduction 
 

Rare earth elements (REEs) are a group of 17 similarly reactive metals that include 15 

lanthanides, yttrium and scandium (Environment Canada, 2012; Migaszewski and Galuszka, 

2015). These metals are divided into two groups: the light rare earth elements (LREEs), 

lanthanum to samarium and the heavy rare earth elements (HREEs) comprised of europium to 

lutetium as well as yttrium (Environment Canada, 2012; Migaszewski and Galuszka, 2015). 

Contrary to their name REEs are not rare; when compared to other metals, the soil REE 

concentrations are similar to iodine and cobalt and more abundant than those of mercury or silver 

(Environment Canada, 2012; Paul and Campbell, 2011). In general, the abundance of REEs 

decreases with increasing atomic number. Enriched deposits are limited and therefore there are a 

few areas where mining is economically viable particularly for less abundant HREEs (Paul and 

Campbell, 2011). 

REEs are used and applied in many industries and this is reflective of their unique set of 

catalytic, magnetic and optical properties (Paul and Campbell, 2011). Dysprosium (Dy) is 

classified as a HREE and is used in lasers, hybrid electric vehicles, lighting, consumer 

electronics and permanent magnets (Navarro and Zhao, 2014; Stegen, 2015). For example Dy is 

a component of neodymium-iron-boron (Nd-Fe-B) based permanent magnets which greatly 

increase temperature resistance and this facilitates miniaturization of wind turbines and electric 

motors (Stegen, 2015). As well, Dy has numerous uses in the defense technologies such as 

military grade lasers, control and guidance systems, power generating devices and microwave 

communication (U.N.C.T.A.D., 2014). Its growing use makes Dy one of the five REEs (along 

with Nd, Eu, Tb and Y) identified by the United States Department of Energy as critical REEs 

for the development of future clean energy technologies (U.S.D.O.E., 2011). Recently, Elshkaki 
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and Graedel (2014) estimated that the global demand for Dy will dramatically increase over the 

upcoming decades. While recycling of previously used Dy in obsolete equipment has been 

identified as an alternative to help offset the growing demand (Elshkaki and Graedel, 2014) and 

while novel approaches may contribute to more effective recovery of Dy in existing deposits 

(Horiike and Yamashita, 2015) new mining projects will be needed to meet future demand for 

REE. Several of these are under development in different countries around the world and in 

Canada the most advance HREE mining project is located in Thor Lake, Northwest Territories 

and owned by Avalon Rare Metals Inc.  

In freshwaters REEs occur at relatively low dissolved concentrations (usually ng/L to 

µg/L, Leybourne and Johannesson, 2008; Verplanck et al., 2001) and dissolved LREEs are 

generally more abundant than HREEs (Migaszewski and Galuszka, 2015). As one of the critical 

REEs, Dy is of particular concern in terms of the potential for impacts, particularly in the context 

of the northern Canadian environments where enriched deposits occur and mining may develop. 

There are few studies on natural occurrences of Dy in freshwaters. Dy concentrations were 

relatively low (1.3 µg/L) in an uncontaminated naturally acidic lake located in Nunavut 

(Johannesson and Lyons, 1995). Concentrations of Dy at reference sites for a REE mine were 

below 22 µg/L (Verplanck et al., 2001) but at some mining projects Dy concentration has been 

recorded as high as 595 µg/L in the surrounding groundwater (Miekeley et al., 1992). Whether 

these Dy concentrations have the potential to induce deleterious effects in aquatic biota is poorly 

understood. There are no water quality guidelines in Canada and this is also the case for water 

quality criteria in the United States. The lack of guidelines and criteria is reflective of the limited 

number of aquatic toxicity studies with Dy. Even less is known about the influence of toxicity 

modifying factors (TMFs) on Dy toxicity. 
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The influence of water chemistry TMFs on metal toxicity can be categorized as anionic 

factors that influence the bioavailability of metal via complexation of free metal ions and 

cationic factors that antagonistically compete with the free-metal ions for uptake at the site of 

toxic action. Some factors, such as pH can influence toxicity via both categories (i.e. changes in 

H+ as well as carbonate complexation for example). The free-metal ion form of a metal is 

generally considered to be the most bioavailable species (Campbell, 1995) but it is unclear 

whether the REEs, which occur as trivalent ions, (e.g. Dy3+, Migaszewski and Galuszka, 2015) 

follow this model. Out of the few published studies on the toxicity of REEs, the most notable 

were conducted with algae (EL-Akl et al., 2015; Tai et al., 2010; Hao et al., 1997; Yang et al., 

2014; Zhao and Wilkinson, 2015), sea urchin (Oral et al., 2010), a microcosm of algae, protozoa, 

and bacteria (Fuma et al., 2005), Daphnia (Barry and Meehan, 2000) and Hyalella (Borgmann et 

al., 2005). These studies although performed with different REEs under various conditions, 

illustrate that toxicity is influenced by water chemistry. For instance, Barry and Meehan (2010) 

conducted acute La exposures to Daphnia carinata and showed that increased water hardness 

decreased La toxicity. They argued that the physiochemical similarity of La3+ to Ca2+ have 

resulted in toxicity through the inhibition of many Ca dependent biological systems and that 

elevated Ca concentrations were protective of La toxicity via cationic competition. Fuma et al. 

(2005) worked with Dy exposures in a microbial microcosm and identified pH as a major factor 

in controlling toxicity and attributed the increase in EC50 at elevated pH because of increased 

complexation with inorganic ligands. A recently published study by EL-Akl et al. (2015) 

examining Ce uptake in algae demonstrated a decrease in uptake with increasing dissolved 

organic matter (DOM). The study of Borgmann et al. (2005) included acute Dy toxicity tests 

with Hyalella azteca and showed that the LC50 in soft water was lower than in intermediate 
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hardness water but differences were not significant and for the latter test measured 

concentrations were not reported. These studies indicate that water chemistry may influence Dy 

toxicity and stress the need for further investigations of Dy effects in aquatic settings.  

Currently, the most advanced method to comprehensively account for the influence of 

water chemistry on metal toxicity is the biotic ligand model (BLM). The BLM predicts toxicity 

based on the interaction of the free-metal ions with the site of toxic action (the biotic ligand). It 

accounts for the influence of TMFs such as competing cations, and complexation with inorganic 

and organic ligands (Di Toro et al., 2001; Niyogi and Wood, 2004; Paquin et al., 2000; Paquin et 

al., 2002). The BLM simultaneously accounts for the influence of TMFs within a geochemical 

equilibrium context to predict metal speciation and subsequently toxicity to specific organisms. 

Mortality is predicted when the concentration of the metal bound to the biotic ligand surpasses 

the threshold accumulation for that organism. This threshold is defined as the accumulation (at 

the biotic ligand) that is associated with 50% effect, for the lethality end point the LA50. The 

practical application of the BLM is to predict metal toxicity on a site-specific basis, as a function 

of local water chemistry conditions (Paquin et al., 2000). 

The objective of this study was to develop data on the acute toxicity of Dy to sensitive 

aquatic invertebrates, including an understanding of the influence of water chemistry. A BLM 

approach was applied through a systematic investigation of potential TMFs, including Ca2+, Na+, 

Mg2+, H+ and DOM. The initial step in this study was to compare the sensitivities to Dy between 

Daphnia pulex and Hyalella azteca.  
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3.1 Materials and Methods 

3.1.1 Invertebrate culturing 

3.1.1.1 Hyalella azteca 
 

Hyalella were collected from Hannah Lake near Sudbury Ontario and had been cultured 

at Wilfrid Laurier University for over two years. The collected organisms were identified 

morphologically (Pennak, 1978) and genetically as Hyalella azteca belonging to the inner 

Sudbury clade (Babin-Fenske et al., 2012). Culturing followed Environment Canada 

standardized Biological Test Method EPS 1/RM/33 2nd edition (Environment Canada, 2013). A 

reconstituted aquatic medium (RAM) was used, based on a 50% dilution of the standardized 

aquatic medium for Hyalella growth and reproduction described by Borgmann (1996). RAM was 

made with analytical grade salts (Sigma Aldrich, Mississauga, ON) of CaCl2, NaHCO3, MgSO4, 

KCl and NaBr which when diluted with deionized water (18 Mohm, Milli-Q A30, Millipore 

Corporation, Fisher Scientific Nepean, ON) were at nominal concentrations of 500, 500, 125, 25 

and 5 µM, respectively. Hardness was 60 mg CaCO3/L and the solution pH was 7.6 ± 0.2 

(measured using Radiometer PHM240 meter equipped with pHC2701 electrode (ATI Scientific, 

Mississauga, ON)).   

Cultures were maintained in 2 L polypropylene beakers (VITLAB® Griffin, VWR 

International, Mississauga, ON) with 30-80 adult organisms in 1.6 L of RAM. Beakers were 

covered with a glass lid and a water change was done weekly using 650 and 275 µm mesh to 

separate adults from neonates. After each water change a new piece cotton gauze of 

approximately 5 by 5 cm was placed in solution to act as substrate (Borgmann et al., 1989). 

Hyalella cultures were fed 5 mg ground fish flakes (TetraMin, Tetra Holding (US) Inc., 

Blacksburg, VA) three times weekly, on non-consecutive days. Neonates used for toxicity testing 
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were collected into during water changes and were 2 to 9 d of age at the beginning of tests. 

