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ABSTRACT 

 

In the trucking industry, many transport providers face highly variable demands from clients as 

well as other challenging issues reported by the American Trucking Associations. The Ontario 

Trucking Association also reports that Canadians face similar concerns. Despite several attempts 

in the literature, the need for operational improvements by incorporating simple and effective 

methods is still felt.  

This dissertation includes three related papers to investigate different methods that can help 

transport providers improve their operational efficiency.  The first paper models and measures 

the profit improvement trucking companies can achieve by collaborating with their clients to 

obtain advance load information (ALI). The main approach is to formulate a comprehensive and 

flexible mixed integer mathematical model and implement it in a dynamic rolling horizon 

context. The findings illustrate that access to the second day ALI can improve the profit by an 

average of 22%. Moreover, increasing ALI from two to three days improves the profit by a 

further 6%. We also found that the impact of ALI depends on radius of service and trip length 

but statistically independent of load density and fleet size. 

The second paper investigates the following question of relevance to truckload dispatchers 

striving for profitable decisions in the context of dynamic pick-up and delivery problems: "since 

not all future pick-up/delivery requests are known with certainty (i.e., advance load information 

(ALI) is incomplete), how effective are alternative methods for guiding those decisions?"  We 

propose a simple intuitive policy and integrate it into a new two-index mixed integer 

programming formulation, which we implement using the rolling horizon approach.  On average, 

in one of the practical transportation network settings studied, the proposed policy can, with just 
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second-day ALI, yield an optimality ratio equal to almost 90% of profits in the static optimal 

solution (i.e., the solution with asymptotically complete ALI). We also observe from studying 

the policy that second-day load information is essential when a carrier operates in a large service 

area.  We enhance the proposed policy by adopting the idea of a multiple scenario approach. 

With only one-day load information, the enhanced policy improves the ratio of optimality by an 

average of 6 percentage points. That improvement declines with more ALI.  In comparison to 

other dispatching methods, our proposed policy and the enhanced version we developed were 

found to be very competitive in terms of solution quality and computational efficiency. 

Finally, inspired by a real-life third party logistic provider, this study addresses a dynamic 

pickup and delivery problem with full truckload (DPDFL)"for local operators. The main purpose 

of this work is to investigate the impact of potential factors on the carriers’ operational 

efficiency. These factors, which are usually under managerial influence, are vehicle diversion 

capability, the DPDFL decision interval, and how far in advance the carrier knows of clients’ 

shipment requirements; i.e., advance load information (ALI). Through comprehensive numerical 

experiments and statistical analysis, we found that the" ALI and decision interval significantly 

influence the total cost, but diversion capability does not. The findings also reveal that the impact 

of the re-optimization interval depends on the subcontracting cost and level of ALI. A major 

contribution of this work is that we develop an efficient benchmark solution for the static version 

of the DPDFL by discretization of time windows. We observed that three-day ALI and" an 

appropriate decision interval can reduce deviation from the benchmark solution to less than 8%. 
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In the trucking industry, many transport providers face highly variable demands from clients as 

well as other challenging issues as reported by the American Trucking Associations. The Ontario 

Trucking Association also reports that Canadians face similar concerns. Despite several attempts 

in the literature, the need for operational improvements by incorporating simple and effective 

methods is still felt.  

Asset repositioning and driver turnover are among the most challenging issues that 

trucking companies (carriers) encounter. Asset repositioning, which has been studied by, e.g., 

Crainic (2000); and Wieberneit (2008), is due to natural characteristics of truckload 

transportation networks such as demand dynamism and network imbalance between supply and 

demand. Ergun et al. (2007a) report that empty movement of trucks costs U.S. carriers nearly 

165 billion dollars annually. Based on the American Trucking Association (ATA) 2013, the ratio 

of empty to total mileage is usually higher for small carriers (22%) with a sparser network of 

lanes than larger ones with a more sophisticated lane network (17%). Since empty repositioning 

of trucks does not generate any positive contribution, it will lower different measures of 

performance (e.g., carrier’s profit). 

The issue of driver turnover is strongly influenced by drivers’ dissatisfaction with work 

schedules requiring overly long periods away from home. Studies confirming this include 

Rodriguez and Griffin (1990), Shaw et al. (1998), Keller (2002), and Suzuki et al. (2009). The 

driver turnover problem is significant (according to the Council of Supply Chain Management 

Professionals (2006), it can reach 130% in a year) and costly: the replacement cost of a driver 

(e.g., including training and loss of experience) is estimated to cost between $2,200 to over 

$20,000 with an average of $8000 (e.g., Rodriguez et al., 2000). Given the size of the U.S. 
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trucking industry, driver turnover translates to approximately three billion dollars a year (Suzuki 

et al., 2009). 

In the second chapter, titled “the benefit of advance load information for truckload 

carriers”, we consider relatively small trucking companies (with 20 trucks and fewer). Given the 

highly fragmented trucking industry in North America, these small companies form the major 

part of the trucking industry. This problem can be placed under pickup and delivery categories 

with full truckload where clients’ requests (loads) are gradually received by the carrier. Among 

various methodologies in the literature, we use the most appropriate method. This method is 

based on developing a mathematical formulation followed by implementation in the dynamic 

context using a rolling horizon approach. The mathematical formulation is flexible enough to be 

easily implemented in the dynamic context.  

The contributions of this chapter can be categorized in two broad categories. First, we 

explicitly model the notion of a home base in designing a dispatching method. This is very 

crucial because truck drivers need to regularly visit their home due to human related 

considerations. Missing this consideration adversely impacts the driver turnover rate. Second, we 

statistically examine the benefits of collaboration (via advance load information sharing) 

between a carrier and its clients through comprehensive numerical experiments. The statistical 

analysis reveals that a majority of benefits are achievable by acquiring the second day load 

information. Although obtaining additional information still improves the profit, the marginal 

benefit reduces significantly. Moreover, the level of improvement in profit depends on the radius 

of service and the average trip length of loads. For example, there is more incentive for carriers 

to improve their relationship with their clients if they operate in a larger service area (larger 

service radius). 
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The third chapter, titled “effective truckload dispatch decision methods with incomplete 

advance load information”, considers a similar dynamic problem which was investigated in the 

previous chapter. Although collaborating through sharing advance load information helps 

trucking companies to extend the knowledge window of dispatchers and improve the operational 

efficiency, there is always uncertainty after the knowledge window (i.e., advance load 

information is not complete). In the absence of exact information about future loads beyond the 

knowledge window, the dispatcher’s range of decisions (load acceptance/rejection, load 

sequencing, etc.) is influenced by the matter of where the truck will be positioned for serving 

future (unknown) loads. In this situation, one might choose a more conservative policy that 

prefers to serve loads that take the truck close to its domicile; i.e., to avoid large empty truck 

repositioning costs to the domicile (called deadheading costs in this study) when the truck must 

eventually return deadhead to the domicile.  

The main contribution of this chapter is to design a simple and intuitive policy for 

improving the thin profit margin of carriers. In order to evaluate the performance of the proposed 

policy under various transportation network settings, the static optimal solution is used as a 

benchmark. The static optimal solution is unrealistically good because it solves the problem 

when all load information is available in advance, but it still can be used as a fair benchmark. 

Another contribution of this work is to reformulate the problem using a two-index mixed integer 

programming that helps us to solve the model to optimality in the static version.  

In one of the most practical settings, we found that the proposed simple policy can generate 

almost 90% of the static optimal solution with only two days of advance load information. 

However, the proposed policy does not have an acceptable performance in some specific 

settings. To improve the performance of the algorithm, we develop the enhanced version of that 
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policy by incorporating a multiple scenario approach (from the vehicle routing problem 

literature). The enhanced version of the policy significantly produces a higher quality solution 

when advance load information is limited. To further illustrate the performance of our proposed 

policies, they are examined against two other dispatching methods (policies).   

Unlike the first two chapters, the last study, titled “operational flexibility in the truckload 

trucking industry”, targets small carriers that generally operate in a smaller service area (local 

operators). In this setting, the notion of home base becomes less important. The main focus of 

this work is to identify and test the impact of potentially important strategies in decreasing the 

operational costs of a transport provider. To the best of our knowledge, this is the work that 

moves beyond sharing advance load information by including diversion capability and a re-

optimization interval as two other factors (strategies). The main inspiration of this work is a 

small third party logistic provider (Logikor Inc.) located in Ontario, Canada. This company 

accepts all load requests and serves them using either the company owned trucks or subcontracts 

them to other carriers. Through a comprehensive numerical study and applying a regression 

model, we found out that advance load information and the re-optimization interval significantly 

reduces the total cost but that diversion capability does not.  

The next step of this study is to introduce different policies (based on significant 

strategies). They can be compared against each other based on their deviation from a benchmark 

solution. The benchmark solution (similar to the previous chapter) is the static optimal solution. 

However, solving the developed mathematical model is taking too much time even for small 

instances (e.g., >48hrs for 6 trucks and 50 loads). Thus, we design an efficient algorithm based 

on the idea of time window partitioning (proposed by Wang and Regan, 2002). We prove that the 

proposed algorithm converges to the minimum total cost as the number of iterations increases.  
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2.1. Introduction and Literature Review 

Asset repositioning is one of the important issues in truckload transportation (Crainic, 2000; 

Wieberneit, 2008). A recent estimate that 18% of trucks move empty every day translates to 

more than 165 billion dollars annually in the US market (Ergun et al., 2007a). This is a natural 

result of imbalance between supply and demand at different cities. To correct for this issue, 

strategies such as collaborative transportation (CT) are used to ensure that trucks are repositioned 

in a way that efficiently fulfills future demand.  

In CT, logistics participants (i.e., shippers/consignees and carriers) collaborate with each 

other to improve the performance of transportation planning. Examples of collaborative 

transportation networks are Nistevo (www.nistevo.com) and Transplace (www.transplace.com). 

They are non-asset based companies that provide modular software under common web-based 

network to create connectivity and encourage collaboration. These fairly young companies 

(Nestivo founded in 1997; Transplace founded in 2000) focus on finding new opportunities 

which cannot be achieved within the internal company scope. One of the best examples is empty 

repositioning of trucks. The shipper lacks information on how its shipment requests might impact 

the empty repositioning of trucks. However, the carriers implicitly charge the shipper for this 

cost component. This issue can be resolved by connecting shippers and carriers to their partners 

through visibility of orders. For example, two members of the Nistivo network could save 19% 

over the cost of one-way rates and their shippers experience a more routine schedule and lower 

empty repositioning cost (Lynch, 2001).  

In general, CT helps to reduce total transportation costs, increase trucks utilization and 

lower driver turnover (Ergun et al., 2007b). Collaboration could be among transportation clients 

(e.g., Ergun et al., 2007a), among carriers (e.g., Özener et al., 2011), or between client(s) and 
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carrier(s) (e.g., Tjokroamidjojo et al., 2006) or all the above scenarios. Collaboration between a 

carrier and its clients is the focus of this study. One of the least costly methods when freight 

transportation service clients and carriers collaborate with each other is to communicate timely 

load information (from clients to carriers) and pickup and delivery plans (from carriers to 

clients). The benefit of information sharing has been extensively examined in several contexts 

such as inventory management or production planning. See, for example, Bourland et al. (1996), 

Lewis and Talalayevsky (1997), Gavirneni et al. (1999), Frohlich and Westbrook (2001), 

Patterson et al. (2003), Helper et al. (2010), and Zolfagharinia and Haughton (2012). However, 

such attempts in the transportation field remain limited. These studies include the works by 

Mitrović-Minić et al. (2004), Jaillet and Wanger (2006), Tjokroamidjojo et al. (2006), Angelelli 

et al. (2009), and Özener et al. (2011). 

We distinguish between less than truckload (e.g., Mitrović-Minić et al., 2004; Angelelli et 

al., 2009) and full truckload literature. Mitrović-Minić et al. (2004) developed a double-horizon 

heuristic algorithm for the same-day dynamic pick-up delivery problems with time windows. 

The heuristic solved the problem with short-term (minimizing total distance) and long-term goals 

(efficiently serving future requests). The benefit of advance load information was found to be 

positive but smaller for larger instances. Jaillet and Wanger (2006) addressed the benefit of 

advance information for two variations of the traveling salesman problem. By defining the notion 

of disclosure dates for incoming requests, they analytically showed how advance load 

information helps to improve competitive ratios. Angelelli et al. (2009) examined different short 

terms strategies for dynamic multiple-period routing problems where requests can be postponed 

for the next day. They also analyzed the impact of the short-term strategies on the long term 

objective. The obtained results suggested that 2-day look-ahead policy was definitely superior to 
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1-day look-ahead policy. Since the problem under consideration in this chapter is a full truckload 

one, the rest of the review only focuses on relevant full truckload studies.     

A recent work which addressed the benefit of information sharing is by Özener et al. 

(2011). The focus of their study was to answer this question: how does information sharing help 

carriers to collaborate with each other? Since each carrier has the full information about its 

demand and cost structure, different lane exchange mechanisms were proposed with and without 

information sharing. The obtained results showed that information sharing with side payments 

helped carriers significantly to improve their performances. 

One of the relevant studies to the current work is by Tjokroamidjojo et al. (2006). They 

studied the dynamic load assignment problem (DLAP) in a full truckload industry. They 

modified the model developed by Keskinocak and Tayur (1998) in the aircraft scheduling 

problem. Comparing their work with traditional DLAP (e.g., White, 1972; Powell, 1996), the 

model has a tour building capability. The ultimate goal of their study was to evaluate the benefit 

of advance load information (ALI) in the dynamic load assignment problem.  Tjokroamidjojo et 

al. (2006) modeled the problem’s time dimension implicitly by using a preprocessing approach. 

Their optimization-based computational analyses illustrated that ALI does not help the carrier to 

reduce its costs if the truck dispatching decision is fixed as soon as load information is realized. 

The closest typical problems to DLAP are full truckload dynamic pickup and delivery 

problems. They are also called dynamic stacker crane problems (Berbeglia et al., 2010). 

Dynamic pickup and delivery problems with full truckload (DPDFL) have received much less 

attention in comparison to the static version. However, the input data are often revealed through 

time when a client requests transportation services. Thus, it is crucial to assign drivers (or 

equivalently trucks) to requests (i.e., loads) on a real time basis. The studies by White and 
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Bomberault (1969) and White (1972) are probably the first attempts show how the load 

assignment problem can be handled in a dynamic setting in which each node represents a region 

with demands at the particular point of time. The problem is reduced to a simple transshipment 

problem if future forecast is known.   

The more realistic model appeared in the work by Powell (1986) since it considered two 

types of vehicle movement between regions. The model does not let trucks move between 

regions unless there is an actual demand for them. Thus, if the realized demand in a particular 

lane is less than the number of assigned trucks, extra trucks are held at their current locations for 

future demands. Powell (1987) extended his previous work by presenting the network flow 

problem. Similar to the previous works each node represents a region at a particular time. Two 

types of arcs were considered in the model, one represents deterministic information and the 

other for stochastic ones. Following the same approach, Powell et al. (1988) proposed a model 

called LOADMAP which combines the real-time load assignment with sophisticated future 

forecast to maximize the truckload profit and service level. Running the model four times a day 

could help company to increase its annual profit by 2.5 million US dollars.  

In another work, Powell (1996) proposed a stochastic DLAP formulation. He showed that 

when some stochastic information about future demand is available, the proposed model 

outperforms the deterministic one, which is updated as new information arrives.  The model was 

evaluated under three conditions: fleet size density, demand uncertainty and ALI. Not 

surprisingly, the stochastic model is superior with more fleet density, higher uncertainty but not 

with more advance load information. 