Cultures were kept in a controlled environment chamber (CMP6010 Conviron, Winnipeg, MB), 

where temperature was 23 ± 1oC, light intensity was 500-1000 lux and photoperiod was 16 h 

light: 8 h dark.   

3.1.1.2 Daphnia pulex  
 

Daphnia was purchased from Aquatic Research Organisms Inc. (Hampton, NH) and 

cultured in 1 L glass beaker. Procedures for culturing Daphnia pulex followed standard methods 

(Environment Canada, 1996) with RAM. Water changes were carried out daily in order to 

separate neonates from adults. Daphnia feeding followed each water change and consisted of 10 

mL of an algae mixture (30% Chlorella vulgaris and 70% Pseudokirchneriella subcapitata) and 

5 mL of a yeast, cerophyl and trout chow mix (YCT, Aquatic Research Inc., Hampton, NH). The 

temperature was 21 ± 1oC with lighting between 400-1000 lux and a photoperiod of 16 h light 

and 8 h dark cycle. Toxicity tests were carried out without food using neonates less than 24 h of 

age.  

3.1.2 Acute toxicity testing 
 

Acute toxicity tests for Hyalella (96 h) and Daphnia (48 h) were carried out following 

standard methods (Environment Canada, 2013 and 1996, respectively). In brief, Dy exposure 

solutions were prepared in duplicate by adding the appropriate amount of Dy stock solution 

generated from a 1 g/L atomic absorption standard solution (Inorganic Ventures, Christiansburg, 

VA) to culture medium, adjusting to pH 7.3 and then allowing for 24 h of equilibration prior to 

test start. Mortality patterns from Dy exposures revealed Daphnia as the more resistant organism 

and therefore, further TMF tests were performed with the more sensitive Hyalella.       
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3.1.2.1 Testing with TMFs   
 

A series of tests were done for each TMF, beginning with the culture medium and then in 

a progressive manner systematically modifying concentrations in order to understand how Ca, 

Mg, Na, pH and DOM influence acute Dy toxicity to Hyalella. In each test series one chemical 

parameter was varied while keeping others constant. Test were done in duplicate in 400 mL 

polyethylene beakers with 240 mL of exposure solution. Test solutions were equilibrated for 24 

h before the test started. During equilibration of test solutions gauze pieces (2 cm x 2 cm) were 

also equilibrated but in a separate plastic beaker. Exposures were initiated by adding the gauze 

and then 10 Hyalella 2-9 d of age to each beaker. Beakers were covered and held in a controlled 

environment chamber (described above) for 96 h.  

Each test included a control (media with the modified parameter) and five exposure 

concentrations ranging from 1.2 - 79 µM. The exact range was dependent on degree of toxicity 

modification anticipated by the TMF. Culture medium was altered by sequentially changing the 

concentration of the selected TMF while keeping others constant. Ca was added as CaCl2, Mg as 

MgSO4 and Na as NaCl. The effect of pH was evaluated by using 1 mM 3-(N-morpholino) 

propanesulfonic acid (MOPS) buffer (De Schamphelaere et al., 2004) to stabilize pH at either 

6.5, 6.8 or 8.0 by additions of either KOH or HNO3. Additionally, the potential influence of 

MOPS alone was evaluated in side-by-side tests with 1 mM MOPS and without added MOPS 

(unmodified culture medium at pH 7.6). The effect of DOM on Dy toxicity was assessed by 

adding Suwannee River organic matter (SR-DOM, 1R101N, International Humic Substances 

Society, St. Paul, MN) to the nominal exposure solutions at either 8 or 15 mg C/L. Measured 

exposure water chemistry is summarized in Table 2.   

Repetitive – integrate the additional 

details here into those above  
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3.1.2.2 Exposure sampling and characterization 
 

Temperature and pH were characterized as described above and were measured prior to 

the start and end of the test. Water samples were collected shortly after solutions were made and 

when exposures ended (96 h) in order to characterize water chemistry and Dy content. For each 

sampling time and each exposure concentration, a pair of 10 mL samples were collected, one 

unfiltered and the other filtered (pre-rinsed 0.45 µm, Acrodisc HT tuffryn membrane, Pall 

Corporation, MI). Samples were stored in 15 mL tubes (Celltreat, Mandel Scientific, Guelph, 

ON) and preserved with 2% v/v 16 N HNO3 (trace metals grade, Fisher Scientific, Nepean, ON) 

before being analyzed. Tests containing DOM were 0.45 µm filtered for dissolved organic 

carbon (DOC) and 50 mL of sample was collected between each exposure replicate for the time 

period when the solutions were made and when the test ended. DOC samples were stored at 4oC 

and not acidified before being measured with the total organic carbon analyzer (TOC-LCPH, 

Shimadzu, Mandel Scientific, Guelph, ON). RAM DOC concentration was also measured, at 0.4 

mg C/L.  

Dy concentrations were determined for filtered (dissolved Dy: Dy-D) and unfiltered (total 

Dy: Dy-T) samples using inductively coupled plasma optical emission spectroscopy (ICP-OES, 

Optima 8000, PerkinElmer Inc., Woodbridge, ON) and solution cations (Ca, Na and Mg) were 

measured using an atomic absorption spectrophotometer in flame mode (AAS, SpectAA-880, 

Varian Inc., Palo Alto, CA). Analysis parameters and wavelengths followed manufacturer 

recommendations. Quality assurance procedures for Dy measurements involved analysis of 

reference standards (Standard 26, Inorganic Ventures Inc., Christiansburg, VA) and reagent 

blanks (2% HNO3) throughout each run. The average measured concentrations for Dy in controls 

Water sampling for tests involving …..   

also included samples that 

sampling for tests involving 

…..   
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(RAM medium) for Dy-T was 3.9 µg/L (stdev= 5.7, n=23) and for Dy-D was 1.8 µg/L (stdev 

=3.6, n=23). 

3.1.2.3 Calculations and statistics  
 

Dy concentration resulting in 50% mortality (LC50) were calculated based on Dy-T and 

Dy-D measured exposure concentrations at 96 h with the Comprehensive Environmental Toxicity 

Information System software (CETIS, Tidepool Software, 2005) using the trimmed Spearman 

Karber method (Hamilton et al., 1977). Significant differences in LC50s were determined using 

the Litchfield and Wilcoxon method (1949, Environment Canada, 2005).   

Dy3+ concentrations were estimated for LC50 values (Dy-D basis) using the Windermere 

Humic-Aqueous Model (WHAM ver. 7.02., Tipping et al., 2011) and measured water chemistry 

(Table 2). DOC entered into WHAM inputs for DOM assumed it to be in colloidal phase and at 

90% Fulvic and 10% Humic acid (Santore et al., 2001). Speciation data from WHAM was used 

to develop stability constants for competitive interaction of cations (including Ca2+ and Na+) on 

Dy3+ toxicity. These were calculated according to the method developed by De Schamphelaere 

and Janssen (2002). In short, linear regression analysis of free cationic activities of Ca on Dy3+ 

LC50 were performed in the presence of constant Na+ to derive the slope and intercept values 

from which a system of linear equations was solved and an estimate of Log K Ca-BL developed 

(De Schamphelaere and Janssen, 2002). Likewise, regression variables for the toxicity mitigating 

effect of Na+ activity on Dy3+ activity at the LC50 concentration and in the presence of constant 

Ca2+ were used to estimate the Log K for the binding of Na to the BL. The conditional 

equilibrium constant used to quantify Dy3+ binding to the biotic ligand (Log K Dy-BL) was 



 
 

86 
 

derived as the negative log of the average of the intercepts from the three individual cation 

regression relationships: Dy3+ on Ca2+, Na+ and Mg2+ (De Schamphelaere and Janssen, 2002).  
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3.2 Results 

3.2.1 Exposure characterization 
 

Both Dy-T and Dy-D were measured and the overall results indicate increased 

precipitation at higher concentrations as well as during the course of the exposure except in tests 

with low pH and with added DOM (Figure 1, Supplementary data Table S1). Dy-T 

concentrations measured immediately after solution preparation were very close to nominal 

concentrations. These solutions were mixed before sampling and therefore could have contained 

precipitated Dy that was brought back into solution upon sample acidification. Dissolved 

concentrations in these initial samples of exposure solutions were <51% of total at the lowest 

exposure concentration and 34% at the highest (Figure 1). Measured Dy-T at the end of the test 

(collected without disturbing the solutions) were 1.6, 1.7, 1.9 and 3.4 fold less than initial Dy-T 

concentration in nominal 200, 1600, 6400 and 12800 µg/L, respectively (Figure 1). After 96 h of 

exposure, the dissolved concentrations were generally close to initial Dy-D being slightly higher 

up to nominal 800 µg Dy/L and then lower above this concentration (Figure 1). In low pH tests 

the concentrations of Dy-D were much closer to Dy-T (Supplementary data Table S1). Similarly, 

when DOM was added in the test medium there was a tendency for much less precipitation 

(Supplementary data Table S1). Measurement of additional samples, collected from test beakers 

that had been completely acidified to 2% with concentrated HNO3 showed that when precipitated 

Dy was brought back into solution the measured concentrations matched nominal ones (data not 

shown). Given the variation in Dy concentrations we decided to base estimates of toxicity (i.e. 

calculation of LC50 values) on concentrations measured at the end of the tests. Because some 

jurisdictions use total metal and others dissolved we have reported both Dy-T and Dy-D based 
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endpoints. Dy-D LC50 values were also converted to Dy3+ in order to develop modelling 

parameters (see below).  

3.2.2 Species sensitivity to Dy 
 

Acute 96 h Dy exposure to Daphnia pulex and Hyalella azteca was performed under the 

same water chemistry conditions (unmodified RAM) and showed the latter organism to be more 

sensitive (Figure 2). Therefore, testing to quantify the potential influence of toxicity modifying 

factors was done using the more sensitive Hyalella. 

3.2.3 Effect of cationic competition and pH on Dy toxicity to Hyalella azteca 
 

Increases in Ca concentration significantly decreased acute Dy toxicity (Table 1, Figure 

3A). Based on Dy-T measurements at 96 h the LC50 increased 1.8 times over the range of Ca 

added (from 0.5 to 2 mM). A less distinct, exposure-effect pattern was evident for Dy-D and it is 

notable that for the test at 2 mM Ca it was only possible to estimate the LC50 value when 

intermediate exposure concentration results (nominal 800 and 1600 µg/L) were omitted 

(Supplementary data Table S1). Increased Na also significantly decreased Dy toxicity, by a 

factor of 1.4 times based on measured Dy-T, with trends being somewhat less clear based on Dy-

D but clearer (2.6 fold change) for Dy3+ over the range of added Na (Table 1, Figure 3B). Tests 

with added Mg generally indicated no consistent protective effect although there was a 

significant difference in LC50 values for Dy-T as well as Dy3+ (Table 1, Figure 3C) although the 

calculation of the latter was likely influenced by the low pH of that particular test (7.4 vs 7.7, 

Supplemental data Table S1). The linear regression for the relationships of Dy3+ LC50 showed 

clear positive correlations for Ca2+ (Figure 3A) and Na+ (Figure 3B). 
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Tests at different pH values demonstrated that toxicity decreased as pH decreased (Table 

1) and there was a strong linear relationship between Dy toxicity and H+ across the pH range of 

6.5 – 8.0 (Table 1, Figure 3D). LC50 values decreased 8.2 and 8.9-fold for Dy-T and Dy-D, 

respectively (Table 1) while those based on Dy3+ revealed a pronounced 482-fold decrease in 

toxicity (pH 8.0 vs 6.5, Table 1, Figure 3D). Comparison of tests with and without addition of 

MOPS at pH 7.8 showed that MOPS increased the toxicity of Dy by 33% (Table 1).  

3.2.4 Effect of dissolved organic matter complexation on Dy toxicity 
 

Addition of NOM from Suwannee River to test solutions significantly decreased toxicity 

(Table 1, Figure 4). The 96 h LC50s for Dy-T and Dy-D increased 3.6 and 3.3-fold respectively as 

DOC concentrations were increased 0.4 to 13.0 mg C/L (Table 1). There was a positive 

correlation in the linear relationship between DOC (mg C/L) and LC50 for Dy-D (Table 1, Figure 

4A). Estimates of Dy3+ LC50 values were negatively correlated with DOC concentration (Figure 

4B). Dy3+ LC50 decreased 125-fold over the tested DOC concentration range (Table 1, Figure 

4B).  

3.2.5 Estimating Log K values 
 

Estimates of conditional equilibrium constants for the interaction of free ion activities of 

Ca, Na and Dy on the biotic ligand (see Table 2) were derived from geochemical speciation 

modeling using WHAM and based on measured dissolved water chemistry (Table 1). The 

derived Log K value for Dy-BL-Ca was 3.95 while for Dy-BL-Na was 4.10 and for the interaction of 

Dy3+ with the biotic ligand (Dy-BL) it was 7.75 (Table 2). In the case of the reduction in toxicity 

due to pH (Table 1), a Log K value for the competitive effect of H+ was not calculated because 
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of the potential for other factors influencing toxicity (e.g. carbonate complexes and MOPS, see 

discussion). It was not possible to determine the effect of H+ competition alone.    

3.3 Discussion 
 

In this study we were able to determine acute Dy toxicity to two sensitive freshwater 

invertebrate species and show that water chemistry can have a significant influence on toxic 

responses. Dy precipitated during the 96 h exposures (Figure 1) and because dissolved 

concentrations tended to be lower at the end of the tests (Figure 1) we based our LC50s on the 

end concentrations. In the intermediate hardness RAM medium, the solubility limit of Dy 

appeared to be around 600 µg/L (Figure 1) just above the LC50 for Dy-D. In tests with added 

DOM or low pH, the solubility of Dy was higher (Supplementary data Table S1, Figure 1). 

Acute toxicity of Dy to H. azteca and D. pulex was compared and in moderately soft water the 

LC50, based on Dy-D, showed H. azteca to be 1.4 times more sensitive than D. pulex (Figure 2). 

This may have been associated with the longer duration of the standard test for Hyalella tests (96 

h vs. 48 h for Daphnia spp.) in addition to inherent differences in sensitivity. Given the greater 

sensitivity of H. azteca, it was used for subsequent testing with toxicity modifying factors. 

Additions of Ca and Na but not Mg (Table 1, Figure 3) provided significant protection against 

Dy toxicity. Similarly, low pH was associated with reduction in toxicity (Table 1). DOM also 

mitigated Dy toxicity and significant differences were determined when compared to the control 

for both DOC additions (Table 1).   
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3.3.1 Precipitation of Dy in solution 
 

Characterizing exposure proved challenging because of significant loss of Dy in all test 

solutions except for low pH trials (Table 1, Figure 1). Dy-D was much lower than Dy-T for all 

exposures and at higher concentrations this was more pronounced. Whether Dy adhered to the 

exposure container walls or precipitated was not explored in this study but Dy equilibration in 

solution appears to be rapid as the initial Dy-D concentrations did not change substantially over 

the course of exposures. Dy-T concentrations decreased dramatically between initial and final 

samples (Figure 1) and the difference increased with increasing concentrations. The difference in 

Dy-T can be explained by the fact that the initial solutions were stirred vigorously before 

sampling while final solutions were not. Therefore, initial Dy-T measurements undoubtedly 

contained precipitated forms of Dy. The exception to this was tests at low pH where initial and 

final Dy-T and Dy-D concentrations were similar and both were close to nominal concentrations 

(Supplemental data Table S1, Figure 1). Overall the most significant observation on Dy behavior 

in solution was the very low concentrations of Dy-D, which appear to plateau at approximately 

600 µg/L in the RAM media (Figure 1). While this apparent solubility limit in the culture and 

testing medium was above the LC50 for Dy-D it often resulted in dramatic increases in mortality 

over a very narrow range of final Dy-D concentrations (Supplemental data Table S1). Mortality-

exposure patterns based on final Dy-T were more pronounced and this feature of our study is 

worth further investigation.    

Precipitation in aquatic toxicity tests has been demonstrated previously for REEs (e.g. 

Borgmann et al., 2005; Barry and Meehan, 2000). Few studies on REEs provide measured 

concentrations and those that do (e.g. Bowmer et al., 1993; Borgmann et al., 2005) generally 

agree with our observations that using nominal Dy concentrations to calculate endpoints 
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underestimates toxicity (Gonzalez et al., 2014). In their study with La exposures to Daphnia 

carinata, Barry and Meehan (2000) noted precipitation and decided to use the mean of the 

nominal and measured concentrations at the end of the test in order to derive their EC50 values. 

We based our LC50 calculations on Dy-D concentrations measured after 96 h of exposure as 

these values would represent the most conservative estimates of toxicity. We also calculated 

LC50s based on final Dy-T concentrations in order to provide information for the Canadian 

regulatory context. Given the differences between nominal and Dy-D, the use of nominal 

concentrations in LC50 determination would dramatically underestimate toxicity.   

The loss of Dy in test solutions increased with increased concentrations and this could 

have been due to adsorption or precipitation (or both). Johannesson and Hendry (2000) indicate 

that the particular charge of the REE species is one of the factors controlling adsorption. For 

instance, the authors argue that enrichment of HREEs can result from adsorption to oppositely 

charged particulate or solid phases (Johannesson and Hendry, 2000). Thus adsorption to surfaces 

in our tests, such as the polyethylene beakers (Benes and Paulenova, 1973), could have enhanced 

loss of Dy-D from solution. The low concentrations in the study may also be due to precipitation 

of Dy. As reviewed by Gonzalez et al. (2014) and demonstrated by Gonzalez et al. (2015), 

precipitation is a feature of most REE toxicity studies using artificial media and this is because of 

phosphate and/or carbonate complexes which have low solubility (Jiang and Ji, 2012). It seems 

likely that some of these processes contributed to the loss of Dy-D in solution. These results 

highlight the importance of exposure characterization of test solutions (Gonzalez et al., 2014) 

and stress the need for further understanding of how total and dissolved Dy effect toxicity. 
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3.3.2 Sensitivity difference to Dy toxicity between H. azteca and D. pulex  
 

Acute Dy exposures to Daphnia pulex (48 h) and Hyalella azteca (96 h) under the same 

water chemistry conditions demonstrated greater sensitivity in the latter (Figure 2). There are 

very few published studies on the toxicity of Dy (Gonzalez et al., 2014). One notable study is 

that of Borgmann et al. (2005) where the 7 d LC50 for Dy-D (samples collected at the end of the 

test) was 162 µg/L (95% CI of 34-769 µg/L) and this compares well to our results 340 µg/L 

(308-390). The Borgmann et al. (2005) study was for 7 d exposures (vs 4 d in this study) and in 

softer water than our test medium (hardness of 18 mg CaCO3/L vs 60 for our RAM) and this may 

explain the lower toxicity value. Borgmann et al. (2005) also conducted tests in hard water (120 

mg CaCO3/L) and the reported 7 d LC50 value was 897 µg/L. This value was based on nominal 

loadings and our study indicates that nominal concentrations may be misleading, however it did 

demonstrate that toxicity in hard water was reduced.    