Yang et al. (1998) proposed a mixed integer programming with rolling horizon framework 

for DPDFL in which requests arise continuously. A model was designed for a static case and 
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rerun at each decision epoch. The proposed mathematical model was compared with three simple 

heuristics. Obtained results with only four vehicles showed that the optimal myopic method 

produces high-quality solution but, by being computationally inefficient, it was slower than the 

heuristics. They unified re-sequencing, reassigning, and diversion in their proposed model to 

minimize empty travel costs, delay costs, and lost revenue as a result of job rejection.     

Powell et al. (2000) took a comprehensive simulation-based approach for tackling DLAP. 

The approach was to design an offline algorithm for the static version and put it into practice for 

a dynamic problem when demands were gradually realized as the time elapses and there was no 

information on future demand. They questioned the practical value of optimal myopic solutions 

in comparison to a greedy solution over a long run given that there was no guarantee of user 

compliance with the model’s solution.  User non-compliance often exists in practice, since the 

model cannot capture all available system information. That is why truckload companies 

reported that suggested solutions by commercial software are implementable in less than 60% or 

70% of time. The result suggested that the greedy approach can be superior in long run in 

comparison to optimal myopic solution in the presence of uncertainty in customer demands and 

travel times. 

Yang et al. (2004) extended their previous work (Yang et al., 1998) by introducing two 

mixed integer programming formulations and comparing them with three heuristic decision 

rules. The objective function components were similar to Yang et al. (1998) but the time 

windows are soft (i.e., deviation from pickup and delivery times are allowed but penalized). The 

main contribution was to develop an advanced policy which can use the probability of future 

demand in repositioning of vehicles to improve the system performance. Using numerical 

examples, they illustrated that the proposed advanced policy is superior to the one not utilizing 
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probabilistic information of future loads. However, the problem complexity limits them to small-

size problems in which only ten vehicles with a thousand of loads are taken into account.   

Our proposed model is a comprehensive DPDFL in which several operational factors in the 

truckload industry are taken into account. To highlight the novelty of this study, we carefully 

point out the limitations of relevant works in the literature (summarized in Table 2.1). Although 

all of these papers addressed truckload problems, the key factor that remarkably influences the 

choice of modeling approach is tour capability (i.e., designing continuous truckload routes). This 

feature becomes less important when the average time of serving a load is very long (between 

two to four days) which is the case for large trucking companies working in nationwide or 

international markets. Powell and colleagues investigated this type of problem which is 

simplified to different versions of assignment problems. The other stream of relevant works 

focus on smaller trucking companies that view tour capability as essential. These studies used 

mixed integer programming to formulate the problem and rolling horizon approach for 

implementation (Yang et al, 1998; Yang et al, 2004; Gronalt et al., 2003; Tjokroamidjojo et al., 

2006). 

The defined problem was the same in the studies by Yang et al. (1998) and Yang et al. 

(2004). The objective was to minimize the total cost (including delay, empty movement, and 

load rejection costs). They used their models to develop tours with the capability of diverting 

trucks based on the arrival of new information into the system. As defined by Regan et al. 

(1995), diversion is a model capability that can divert a vehicle moving empty toward a pickup 

point to take another request. However, it is not allowed to divert loaded-moving vehicles while 

updating the decision. Ichoua et al. (2006) estimated that diversion in dynamic vehicle routing 

problems by improved system performance up to 4.3% despite its operational difficulty. 
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However, dwelling cost which is one of the important components of costs structure was not part 

of their model. Another limitation of that work is that trucks moved continuously between 

different cities which means than a truck may never return to its home base. 

Unlike the previous studies, the work of Gronalt et al. (2003) addressed tour length to force 

trucks return home after a predefined interval. The approach was based on generating tours with 

a very restrictive assumption that there is no limit on number of available trucks. Their model did 

not capture the cost of delay and dwelling in designing tours. The proposed policy was also very 

restrictive in the sense that no loads could be rejected and no trucks could be diverted. 

Tjokroamidjojo et al. (2006) addressed a full truckload pickup and delivery problem in 

which empty movements, dwell, and subcontracting costs were taken into account. They also 

investigated how much a trucking company can reduce cost by obtaining additional information 

further in advance. However, their proposed mathematical model was subject to some 

limitations. For example, similar to Yang et al. (1998) and Yang et al (2004), there was no home 

base for the trucks. 

Addressing the limitation of related studies, we can put the contributions of this chapter in two 

broad categories: 

! To the best of our knowledge, this is the first study of its kind that explicitly 

considers the notion of home base (domicile/depot) for trucks in designing 

dispatching rules. This is essential from humanity-related considerations because 

drivers need to come back home to visit their families. The point is quite important 

since it is well-known that insufficient time at home adversely affects driver’s job 

satisfaction, leading to high turnover (which, according to the Council of Supply 

Chain Management Professionals (2006) can be as high as 130% in a year). 
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Models not addressing this issue overestimate the capacity of transportation 

network. Moreover, the proposed model can handle load rejection, truck diversion, 

and advance load information.  

! Managerial insights through a comprehensive simulation study: 

In this work, using an advanced load dispatching policy, we gauge the benefit of 

advance load information for a truckload carrier and test the moderating impact of 

other transportation network settings.   

The remainder of this chapter is organized as follows. In section 2.2, we briefly review common 

mathematical models and dynamic policy in solving full truckload dynamic pickup and delivery 

problems. In section 2.3, the problem is defined and formulated as a mixed integer programming 

(MIP) problem. Section 2.4 briefly describes how the numerical experiments are designed and 

the proposed MIP is implemented in a dynamic environment by using a rolling horizon 

approach. Section 2.5 discusses the numerical experiments, statistical analyses of the results, and 

the ensuing managerial insights. The conclusion and future research directions are provided at 

the end. 
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2.2. Review of Common Mathematical Models and Dynamic Policy 

2.2.1 Common Mathematical Models 

There are two common ways to formulate a DPDFL problem. The first one uses an extended 

version of the assignment problem (e.g., assignment with timing constraints) to exploit the 

problem’s characteristics. This is the most common approach in the literature (see Yang et al. 

1998; Powell et al., 2000; Yang et al., 2004; Tjokroamidjojo et al., 2006). In the second one, the 

problem can be formulated as a variant of capacitated arc routing problems (CARP) in which 

each directed arc represents one load with designated origin and destination. Recent works by 

Liu et al. (2010a, b) proposed an integer-programming model to formulate CARP for truckload 

industries and a quality lower bound. They also developed a heuristic method based on graph 

theory to solve the proposed model since the exact method is incapable of handling large 

problem instances. However, they did not capture time windows for fulfilling demands. 

Comparing the different approaches in the literature, the former is shown to be more promising 

to use because the dimensionality of the model grows quickly in the latter case. Among the 

related studies, the one by Tjokroamidjojo et al. (2006) used an effective approach to handle 

DPDFL. The utilized approach consists of two parts, a preprocessing part for time-based 

restrictions and an assignment problem afterwards. Since time-based restrictions are explicitly 

handled outside the mathematical model, the approach performs well by reducing the number of 

constraints and decision variables. Although our approach is similar to Tjokroamidjojo et al. 

(2006), we must handle some of the time-based constraints inside the MIP because most of the 

loads and trucks attributes are determined after solving the model.    
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2.2.2 Dynamic Policy  

Before formulating the abovementioned problem, it is worthwhile to briefly review the most 

common dynamic strategy used in DPDFL. In dynamic models for general freight transportation, 

Powell et al. (2007) proposed different algorithmic strategies based on the information classes. 

When the information class is the data explaining the current status (i.e., no information 

available about future demand), the algorithmic strategy is classical deterministic programming. 

However, the classical deterministic program can be also used to handle situations in which there 

is some probabilistic information available about future loads (see, Yang et al., 2004). To 

develop a model with tour making capability, the commonly utilized strategy is to formulate a 

static version of the model and apply it into a dynamic environment by using a rolling horizon 

framework (e.g. Yang et al., 1998; Powell et al., 2000; Yang et al., 2004; Tjokroamidjojo et al., 

2006). To apply the static version, the deterministic mathematical formulation is called at each 

decision epoch. It has been shown that the solution quality of this strategy is superior to simple 

heuristics rules, e.g., adding the new load to the end of the current job sequence of a vehicle with 

smallest marginal cost (Regan et al., 1998; Yang et al., 1998; Yang et al. 2004). However, there 

is no guarantee that solving a series of sub-problems optimally will always result in a higher 

quality solution. Tjokroamidjojo et al. (2006) used the same strategy to evaluate the benefit of 

advance load information when timing of preplanning was addressed.  

A rolling horizon approach has been widely used for modeling dynamic problems in the 

areas of inventory management and production planning (e.g., Bookbinder and H’ng, 1986; 

Anupindi et al., 1996; Cheevaprawatdomrong and Smith, 2004). In these studies, three time 

fences are usually defined, namely frozen interval, re-planning interval and forecasting 

interval/window. The first two terms are self-explanatory. The term forecasting interval 
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illustrates how far in advance the data, either stochastic or deterministic, are included in the 

model (Kern and Wei, 1996). Interested readers are referred to a comprehensive paper by Chand 

et al. (2002) who reviewed more than two hundred studies in inventory management and 

production planning.  

Using the most common strategy, we formulate the static version of the defined problem 

and then re-optimize it in small discrete intervals as the new information arrives into the system. 

Moreover, as mentioned in the literature review, maximum flexibility is incorporated in 

formulating the model by considering reassignment, re-sequencing of loads, and even diversion 

of empty vehicles, as defined by Regan et al. (1995). Given the abovementioned points, interval 

freezing is not considered in fixing the future plan and the re-planning interval is a relatively 

short constant duration (i.e., each period). Forecasting interval in the other research fields is 

equivalent to how far in advance loads information is passed from clients to the carrier in 

truckload trucking. Varying that interval in our model yields answers to this study’s main 

research question: How significant are the benefits from acquiring load information further in 

advance? 

 

2.3..Problem Definition  

As mentioned earlier, the problem under study is called dynamic pickup and delivery truckload. 

There is a fixed fleet of trucks in the transportation network. The customers’ demands (loads) are 

known gradually as time elapses. We retain the literature’s standard assumption that each trip is 

executed without a break. Loads and trucks have their own attributes. The truck attributes are 

home domicile, hours away from home, the maximum allowed hours away from home, 

determined by a carrier or federal department of transportation (for drivers), and the current 

location. The load attributes are the earliest and latest pickup time, the maximum permissible 
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delay time, the pickup location and the delivery location. Taking all the attributes of loads and 

trucks into account, the optimal DPDFL solution specifies the carrier’s profit maximizing 

decisions concerning (i) whether to accept or reject a new load, (ii) the sequence of accepted 

loads that each truck will serve. The major assumptions are as follows: 

! Vehicles can be homogenous or heterogeneous regarding their capacity and 

capability for handing different load types. 

! The shipment cost is a linear function of travel time which itself is a linear function 

of distance.  

! Similar to what is common in the literature (e.g., Powell et al., 1988; Powell, 1996), 

the gained revenue is proportional to the trip length, i.e., the distance/time between 

pickup and delivery points. 

! The length of each tour (i.e. tour time span) has to be less than the maximum hours 

that a driver can be away from home.  

! Full truckload transportation is considered (i.e., each vehicle can handle one load at 

a time). 

! Given long haul transportation, loading and unloading times are a negligible part of 

the total time to serve a load and can therefore be ignored.  

! There is a hard time-window to serve a load. Thus, the load will be rejected if it 

cannot be served within the predefined time interval. 

! Depot is the home domicile of drivers. A truck is returned to the depot if it is not 

scheduled to serve any load at that decision epoch. This is a common practice if the 

dispatcher has access to advance load information (e.g., knowing that there is no 

request arriving for the rest of the day). The logic is simple because the average 
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repositioning is typically shorter from the depot (if it is located at the center) and 

dwelling cost is negligible at the driver’s home domicile.  

 

2.3.1. The Model Inputs 

To formulate the proposed model, notations, parameters, and decision variables are presented 

below.  

• Notation 

!: set of all available trucks, indexed by i 

#: set of loads, indexed by r, j, k 

$: set of depots 

• Parameters 

a&: departure location of load  ' 

b&: destination location of load  ' 

)&: the earliest departure time of load ' 

*(. , . ): travel time between any two points in the service area. Traveling time between two 

locations can be described as function of distance. 

ℎ0:home domicile of truck i, (i.e.ℎ0ϵL) 

N: maximum hours that a driver can be away from home 

Uk: maximum permissible delay for serving customer k 

30: maximum hours left for truck i to be away from its home at the decision epoch 

4: the revenue earned per hour while moving loads 

5: the traveling cost (empty or loaded) per hour of driving 

6: the penalty cost per hour for late pickup 
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7: the penalty cost per hour for a truck being idle at any load location (dwelling cost) 

8: time at the decision epoch 

The current location of each truck is important at each decision epoch because of the 

problem’s dynamic nature. If the current location of truck i is denoted with 90, *(90, :) shows 

the traveling time from current location of truck i to the location q. Dwell time is the waiting 

time experienced by a driver/truck if the truck must wait at the pickup location (i.e., it reaches 

the pickup location of load j earlier than )&). Although we consider the same dwell cost for all 

clients’ locations in this computational study, the model is flexible enough to address varying 

dwelling costs across client locations. Still, our study does reflect that dwelling costs at 

truck/driver domicile is significantly smaller than at client locations.  This is because there is no 

extra facility usage cost for, say, a driver to dwell at his/her home or at accommodations 

provided by the carrier (e.g., Challenger Motor Freight’s well-equipped rest facility for drivers at 

its Cambridge depot, more detail about this trucking company can be found at its official 

website: http://www.challenger.com).   

Since the model is flexible enough to allow reassignment and re-sequencing of loads and 

diversion of empty moving trucks, the decision made at the previous decision epoch can be 

modified at the current decision epoch for all the loads which have not received service yet. To 

acknowledge this assumption, we first define TST(i) as the status of truck i at the decision epoch 

8. TST(i) can take three values 1, -1, 0 meaning truck i is moving loaded, empty (either moving 

or idle at any location other than the depot), or sitting idle at its own depot, respectively. If truck 

i is serving load j at the decision epoch 8, it will be available at the later time, 8 +*(90, ;&) at the 

destination location of load j. If a truck is idle or empty, TST(>) ≤ 0, then truck i will be 

available for scheduling at time 8 at its current location. There is also a need to keep track of load 
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status which is denoted with LST(j). There are four possible load statuses. If the load is being 

served at the decision epoch, LST(j) is equal to 2. The other loads which were already rejected 

never enter the model (i.e., LST(j) =0). The loads which are accepted but have not received 

service yet (i.e., LST(j) =1) enter the model for possible reassigning and re-sequencing. In order 

to distinguish new loads (i.e., the loads for which acceptance is not finalized yet) from the 

current ones, their statuses will be LST(j) =3. We also define ST(i,j) as a binary parameter to 

address the status of truck and load together. If truck i is serving load j at the decision time, then 

ST(i,j) takes 1 otherwise 0.          

Another important time-dependent attribute is the number of hours left for the drivers to 

return home. Two situations can be considered for them: sitting idle at their home domicile (i.e., 

30 = ") or on duty away from their home (30 < "). It will be explained how these features are 

incorporated in the proposed model. 

Since there is no type of uncertainty considered in traveling time, it is enough to calculate 

lateness at the load pickup locations. Based on abovementioned assumption, there are two 

lateness types defined as follows. 

DL0(>, '): the lateness duration at the load pickup location a% if truck i serves load j first. 

There is no difference if the truck is heading off from its depot or the previous delivery location 

of a load. The only consideration is whether there is enough time to reach to the pickup location 

of load j or not. 

For TST(>) < 1, DL0(>, ') modified as DL0'(>, ')=max	+0, D+η-, a%. + 8 − α%.. If the truck 

is moving loaded, TST(>) = 1, toward the destination of a load (e.g., load k), DL0'(>, ') =

max+0, 8 + D(η-, b2) + D+b2, a%. − α%.. If the maximum traveling time for the driver is 

approaching, the truck lateness for an empty truck at load j pickup location will be DL03(>, ') =



23 
 

max+0, 8 + D(η-, h-) + D+h-, a%. − α%. and for a loaded truck (e.g. while serving load k) will be 

DL03(>, ') = max+0, 8 + D(η-, b2) + D(b2, h-) + D+h-, a%. − α%.. 

DL1(', 5): the minimum lateness at the load pickup location k if the same truck serves load 

k immediately (or through its depot) after load j.  Load k will experience some lateness if there is 

not enough time to reach the pickup location of load k immediately after serving load j. It is 

denoted with DL1'(', 5) = max	 60, 6α% + D+a%, b%. + D+b%, a2.7 − α27. However, the minimum 

lateness of load k if it is served after load j via depot of truck i will be DL13(>, ', 5) =

max 60, 6α% + D+a%, b%. + D+b%, h-. + D(h-, a2)7 − α27. 

2.3.2.Preprocessing Stage 

As mentioned earlier in section 2.2.1, we tackle the static version of problem in two stages. In 

the first stage, the preprocessing stage, time considerations are explicitly taken into account. In 

this stage, the following two tasks are performed: 1) updating all dynamic attributes of trucks 

(e.g., hours away from home and current truck location) and loads (e.g., a load is waiting to be 

served or being served) 2) identifying infeasible combinations of loads and trucks and infeasible 

combination of loads when they are served by the same truck.  

Given the current status of the trucks, it is checked to see whether a particular truck is 

eligible for serving a certain load. This must be done for all available truck-load combinations. It 

is obvious that certain truck-load combinations are not feasible if the truck cannot be available at 

the pickup location of the load without violating the maximum delay. To check for feasibility, a 

set of binary parameters will be defined as TL-2
8  and TL-2

9 . If it is feasible for truck i to serve load 

k directly (i.e., DL0'(i, j) ≤ <&), TL-2
8  takes 1 otherwise 0. As defined earlier, <& is maximum 

permissible delay for serving customers. Thus, TL-2
8 = 0 means that truck i (based on its current 
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attributes) cannot be available at pickup location of load k without violating its time window. 

Similarly if it is possible for truck i to serve load k via its home depot (DL03(>, 5) ≤ <=), TL-2
9  is 

set equal to 1 otherwise 0.  

 Similar to what is done for truck-load combinations; we define another set of binary 

parameters (called LL&=
8  and LL&=

0 ) to check the feasibility of serving load k immediately (via 

depot of truck i) after load j. Here, it is checked the best possible situation for load combinations. 

For example, load k cannot be served directly (or via depot of truck i) after load j when 

DL1'(', 5) > <=	(or	DL13(>, ', 5) > <=	), i.e. LL&=
8 =0 (or LL&=

0 =0). On the other hand, if the 

minimum lateness is smaller or equal than the maximum allowable delay (i.e.,DL1'(', 5) ≤

<=	or		DL13(>, ', 5))≤	<=), the combination is not conclusively infeasible LL&=
8 , LL&=

0 =1. It is 

extremely important to note that having LL&=
8  or LL&=

0 =1 does not guarantee the load feasibility at 

the end since the decision at this stage is made based on the minimum lateness not the actual 

lateness. Considering different possible assignment decisions, some load combinations with LL&=
8  

or LL&=
0 =1 may or may not be feasible but the one with LL&=

8  or LL&=
0 =0 is infeasible with 

certainty. This exactly explains why we need to have time components in the second phase (i.e., 

mathematical model). For easier reading of the proposed mathematical model, parameters 

quantified at the preprocessing stage are summarized in Table 2.2. 

Table 2.2. Parameters of the preprocessing stage 

Symbols Definition of parameters obtained from preprocessing stage 

TST(i) Status of truck i, it takes values of: -1,0, 1 

LST(j) Status of load j, it takes values of:  0,1, 2, 3 

ST(i,j) Binary parameter indicating if truck i is serving load j at the decision epoch 

TL-2
8  Binary parameter checking the feasibility of serving load k by truck i directly 

TL-2
9  Binary parameter checking the feasibility of serving load k by truck i through its depot 

LL&=
8  Binary parameter checking the feasibility of serving load k immediately after load j 

LL&=
0  

Binary parameter checking the feasibility of serving load k after load j through the depot of 
truck i 
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2.3.3.Mathematical Model 

Having defined all parameters and dynamic aspects of the model in the preprocessing stage, it is 

time to define decision variables and formulate the conceptual model. 

 

A0&=
8 : B

1

0

C 

A0&=
9 : B

1

0

C 

 

 

 

 
D=: arrival time at the pickup location of load k 

"0&: the remaining allowable time for the driver of truck i when it is at the pickup location of 

load j. 

Before formulating the proposed model, it is important to check which loads enter the model and 

their notations. As defined earlier, J represents the set of all loads entered the model. However, 

we are required to differentiate them in order to have a neat mathematical formulation. To do so, 

the set of new jobs are denoted with # ̅(LST(j) =3), the set of accepted jobs waiting for service, # ̿

(LST(j) =1), and the set of jobs being served at the decision epoch, #G (LST(j) =2). Thus, # =

#	H⋃#	̿⋃#G.  Having the parameters and decision variable defined, the model will be formulated as 

follows. To have a better understanding of the model, we break it down into smaller components 

and explain them one by one. The objective function to be maximized is the profit which 

includes the revenue and the relevant costs. It is also worth to note that all the nonlinear terms in 

the objective function and constraints are written in linear form before implementation. 

If load k is served through the depot after load j by truck i and TL0&
8 = TL0=

9 = LL&=
0 = 1, 5 ≠ ' 

Otherwise 

If load k is served immediately after load j by truck i and TL0&
8 = TL0=

8 = LL&=
8 = 1, 5 ≠ ' 

Otherwise 

If truck i serves load k at the first stop and TL0=
8 =1 

Otherwise 

If truck i serves load k through its own depot at the first stop and TL0=
9 = 1 

Otherwise 

K0=
8 : B

1

0

C 

K0=
9 : B

1

0

C 
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! Revenue; the revenue depends on trip-length of the accepted loads: 

4L L L *(M=, ;=)+A0&=
8 + A0&=

9 + K0=
8 + K0=

9 .																																																																								(2.1)

=OP	H⋃P̿&OP	H⋃P̿0OQ

 

! Cost of moving loaded trucks; 

5L L L *(M=, ;=)+A0&=
8 + A0&=

9 + K0=
8 + K0=

9 .																																																																								(2.2)

=OP	H⋃P̿&OP	H⋃P̿0OQ

 

! Cost of moving empty trucks; empty traveling cost can be as a result of moving trucks from 

the delivery location of one load to the pickup location of the next load: 

5L L L *+;&, M=.

=OP	H⋃P̿&OP	H⋃P̿0OQ

A0&=
8 + 5L L L R*+;&, ℎ0. + *(ℎ0, M=)S

=OP	H⋃P̿&OP	H⋃P̿0OQ

A0&=
9 																				(2.3) 

! The empty traveling cost occurs for repositioning empty, idle or loaded trucks to the pickup 

location of the first load in the sequence:  

5 L L *(90, M=)

=OP	H⋃P̿0OQ,UVU(0)W9

K0=
8 + 5 L L X*(90, ℎ0) + *(ℎ0, M=)Y

=OP	H⋃P̿0OQ,UVU(0)W9

K0=
9 + 

5L L L *+;&, M=.

=OP	H⋃P̿&∈PG,VU(0,&)[90OQ

K0=
8 + 5L L L R*+;&, ℎ0. + *(ℎ0, M=)S

=OP	H⋃P̿&∈PG,VU(0,&)[90OQ

K0=
9 						(2.4) 

! The empty traveling also exists in either of following cases. First, the truck is going back to its 

depot after serving all its assigned loads (see term 2.5). Second, a moving truck (i.e., either 

empty or loaded) is not assigned to any load and so it is heading back to its depot (term 2.6). 

5L L *+;&, ℎ0.

&OP	H⋃P̿0OQ

]+K0&
8 + K0&

9. + L (A0^&
8 + A0^&

9 )

^OP	H⋃P̿

− L (A0&=
8 + A0&=

9 )

=OP	H⋃P̿

_ 																									(2.5) 

5 L *(90, ℎ0)
0OQ,UVU(0)[a9

]1 − L (K0=
8 + K0=

9 )

=OP	H⋃P̿

_

+ 5L L *+;&, ℎ0.
&∈PG,VU(0,&)[90OQ

]1 − L (K0=
8 + K0=

9 )

=OP	H⋃P̿

_																																								(2.6) 
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! Dwelling cost; this is the cost of waiting at the load pickup location which can occur when the 

load is either at the beginning of the sequence or after another load.  

7 L max	(0, )= − D=)

=OP	H ⋃ P̿

																																																																																																																												(2.7) 

! Lateness cost; late service occurs when the truck arrives to the load’s pick-up location after 

its availability. Lateness cost is incurred in all the following situations. A truck (e.g., moving 

empty, loaded or idle) is scheduled to serve a load directly from its current location, through 

the truck depot or after another load: 

6 L max	(0, D= − )=)

=OP	H ⋃P̿

																																																																																																																									(2.8) 

Having the objective function formulated, the constraints are introduced as follows. The first and 

second constraint sets (2.9 and 2.10) ensure that all previous accepted loads will be served but 

there is no guarantee to take all new loads. 

L L (A0&=
8 + A0&=

9 )

&OP	H⋃P̿0OQ

+L(K0=
8 + K0=

9 )
0OQ

= 1,														5e#	̿																																																																						(2.9) 

L L (A0&=
8 + A0&=

9 )

&OP	H⋃P̿0OQ

+L(K0=
8 + K0=

9 )
0OQ

≤ 1,														5e#	̅																																																																				(2.10) 

! A truck can serve at most one load at the beginning of a sequence.  

L (K0=
8 + K0=

9 )

=OP	H⋃P̿

≤ 1,																					>e!																																																																																																									(2.11) 

! Each accepted load can have only one successor. 

L L (A0&=
8 + A0&=

9 )

=OP	H⋃P̿0OQ

≤ 1,																														'e#⋃̅#	̿																																																																												(2.12) 

! The next set of constraints (2.13) ensures that if truck i serves load k after load j, load j is 

either scheduled to be the first load of truck i or placed after another load r. 
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L 	XA0&=
8 +

=∈P	H∪P̿

A0&=
9 Y − XK0&

8 + K0&
9 + L A0^&

8 + A0^&
9

^∈P	H∪P̿

Y ≤ 0,																			>e!, . ' ∈ #	H ∪ #	̿																	(2.13) 

! Altogether, constraints (2.14) through (2.17) ensure that D= does not take on an unrealistically 

large or small value to prevent dwelling or lateness costs. Constraints (2.14) and (2.15) apply 

when a truck is serving one load after another load directly while constraints (2.16) and (2.17) 

are for the case of a truck serving a load at the beginning of a sequence. 

D= − *+M&, ;&. − *+;&, M=. − max	(D&, αj) ≥ iLA0&=
8

0OQ

− 1jk,																		', 5 ∈ # ̅ ∪ #	̿												(2.14) 

D= − *+M&, ;&. − *+;&, M=. − max	(D&, αj) ≤ i1 −LA0&=
8

0OQ

jk,								', 5 ∈ #	H ∪ #	̿																					(2.15) 

D= −L L R8 + *+90, ;&. + *+;&, M=.SK0=
8 −

&OPG,VU(0,&)[90OQ

L X8 + *(90, M=)Y
0OQ,UVU(0)l8

K0=
8 ≥ iLK0=

8

0OQ

− 1jk, 

5 ∈ # ̅ ∪ #,̿																																				(2.16) 

D= −L L R8 + *+90, ;&. + *+;&, M=.SK0=
8 −

&OPG,VU(0,&)[90OQ

L X8 + *(90, M=)Y
0OQ,UVU(0)l8

K0=
8 ≤ i1 −LK0=

8

0OQ

jk,	 

5 ∈ # ̅ ∪ #,̿																																				(2.17) 

 

! Constraints (2.18) and (2.19) ensure that a truck arrives at the pick-up location of load k no 

sooner than after serving load j and traveling to load k through the depot if such a schedule is 

implemented. 

D= −L L R8 + *+90, ;&. + *+;&, ℎ0. + *(ℎ0, M=)SK0=
9

&OPG,VU(0,&)[90OQ

− L X8 + *(90, ℎ0) + *(ℎ0, M=)Y
0OQ,UVU(0)l8

K0=
9 ≥ iLK0=

9

0OQ

− 1jk, 5 ∈ # ̅ ∪ #	̿				(2.18) 

D= − *+M&, ;&. − *+;&, ℎ0. − *(ℎ0, M=) − max+D&, αj. ≥ +A0&=
9 − 1.k,					>e!, ', 5 ∈ # ̅ ∪ #	̿					(2.19) 
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!  Constraints (2.20) guarantee that accepted loads are served within <= hours from their 

earliest availabilities.  

D= − αk − <5 ≤ 0,																															5 ∈ # ̅ ∪ #	̿																																																																																			(2.20) 

 
! Constraints (2.21) impose an upper bound for a driver’s allowable time while visiting the first 

load of the sequence. In this constraint set, n0=
8  and n0=

9  represent the remaining allowable 

time for the driver of truck i when serving load k at the beginning of the sequence either 

directly or through the depot. These two parameters are obtained from the preprocessing 

stage for all truck-load combinations. 

"0= − +n0=
8 K0=

8 + n0=
9 K0=

9 . ≤ o L A0&=
9 + A0&=

8

&∈P	H∪P̿

pk,												5 ∈ # ̅ ∪ #,̿			>e!																																									(2.21) 

! Constraints (2.22) introduce an upper bound for a driver’s allowable time when serving load k 

immediately after load j. Constraints (2.23) perform similarly for the case that the driver 

returns to the depot in-between visits.      

"0= − R"0& − ()& − min	(D&, )&) − *+M&, ;&. − *+;&, M=.S ≤ (1 − A0&=
8 )k, ', 5 ∈ # ̅ ∪ #,̿ >e!			(2.22) 

"0= − X" − *(ℎ0, M=)Y ≤ o1 − L A0&=
9

&∈P	H∪P̿

p 	k,																					5 ∈ # ̅ ∪ #,̿			>e!																																									(2.23) 

! Finally, constraints (2.24) guarantee that all drivers return to the home domicile (i.e., the 

depot) without violating the predefined time limit.  

"0= ≥ ()= − min(D=, )=)) + *(M=, ;=) + *(;=, ℎ0) − r1 − o L A0&=
9 + A0&=

8

&∈P	H∪P̿

+K0=
8 + K0=

9psk				 

			5 ∈ #	H ∪ #,̿			>e!																																							(2.24) 
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2.4. Designing the Experiments and Dynamic Implementation 

In this section, we first explain how the numerical study is designed and model’s parameters are 

generated to have useful managerial insights. We then illustrate how the static MIP model is 

implemented in a dynamic environment with a very simple example.  

2.4.1 Experimental Designs 

Our investigation of the academic literature and empirical reports suggested the potential 

influence of the following factors on a carrier’s profitability: radius of service, trip length, load 

density, fleet size, and advance load information. We examine each of these factors at two levels, 

and the factor of primary interest (advance load information) at three levels. The main reason to 

focus on ALI is that other factors either are not directly under full control of the carrier (e.g., trip 

length) or require some capital investments (e.g., fleet size). In such circumstance, ALI is 

considered because one of the least costly methods when freight transportation service clients 

and carriers collaborate with each other is to communicate timely load information (from clients 

to carriers) and pickup and delivery plans (from carriers to clients). 