3.3.3 Toxicity modifying effects of water chemistry to the toxicity of Dy to H. azteca 
 

The protective effect of waterborne Ca on Dy toxicity to H. azteca was demonstrated for 

Dy-T and Dy-D (Table 1, Figure 3A) although it is noteworthy that it was only possible to 

calculate the LC50 value for Dy-D in the 2 mM Ca test with an edited exposure-response 

relationship where the nominal concentrations of 800 and 1600 µg/L were not included (see 

supplemental data Table S1). While mortality increased with increased nominal and also Dy-T 

concentrations, the final Dy-D concentrations were all similar and at the apparent solubility limit 

for Dy in RAM (Figure 1). Precipitation and issues in calculating endpoints was noted by Barry 

and Meehan (2000) in their study on La exposures to Daphnia carinata.  
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Our results showing the protective effect of waterborne Ca are generally in agreement 

with the studies of Borgmann et al. (2005) and Barry and Meehan (2000) which showed that 

REE toxicity was reduced as water hardness increased. For example, in the study of Borgmann et 

al. (2005) acute tests were done in very soft (18 mg CaCO3/L) and intermediate hardness (124 

mg CaCO3/L) water and Dy toxicity increased 1.8 times for the latter (nominal concentration 

basis). This change in toxicity cannot be attributed exclusively to Ca as Borgmann et al. (2005) 

altered test solution chemistry by dilution of the hard water (Burlington tap water) with 

deionized water. The protective effect of Ca on the uptake of REEs into algae has been 

previously shown. A 10,000 fold increase in Ca concentration resulted in a 30% reduction of La 

in the algal species Scenedesmus pannonicus (subsp. Berlin) but no effect on uptake in fungus 

(Aureobasidium pullulans; Demon et al., 1989). More recently, EL-Akl et al. (2015) working 

with the freshwater algae (Chlamydomonas reinhardtii) showed a threefold decrease in Ce 

uptake as Ca2+ increased from 0.01 to 1 mM. Although there are a limited number of studies, our 

results with Dy support the hypothesis of a competitive interaction between Dy and Ca.    

In this study, we use WHAM for speciation modeling of measured Dy-D concentrations 

to estimate Dy3+ content in solution. If Dy3+ and Ca2+ compete for uptake at the biotic ligand 

then the LC50 concentrations for Dy3+ would have been positively correlated with Ca2+ 

concentration and this was observed (Figure 3A). It was not surprising to observe the protective 

effect of Ca on Dy toxicity to Hyalella since lanthanides and Ca share similar physiochemical 

properties. For instance, lanthanides have comparable ionic radii to Ca2+ (Hirano and Suzuki, 

1996) and as a result are effective Ca channel blockers (Sandvig and Olsnes, 1982; Lansman, 

1990). Also, lanthanides have been shown to replace Ca in nutrient deficient tests with alga 

indicating a shared biological function (Goecke et al., 2015). In this study we demonstrate that 
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Dy toxicity decreases with increasing waterborne Ca concentration and the mechanism 

underlying this protective effect is worthy of further study.    

Increased waterborne Na was also protective of Dy toxicity to Hyalella azteca (Table 1, 

Figure 3B) suggesting the possibility of competition between Dy3+ and Na+ for Na uptake was 

not anticipated. Studies with Mg additions show no clear protective effect, interestingly LC50s 

based on Dy-T showed a significant reduction in toxicity with increasing Mg but based on Dy-D 

there was no change (Table 1). Studies on the effects of metals such as Cd, Zn, Cu, Co, Pb and 

others show that acute adverse effects are caused by inhibition of one of the major cation 

transporters. For instance Cd2+, Zn2+, Co2+ and Pb2+ act on the Ca transporter and block Ca2+ 

uptake while Cu2+ and Ag+ inhibit the Na transporter and interfere with the uptake of Na+ and Cl- 

across the fish gill (Niyogi and Wood, 2004). It is not known whether Dy interferes with ion 

uptake processes on the respiratory surface but this study provides indirect evidence that link it 

to Ca and Na.   

The potential mechanisms of acute adverse effect of Dy and other REEs on aquatic 

organisms have not been studied and is not known. It could be that trivalent free ion forms 

disrupt essential ion regulation as with mono and divalent metals (Paquin et al., 2002). 

Alternatively, other mechanisms may be implicated. Studies using gadolinium (Gd) exposure to 

erythrocyte cells have revealed that Gd3+ alters membrane permeability through pore formation 

(Cheng et al., 1999a), whose size is concentration dependent (Cheng et al., 1999b) and because 

of cellular entrance (Cheng et al., 1999a, 1999b) likely induces mitochondrial apoptosis (Liu et 

al., 2003). If waterborne Dy3+ induces pore formation in apical surfaces then this may lead to a 

generalized disruption in ion regulation and might explain, at least partially, the protection by 

both Ca and Na however this theory is highly speculative. Recently, Senatore et al. (2014) have 
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identified unique T type Ca channels in Lymnaea stagnalis that are permeable to Na as well as 

Ca instead of being highly selective for Ca as observed in vertebrate organisms. If these types of 

channels are present and have a role in Ca and Na ion regulation in Hyalella then an increases in 

either of the ions would explain the decrease in Dy toxicity through cationic competition. While 

our study was not designed to elucidate the mechanisms of Dy toxicity it offers some insights 

and indicates that a focus on Ca and Na balance may yield interesting results.     

Solution pH, tested from 6.5 to 8.0, resulted in dramatic differences in LC50 values with 

low pH values yielding much lower toxicities. This influence on Dy toxicity resulted in a strong 

linear relationship between the H+ and Dy3+ LC50 values (Table 2). For LC50 values calculated 

on the basis of final Dy-D measurements an 8.9 fold change in toxicity was associated with the 

32 fold change in H+ concentration in exposure solutions from pH 8 to 6.5. On the basis of Dy3+, 

the same 32 fold change in H+ resulted in a 482 fold change in LC50 values, overall yielding a 

slope of 9.1 (i.e. 1 nM change in H+ resulted in a 9.1 nM change in Dy3+ toxicity). The 

overwhelming effect of H+ appears to suggest that other dissolved species, in addition to Dy3+, 

are involved in toxic responses as pH increases. The most likely candidates for this would be 

carbonate complexes. This is supported by the analysis of Gonzalez et al. (2014). Decreased 

toxicity at lower pH has been reported for several metals (Campbell and Stokes, 1985) and the 

effect of pH has been incorporated into BLMs as both the H+ cation reducing toxicity via 

competition as well as by accounting for the contributions of complexes (e.g. CuOH species) to 

toxicity (De Schamphelaere and Janssen 2002; Di Toro et al., 2001). Recently, the EL-Akl et al. 

(2015) work with algae and Ce show protective effect of H+ at low pH values. The authors 

speculated that cationic competition between H+ and Ce3+ was taking place at the biotic ligand 
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since reduced biouptake was observed with increasing proton concentration (EL-Akl et al., 

2015).  

Cationic competition between the H+ and Dy3+ at low pH is undoubtedly part of the 

explanation for the strong decreased in Dy toxicity and it is also possible that Dy-carbonate 

complexes may be bioavailable and induce toxic response. However, there are additional 

uncertainties to consider. The pH series of tests were all conducted with the addition of MOPS 

buffer in order to stabilize the pH. MOPS was chosen as it does not interact/bind with free metal 

ions (Good and Izawa, 1972) and therefore would not alter free ion concentrations (De 

Schamphelaere et al., 2004). MOPS has been previously used in metal toxicity studies (e.g. De 

Schamphelaere and Janssen, 2002; De Schamphelaere et al., 2004; Kozlova et al., 2009; Clifford 

and McGeer, 2009; Clifford and McGeer, 2010). However, the study of Esbaugh et al. (2013) 

suggested that MOPS has a physiological effect that enhances toxic response of Pb to fathead 

minnow Pimephales promelas. As part of our studies we compared the effect of MOPS in side-

by-side tests at pH 7.8 and found that exposures with MOPS increased the toxicity of Dy. The 

results from our investigation are not as pronounced as those of Esbaugh et al. (2013) but 

indicate that Dy tests that use MOPS should be interpreted cautiously. The mechanism 

underlying this effect of MOPS is not known but Esbaugh et al. (2013) attributed it to 

physiological stress on the organism due to indirect inhibition of Na uptake and NH3 excretion. It 

may also be that MOPS binds Ca2+ and this is supported by Altura et al. (1980) who examined 

several biological buffers and proposed that the decrease in prostaglandin mediated smooth 

muscle contraction resulted from MOPS interaction with Ca ions. These possibilities await 

further investigation.  
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Tests with Suwanee River DOM at nominal concentrations of 8 and 15 mg DOC/L 

demonstrated an exposure dependent decrease in toxicity to Hylaella (Table 1, Figure 4). The 

chosen concentrations for our experiments are generally representative of Canadian Shield 

waters (David et al., 1997). The protective effects of DOM are well established for metals (Wood 

et al., 2011) and while little is known about how it influences REE toxicity in natural waters, at 

circumneutral pH the REEs are known to bind to organic molecules (Tang and Johannesson, 