Radius of service: defined as the furthest distance from the depot that a truckload carrier is 

willing to carry a load. The low of 18 hours (driving) and high of 36 hours (driving) are taken 

into account.  

Trip length: measured as a travel time between a load’s origin and destination. The test 

problems are generated in two categories called short and long trip-length groups. In the former, 

the majority of loads (80%) are shorter than the radius of service while in the latter the majority 

(80%) of loads are longer than the radius.  

Fleet size: the most recent released statistics from American Trucking Association in 2013 

shows that 90.5% of carriers operate with fewer than 6 trucks and only 2.5% of them run their 
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business with more than 20 trucks. The Canadian statistics also show that majority of carriers 

have fewer than 20 trucks. Thus, the fleet size will be considered at two levels: 6 trucks and 20 

trucks.     

Load density: number of loads entering to the system per truck per week. Load density is 

inversely related to the average length of loads (Powell, 1996) which usually ranges between 2 to 

2.5 loads (per truck per week) for large companies with the average load length between two to 

four days. Since this study targets carriers with fewer than 20 trucks with shorter trip length, the 

load density are studied at two levels, 2.5 (low load density) and 5 (high load density) loads per 

truck per week. 

Advance load information (ALI): it is called knowledge window (KW) by Tjokroamidjojo et 

al. (2006) who define it as number of hours that loads’ information are available in advance. 

Since the trucking industry is identified with excess capacity and a high level of competitiveness, 

last-minute call for transportation services is very common in the industry. It is also unusual for a 

shipper to book a load more than two or three days in advance (Frantzeskakis and Powell, 1990). 

Thus, acquiring load information very far in advance (e.g., a week or so) does not provide 

practical managerial insights. That is why we focus our attention on the three ALI levels:  24, 48, 

and 72 hours. 

The result of the abovementioned five factors at different levels becomes 48 combinations. 

Each test problem (observation) is generated as follows. Since observations should be 

independent within combinations, the experiments’ stochastic conditions are randomly 

generated. First, the locations of cities are randomly selected. City locations (X-Y coordinates) 

are randomly selected from the 20x20 grid within a service area in which a depot is located at the 

center. Second, loads are created by randomly selecting their pick-up and drop-off locations. 
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Third, the earliest load availability is assigned by using an exponential distribution function (the 

mean inter-arrival time depends on load density). Fourth, the dynamic attributes of trucks (i.e., 

the initial location and remaining service hours) are randomly generated for each factor 

combination. The five test problem by the 48 combinations yielded 240 observations. For each 

test problem, the parameters are generated as follows: 

! The underlying transportation network is considered to have 50 cities across all test 

problems.  

! To generate each load, an origin-destination pair is selected randomly from a 50-city 

network. The loads are generated according to the previously discussed specifications for 

the trip length factor. 

! The earliest loads availability is generated from exponential distribution in which the 

average inter-arrival is determined based on load density. 

! The initial location of trucks is determined by placing them randomly among the 50 

cities. The maximum number of hours left for truck i (ni) is generated from uniform 

distribution [radius of service, N] to guarantee that each truck has enough time to return 

home before the predefined limit. 

! The average operating speed in highways is used since the majority of cities are 

connected to each other via highways. The average operating speed is set to 55 mph, 

which is typical on US highways (refer to the recent report by the US department of 

energy (2011)).  

! Following Tjokroamidjojo et al. (2006), hourly dwelling and lateness cost are set to be 

$25 per hour. The maximum permissible delay for serving customers is drawn from a 

discrete uniform distribution with maximum of 5 hours. 
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! In trucking industry where drivers can be simply away from home between one to four 

weeks, most carriers try to have the drivers back home every fortnight (Powell, 1996). To 

be consistent with these statistics, this study sets the maximum number of hours that a 

driver can be away from home equal to 240 hours (i.e., N=240 hours in numerical 

experiments). 

! Fuel cost and driver wages are the major portion of the operational cost. However, there 

are other miscellaneous cost components such as insurance premiums and maintenance. 

Given that we consider dwelling and lateness cost separately, it is fair to set the 

operational cost equal to $1.10 per mile (empty/loaded) and revenue to $2.25 per loaded 

miles. The earned revenue per mile also conforms to the TRANSCORE survey in 2011 

from 600 small carriers.  The 2:1 ratio of revenue to cost is also supported by the work of 

Gregory and Powell (2002). 

! The overall length of the planning horizon highly depends on the average speed of the 

transportation mode. The slower mode of transportation usually requires a longer overall 

planning horizon. For example, Choong et al. (2002) considered 15-day and 30-day 

planning horizon in empty container management in which a barge was one of the 

transportation modes. A shorter planning horizon (20-day) was considered in the 

truckload industry by Tjokroamidjojo et al. (2006). We consider a three-week planning 

horizon with each period length equals to 12 hours. Illustration of time elements of the 

model is depicted in Figure 2.1. For example, period 2 starts at 8=12 and ends at 8=24.  

ALI/ knowledge window represents how far in advance the dispatcher accesses to load 

information including the earliest availability, pick-up, and delivery locations. If we 

assume that the current decision epoch is the beginning first period (8=0) and the 
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knowledge window is set to two periods, the dispatcher decides about the assignment of 

the first five loads to the trucks given their current attributes. The next decision epoch is 

the beginning of the second period when the carrier receives the loads information until 

the end of period 3 (i.e., loads 6 and 7). The only issue that we need to fix is the 

beginning and the end of horizon anomalies. For example, in Figure 2.1, the decision 

about loads 1 and 2 must have been made before period 1. Moreover, there is no load 

information for period 43 when we are in period 41. To deal with this issue, the problem 

is handled for the entire planning horizon while only the middle two weeks solution (Day 

4 to Day 17) is considered for further analysis in this chapter.   

 
 

 

 

 

Figure 2.1.  Illustration of the model’s time elements 

 
2.4.2 Dynamic Implementation of the Model 

We used AIMMS modeling language and Gurobi 5.1 as a solver to run the test problems. The 

whole algorithm, which was explained through the simple example in the previous section, was 

programmed in MATLAB 2012b and run on a 2.8 GHz computer. As shown in Figure 2.2, the 

algorithm starts with setting ALI or knowledge window. The clock is set equal to zero and the 

preprocessing engine is called to update truck and load status and exclude infeasible schedules. 

Then, the loads with status 1, 2, and 3 are entered the model. In other words, the loads that have 

been already delivered and the ones that are far in future (i.e., beyond the knowledge window) 

are not included in the model. The next step is to call the solver to handle the proposed MIP 

Period 1 
…. 

Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 

)9 )t )u )v )w )x )y 

ALI/ Knowledge Window 

8=0 8=12 8=24 8=36 Period 2 Period 3 Period 42 
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model to optimality. After the model is solved, the obtained schedule is implemented up to the 

next interval and checked for the termination condition (i.e., whether all the loads are considered 

during the overall planning horizon). It is important to note that we need to record all the 

movement of trucks during the planning horizon since diversion of empty trucks is allowed. 

After the stopping criterion is satisfied, a simple algorithm tracks each truck’s contribution to 

compute the system total profit for the middle two weeks of the study. 

The simplified example in Figure 2.3 and Tables 2.3 and 2.4 clarifies how the static MIP is 

implemented in a dynamic context. In this example, radius of service, trip-length, and fleet size 

are at the low level while load density is high. For ease of exposition, we assume a 10-city 

network in which the depot is located at the center. Table 2.3 provides information about loads 

including their pick-up location (origin), delivery location (destination), the earliest availability, 

trip length (expressed in hours), and their status at each decision epoch. In this example ALI is 

set equal to 4 periods (48hrs); this means that the decision maker has information of the first 

eight loads at τ=0. Table 2.4 shows the trucks’ attributes at the beginning of the first period.  

 

 

 

 

 

 

 

 

 

 

 

 

 Stopping Criteria 
 

No 

Calling Gurobi solver 

τ = τ+12 

End 

A 

Computing the 

system total profit  

A 

Selecting loads 
with ST(j)=1,2,3 

Set ALI / KW 

Preprocessing Stage 

Start 

τ =0 

Figure 2.2. The detail of the dynamic implementation 
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Figure 2.3 (a) shows the location of cities and initial location of trucks in a service area with 

radius of almost 1000 miles (18 hours of driving with 55 mph speed). Table 2.4 and Figure 2.3 

show that the first two trucks are at the depot and trucks 3, 4, 5, and 6 are at cities 2, 10, 1, and 7, 

respectively.  After preprocessing, the model is solved with 6 trucks and 8 loads at the beginning 

of period one (τ=0). As explained earlier, infeasible schedules can be excluded at preprocessing 

stage. It is important to note that rejection decisions are not made at this stage. Instead, the focus 

is on easy identification and removal of infeasible schedules before calling the solver. For 

example, it is easy to check which load(s) cannot be scheduled after load 1 on a same truck. 

Since the earliest availability of this load is 5.1 and its trip length is 28.5, the earliest drop off 

would be at time 33.6 in City 1. Given the earliest availability of other loads (i.e., loads 2 to 8), 

their time windows, and the traveling times between their pick up locations and City 1, none of 

the current loads can be scheduled right after load 1 (i.e., the truck does not go back to the depot 

before serving the next load).  Following a similar approach, infeasible truck-load combinations 

can be identified. For example, truck 6 (currently is available at City 7) cannot serve load 2 

because it is too far from the pickup location of that load (i.e., City 2). In section 2.5.1, we will 

examine the efficiency of preprocessing stage in finding the optimal solution at each decision 

epoch. After updating the status of loads and trucks and excluding infeasible loads, the solver is 

called to solve the model. Based on the structure of mixed-inter programming model, the loads 

are rejected because they are either non-profitable or infeasible. By solving the model, loads 4 

and 5 are rejected. The truck 3 is scheduled to pick up load 3 and then load 8 directly. Truck 2, 

which is at the depot, is scheduled to pick up load 7. Trucks 4, 5, and 6 are scheduled to directly 

pick up loads 2, 6, and 1, respectively.  
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After running the MIP model, it is the time to implement the obtained schedule until reaching to 

the next decision epoch. Based on the defined MIP, dwelling time is the time spent by a driver at 

the pick-up location of a load. It is worthwhile to note that since the dwelling cost is the same at 

all cities, the exact same schedule can be implemented with trucks waiting at the delivery 

location of loads. In static case, there is no difference between waiting at pick-up or delivery 

location of loads but in dynamic environment waiting at the delivery location helps to do the 

future re-sequencing and re-assigning more efficiently (Pillac et al., 2013). For example, if truck 

5 at city 1 is dispatched immediately to pickup load 6 at τ=0, it needs to wait at city 3. In 

implementation, truck 5 is kept at city 1 and dispatched in a way that reaches to load 6 at its 

earliest availability. The next decision epoch is the beginning of period two (τ=12hrs) when four 

new loads enter the system. Before calling the MIP model, a preprocessing is required to exclude 

the infeasible assignments and update the status of trucks and loads. Seen from Table 2.3, the 

status of the first two loads is equal to 2 (depicted with broken lines in Figure 2.3 (b)) meaning 

that they are being served at the decision time (τ=12hrs) while loads 3, 6, 7, and 8 are waiting for 

service (i.e., their status is equal to 1 and depicted with dotted lines). The status of new loads is 

set to 3 and shown with solid lines. The locations of trucks are also illustrated in Figure 2.3 (b) at 

the decision time. The same procedure is repeated for the entire planning horizon. 

2.5. Conducting Numerical Experiments and Statistical Analysis  

In this section, details of numerical experiments are presented. We first point out some intuitive 

results. Second, an in-depth analysis is done by conducting statistical tests. Finally, further 

analyses are carried out regarding some factors that remain the same throughout all numerical 

experiments.    
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2.5.1 Numerical Results 

Table 2.5 provides the detail of numerical experiments for all 48 combinations. The first three 

columns show all possible combinations of numerical design. The first column divides the test 

problems based on number of trucks. The second one represents other characteristics of test 

instances based on radius of service, trip length, and load density (L for Low, and H for high) 

and the third column refers to ALI values. The average profits per truck and rejection rates (over 

a two-week period) are also included. As seen from this table, the maximum profit belongs to a 

20-truck company operating, with high level of advance load information, in a large service area 

where the majority of loads are long (i.e., high revenue loads) and load density is high. Not 

surprisingly, the lowest profit is obtained on the other extreme side where all factors have low 

values.  

Rejection rate will be at the highest level when a small trucking company, with low-

revenue load (i.e., short trip length) and low load density, operates in a large geographic area 

(i.e., large radius of service). This is where access to the second-day load information results in a 

remarkable improvement in average profit and rejection rate. The result is intuitive because any 

mistake in decision making due to lack of information is most likely to cost the company a 

considerable amount of money because of huge empty repositioning miles. As most of the useful 

insights are not readily evident in Table 2.5, an in-depth statistical analysis is discussed in the 

next sub-section.  

Before moving to that discussion, it is worthwhile to have a quick look on the 

performance of the proposed algorithm. The sixth column (PP time) represents the CPU time to 

exclude infeasible schedules at the preprocessing stage. Since we target trucking companies with 

20 trucks and fewer, the preprocessing stage at each decision epoch will not exceed fraction of a 

second. To have a better understanding of preprocessing effectiveness, we turn our attention to 
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the second and the third last columns of the table. The first observation is that CPU times at each 

decision epoch are very tiny for the smallest problems sizes (i.e., 6 trucks with low load density). 