2003; Johannesson et al., 2004). Our hypothesis was that while LC50 values for Dy-D increase 

with added DOC, when toxicity was expressed on a Dy3+ basis the values would be similar 

across DOC trials. Instead, dramatic reductions in Dy3+ LC50 values are predicted by WHAM 

software as DOC increases (Table 1, Figure 4B). Modeling of exposure chemistry for the lowest 

DOC addition (9.3 mg C/L) indicated that 99.9% of Dy-D in solution was bound to humic and 

fulvic complexes suggesting that very small amounts are bioavailable (Supplemental data Table 

S2). The negative relationship between DOC concentrations and the LC50 for Dy3+ can be 

explained by overestimation of DOM-Dy3+ complexation and/or that DOM-Dy complexes are 

bioavailable and contribute to toxicity. Fuma et al. (2005) suggests that the decrease in Dy 

toxicity to microbial microcosm results from reduction in Dy3+ through complexation with 

autochthonous organic matter. EL-Akl et al. (2015) showed decreased Ce bioavailability to algae 

under increasing presence of Suwannee River DOM but also concluded that some REE-organic 

ligands complexes (e.g. malic and citric acids) may be bioavailable and toxic (Yang et al., 2014; 

Zhao and Wilkinson, 2015). The mitigating effect of NOM to Dy toxicity in our study is 

generally consistent with other observations on REEs and indicates that Dy bioavailability is 

strongly influenced by DOM complexation. Further studies measuring the bioaccumulation of 
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Dy under different exposure conditions could contribute to an improved understanding of 

bioavailability.   

3.3.4 BLM development 
 

This study shows that Ca, Na, pH and DOM can all influence the toxicity of Dy and 

therefore we suggest that the BLM approach to estimating Dy toxicity on a site specific (water 

chemistry) basis could be useful. Previous investigation has concluded that some REEs, such as 

Lu, also follow BLM principles (Weltje et al., 2004). Recently, conditional equilibrium constants 

for REEs have been developed for algae (Yang et al., 2014; El-Akl et al., 2015) but no Log K 

values exist to quantify Dy interaction with Hyalella. Our Dy-BL (Log K = 7.75, Table 2) closely 

resembles the values obtained from other REEs such as Ce-BL (7.3), Sm-BL (7.0), Eu-BL (7.0) and 

Tm-BL (7.1, Yang et al., 2014; El-Akl et al., 2015) and our calculation for Ca binding to the BL 

(3.95, Table 2) correlates well to the value of 4.3 obtained by El-Akl et al. (2015) in their work 

with Ce. This is the first study where equilibrium binding constants for Dy and Hyalella azeca 

have been calculated and the data derived in this investigation are applicable for BLM 

development in freshwaters of moderate hardness. Remaining uncertainties highlighted in our 

study include the effect of pH on Dy toxicity and the complexation of Dy3+ by DOM.  

3.4 Conclusions 

 

This study demonstrates that water chemistry can have a significant influence on the 

acute toxicity of Dy to Hyalella azteca. Increased Ca, Na and DOM decreased toxicity while 

decreased pH decreased toxicity. Additions of Mg had no clear effect on toxicity. These results 

are consistent with other metals where free ion forms are correlated to toxicity and TMFs 

mitigate via complexation or cationic competition. However, our studies are preliminary in this 
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regard and further mechanistic study is required in order to fully understand if it is appropriate to 

apply a BLM framework for site specific toxicity predictions. Towards this end we have 

determined Log K values for the interaction of Dy3+ on the biotic ligand as well as for the 

protective effect of Ca and Na. The influence of pH on Dy toxicity was dramatic and it may be 

that Dy-carbonate complexes in solution contribute to toxicity.         
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3.6 Tables and Figures 
 

Table 1. Measured water chemistry from acute toxicity tests after 96 h of exposures and the 

corresponding Dy toxicity to H. azteca as either total (Dy-T), dissolved (Dy-D) or Dy3+ 

(calculated using WHAM ver. 7.02 from Dy-D values). All concentrations are µM except for pH, 

DOC (mg C/L) and Dy3+ (nM). The m superscript represents tests where MOPS was added and * 

highlights the 2 mM Ca test where the LC50 calculation was based on the modified dataset (see 

text). 

 

 

Ca Na Mg pH DOC LC50 

Dy-T

95% LC50 

Dy-D

95% LC50  

Dy3+

95%

LCL UCL LCL UCL LCL UCL

Ca 590 597 182 7.8 0.4 2.2a 2.0 2.5 2.1a 1.9 2.4 18.8a 16.1 21.8

1130 587 180 7.7 0.4 3.0b 2.6 3.5 2.1a,b 1.6 2.9 26.6a,b 17.8 38.7

2177 639 188 7.7 0.4 4.1b 3.0 5.5 2.8b* 2.5 3.1 34.4b* 30.1 39.3

Na 590 597 182 7.8 0.4 2.2a 2.0 2.5 2.1a 1.9 2.4 18.8a 16.1 21.8

594 1112 183 7.5 0.4 2.4a,b 1.8 3.3 1.6b 1.4 2.0 30.2b 22.8 39.3

543 2166 156 7.6 0.4 3.2b 3.0 3.4 2.9c 2.8 3.0 48.7c 46.7 50.8

Mg 590 597 182 7.8 0.4 2.2a 2.0 2.5 2.1a 1.9 2.4 18.8a 16.1 21.8

519 606 341 7.4 0.4 2.2a 1.7 2.8 1.9a 1.5 2.4 47b 33.7 64.2

570 577 653 7.7 0.4 3.6b 2.7 4.8 1.8a 1.5 2.1 20.4a 16.4 25.2

pH 542 584 179 6.5m 0.4 12.4a 8.8 17.5 12.5a 8.8 17.5 2845a 1970 4085

629 620 187 6.8m 0.4 7.9a 5.4 11.5 7.9a 5.3 11.6 976b 635 1483

590 597 182 7.8 0.4 2.2b 2.0 2.5 2.1b 1.9 2.4 18.8c 16.1 21.8

652 594 186 7.8m 0.4 1.5c 1.3 1.8 1.4c 1.2 1.6 10.7d 8.5 13.3

598 589 180 8.0m 0.4 1.6c 1.3 2.0 1.4c 1.1 1.7 5.9e 4.3 7.9

DOC 590 597 182 7.8 0.4 2.2a 2.0 2.5 2.1a 1.9 2.4 18.8a 16.1 21.8

554 575 157 7.5 9.3 8.8b 7.7 10.1 4.2b 4.0 4.3 0.09b 0.1 0.1

552 577 174 7.5 13.0 8.1b 7.1 9.3 6.9c 6.2 7.7 0.15c 0.1 0.2
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Table 2. Linear regression coefficients calculated for the effect of Ca2+, Na+, Mg2+ and H+ on 

acute Dy3+ toxicity. The units of slope and intercept are on a molar basis. 

Relationship  Slope  Intercept   r  
Derived 

Log K 

         

Dy3+ to Ca2+  0.01454  1.3 x10-8  0.998  3.95 

Dy3+ to Na+  0.02037  8.0 x10-9  0.998  4.10 

Dy3+ to Mg2+  -0.01064  3.2 x10-8  0.110  NA 

Dy3+ to H+  9.07  -1.7 x10-7  0.990  NA 

Dy3+ to BL  -  -  -  7.75* 

         

 

 

  



 
 

103 
 

 

Figure 1. Comparison of nominal and measured Dy measurements for total (Dy-T) and dissolved 

(Dy-D) concentrations from the initial and final time periods. Tests involving cationic 

competition are summarized and exclude data with pH and DOM alterations except for 6400 

μg/L data at low pH (grey star) and high DOM (grey diamond) which have been offset to the 

right. Error bars are represented as ±SEM. The number of observations in this subset of tests 

varies n= 7 to 10. 
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Figure 2. LC50 values (with upper 95% confidence interval) for Hyalella azteca and Daphnia 

pulex exposure to Dy. The LC50 values are based on 48 h (Daphnia) and 96 h (Hyalella) tests 

and measured total (Dy-T black bars) and dissolved (Dy-D gray bars) concentrations. Different 

letters indicate LC50 values that are statistically different for either Dy-T or Dy-D. 
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Figure 3. LC50 values (with 95% confidence interval) and the competitive effect of Ca2+ (A), 

Na+ (B), Mg2+ (C) and H+ (D) on Dy3+ to Hyalella azteca. Linear regression line is shown and 

ion activities were calculated from measured dissolved 96 h concentrations and modelled using 

WHAM 7 (ver. 7.02). See Table 3 for linear regression coefficients and associated Log K values. 
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Figure 4. LC50 values (with 95% confidence intervals) and the protective effect of natural 

organic matter on Dy toxicity to H. azteca. Both panels are from 96 h measured dissolved and 

(A) shows regression as a function of Dy toxicity while (B) as a function of Dy3+ activity. Single 

source of NOM was used from Suwannee River (SR-NOM). Regression panel (A) LC50 Dy-D = 

57.58 (SR-DOM) + 278 (r = 0.949) and panel (B) LC50 Dy3+ = -1.589 (SR-DOM) + 18.36 (r = 

0.957). 
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3.8 Supplementary data 
 

Table S1. Detailed exposure chemistry with mortalities for successful H. azteca tests. Measured 

values at the end of each exposure are given (all in µM except for pH, DOC (mg C/L), and 

nominal, Dy-T (T) and Dy-D (D) which are in µg Dy/L) and pH and mortality are averages of two 

replicates per concentration. 