This is where the preprocessing stage not only lacks efficiency in finding the optimal solution 

but also may negatively impact the CPU time by a very small amount. However, the importance 

of the preprocessing stage becomes more evident when the size of the problem grows (e.g., 6 

trucks with high load density or 20 trucks). The largest observed improvement is 52.9% in 

presence of 72 hrs advance load information for a 20-truck company with a low service radius, 

high trip length, and high load density network. It is also interesting to note that the test problems 

with a low radius of service, low trip length, high load density, and larger fleet size are the most 

difficult problems to solve when knowledge window is 6 periods (72hrs). It takes on average 604 

seconds (or 1120 without preprocessing) to solve each problem to optimality at each decision 

epoch which translates to an average of 6 hours (or over 11 hours without preprocessing) to solve 

one test problem in such a setting.  
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# of 
Trucks 

Code ALI Profit 
Load 

Rejection 
PP time 

(Sec) 
CPU time 
with PP 

CPU time 
without PP 

% of 
Improvement 

6 
trucks 

HHH 
24 3624.60 76.5% 0.026 0.39 0.42 7.1% 
48 4331.58 64.3% 0.028 0.49 0.52 6.6% 
72 5496.75 63.2% 0.032 0.56 0.63 11.9% 

LHH 
24 4483.08 36.6% 0.031 0.44 0.44 0.8% 
48 5039.62 34.5% 0.032 0.51 0.51 0.6% 
72 5218.25 33.6% 0.036 0.61 0.62 1.6% 

LLH 
24 1165.39 71.8% 0.031 0.36 0.41 11.4% 
48 1251.08 68.1% 0.032 0.51 0.63 19.5% 
72 1298.13 68.0% 0.037 0.73 0.90 18.6% 

HLH 
24 1326.35 74.8% 0.027 0.29 0.30 3.3% 
48 2283.13 67.0% 0.031 0.46 0.48 4.2% 
72 2356.86 66.8% 0.035 0.60 0.67 10.4% 

LHL 
24 1493.74 45.4% 0.017 0.34 0.32 - 
48 1847.94 37.8% 0.021 0.53 0.50 - 
72 2061.22 37.3% 0.030 0.65 0.59 - 

LLL 
24 145.40 77.4% 0.018 0.11 0.09 - 
48 236.36 76.4% 0.023 0.14 0.12 - 
72 266.38 75.8% 0.034 0.22 0.19 - 

HLL 
24 497.88 85.6% 0.018 0.09 0.07 - 
48 1047.53 72.2% 0.023 0.10 0.08 - 
72 1274.63 70.9% 0.035 0.14 0.11 - 

HHL 
24 1706.86 70.8% 0.021 0.11 0.09 - 
48 2449.78 57.7% 0.023 0.13 0.11 - 
72 2699.10 57.1% 0.027 0.14 0.11 - 

20 
trucks 

HHH 

24 7113.92 65.8% 0.209 3.52 3.68 4.2% 
48 8547.43 58.3% 0.226 5.49 5.84 6.1% 
72 8787.16 58.8% 0.254 8.96 9.84 8.9% 

LHH 

24 7795.84 23.7% 0.197 3.50 4.52 22.6% 
48 8144.84 20.3% 0.214 4.31 6.26 31.2% 
72 8427.86 19.1% 0.239 176.00 374.00 52.9% 

LLH 

24 2124.02 60.0% 0.205 4.13 4.31 4.2% 
48 2323.53 55.9% 0.220 68.41 70.92 3.5% 
72 2442.62 55.8% 0.245 604.00 1120.00 46.1% 

HLH 

24 3461.38 69.6% 0.195 3.59 4.00 10.1% 
48 3883.94 64.8% 0.209 4.49 5.10 12.0% 
72 4190.88 67.2% 0.228 18.14 20.74 12.5% 

LHL 

24 3505.83 22.5% 0.190 4.19 4.41 5.1% 
48 3831.57 17.2% 0.210 5.42 5.78 6.2% 
72 3847.20 16.3% 0.233 102.00 112.67 9.5% 

LLL 

24 516.34 66.7% 0.170 3.98 4.06 2.0% 
48 522.21 63.8% 0.184 5.12 5.24 2.3% 
72 530.69 63.0% 0.203 9.47 9.80 3.4% 

HLL 

24 1192.00 72.5% 0.165 3.91 3.95 1.0% 
48 2069.43 60.0% 0.176 4.16 4.30 3.3% 
72 2077.91 58.8% 0.191 4.62 4.78 3.4% 

HHL 

24 3075.21 64.1% 0.190 3.69 3.76 2.0% 
48 5216.20 37.1% 0.206 5.38 5.55 3.2% 
72 5296.12 36.0% 0.227 6.03 6.23 3.2% 

Table 2.5. Details of numerical studies 
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2.5.2 Statistical Analysis 

After solving all the test problems, a linear regression model is used to statistically test the 

impact of advance load information on a carrier’s profit. The dependent variable is average profit 

per truck during the middle two weeks of the planning horizon. The model comprises the five 

factors in the experiments. For categorical variables, the effect coding is used to make them 

appropriate to be used in the linear regression. As the main focus of our study is to examine the 

benefit of ALI, we control the impact of other factors (radius of service, trip length, density, and 

fleet size) and their interactions. Thus, they are first entered in the model (refer to model 1 of 

Table 2.6). Then, at the next step, the ALI factor and its interactions with the other factors are 

included into the regression model (model 2 of Table 2.6).  The obtained results illustrate that a 

great portion of variation in profit (around 95%) is explained by the main factors and their 

interactions. Moreover, it indicates that ALI and its interactions can explain the variations in 

profit by 2.7% over and above all other transportation factors. 

Table 2.6. Model summary (dependent variable is average profit per truck) 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .960a .923 .917 706.57 

2 .974b .949 .944 582.36 

a. Predictors: (Constant), Density, Trip Length, Radius, fleet size and all the interactions 

b. Predictors: (Constant), the predictors of the first model plus ALI and all the 2-way interactions 

with the other factors  

 
The details of statistical tests are depicted in Table 2.7. It shows that ALI and its interactions 

with radius of service and trip length are statistically significant at the 5% level. Figure 2.4 

clarifies the main impact of acquiring advance load information and its interactions with the 

other factors on a carrier’s profit. In Figure 2.4, Y-axis of each chart represents the average profit 

per truck during the two weeks when data are collected. Figure 2.4 (a) shows that access to the 

second-day load information boosts the profit by an average of 3314 – 2702 (by 22%) compared 
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to only having first-day load information. This suggests that considerable savings can be 

obtained by accessing the first two days of load information. Obtaining an additional day’s worth 

of ALI (i.e., from a two-day knowledge window to a three-day knowledge window) improves 

profit further by a much smaller margin of almost 6%, indicating that increases in the knowledge 

window yields a decreasing rate of profit improvement. Since the interaction effects between 

ALI and radius of service and trip length are statistically significant, we now turn our attention to 

those effects.  

Table 2.7.  Coefficients test of the regression model for the average profit per truck 

 

Regression Model 

Standardized 

Coefficients t Sig. 

Beta 

 (Constant)  23.761 .000 

Radius -.040 -.975 .331 

Trip Length .525 12.940 .000 

Density .463 11.430 .000 

Size .390 9.610 .000 

Size* Radius .057 3.736 .000 

Size* Trip Length .181 11.804 .000 

Size* Density .115 7.513 .000 

Radius* Trip Length -.084 -5.482 .000 

Radius* Density -.034 -2.227 .027 

Trip Length* Density .192 12.556 .000 

Size* Radius* Trip Length -.011 -.697 .486 

Size* Radius* Density .012 .787 .432 

Size* Trip Length* Density .026 1.715 .088 

Radius* Trip Length* Density -.048 -3.149 .002 

Size* Radius* Trip Length* Density -.001 -.087 .931 

ALI .136 8.847 .000 

Radius*ALI .190 4.681 .000 

Trip Length*ALI .129 3.171 .002 

Size*ALI -.001 -.013 .990 

Density*ALI .029 .717 .474 
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Figure 2.4 (b) depicts the benefit of advance load information at different radii of service. It is 

intuitive to see the benefit grows as the radius of service becomes larger. Since the nodal density 

is lower in a larger service area, the repositioning of trucks becomes more important not only to 

reduce relevant costs but also to take advantage of upcoming loads. Thus, it is extremely helpful 

for the dispatcher to have advance load information while service radius grows. Although it is 

still beneficial to acquire more than one-day load information, there is very little benefit to 

obtaining more than two-day ALI. With respect to statistical analysis, the interaction of ALI and 

trip length is also significant which is also illustrated in Figure 2.4 (c). As seen from this figure, 

the advance load information has different levels of benefits respect to the trip length variations. 

It is noticeable that there is remarkable benefit to collecting more than two-day load information 

if average trip-length is typically long. Figure 2.4 (d) confirms the results from statistical analysis 

that the benefit of advance load information does not show different behavior by changing the 

fleet size. However, the observation may suggest the third-day load information can provide 

more benefit for smaller companies than larger ones since the slope of the graph is slightly 

steeper. Based on the statistical result in Table 2.7, the interaction effect of ALI and load density 

on the carrier’s profit is not statistically significant. One explanation for this finding is that 

higher load density may signal an already profitable market for a carrier, leaving very little 

additional profit to be gained by acquiring ALI.  However, a carrier can still benefit from 

advance load information even when load density is high. Thus, we need to concentrate on the 

main sources of benefits from accessing to ALI. These sources are: 1) accepting more profitable 

loads or 2) rejecting fewer loads or 3) serving loads in more efficient ways 4) or any combination 

of them. 
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4. Impact of ALI and some of its interactions with the other factors on the profit

To figure out which sources contribute to the improvement of carrier’s profit, a similar statistical 

analysis with rejection rate as the response variable is conducted (see Table 2.
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have significant impact on the rejection rate. Regarding the ALI effects on rejection rate, a quick 

reveals that there is very little benefit (in terms of lowering the load 

rejection) by obtaining additional information if we have already access to the next two days 

load information. Based on the statistical analysis and our observation, we can conclude that the 

initial benefit of ALI (i.e., accessing to the second-day load information) is substantial because it 
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Moreover, any additional information (i.e., obtaining the third-day load information) is still 

significant but less than the initial impact because the major improvement comes from serving 

loads more efficiently, not from further lowering the rejection rate.  

                     Table 2.8.  Coefficients test of the regression model for rejection rate 

 

Regression Model 

Standardized 

Coefficients 

 

t 

 

Sig. 

Beta 

 (Constant)  56.358 .000 

Radius .611 10.418 .000 

Trip Length -.550 -9.383 .000 

Density -.135 -2.307 .022 

Size -.330 -5.629 .000 

Size* Radius .043 1.934 .054 

Size* Trip Length -.043 -1.936 .054 

Size* Density .062 2.775 .006 

Radius* Trip Length .331 14.922 .000 

Radius* Density .139 6.278 .000 

Trip Length* Density .094 4.248 .000 

Size* Radius* Trip Length .033 1.499 .135 

Size* Radius* Density .014 .614 .540 

Size* Trip Length* Density .047 2.117 .035 

Radius* Trip Length* Density .020 .884 .378 

Size* Radius* Trip Length* Density .001 .031 .975 

ALI -.178 -8.051 .000 

Radius*ALI -.209 -3.559 .000 

Trip Length*ALI -.099 -1.680 .094 

Size* ALI -.008 -.138 .890 

Density*ALI .155 2.646 .009 

 

Another interesting observation can be found in Figure 2.5 (b). It shows that ALI can reduce the 

rejection rate but the improvement margin depends on the radius of service. The impact on 

rejection rate is greater when the service radius is longer. Note also that the graph depicts the 



 

recurring theme that most of the improvement comes from having two days worth of ALI: 

having three days worth yields minimal further improvement. 

Figure 2.5 (c) illustrates an intuitive result. It shows a larger impact of advance load 

information when load density is lower. This is justified by the fact that more knowledge about 

the upcoming loads typically provides more alternatives for the decision maker either with low 

or high load density. However, this impact is lower when 

profitable alternatives are already available to the decision maker so the need for more advance 

load information is less comparing to the low density case. 
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recurring theme that most of the improvement comes from having two days worth of ALI: 

having three days worth yields minimal further improvement.  

illustrates an intuitive result. It shows a larger impact of advance load 

density is lower. This is justified by the fact that more knowledge about 

the upcoming loads typically provides more alternatives for the decision maker either with low 

or high load density. However, this impact is lower when load density is high because 

alternatives are already available to the decision maker so the need for more advance 

load information is less comparing to the low density case.  
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2.5.3 Further Analyses 

2.5.3.1 Network Size Impact  

In all conducted numerical experiments, it was assumed that there are 50 cities within an area 

with a predefined radius of service. The number of cities in transportation network is referred to 

as network size. These potential cities are representative of loads’ origins and destinations. This 

approach is commonly used in the literature. For simulation studies, some authors consider that 

the shape of the service area is square (e.g., Yang et al. 2004; Özener and Ergun, 2008). To 

capture radius of service, as one of the transportation network settings, we assumed that the 

trucking company operates in a circle-shaped area.  The selection of 50 cities as potential pick-up 

and drop-off locations is also supported by some practical cases. Consider for example, Ontario: 

a major Canadian province comprised of 47 metropolitan areas (see the Statistics Canada report 

at http://www12.statcan.gc.ca).  Those 47 metropolitan areas are where shippers are mainly 

located and they comprise the service region of the majority of the province’s 700-plus small 

trucking companies (details on the services and home locations of these companies can be found 

at www.CanadaTrasportation.com). 

Although the choice of network size is justified from both academic and empirical aspects, 

it is still interesting to know about the benefit of advance load information when number of 

potential cities in transportation network varies. In this regard, the network size was changed 

from 50 to 10 cities (also used by Tjokroamidjojo et al., 2006). The same approach as described 

in sub-section 2.4.1 was used to come up with 240 new test instances in which the underlying 

network has fewer cities. It is trivial to see lower nodal density for the test problems where other 

factors remain the same. Since nodal density directly impacts the average distance between 

nodes (cities), the average distance between cities will increase with fewer nodes in the 

transportation network.  Figure 2.6 illustrates the improvement percentage of a carrier’s profit by 

obtaining the second-day and the third-day load information. The overall trend is the same in the 
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sense that the majority of benefit is obtained by receiving the second-day load information. 

However, the percentage of improvement in acquiring second-day load information is about 45% 

which is remarkably larger than the 22% for a network size of 50. Since a major benefit of ALI is 

reduction of empty vehicle repositioning, ALI will be more beneficial for carriers operating in 

networks where inter-city vehicle repositioning distances are longer because there are fewer 

cities.  Although it is still beneficial for the carrier to access the third-day load information, the 

margin of benefit declines to almost 6% regardless of the network size.  

2.5.3.2 A Real-World Case Study 

As mentioned earlier, we assumed that the service area has a regular shape (i.e., circle-shape 

area) and cities are uniformly distributed within the service area. This may raise a question about 

the magnitude of advance load information benefit where those assumptions are violated. To 

briefly address this issue, we study the benefit of advance load information for a small trucking 

company with 6 tractors in Canada. This company operates in the truckload industry with the 

home base (depot) in Toronto. This company operates within the province of Ontario where the 

pick-up and drop-off locations are metropolitan areas (depicted in Figure 2.7). Seen from this 

figure, the cities are not uniformly distributed within the service area (i.e., majority are located in 

southern part of province). Among a wide range of network settings that was used in simulation 

study, the setting with low radius of service, low trip length, and high load density (coded as 

LLH) is the closet to the real case example. The performance of trucking company expressed in 

percentage of improvement by acquiring the second- and third-day load information is illustrated 

in Figure 2.8. Seen from this figure, the 6.22% profit improvement from the second day ALI is 

just slightly smaller than the 7.35% realized in the simulated LLH setting. When it comes to the 

third-day load information, the margin of benefit becomes comparatively less (3.76% for LLH 

compared to 1.24% for the real-world case study). The lower benefit of ALI in such a setting can 

be explained as follows. The general service area is the whole province but most cities are 
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located in the southern part of the province. Consequently most transportation moves occur in a 

relatively much smaller service area, a phenomenon which has been shown to yield statistically 

significant reductions in the benefit of advance load information. 
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2.6. Conclusion and Future Research Directions 

There are many research studies on long haul transportation dispatching rules that did not 

address the requirement of drivers and trucks to regularly return to their domiciles. This 

overestimates the capacity of transportation network. Moreover, the majority of them assume 

that all loads information is available in advance. Thus, many of these models are not suitable to 

be implemented in a dynamic context. One contribution of this study is that it develops a 

comprehensive MIP model that is flexible enough to include many operational details and can be 

easily implemented in a dynamic environment by using a rolling horizon approach. The model’s 

flexibility is unaffected by our retention of the literature’s standard assumption that each trip is 

executed without a break (e.g., Powell, 1987; Powell et al. 1988; Powell, 1996; Yang et al., 

1998; Gronalt et al., 2003; Yang et al., 2004; Tjokroamidjojo et al., 2006; Özener et al., 2011). 

This assumption can be justified when a team of drivers is responsible for serving loads (Simao 

et al., 2009). Moreover, in case of a single driver, the parameters of our presented model can be 

modified to produce reasonable dispatching recommendations. For example, instead of 

computing travelling time as a linear function of distance, the traveling time between two cities 

can include all the rests components that a driver must have based on the driving rules and 

regulations.  