 

Test 

Type: 

Final Initial Final Initial Final Final/Initial % 

Mortality 

 
Ca Mg Na pH DOC Nominal T D T D D/T % D/T % D % 

               

RAM 

trial 1 558 156 543 7.8 0.4 0 4.7 10.4 14.1 0.2 NA NA NA 5 

 599 210 777 7.7 0.4 200 94.4 35.7 51.4 42.5 37.8 82.7 118.9 20 

 593 184 599 7.8 0.4 800 246 111 152 149 45.2 98.0 134.1 5 

 607 190 596 7.7 0.4 1600 418 158 286 289 37.8 101 183.3 65 

 551 183 572 7.7 0.4 3200 756 278 486 450 36.7 92.7 162.1 100 

 548 178 573 7.8 0.4 6400 3517 498 509 453 14.2 88.9 90.9 100 

               

RAM 

trial 2 566 153 540 8.1 0.4 0 1.0 3.4 7.5 0.0 NA NA NA 5 

 571 176 564 7.9 0.4 200 303 155 229 225 51.1 98.2 145.4 15 

 629 188 599 7.8 0.4 800 1257 236 533 497 18.8 93.2 210.4 48 

 633 190 590 7.8 0.4 1600 2626 356 513 468 13.6 91.2 131.3 67 

 632 195 613 7.8 0.4 3200 5112 500 679 474 9.8 69.9 94.9 95 

               

1mM 

CaCl2 1201 171 610 7.7 0.4 0+Ca 0.7 5.8 16.0 0.8 NA NA NA 15 

 1184 184 612 7.7 0.4 200 152 177 135 132 116 98.2 74.6 5 

 1106 183 576 7.7 0.4 800 645 602 489 509 93.2 104 84.6 33 

 1114 180 572 7.7 0.4 1600 1307 955 544 513 73.1 94.3 53.7 60 

 1114 185 580 7.7 0.4 3200 2627 1140 720 479 43.4 66.5 42.0 90 

 1061 175 574 7.7 0.4 6400 5318 1215 611 482 22.9 79.0 39.7 100 

               

2mM 

CaCl2 2133 173 616 7.8 0.4 0+Ca 5.7 0.5 0.5 0.0 NA NA NA 0 

 2126 181 607 7.7 0.4 200 190 84 168 166 44.2 98.9 197.9 0 

 2313 210 685 7.7 0.4 800 751 253 625 610 33.7 97.5 240.9 14 

 2260 203 674 7.8 0.4 1600 1531 484 689 567 31.6 82.3 117.3 25 

 2150 186 629 7.7 0.4 3200 3093 798 796 516 25.8 64.8 64.6 60 

 2082 172 623 7.7 0.4 6400 6057 1089 571 529 18.0 92.6 48.5 100 

               

0.25mM 

MgSO4 497 150 591 7.3 0.4 0 0.4 0.8 0.3 0.4 NA NA NA 15 

 513 317 590 7.4 0.4 0+Mg 0.9 0.4 0.3 0.3 NA NA NA 20 

 519 333 596 7.4 0.4 200 166 40.9 66.7 58.8 24.6 88.1 143.8 10 

 573 372 628 7.4 0.4 800 739 198 461 421 26.8 91.2 212.3 50 

 542 352 608 7.4 0.4 1600 1450 361 602 515 24.9 85.5 142.6 80 

 513 346 612 7.4 0.4 3200 2898 684 688 547 23.6 79.5 80.0 90 

 457 326 602 7.3 0.4 6400 5595 1355 798 686 24.2 86.0 50.6 100 

               

0.5mM 

MgSO4 567 612 544 7.8 0.4 0+Mg 1.2 1.1 16.1 14.1 NA NA NA 15 

 575 642 574 7.7 0.4 200 178 72.5 128 130 40.7 102 179.3 10 

 624 702 600 7.7 0.4 800 739 264 613 534 35.7 87.1 202.2 55 

 595 675 583 7.7 0.4 1600 1556 412 1299 514 26.5 39.6 124.8 85 

 548 660 582 7.7 0.4 3200 2934 617 2836 482 21.0 17.0 78.1 100 

 514 624 579 7.7 0.4 6400 5798 773 5840 524 13.3 9.0 67.8 100 

               

1mM 

NaCl 608 166 1006 7.7 0.4 0+Na 0.1 1.1 0.6 0.5 NA NA NA 10 

 624 190 1239 7.6 0.4 200 171 75.7 118 116 44.2 98.8 153.6 15 

 622 192 1282 7.6 0.4 800 737 187 586 371 25.4 63.3 198.5 70 

 589 185 1066 7.6 0.4 1600 1494 499 1222 535 33.4 43.7 107.2 90 

 578 183 1053 7.4 0.4 3200 3018 766 2761 557 25.4 20.2 72.8 100 

 541 180 1024 7.4 0.4 6400 6042 834 5655 665 13.8 11.8 79.7 100 

               

2mM 

NaCl 517 138 602 7.5 0.4 0 3.5 6.9 6.8 2.7 NA NA NA 5 

 566 141 2135 7.6 0.4 0+Na 4.4 7.0 5.2 2.0 NA NA NA 5 

 577 159 2180 7.6 0.4 200 171 97.4 74.8 67.2 57.0 89.7 68.9 10 

 577 165 2177 7.6 0.4 800 733 376 401 392 51.3 98.0 104.4 10 

 553 163 2161 7.6 0.4 1600 1430 632 508 468 44.2 92.2 74.1 40 

 511 156 2168 7.6 0.4 3200 2862 760 572 503 26.6 87.9 66.1 65 

 473 150 2177 7.6 0.4 6400 5988 891 566 529 14.9 93.5 59.4 100 
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Table S1. Continued. 

 Final Initial Final Initial Final Final/Initial 
% 

Mortality 
Test 

Type: 
Ca Mg Na pH DOC Nominal T D T D D/T % D/T % D % 

               

8mg C/L 

DOM 553 142 577 7.5 10.5 0+DOM 0.0 4.2 0.6 2.5 NA NA NA 0 

 566 161 572 7.6 9.8 800 728 529 515 511 72.7 99.2 96.5 5 

 604 162 577 7.6 9.4 1600 1516 696 951 616 45.9 64.8 88.5 5 

 572 163 576 7.5 9.6 3200 3042 1070 1601 690 35.2 43.1 64.5 70 

 522 158 587 7.5 8.4 6400 6005 1354 3164 806 22.5 25.5 59.5 100 

 506 155 562 7.4 8.1 12800 12058 882 4610 803 7.3 17.4 91.0 100 

15mg C/L 

DOM 547 156 566 7.5 15.4 0+DOM 0.1 1.4 1.4 0.5 NA NA NA 0 

 576 181 586 7.5 14.9 800 758 641 680 672 84.6 98.8 104.9 10 

 593 184 584 7.5 14.0 1600 1543 1242 1093 1032 80.5 94.4 83.1 30 

 579 181 576 7.6 13.0 3200 3033 2262 1594 1183 74.6 74.2 52.3 55 

 516 171 575 7.5 11.0 6400 6145 4676 1829 1678 76.1 91.7 35.9 100 

 501 173 576 7.4 9.7 12800 12389 7476 2498 2145 60.3 85.9 28.7 100 

pH 6.5 

MOPS 505 154 572 7.3 0.4 0 0.1 0.3 0.5 0.7 NA NA NA 5 

 488 159 572 6.5 0.4 0+MOPS 0.0 0.0 13.9 11.3 NA NA NA 9 

 486 172 590 6.5 0.4 200 179 181 86.1 85.2 101 98.9 47.1 15 

 505 182 582 6.5 0.4 800 764 753 581 576 98.6 99.2 76.5 20 

 584 187 589 6.5 0.4 1600 1482 1525 1374 1402 103 102 92.0 45 

 611 188 596 6.5 0.4 3200 2959 2997 2913 2923 101 100 97.5 60 

 579 185 574 6.5 0.4 6400 6036 6024 6012 5897 99.8 98.1 97.9 90 

pH 6.8 

MOPS 586 155 606 7.0 0.4 0 0.3 1.7 1.6 1.5 NA NA NA 10 

 562 164 609 6.8 0.4 0+MOPS 0.0 0.4 0.6 0.4 NA NA NA 0 

 556 170 618 6.8 0.4 200 172 168 73.4 68.2 97.4 92.9 40.7 0 

 604 198 632 6.8 0.4 800 754 728 406 401 96.6 98.9 55.1 25 

 675 210 603 6.8 0.4 1600 1484 1531 1095 1069 103 97.6 69.9 33 

 697 191 620 6.7 0.4 3200 2979 2909 2910 2986 97.6 103 102.6 62 

 680 193 639 6.7 0.4 6400 6142 6109 6230 6402 99.5 103 104.8 100 

pH 7.8 

MOPS 570 152 578 7.6 0.4 0 1.1 1.2 0.5 0.1 NA NA NA 40 

 569 155 569 7.8 0.4 0+MOPS 2.3 0.5 0.2 0.0 NA NA NA 5 

 607 180 595 7.8 0.4 200 195 76.4 107 99.4 39.1 93.0 130.1 0 

 675 195 606 7.8 0.4 800 785 189 320 302 24.1 94.3 159.5 70 

 716 194 598 7.8 0.4 1600 1556 315 501 458 20.2 91.3 145.3 85 

 695 201 599 7.8 0.4 3200 3090 445 508 437 14.4 86.1 98.2 100 

 652 192 597 7.8 0.4 6400 6872 588 606 526 8.6 86.8 89.4 100 

pH 8.0 

MOPS 518 147 564 7.6 0.4 0 0.8 0.7 0.4 0.6 NA NA NA 5 

 549 166 600 8.0 0.4 0+MOPS 0.7 0.2 0.2 0.5 NA NA NA 5 

 562 177 588 8.0 0.4 200 185 41.4 73.5 66.2 22.4 90.0 159.7 10 

 613 186 588 8.0 0.4 800 762 121 306 278 15.9 90.6 229.0 45 

 638 187 584 8.0 0.4 1600 1498 187 404 322 12.5 79.7 172.4 80 

 628 183 590 8.0 0.4 3200 3036 249 493 328 8.2 66.5 131.6 100 

 598 183 584 8.0 0.4 6400 6110 224 509 361 3.7 71.0 161.0 100 
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Table S2. Dysprosium speciation in H. azteca testing media given as the % of total aqueous Dy 

concentration (from 96 h dissolved measurements) and predicted by WHAM (ver. 7.0.2). 

Dysprosium bound to colloidal Humic and Fulvic acids are represented as HA-Dy and FA-Dy, 

respectively. The m subscript indicates tests which used MOPS as pH buffer.  

Test 
Type: 

Conc. pH  % Dy 

    Dy3+ DyCO3
+ Dy(CO3)2

- DyHCO3
2+ DySO4

+ DyOH2+ Dy(SO4)2
- 

HA - 

Dy 

FA - 

Dy 
             

Ca 0.5mM 7.8  1.5 52.1 17.5 0.2 0.5 1.6 0.001 2.1 24.5 

 1.0mM 7.7  2.3 55.7 14.3 0.3 0.6 1.8 0.001 2.0 23.0 

 2.0mM 7.7  2.6 59.7 16.2 0.3 0.6 2.0 0.001 1.5 17.2 

             

Na 0.5mM 7.8  1.5 52.1 17.5 0.2 0.5 1.6 0.001 2.1 24.5 

 1.0mM 7.5  3.1 52.4 8.6 0.4 1.0 1.7 0.002 2.6 30.2 

 2.0mM 7.6  3.0 60.7 12.6 0.3 0.8 1.9 0.001 1.6 19.0 

             

Mg 0.125mM 7.8  1.5 52.1 17.5 0.2 0.5 1.6 0.001 2.1 24.5 

 0.25mM 7.4  4.1 54.9 7.1 0.5 2.4 1.7 0.009 2.3 26.8 

 0.5mM 7.7  2.1 51.0 12.9 0.2 2.1 1.7 0.013 2.4 27.6 

             

DOC 0.4mg /L 7.8  1.5 52.1 17.5 0.2 0.5 1.6 0.001 2.1 24.5 

 9.3mg /L 7.5  0.003 0.1 0.009 0.000 0.001 0.002 0.000 7.2 92.7 

 13.0mg /L 7.5  0.004 0.1 0.010 0.000 0.001 0.002 0.000 7.6 92.3 

             

pH pH 7.8 7.8  1.5 52.1 17.5 0.2 0.5 1.6 0.001 2.1 24.5 

 pH 7.8M 7.8  1.3 45.0 15.1 0.2 0.4 1.4 0.001 2.9 33.7 

 pH 6.5M 6.5  36.9 39.8 0.4 2.8 12.2 2.0 0.023 0.5 5.4 

 pH 6.8M 6.8  20.6 57.8 1.6 2.0 6.9 2.2 0.014 0.7 8.2 

 pH 8.0M 8.0  0.7 39.8 21.2 0.1 0.2 1.2 0.000 2.9 33.8 
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CHAPTER 4 
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4.0 General discussion 

4.1 Summary of major results 
 

The overall objective of this research was to contribute data towards the development of 

water quality guidelines for rare earth elements (REEs). Since REEs are divided into two groups, 

the light (LREEs) and heavy (HREEs) rare earths, cerium (Ce, a LREE) and dysprosium (Dy, a 

HREE) were chosen as representative of these metals. Acute Ce and Dy exposures were 

performed on Hyalella azteca and Daphnia pulex in media typical of Canadian Shield waters. 

Based upon these tests, the more sensitive organism was used to evaluate the toxicity modifying 

effect of water chemistry. The central findings of this research were as follows:  

1) Both Ce and Dy precipitated in solution. Dissolved concentrations sampled at the end 

were always significantly lower than initial except for tests with added dissolved organic 

matter (DOM) and low pH (in the case of Dy, see Chapter 2 and 3, Figure 1) 

2) Acute Ce and Dy exposures to Daphnia (24 h) and Hyalella (96 h) revealed the latter as 

the more sensitive organism in similar water chemistry conditions. Therefore, the effects 

of toxicity modifying factors (TMFs) on Ce and Dy toxicity were performed using 

Hyalella (see Chapter 2 and 3, Figure 2).   

3) The effects of cationic competition are as follows: an increase in waterborne Ca was 

protective of Ce and Dy toxicity to Hyalella (see Chapter 2 and 3, Figure 3A). Similarly, 

an increase in Na was protective of Dy toxicity to Hyalella but no ameliorative effect was 

observed with Ce exposures (see Chapter 2 and 3, Figure 3B). Increasing the 

concentration of Mg had no effect on REE toxicity (see Chapter 2 and 3, Figure 3C). 

Lastly, decreasing the pH was strongly protective of Dy toxicity to Hyalella (see Chapter 

3, Figure 3D). 
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4) Dissolved organic matter increase was protective of Ce and Dy toxicity to Hyalella. 

Expressing Dy toxicity on the basis of the free metal ion did not follow BLM principles 

(see Chapter 2 and 3, Figure 4). 

5) Comparing Dy exposures to Hyalella with and without 3-(N-morpholino)propanesulfonic 

acid (MOPS) indicated that the buffer increases metal toxicity (see Chapter 3). 

6) Both Ce and Dy follow BLM principles. The Log K values quantifying the binding of Ce 

to the biotic ligand (BL, Ce-BL) and similarly Dy (Dy-BL) were determined to be 7.3 and 

7.75, respectively. The binding constants for Ca binding to the BL are 3.9 and 3.95 for Ce 

and Dy, respectively. The Log K for Na binding to the biotic ligand was determined in 

Dy exposures with the value of 4.10 (see Chapter 2 and 3, Table 2).  

4.2 Discussion of major results  
 

The corresponding discussion relates to previously outlined summary of major results and 

includes: 

1) In this study, both REEs precipitated during acute exposures and concentrations sampled 

at the end were much lower in comparison to initial or nominal. Precipitation in REEs 

tests has been observed previously (Borgmann et al., 2005; Barry and Meehan, 2000) and 

testing based on nominal values has been shown to underestimate toxicity (Gonzalez et 

al., 2014). This study demonstrates that LC50s based on end dissolved concentrations 

provide the most conservative estimates of toxicity and recommends future LC50s to be 

based on final concentrations.  

Tests with low pH and high DOM demonstrate increased dissolved Ce and Dy 

concentrations. Results from low pH exposures were not surprising since most of the 
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metal would be present as the free metal ion and because of higher solubility of this 

species the resulting metal concentrations are elevated. The observed increase in 

dissolved Ce and Dy concentration was surprising for tests with added DOM. One 

previous study with Ce nanoparticles (Ce-NP) speculated that DOM constituents (such as 

humic and fulvic acids) stabilize Ce-NP in natural waters through colloidal associations 

(Quik et al., 2012) and this could explain the elevated Ce and Dy concentrations observed 

in this study.        

2) Acute toxicity tests with Hyalella (96 h) and Daphnia (48 h) were carried out following 

standard methods (Environment Canada, 2013 and 1996, respectively). Hyalella was 

determined to be more sensitive to Ce and Dy exposures and as a result further tests with 

TMFs were performed using this organism. H. azteca heightened sensitivity may have 

been associated with the longer duration of the standard test (96 h for Hyalella vs. 48 h 

for Daphnia spp.) in addition to inherent sensitivity difference. This study demonstrates 

sensitivity differences exist between commonly used invertebrates and recommends 

future species comparisons to have equivalent exposure length.  

3) The effect of cationic competition was evident but varied with the type of REE exposed 

to Hyalella. Increase in waterborne Ca had a protective effect on Hyalella survival for 

both REEs. Geochemical modeling of the same data suggests cationic competition 

between Ca2+ and the REE free metal ion. The observed protective effect of Ca on Ce or 

Dy toxicity to Hyalella was expected since lanthanides and Ca share similar 

physiochemical properties. For instance, lanthanides have comparable ionic radii to Ca2+ 

(Hirano and Suzuki, 1996) and as a result are effective Ca channel blockers (Sandvig and 

Olsnes, 1982; Lansman, 1990). Recently, lanthanides have been shown to replace Ca in 
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nutrient deficient tests with alga indicating a shared biological function (Goecke et al., 

2015). The protective effects observed in this study are supported with previous REE 

toxicity investigations (Barry and Meehan, 2000; EL-Akl et al., 2015) which highlight Ca 

involvement in decreasing toxicity.    