Given the paucity of research studies on information sharing in the transportation field (as 

compared to the robust body of such studies in the inventory management field), this chapter’s 

other major contribution is to examine the benefit of advance load information in the truckload 

industry. In this regard, a comprehensive set of numerical experiments covering five factors is 

designed.  The obtained results illustrate that access to the second day loads information can 

improve the profit by an average of 22%. The benefit can be further improved by acquiring more 

information but the margin decreases to 6%. Moreover, the impact of ALI depends on the other 



52 
 

transportation network settings. For example, the impact of ALI on a carrier’s profit is greater 

when the majority of carrier’s loads are long or the carrier is operating within a large service 

area. The rejection rate can be also reduced by accessing loads information further in advance. 

Most of that reduction is achieved by having the second-day loads information. The 

improvement becomes trivial if the carrier collects the third-day information. It is also important 

to note that the improvement in rejection rate depends on radius of service and load density. The 

benefit (in terms of lowering the rejection rate) becomes larger if the radius of service grows. 

The rejection rate also improves to a greater extent when the load density is lower. 

The current work can be extended in various directions. For example, in the presented 

model, it is assumed that when a truck returns to the home domicile, it is immediately ready for 

the next 240 hour trip. This is true only if there is a backup driver who can take responsibility of 

the incoming truck. Modifying the presented MIP model to capture different real-world 

operating policies can be viewed as an interesting research venue. 

In practice, the home depot is usually close the areas with more demands (loads). Since 

there is one home depot in our simulation study (it is also usual for small trucking companies 

(with 20 trucks and fewer) to have only one depot and loads are uniformly generated within the 

area of service, it is a reasonable assumption to consider the location of the depot at the center. 

Finding the optimum location of depot is beyond the scope of this work and can be viewed as a 

future research direction. 

Another possible research direction is to address information uncertainty since loads 

information (e.g., pick-up time or cancellation) may change even after it is received by the 

carrier. In this study, it is also assumed a constant traveling time which can be relaxed to 

consider trucks breakdown or possible accidents. One of the other interesting extensions is to test 
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the impact of loads distribution over the planning horizon because it is typical to have more 

requests earlier in a week than the weekends. 
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3.1. Introduction 

Two issues loom large for carriers in the truckload industry as they undertake efforts to assure 

prosperity and survival in the ongoing economic recession: (i) asset repositioning and (ii) driver 

turnover. Asset repositioning, which has been studied by, e.g., Crainic (2000); and Wieberneit 

(2008), is due to natural characteristics of truckload transportation networks such as demand 

dynamism and network imbalance between supply and demand. Ergun et al. (2007a) reports that 

empty movement of trucks costs U.S. carriers nearly 165 billion dollars annually. Based on the 

American Trucking Association (ATA) 2013, the ratio of empty to total mileage is usually 

higher for small carriers (22%) with a sparser network of lanes than larger ones with a more 

sophisticated lane network (17%).  

The issue of driver turnover is strongly influenced by drivers’ dissatisfaction with work 

schedules requiring overly long periods away from home. Studies confirming this include 

Rodriguez and Griffin (1990), Shaw et al. (1998), Keller (2002), and Suzuki et al. (2009). The 

driver turnover problem is significant (according to the Council of Supply Chain Management 

Professionals (2006), it can reach 130% in a year) and costly: the replacement cost of a driver 

(e.g., including training and loss of experience) is estimated to cost between $2,200 to over 

$20,000 with an average of $8000 (e.g., Rodriguez et al., 2000). Given the size of the U.S. 

trucking industry, driver turnover translates to approximately three billion dollars a year (Suzuki 

et al., 2009). 

To correct for these issues, a commonly used strategy is collaborative transportation (CT); 

e.g., CT networks such as Nistevo (www.nistevo.com) and Transplace (www.transplace.com).  

In CT, logistics participants (i.e., shippers/consignees and carriers) collaborate to improve 

transportation performance; e.g., reduce total transportation costs and driver turnover and 

increase truck utilization (Ergun et al., 2007b). Collaboration could be among transportation 
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clients (e.g., Ergun et al., 2007a), among carriers (e.g., Özener et al., 2011), or between client(s) 

and carrier(s) (e.g., Tjokroamidjojo et al., 2006) or all the above scenarios. 

The focus of this study is the collaboration between a carrier and its clients. One of the 

least costly methods when freight transportation service clients and carriers collaborate with each 

other is to communicate timely load information (from clients to carriers). Although sharing 

advance load information (ALI) can improve the carrier’s performance by expanding its 

knowledge window (KW) into the future (Powell, 1996; Tjokroamidjojo et al., 2006), there is 

always uncertainty after the KW (Caplice and Sheffi, 2003). 

In the absence of exact information about future loads beyond the knowledge window, the 

dispatcher’s range of decisions (load acceptance/rejection, load sequencing, etc.) is influenced by 

the matter of where the truck will be positioned for serving future (unknown) loads. Consider two 

extreme options open to the dispatcher in deciding which known loads the truck should be 

assigned to: 

i. the conservative policy of preferring loads that take the truck close to its domicile; i.e., 

to avoid large empty truck repositioning costs to the domicile (called deadheading costs 

in this study) when the truck must eventually return deadhead to the domicile. 

ii. the more optimistic policy of making truck-load assignments with greater risk of large 

deadheading costs in the hope that those assignments will put the truck in a better 

position to access highly profitable future (unknown) loads. 

From the above, it is clear that in a given context (load density, radius of service, etc.), and for a 

given truck at a given instance of time (e.g., current and imminent truck location vis-à-vis its 

domicile), the following is true: a significant factor in what policy the dispatcher should choose 

is the deadhead cost. The dispatcher’s dilemma is that the true deadhead costs can be known only 

a posteriori because that is the only time at which the exact information such as the locations, 
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pick-up time windows, and trip lengths of future loads becomes known.  To tackle the dilemma, 

we attempt getting an a priori signal of the efficacy of a dispatching policy by proposing the 

concept of a deadhead coefficient Θ (0 ≤ Θ ≤ 1). In essence, the coefficient is only a signal of the 

extent to which the chosen dispatching policy might affect profits because at the time of decision 

making, the dispatcher, while knowing the revenue of serving loads and some of the cost 

components, has no information beyond the last known load to be served. Thus, the dispatcher’s 

decision is directly influenced by the conservatism level of his/her policy, which can be 

portrayed by what we label as the Θ-dependent profit estimate ({Θ). We calculate {Θ as: total 

revenue - total known cost (including loaded and empty repositioning, dwelling, and lateness 

costs)- Θ×(travel cost from the destination of the last load in the sequence to the domicile/depot). 

The basic intuition of the deadhead coefficient is as follows. First, consider using large Θ 

values for potential end of sequence loads. Those Θ values are associated with more conservative 

policies in that they raise the attractiveness of such loads with destinations close to the domicile.  

That is, based on the last term in the above expression {Θ, those loads are predicted to have a 

smaller negative financial impact so they are more likely to be selected over alternatives that are 

distant from the domicile.  Conversely, small Θ values lower the negative predicted financial 

effect of accepting end-of-sequence loads with destinations that are distant from the domicile. In 

other words, the dispatcher will lean towards selecting loads that, despite requiring the truck to 

be further from the domicile, have high values for the excess of revenue over known cost. 

A small numerical example is presented in the next section to further clarify the above 

observations and the process of using the deadhead coefficient to tackle the dispatcher’s dilemma 

of unavailable exact information (i.e., uncertainty) about future loads.  As the example illustrates, 

different Θ values can yield different load selection decisions, and thereby may result in different 

values of profit. Thus, an obvious question of managerial interest is which Θ value yields the 
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best attainable profit in a given transportation context (e.g., load density, radius of service, trip 

length, and time windows). Addressing this question is one of this chapter’s major contributions. 

In this study, we focus on three key points. We first develop a flexible dispatching mixed 

integer program (MIP) model that can incorporate important operational details of trucking 

companies (e.g., current location of trucks, number of hours that a truck is away from home, 

previous commitments) to make profitable decisions given different levels of advance load 

information. Second, a simple policy (based on the deadhead coefficient) is proposed to help 

dispatchers make load acceptance decisions in dynamic environments. The proposed deadhead 

coefficient policy is tuned based on different transportation network settings. Finally, the 

proposed policy is enhanced to improve the solution quality of the dynamic problem at the 

expense of a longer running time. To achieve the goals of this research, we briefly introduce the 

idea of the simple policy with one small example in section 3.2. Section 3.3 is devoted to 

reviewing the related literature for positioning this study among the existing works and 

highlighting its novelty. In section 3.4, the model assumptions, notations, and parameters are 

defined and the conceptual model is formulated as a mixed integer program. Section 3.5 explains 

how experiments are designed for conducting a comprehensive simulation study. In section 3.6, 

the proposed policy is evaluated through simulation results. In section 3.7, the proposed policy 

will be enhanced by applying sample scenario hedging heuristic proposed by Hvattum et al. 

(2006) for stochastic dynamic vehicle routing problems. We also examine our proposed policy 

and its enhanced version against two other dispatching methods. Conclusions and future research 

directions are provided at the end. 

3.2..Proposed Deadhead Coefficient Policy: An Illustrative Example 

For ease of exposition, we use the case of a single-truck carrier to illustrate how the proposed 

policy works with different Θ values. An underlying logic of the policy is that trucks not 



59 
 

scheduled to serve any loads return to the depot.  This policy is intuitive if the dispatcher has 

access to advance load information (e.g., knowing that there is no request available for the rest of 

the day). The logic is also sound because the average repositioning is typically shorter from the 

depot (if it is located at the center) and dwelling cost is much lower at the depot. This is because 

there is no extra facility usage cost for, say, a driver to dwell at his/her home or at 

accommodations provided by the carrier (e.g., Challenger Motor Freight’s well-equipped rest 

facility for drivers at its Cambridge depot, more detail about this trucking company can be found 

at its official website: http://www.challenger.com). We label this policy as Deadhead Coefficient 

Policy because its success depends on selecting a proper Θ value. We will also refer to this as the 

Pure-Θ Policy. 

In our illustrative example, the truck is idle at the depot (the driver’s home domicile) at the 

beginning of the planning horizon, the dispatcher’s knowledge window is set to two days (48 

hrs), and system information is updated daily.  The truck earns $130/hr for serving a load while 

incurring $60/hr when moving either empty or loaded. Without loss of the generality, dwell and 

lateness costs are not taken into account to make the example simple enough to follow.  Figure 

3.1 depicts how loads are distributed over time and revealed to the dispatcher. In Figure 3.1(a), 

the information of loads A, B, C, and D is available at the beginning of day one while load E will 

be realized when the system information is updated at the start of day 2 (Figure 3.1(b)).  Figure 

3.2(a) represents a 7-city transportation network showing all travelling times that are relevant to 

the example (depot-city and inter-city). Load E is also shown in Figure 3.2(a), but it is only 

known on the second day. 

 

 

 



 

                                                  

 

 

 

  

              Figure 3.1.  Illustration of the model’s time elements at the beginning of days one and two

 

 

                Figure 3.2. The transportation network and loads status at two decision times

Table 3.1 shows each alternative (including the sequence of loads and cities), travel time 

components, the ratio of weighted empty travelling time to the depot (WETTD) from the 

delivery location of last load, and 

how each entry of this table was calculated, we consider the A

load sequence, the truck departs the depot and visits cities 3, 1, and 2, respectively

hours of total loaded movement. The empty 

3, origin of load A). WETTD is the product of the 

location of the last load (city 2) to the depot. Given the formula in section 1, 

Loads C & D Loads A & B 

8 =24     8 =48     

ALI/ Knowledge Window 

8 =0     8 =72

  City 

Depot 

 Load  C (10hrs) 

 4 

 Load  E (6hrs)

 1 

 3 

 2 

 6

 5

 

a)  Day 1 

b)  Day 2 

 Load  A (12hrs)

 Load  C (10hrs) 

9hrs

 1 

60 

Figure 3.1.  Illustration of the model’s time elements at the beginning of days one and two

 

 

 

 

 

 

 

 

Figure 3.2. The transportation network and loads status at two decision times

1 shows each alternative (including the sequence of loads and cities), travel time 

components, the ratio of weighted empty travelling time to the depot (WETTD) from the 

delivery location of last load, and Θ-dependent profit ({|) for two Θ values. To brief

how each entry of this table was calculated, we consider the A-C sequence. In order to serve this 

load sequence, the truck departs the depot and visits cities 3, 1, and 2, respectively

hours of total loaded movement. The empty movement is 10hrs (traveling from the depot to city 

3, origin of load A). WETTD is the product of the Θ value and traveling time from the delivery 

location of the last load (city 2) to the depot. Given the formula in section 1, 

ALI/ Knowledge Window

8 =24     8 =48     

Load E

Time Axis 

=72    . . .    T 

Loads C & D 

8 8 =0     

a)   

Links: cities and the depot 

New load

Previously accepted

 

(6hrs) 

 6 

 7 
 5  4 

 Load  E (6hrs)

 1 

 3 

 2 

 6 

 5 

 Truck location
5hrs 

c)  Day 2 

10hrs 

5hrs 
11hrs 

 Load  D (12hrs) 

(12hrs) 

 Load  B (13hrs) 

18hrs 
9hrs 

13hrs 7hrs 
4 

 3 

 2 

 6 

 7 
 5 

Load E (6hrs) 

Figure 3.1.  Illustration of the model’s time elements at the beginning of days one and two 

Figure 3.2. The transportation network and loads status at two decision times 

1 shows each alternative (including the sequence of loads and cities), travel time 

components, the ratio of weighted empty travelling time to the depot (WETTD) from the 

values. To briefly point out 

C sequence. In order to serve this 

load sequence, the truck departs the depot and visits cities 3, 1, and 2, respectively resulting in 22 

movement is 10hrs (traveling from the depot to city 

value and traveling time from the delivery 

location of the last load (city 2) to the depot. Given the formula in section 1, {8.}=130(22)-

ALI/ Knowledge Window 

E 

Time Axis 

 =72    . . .    T 

b)   

Links: cities and the depot  

New load 

Previously accepted 

 

(6hrs) 

 Load  D (12hrs) 

 7 

Truck location 



61 
 

60(22+10)-60(0.8×5)=$700. A similar approach is used to find {8.t by modifying the Θ value. 

As we can see from Table 3.1, different Θ values not only impact the selection of the last load of 

the sequence but also can change the whole sequence (i.e., Sequences B-D and A-C are selected 

with Θ=0.2 and 0.8, respectively). A conservative policy (Θ=0.8) results in truck repositioning at 

city 2, which is closer to the depot compared to a more optimistic policy (Θ=0.2) in which the 

truck will end up at city 7 after serving known loads.  

        Table 3.1. Evaluating all possible alternatives based on ~-dependent profit criterion at ü =0     
Sequence Travel time components WETTD/other 

movements 
{| 

PA New Cities 
Empty 
(hrs) 

Loaded 
 (hrs) 

WETTD (hrs) 
{Ä.Å {Ä.Ç 

Θ=0.2 Θ=0.8 Θ=0.2 Θ=0.8 

- - - 0 0 0 0 0 0 0 0 

- A Depot"C3" C1? 10 12 1.8 7.2 0.08 0.33 132 -192 
- B Depot"C2" C6? 5 13 2.2 8.8 0.12 0.49 478 82 

- C Depot"C1" C2? 9 10 1.0 4.0 0.05 0.21 100 -80 

- D Depot"C6" C7? 11 12 3.6 14.4 0.16 0.63 -36 -684 
- A-C Depot"C3" C1"C2? 10 22 1.0 4.0 0.03 0.13 880 700 
- A-D Depot"C3"C1"C6"C7? 30 24 3.6 14.4 0.07 0.27 -336 -984 
- B-C Depot"C2"C6"C1"C2? 25 23 1.0 4.0 0.02 0.08 50 -130 

- B-D Depot"C2" C6"C7? 5 25 3.6 14.4 0.12 0.48 1234 586 

 Note: PA: Previously Accepted 
          WETTD: Weighted Empty travelling time to the depot 

The impact of the Θ choice can be further elaborated by moving to the next decision epoch. With 

Θ=0.8, the truck will be at city 1 at the beginning of day 2 according to the previously designed 

plan to serve the B-D sequence (Figure 3.2(b)). Given the current commitment (to serve load C) 

and the truck location, there are only two alternatives whether to accept the new load or not. 