 The protective effect of Na on Ce or Dy toxicity to Hyalella varied with the type 

of REE. For instance, increasing Na was not protective in exposures with Ce but Dy tests 

demonstrated clear ameliorating effects. Both of these metals were exposed to the same 

source of Hyalella azteca, but testing with these REEs was performed at two different 

water chemistries. For instance, exposures with Ce were performed in low hardness while 

Dy in high hardness conditions and this might have contributed to the observed 

difference in Na protective effect. Recently, Senatore et al. (2014) have identified unique 

T-type Ca channels in Lymnaea stagnalis that are permeable to Na as well as Ca instead 

of being highly selective for Ca as observed in vertebrate organisms. If these types of 

channels are present and have a role in Ca and Na ion regulation in Hyalella then 

increases in either of the ions would explain the decrease in Dy toxicity through cationic 

competition. It is possible that more of these T-type Ca channels are available at higher 

hardness (such as Dy exposures) and less available at lower hardness (such as Ce tests) 

conditions. This notion is highly speculative but future identification of this transporter 

might offer some explanation to the difference in toxicity between these REEs. 

Additionally, performing future REE exposures to Hyalella using similar water chemistry 

would explain if Na protective effects were exclusive to Dy exposures and offer insight 

into whether or not REEs have the same mode of toxicity to this organism. 
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 In both REE exposures to Hyalella increasing Mg had no protective effect. 

Previous studies with metals such as Cd, Zn, Cu, Co and Pb have identified that adverse 

effects from acute metal exposures result from inhibition of major ionoregulatory 

transporters. For instance Cd2+, Co2+, Pb2+ and Zn2+ affect the Ca transporter and block 

Ca2+ uptake while Cu2+ and Ag+ inhibit the Na transporter and interfere with the uptake 

of Na+ and Cl- across the fish gill (Niyogi and Wood, 2004). The most probable 

explanation to the lack of Mg effect on Ce and Dy toxicity is that these REEs do not act 

on the Mg transporter.   

 The effect of pH change on REE toxicity was evaluated with Dy exposures to 

Hyalella. Decreases in pH dramatically lowered Dy toxicity to H.azteca. These results 

were unexpected since lower pH would increase the most bioavailable metal form (e.g. 

Dy3+) and thus increase toxicity (Campbell, 1995). The linear relationship between H+ 

and Dy3+ LC50 suggests strong competitive effect between the proton and the free metal 

ion as pH decreases. Decreased toxicity at lower pH has been reported previously with 

other metals (Campbell and Stokes, 1985) and recent work with Ce exposures to algae 

(EL-Akl et al., 2015) support the competitive effect of H+ observed in this study. At 

higher pH, toxicity might be related to the presence of carbonate bound complexes. 

Future investigations with different REEs should evaluate pH influence on toxicity.  

4) Increased DOM concentration was protective of Ce and Dy toxicity to Hyalella.   

Dissolved organic matter has been identified as one of the primary factors ameliorating 

metal toxicity (Wood et al., 2011) and since REEs are known to bind organic molecules 

(Tang and Johannesson, 2003; Johannesson et al., 2004) the decrease in Ce and Dy 

toxicity was not surprising. Previous investigations with Ce (EL-Akl et al., 2015) and Dy 
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(Fuma et al., 2005) support the ameliorative effects observed in this study with organic 

matter.  

Interestingly, DOM trials with Dy did not follow BLM principles. In this study, 

the hypothesis was that the LC50 values (based on dissolved Dy) when expressed as Dy3+ 

would be similar across the DOM trials (Santore et al., 2001). Instead, dramatic 

reductions in Dy3+ LC50 values were predicted by WHAM software as DOM increased. 

The negative relationship between DOM concentrations and the LC50 for Dy3+ can be 

explained by overestimation of DOM-Dy3+ complexation and/or that DOM-Dy 

complexes are bioavailable and contribute to toxicity. The latter idea probably does not 

apply since increased DOM decreased Dy LC50s (see Chapter 3, Figure 4A) and thus the 

stability constants for Dy binding to DOM are likely defined poorly in WHAM and 

require refinement. This pattern was only observed for Dy data and the results with Ce 

were not affected.    

5) The effect of MOPS buffer on REE toxicity was evaluated in Dy exposures. Comparison 

of side-by-side tests with and without MOPS showed that the buffer increased Dy 

toxicity to Hyalella. Previous investigation with Pb exposure to fathead minnow 

Pimephales promelas suggested that the buffer has a physiological effect and that it 

enhanced Pb toxicity (Esbaugh et al., 2013). Results in this study agree with Esbaugh et 

al. (2013) and suggest caution when interpreting results from tests that utilized this 

buffer. Moreover, MOPS should not be used as a pH buffer in future toxicity studies with 

REEs and Hyalella. 

6) This study demonstrates that increased Ca and DOM concentration decrease acute 

toxicity to both REEs and that increase Na and H+ are protective of Dy toxicity to 
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Hyalella. Previous investigation has concluded that some REEs, such as Lu, also follow 

BLM principles (Weltje et al., 2004) and this is also the case with Ce and Dy in this 

study. The equilibrium binding constant for Ce-BL (Log K = 7.3) and Dy-BL (Log K = 

7.75) closely resembles the values obtained from other REEs such as Ce-BL (7.3), Sm-BL 

(7.0), Eu-BL (7.0) and Tm-BL (7.1, Yang et al., 2014; El-Akl et al., 2015) and our 

calculation for Ca binding to the BL (Ce tests = 3.9 and Dy tests = 3.95) correlates well 

to the value of 4.3 obtained by El-Akl et al. (2015) in their work with Ce. This is the first 

study where equilibrium binding constants for Ce and Dy to Hyalella azteca have been 

calculated and the data derived in this investigation can be applied for future 

development of the freshwater BLM for these metals. 

4.3 Study limitations  
 

The main limitations of this study were: 1) the uncertainty in predicting REE speciation 

using WHAM7 geochemical software and 2) the lack of investigating how precipitated phases 

effect REE toxicity estimates.   

1) The use of WHAM7 was limiting since Dy binding to DOM seemed to be poorly 

defined (as discussed above) and speciation software did not take into account the 

effect of redox chemistry of some REEs (e.g. Ce). The predicted Dy-DOM 

interactions were overestimated and this could be due to the notion that they were 

based on one published paper (Tipping et al., 2011) using antiquated thermodynamic 

values. Future investigations should look into refining REE-DOM binding parameters 

and the data generated in this study should be updated accordingly. Moreover, 

WHAM7 modeling software did not take into account the complex redox chemistry 
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of some REEs, such as Ce, nor did it take into account the formation of precipitated 

forms of both REEs. This was an oversight in the speciation program since 

precipitation was clearly demonstrated in Ce and Dy exposures and for the former the 

redox chemistry most likely amplified the precipitation process. Future modeling 

software needs to incorporate precipitation of these metals in order to predict the 

bioavailable REE species with greater certainty.   

2) The development of BLM binding parameters (Log K values) in this study were 

based on dissolved metal concentrations. However, the use of total (unfiltered) 

concentrations should also be investigated, since precipitated REE forms might also 

contribute to toxicity. Recent development of water quality guidelines for aluminum 

(Al) in coastal marine waters of Australia indicated that toxicity is influenced by both 

dissolved and precipitated phases (Golding et al., 2015). Since Al3+ and REE3+ share 

similar charge and both metals precipitate, it is possible that the precipitated forms of 

REEs have comparable effects on toxicity. Future development of BLM binding 

parameters for REEs should investigate if measurements from total (unfiltered) 

concentrations generate improved predictions of toxicity.  

4.4 Conclusion and significance 
 

Rare earth elements are a group of metals that are used in a variety of industries and thus 

are of vital importance to modern society. The demand for these elements is expected to increase 

and as a result new mining projects are being developed. In Canada, the most advanced REE 

mining project is located in the Northwest Territories and is owned by Avalon Rare Metals Inc. 

With the increase in REE mining development, there is a need to set safe discharge limits that are 

protective of aquatic organisms. Currently, there are no Canadian Council of Ministers of the 
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Environment water quality guidelines and this is also true in the United States where there are no 

water quality criteria set by the Environmental Protection Agency. This study evaluates the effect 

of water chemistry on the acute toxicity of Ce (a light REE) and Dy (a heavy REE) to Hyalella 

azteca. For both metals, Ca and DOM had a protective effect while Mg was not protective. 

Increase in Na was not protective of Ce toxicity but in the case of Dy was strongly protective. 

This might be related to the difference in the mode of metal toxicity between the light and heavy 

rare earths or the difference in exposure chemistries (ie Hyalella was acclimated in harder water 

for Dy tests). Tests involving pH change and Dy exposures have revealed that H+ is strongly 

protective particularly at low pH. Although, change in pH has been shown to be protective in Dy 

exposures, caution should be taken with the interpretation of pH tests since the buffer used (e.g. 

MOPS) has been demonstrated to enhance Dy toxicity in this study. Further tests with different 

REEs need to be performed in conditions of changing pH to adequately understand if the 

protective effects observed in this study are characteristic of this metal group. Ultimately, Ce and 

Dy exposures to Hyalella are likely to cause concern in waters characteristic of having low Ca 

and DOC content.   
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