According to the computational details of Table 3.2 (the last two cells of {|), the acceptance of a 

new load (load E) is not recommended. However, following a similar approach, the policy with 

Θ=0.2 will schedule load E after load D. 

Having a closer look at the behavior of Deadhead Coefficient Policy in load selections at 

two decision epochs, two key factors are observed. First, the choice of Θ has direct impact on 

one of the cost components (which is depicted by the ratio of WETTD to all other movements). 
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This ratio is remarkable and influential with practical advance load information (e.g., two days). 

As an example from Table 3.1, the ratio for the load sequence B-D is 12% if Θ=0.2 but rises to a 

very substantial 48% if Θ= 0.8. Second, this impact is reinforced by an inherent feature of 

truckload transportation: economy of scope defined in Caplice (2007) as strong cost 

interdependency between loads (because a truck should be moved from the delivery location of 

one load to the pickup location of the next one), economy of scope is commonly acknowledged 

in works on truckload transportation (see, e.g., Chang, 2009; Berger and Bierwirth, 2010; Özener 

et al., 2011).  In our illustrative example, this dependency, which translates to subsequent 

decisions being affected by earlier load selection decision, is highlighted by the following fact: 

selecting the load combination B-D (using Θ=0.2) leads the subsequent decision to add load E to 

that combination but, on the other hand, selecting the A-C combination (using Θ= 0.8) renders 

load E as an unprofitable addition. As mentioned earlier, our goal is to find a proper Θ value to 

aid carriers in improving profit over the planning horizon. The impact of Θ on a carrier’s profit 

will be illustrated through extensive numerical experiments. 

        Table 3.2. Evaluating all possible alternatives based on ~-dependent profit criterion at ü =24     
Sequence Travel time components WETTD/other 

movements {| 
PA New Cities 

Empty 
(hrs) 

Loaded 
(hrs) 

WETTD (hrs) 

Θ=0.2 Θ=0.8 Θ=0.2 Θ=0.8 

~=0.2 

D - C6" C7? 0 12 3.6  0.30  624 

D E C6" C7" C5" C4? 5 18 1.4  0.06  876 

~=0.8 
C - C1"C2? 0 10  4.0  0.40 460 
C E C1"C2 "C5"C4? 18 16  5.6  0.16 -296 

 

3.3.  Literature Review 

The present work belongs to two streams of literature: one on full truckload transportation and 

the other on dynamic vehicle routing problems (DVRPs). Table 3.3 summarizes the relevant 

studies. Since the problem falls under the category of full truckload transportation, we first 
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position our work in that literature and highlight its novelty. Then, we briefly review the related 

DVRPs to adopt a solution concept to handle the proposed problem. 

Our proposed model is a comprehensive Dynamic Pickup Delivery Full Truckload 

(DPDFL) problem in which several operational factors in the truckload industry are taken into 

account. To highlight the novelty of this study, we carefully point out the limitations of relevant 

truckload studies summarized in Table 3.3. Although all of these works addressed truckload 

problems, the key factor that remarkably influences our choice of modeling approach is tour 

capability (i.e., continuous truckload routes). This becomes less important when the average time 

of serving a load is very long (between two to four days) which is the case for large trucking 

companies working in nationwide or international markets. Powel and colleagues investigated 

this type of problem, which is simplified to different versions of assignment problems.  

Powell (1987) extended his previous work (Powell, 1986) on the full truckload 

transportation problem by presenting the network flow problem. Similar to the former study, 

each node represents a region at a particular time. Following the same approach, Powell et al. 

(1988) proposed a model called LOADMAP which combines the real-time load assignment with 

sophisticated future forecasts to maximize the truckload profit and service level. In another work, 

Powell (1996) proposed a stochastic dynamic load assignment problem formulation. He showed 

that when some stochastic information about future demand is available, the proposed model 

outperforms the deterministic one. Powell et al. (2000) took a comprehensive simulation-based 

approach for tackling dynamic load assignment problems. The approach was to design an offline 

algorithm for the static version and put it into practice for a dynamic problem when demands 

were gradually realized as the time elapses. The result suggested that the greedy approach can be 

superior in the long run compared to the optimal myopic solution with the uncertainty in 

demands and travel times. Gregory and Powell (2002) modeled a truckload problem using a 
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stochastic dynamic resource allocation approach. They used adaptive dynamic programming 

with a non-linear approximate function to solve the problem. The result showed that the 

algorithm based on the proposed approximation produced a near-optimum solution to 

deterministic problems. Finally, the work by Simao et al. (2009) motivated by Schneider 

National Inc. (the largest truckload motor carrier in the US) is the largest scale problem in the 

literature with over 6000 drivers. Their approximate dynamic programming model handled a 

great level of detail. 

The other stream of relevant full truckload research focuses on smaller trucking companies 

that view tour capability as essential. These studies used mixed integer programming to 

formulate the problem and a rolling horizon approach for implementation (e.g., Yang et al, 1998; 

Yang et al, 2004; Gronalt et al., 2003; Tjokroamidjojo et al., 2006). The defined problem was the 

same in the studies by Yang et al. (1998) and Yang et al. (2004). The objective was to minimize 

the total cost. They used their models to develop tours with the capability of diverting trucks 

based on the arrival of new information into the system. As defined by Regan et al. (1995), 

diversion is a model capability that can divert a vehicle moving empty toward a pickup point to 

take another request. However, it is not allowed to divert loaded-moving vehicles while updating 

the decision. Ichoua et al. (2006) estimated that diversion in dynamic vehicle routing problems 

improved the system performance by up to 4.3% despite its operational difficulty. However, 

dwelling cost, which is one of the important components of cost structure, was not part of their 

model. Another limitation of that work is that trucks moved continuously between different 

cities, which means that a truck may never return to its home base.  
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Unlike the previous studies, the work of Gronalt et al. (2003) addressed tour length to force 

trucks to return home after a predefined interval. The approach was based on generating tours 

with a very restrictive assumption that there is no limit on the number of available trucks. Their 

model did not capture the cost of delay and dwelling in designing tours. The proposed policy was 

also very restrictive in the sense that no loads could be rejected and no trucks could be diverted. 

Tjokroamidjojo et al. (2006) addressed a full truckload pickup and delivery problem in 

which empty movements, dwelling time, and subcontracting costs were taken into account. They 

also investigated how much a trucking company can reduce cost by obtaining additional 

information further in advance. However, their proposed mathematical model was subject to 

some limitations. For example, there was no option to divert a truck when new information 

entered the system. Moreover, similar to Yang et al. (1998) and Yang et al (2004), there was no 

home base for trucks. Addressing the limitation of related studies, the contributions of this 

chapter are threefold: 

! Proposing a new two-index mixed integer programming algorithm which is more efficient 

compared to three-index formulations in literature (e.g., Keskinocak and Tayur,1998; 

Tjokroamidjojo et al., 2006). The efficiency of the MIP model is improved by 

incorporating preprocessing functions, which uses characteristics of the problem. 

! Designing a simple and intuitive policy that can help carriers to improve their razor-thin 

profit provided by the transportation network characteristics.  

! The sampling method concept is adopted from the literature of DVRPs to improve our 

proposed Pure-Θ Policy. This Pure-Θ Policy and our proposed enhanced version of it are 

examined against two other dispatching methods. 

The last contribution of this work requires us to review the second stream of related literature. As 

seen from Table 3.3, modeling the problem with dynamic programming and applying Markov 
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decision processes are used for single DVRPs because they suffer from the curse of 

dimensionality (Thomas and White, 2004; Thomas, 2007). Approximate dynamic programming 

is an effective method to overcome the curse of dimensionality in dynamic programming (Powell 

et al., 2007). Despite successful implementation of approximate dynamic programming by 

Schmid (2012), we are not aware of any implementation of the method for a problem with tour 

making capabilities. The majority of research studies use sampling approach (multiple scenario 

generation) to solve DVRPs. These studies will be discussed in section 7 before applying the 

solution procedure.  

3.4. Problem Definition 

As mentioned earlier, the problem under study is called dynamic pickup and delivery with full 

truckload (DPDFL) consisting of a fixed fleet of trucks in the transportation network. The 

customers’ demands (loads) are known gradually as time elapses. We retain the literature’s 

standard assumption that each trip is executed without a break. Loads and trucks have their own 

attributes. The truck attributes are home domicile, hours away from home, the maximum allowed 

hours away from home, determined by a carrier or federal department of transportation (for 

drivers), and the current location. The load attributes are the earliest and latest pickup time, the 

maximum permissible delay time, the pickup location and the delivery location. Taking all the 

attributes of loads and trucks into account, the optimal DPDFL solution specifies the carrier’s 

profit maximizing decisions concerning (i) whether to accept or reject new load(s), and (ii) the 

sequence of accepted loads that each truck will serve. The major assumptions are as follows: 

! The shipment cost is a linear function of travel time which itself is a linear function of 

distance. Similar to what is common in the literature (e.g., Powell et al., 1988; Powell, 

1996), the gained revenue is proportional to the trip length, i.e., the distance/time between 

pickup and delivery points. 
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! The length of each tour (i.e., tour time span) has to be less than the maximum hours that a 

driver can be away from home.  

! Each truck can handle one load at a time (i.e., full truckload transportation). 

! Given long haul transportation, loading and unloading times are a negligible part of the 

total time to serve a load and can therefore be ignored.  

! There is a hard time-window to serve a load. Thus, a load will be rejected if it cannot be 

served within the predefined time window. 

! The depot is the home domicile of drivers. A truck is returned to the depot if it is not 

scheduled to serve any loads at that decision epoch. This is a common practice if the 

dispatcher has access to advance load information (e.g., knowing that there is no request 

arriving for the rest of the day). The logic is simple because the average repositioning is 

typically shorter from the depot (if it is located at the center) and dwelling cost is negligible 

at the driver’s home domicile.  

3.4.1.Common Mathematical Models 

There are two common ways to formulate a DPDFL problem. The first one uses an extended 

version of the assignment problem (e.g., assignment with timing constraints) to exploit the 

problem’s characteristics. This is the most common approach in the literature (see Yang et al. 

1998; Powell et al., 2000; Yang et al., 2004; Tjokroamidjojo et al., 2006). In the second one, the 

problem can be formulated as a variant of capacitated arc routing problems (CARP) in which 

each directed arc represents one load with a designated origin and destination. A recent work by 

Liu et al. (2010a, b) proposed an integer-programming model to formulate CARP for truckload 

industries and a quality lower bound. They also developed a heuristic method based on graph 

theory to solve the proposed model since the exact method is incapable of handling large 
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problem instances. However, they captured neither time windows nor the fleet size of the 

transportation network for fulfilling demands.  

Comparing the different approaches in the literature, the former is shown to be more 

promising to use because the dimensionality of the model grows quickly in the latter case. 

Among the related studies, Tjokroamidjojo et al. (2006) used an effective approach to handle 

DPDFL. The utilized approach consists of two parts, a preprocessing part for time-based 

restrictions and an assignment problem afterwards. Since time-window restrictions are explicitly 

handled outside the mathematical model, the approach performs well by reducing the number of 

constraints and decision variables. Although our approach is similar to Tjokroamidjojo et al. 

(2006), we must handle some of the time-based constraints inside the MIP because most of the 

load and truck attributes are determined after solving the model. After developing the model, 

with the aid of a simple example, we point out the issue of handing all time-based constraints 

outside the mathematical model.  

3.4.2  The Model Inputs 

To formulate the proposed model, notations, parameters, and decision variables are presented below.  

• Notation 

!: set of all available trucks, indexed by i, u 

#: set of loads, indexed by  j, k, r 

ℎ: home domicile of trucks (i.e., the depot).  

• Parameters 

a&: departure location of load ' 

b&: destination location of load ' 

)&: the earliest pick-up time of load ' 

<&: maximum permissible delay for serving load j 
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*(. , . ): travel time between any two points in the service area. Traveling time between two 

locations can be described as function of distance. 

N: maximum hours that a driver can be away from home 

30: maximum hours left for truck i to be away from its home at the decision epoch 

4: the revenue earned per hour while moving loads 

5: the traveling cost (empty or loaded) per hour of driving 

7: the penalty cost per hour for a truck being idle at any load location (dwelling cost). 

6: the penalty cost per hour for late pickup 

8: time at the decision epoch 

H: a very large positive number. 

• Decision Variables 

K0=
8 :  if truck i serves load k directly at the first stop, 1 otherwise 0.   

K0=
9 : if load k is served by truck i through its own depot at the first stop, 1 otherwise 0. 

A&=
8 : if load k is served immediately after load j, 1 otherwise 0.   

A&=
9 : if load k is served through the depot after load j, 1 otherwise 0.   

Ñ0=: if load k is served by truck i after another load, 1 otherwise 0. 

D=: arrival time at the pickup location of load k 

"0=: the remaining allowable time for truck i when arrives at the pickup location of load k. 

The real-time location of each truck is important at each decision epoch because of the problem’s 

dynamic nature. If the current location of truck i is denoted with 90, *(90, :) shows the traveling 

time from the current location of truck i to the location q. If the truck cannot get to the origin 

location of load j at time )&, it can still pickup that load only if its maximum permissible delay 

(<&) is not violated. However, late pickup is penalized by $l/hr. Thus, it is important to note that, 

as it implies, lateness is computed with regards to the load’s earliest availability. This is a 
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common practice for serving more time-sensitive loads. For example, Logikor Company (a 

Canadian low asset based third-party logistics provider, http://www.logikor.com) uses a similar 

approach for delivery of commodities to manufacturing plants operating based on a Just-in-Time 

Philosophy). 

Dwell time is the waiting time experienced by a driver/truck if the truck must wait at the 

pickup location (i.e., it reaches the pickup location of load j earlier than )&). Although we 

consider the same dwell cost for all clients’ locations in this study, the model is flexible enough 

to address varying dwelling costs across client locations. Still, our study does reflect that 

dwelling costs at the truck/driver domicile is significantly smaller than at client locations. This is 

because there is no extra facility usage cost for, say, a driver to dwell at his/her home or at 

accommodations provided by the carrier. This creates an opportunity for trucking companies in 

dispatching decisions since they can check the feasibility and economical impacts of trucks 

spending idle time at the depot rather than waiting at the clients’ location. For example, if a 

specific load will be available the next two days and a truck is close to the depot, the truck may 

be sent first to the depot and then scheduled for dispatching at an appropriate time (i.e., serving 

the load through the depot). Even though there could be some economical reasons to schedule a 

load through the depot, we are required to take an important fact into account; that drivers should 

be returned to their home domicile (the depot) at some point. That is why decision variables have 

been introduced to consider the option of serving a load through the depot. 

We also consider a single cost parameter for traveling empty or loaded. This is due to the 

number of load-independent factors that are present regardless of travelling empty or full. There 

are certain costs that a carrier still incurs that are not overly influenced by the amount of freight 

being transported. For example, factors such as driver wages, equipment depreciation, 

administration, compliance and insurance, act as a fixed cost that must be incurred. These costs 
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typically compromise 70% of the total cost of driving a truck, while the remaining 30% is 

typically fuel related. Fuel is a unique cost of its own due to the fact that the associated costs do 

not vary dramatically whether driving empty or full, specifically, an empty truck requires at least 

three-fourths of the fuel of a fully loaded truck. This is due to cargo-independent factors such as 

aerodynamic drag, engine losses, and the mass of the empty truck itself (Transport Canada, 

2005; American Transportation Research Institute, 2014). Interestingly, tire wear is another cost 

factor that actually costs more when a truck is driven empty (Trucking Information, 2015; 

American Trucking Associations, 2011). It is evident that the above-mentioned factors play a 

significant role when determining the cost of moving empty or loaded and therefore the 

operating costs (either empty/loaded) remain fairly stable over the course of movement (Sheffi, 

2012).  

 Since the model is flexible enough to allow reassignment and re-sequencing of loads and 

diversion of empty moving trucks, the decision made at the previous decision epoch can be 

modified at the current decision epoch for all the loads which have not received service yet. To 

acknowledge this assumption, we first define TST(i) as the status of truck i at the decision epoch 

8. TST(i) can take three values; 1, -1, 0 meaning truck i is moving loaded, empty (either moving 

or idle at any location other than the depot), or sitting idle at its own depot, respectively. If truck 

i is serving load j at the decision epoch 8, it will be available at the later time, 8 +*(90, b&) at the 

destination location of load j (i.e., the diversion is not allowed if a truck is moving loaded). If a 

truck is idle or empty, TST(>) ≤ 0, then truck i is available for scheduling at time 8 at its current 

location. There is also a need to keep track of load status which is denoted with LST(j). There are 

four possible load statuses. If load j is being served at the decision epoch, LST(j) is equal to 2. 

The loads which are accepted, but not yet serviced, (i.e., LST(j) =1) enter the model for possible 

reassigning and/or re-sequencing. In order to distinguish new loads (i.e., the loads for which 
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acceptance is not finalized yet) from the current ones (i.e., the loads being served, LST(j) =2, or 

waiting to be served, LST(j) =1), their statuses will be LST(j) =3. Finally, the loads which have 

already been rejected (i.e., LST(j) =0) never enter the model. We also define ST(i,j) as a binary 

parameter to address the status of a truck and load together. If truck i is serving load j at the 

decision time, then ST(i,j) takes 1, otherwise 0.  Another important time-dependent attribute is 

the maximum number of hours left for the drivers to return home. Two situations can be 

considered for them: sitting idle at their home domicile (i.e., 30 = ") or on duty away from their 

home (30 < "). It will be explained shortly how these features are incorporated in the proposed 

model. Since there is no type of uncertainty considered in traveling time, it is enough to pick up 

loads on time to guarantee their on-time delivery.  

3.4.3 Preprocessing Stage 

As mentioned in section 3.4.2, we tackle the static version of problem in two stages beginning 

with the preprocessing stage. This stage consists of two phases. In the first phase, we show how 

to compute the necessary pieces of information. Then, in the second phase, it is explained how 

the generated information is used to solve the proposed mathematical model.   

3.4.3.1 Preprocessing Stage: Phase I 

At each decision epoch, trucks and loads have different attributes. Based on their current 

statuses, the dwelling and lateness duration can be computed. The lateness can occur in two 

situations: i) truck i serves load j as the first load; ii) a truck serves load k after load j. 

DL0(>, '): the lateness duration at the load pickup location j if truck i serves load j first. If 

truck i serves load j directly without visiting the depot, DL0(>, ') is modified as DL0Ö'(>, '). For 

TST(>) < 1, DL0Ö'(>, ')=ÜMá	+0, D+η-, a%. + 8 − α%.. If the truck is moving loaded, TST(>) = 1, 

toward the destination of a load (e.g., load k), DL0Ö'(>, ') = ÜMá+0, 8 + D(η-, b2) + D+b2, a%. −
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α%.. If truck i serves load j through the depot, DL0(>, ') is modified as DL03'(>, '). For TST(>) < 1,	

DL03'(>, ') = ÜMá+0, 8 + D(90, ℎ) + D+ℎ, a%. − α%.	and for a loaded truck (e.g., while serving load 

k) will be	DL03'(>, ') = ÜMá+0, 8 + D(90, b2) + D(b2, ℎ) + D+h, a%. − α%..	

DL1(', 5): the minimum lateness at the load pickup location k if the same truck serves load k 

immediately (or through its depot) after load j.  Load k will experience some lateness if there is 

not enough time to reach the pickup location of load k immediately after serving load j. It is 

denoted with DL1Ö'(', 5) = ÜMá	 60, 6α% + D+a%, b%. + D+b%, a2.7 − α27.	 However, the minimum 

lateness of load k if it is served after load j through the depot will be DL13'(', 5) = ÜMá 60, 6α% +

D+a%, b%. + D+b%, h. + D(h, a2)7 − α27. 

Similar to what is explained for calculating lateness time, truck dwelling might occur in the 

following cases: i) truck i serves load j as the first load directly (i.e., without visiting the depot), 

ii) a truck serves load k after load j directly. 

 Dw1(>, '): the dwell time at the load pickup location j if truck i serves load j first given it 

was heading from the previous load location directly (in the current decision epoch). As we 

defined the dwell time, this happens if the truck arrives earlier at the load pick up location. For 

empty trucks,	TST(>) = −1, Dw1(>, ') = ÜMá	 60, α% − (8 + D+90, a%.7. If truck i is moving loaded 

toward destination k at the decision epoch, similar reasoning leads to dwell time being 

Dw1(>, ') = ÜMá	 â0, α% − 68 + D(90, b2) + D+b2, a%.7ä in which 8 + D(90, b2) is when truck i is 

available after completing the service of load k.  

Dw2(', 5): the minimum dwell time of a truck at the pickup location of load k if it comes 

directly after serving load  j, Dw2(', 5) = ÜMá	 â0, α2 − 6α% + <% + D+a%, b%. + D+b%, a2.7ä. 
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3.4.3.2 Preprocessing Stage: Phase II 

In this phase, the following three tasks are performed. First, updating all dynamic attributes of 

trucks (e.g., hours away from home and current truck location) and loads (e.g., a load is waiting 

to be served or being served). Second, identifying infeasible truck-load and load-load 

combinations; and finally identifying feasible combinations that cannot be part of the optimal 

solution. Since the first part is straight forward, only the last two functions of the preprocessing 

stage are discussed here.  

Given the current status of the trucks, we determine whether a particular truck is eligible 

for serving a certain load. This must be done for all available truck-load combinations. It is 

trivial that certain truck-load combinations are not feasible if the truck cannot be available at the 

pickup location of the load without violating the maximum delay. Thus, the following 

modifications are applied to the decision variables: K0&
8 = 0	 	 if	 	 DL0Ö'(>, ') > <%	 	and K0&

9 = 0	 	 if		

DL03'(>, ') > 	<%. 

Similar to what is done for truck-load combinations, we examine the feasibility of serving 

load k immediately (via depot of truck i) after load j. Here, the best case scenario for load-load 

combinations is determined. The best possible case is the time that load j is served on time so 

that no delay is carried toward serving load k. It is evident that load k cannot be served directly 

(or via the depot) after load j when there is not enough time for the truck to be at the load k pick-

up location without violating its time window. Thus, the following adjustments are done because 

if a load combination is not feasible in the best-case scenario, it cannot be feasible at all (i.e., if			

DL1åç(', 5) > <=	 then	A&=
8 = 0	and if	 	DL13ç(', 5) > <=	 then	A&=

9 = 0).	On the other hand, if the 

minimum lateness is smaller than or equal to the maximum allowable delay of <2, the 

combination is not conclusively infeasible. This is extremely important because the decision at 

this stage is made based on the minimum lateness but not the actual lateness. Therefore, 
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considering different possible assignment decisions, some load combinations with DL1åç(', 5) ≤

<=	or		DL1TD(', 5) ≤ <= might not be feasible after solving the problem. This exactly explains 

why we need to have time components in the mathematical model. 

We can also identify the truck-load and load-load combinations that could not be part of 

the optimal solution. Before identifying non-optimal truck-load and load-load assignments, it is 

shown that if a truck visits the depot before serving a load, the dwelling cost should be zero. This 

is a trivial property since for every dispatching decision from a depot with dwelling time and cost 

greater than zero, there exists an alternative decision with a larger profit with dwelling cost equal 

to zero. This can be attributed to the negligible dwelling cost assumptions at the depot. In simple 

words, a truck is never dispatched from the depot in such a way that it has to wait at the pick-up 

location of a load.  

To exclude some of the load-truck combinations, it is sufficient to show that they cannot 

be part of the optimal solution. At optimality, truck i does not serve load j at the first stop 

directly (i.e., K0&
8 = 0) if conditions (3.1) and (3.2) hold. These conditions simply check if the 

saving in omitting corresponding dwelling cost (by visiting the depot) outweighs the extra 

travelling costs. Satisfying these conditions means that K0&
8 never shows at optimality because not 

only is it less cost efficient than K0&
9 but it also uses the available hours that a driver can be away 

from the home domicile. 

w×Dw1(>, ') ≥ c × 6D(η-, h) + D+h, a%. − D+η-, a%.7,   TST(i)= -1, and LST(j)=1,3                            (3.1) 

w×Dw1(>, ') ≥ c × 6D(b2, h) + D+h, a%. − D+b2, a%.7,  TST(i)=1, LST(k)=2, and LST(j)=1,3            (3.2) 

A similar reasoning is used to exclude some of the load-load combinations. Serving load k 

directly after load j is not part of optimal solution (i.e., A&=
8 = 0) if condition (3.3) is satisfied. 

7 × Dw2(', 5) ≥ c × 6D+b%, h. + D(h, a2) − D+b%, a2.7,   LST(j)=1,3 and LST(k)=1,3                      (3.3) 
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3.4.4 Mathematical Model 

Having defined all parameters and dynamic aspects of the model in the preprocessing stage, it is 

time to formulate the conceptual model. Before formulating the proposed model, it is important 

to check which loads enter the model and their notations. As defined earlier, J represents the set 

of all loads entered in the model. However, we are required to differentiate them in order to have 

a neat mathematical formulation. To do so, the set of new loads are denoted with # ̅(LST(j) =3), 

the set of accepted loads waiting for service with # ̿(LST(j) =1), and the set of loads being served 

at the decision epoch with #G (LST(j) =2). Thus, # = #⋃̅	#	̿⋃	#G.   

Having the parameters and decision variable defined, the model will be formulated as 

follows. To have a better understanding of the model, we break it down into smaller components 

and explain them one by one. The objective function to be maximized is the profit which 

includes the revenue and the relevant costs. In the following model, there are some non-linear 

terms in the objective function and constraints that can be easily reformulated into linear terms. 

!  Revenue; the revenue depends on trip-length of the accepted loads:  

4L L *(a2, b2)+K0=
8 + K0=

9 + Ñ0=.

=O#̅⋃#̿0OQ

																																																																																																										(3.4) 

! Cost of moving loaded trucks; 

5L L *(a2, b2)+K0=
8 + K0=

9 + Ñ0=.

=O#̅⋃#̿0OQ

																																																																																																							(3.5) 

! Cost of moving empty trucks; empty traveling cost can be a result of moving trucks from 

the delivery location of one load to the pickup location of the next load: 

5 L ]L *+b%, a2.

&O#̅⋃#̿

A&=
8 + L R*+b%, ℎ. + *(ℎ, a2)S

&O#̅⋃#̿

A&=
9 _																																																											(3.6)

=O#̅⋃#̿
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! The empty traveling cost occurs for repositioning empty, idle or loaded trucks to the pickup 

location of the first load in the sequence:  

5 L L *(90, a2)

=O#̅⋃#̿0OQ,UVU(0)W9

K0=
8 + 5 L L X*(90, ℎ) + *(ℎ, a2)Y

=O#̅⋃#̿0OQ,UVU(0)W9

K0=
9 + 

5L L L *+b%, a2.

=O#̅⋃#̿&∈#G,VU(0,&)[90OQ

K0=
8 + 5L L L R*+b%, ℎ. + *(ℎ, a2)S

=O#̅⋃#̿&∈#G,VU(0,&)[90OQ

K0=
9 																		(3.7) 

! The empty traveling also exists in either of following cases. First, the truck is going back to its 

depot after serving all its assigned loads (in term 3.8, based on definition of deadhead 

coefficient policy, travel cost from the destination of the last load in the sequence to the depot 

is weighted with Θ). Second, a moving truck (i.e., either empty or loaded) is not assigned to 

any load and so it is heading back to its depot (term 3.9). If the truck is moving a load (e.g., 

serving load j), it cannot be diverted based on the predefined assumption (similar to Regan et 

al., 1995). This means that it continues the movement of load j to its delivery location (;&). 

Then, the empty traveling starts from that location (;&) to the depot (h).  

Θ × 5 L *+bj, ℎ.
'eP⋃̅P̿

]L+K>'
0 + K>'

1 .
>e!

+ L Aê'
0 + Aê'

1

êeP⋃̅P̿

− L A'5
0 + A'5

1

5eP⋃̅P̿

_ 																																						(3.8) 

5 L *(90, ℎ)
0OQ,VU(0)[a9

]1 − L (K0=
8 + K0=

9 )

=O#̅⋃#̿

_

+ 5L L *+;&, ℎ.

&∈#G,VU(0,&)[90OQ

]1 − L (K0=
8 + K0=

9 )

=O#̅⋃#̿

_																																																		(3.9) 

! Dwelling cost; this is the cost of waiting at the load pickup location which can occur when 

the load is either at the beginning of the sequence or after another load directly. 

7 L ÜMá(0, 	)= − D=)

=O#̅⋃#̿

																																																																																																																												(3.10)	 
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! Lateness cost; late service occurs when the truck arrives to the load’s pick-up location after 

its availability. Lateness cost is incurred in all the following situations. A truck (e.g., moving 

empty, loaded or idle) is scheduled to serve a load directly from its current location, through 

the truck depot or after another load: 

6 L ÜMá(0, 	D= − )=)

=O#̅⋃#̿

																																																																																																																															(3.11) 

Having formulated the objective function, the constraints are introduced as follows. The first and 

second constraint sets (3.12 and 3.13) ensure that all previous accepted loads will be served but 

there is no guarantee to take all new loads. 

L(K0=
8 + K0=

9 + Ñ0=)
0OQ

= 1,													5e#̿																																																																																																											(3.12) 

L(K0=
8 + K0=

9 + Ñ0=)
0OQ

≤ 1,													5e#̅																																																																																																											(3.13) 

! A truck can serve at most one load at the beginning of a sequence.  

L (K0=
8 + K0=

9 )

=O#̅⋃#̿

≤ 1,																					>e!																																																																																																												(3.14) 

! Each accepted load can have at most one successor. 

L A&=
8 + A&=

9

=O#̅⋃#̿

≤ 1,																														'e#̅⋃#̿																																																																																											(3.15) 

! The next set of constraints (3.16) ensures that if load k is served after load j, load j is either 

scheduled to be the first load or placed after another load r. 

L 	A&=
8 + A&=

9

=∈#̅⋃#̿

− ]LK0&
8 +

0OQ

K0&
9 + L A^&

8 +

^∈#̅⋃#̿

A^&
9 _ ≤ 0,																			. ' ∈ #̅⋃#̿																																	(3.16) 

! The constraints (3.17) ensure that load k can be scheduled after load j if they are visited by the 

same truck.  
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Ñ0& + K0&
8 + K0&

9 + L +Ñë= + Kë=
8 + Kë=

9 .
ëOQ,ëí0

≤ 2 − +A&=
8 + A&=

9 .,								>e!, . ', 5 ∈ #̅⋃#̿																					(3.17) 

! The constraints (3.18) guarantee that a load is not scheduled at the beginning of a sequence if 

it is served after another load.  

L 	A&=
8 + A&=

9

&∈#̅⋃#̿

=LÑ0=
0OQ

,																													5 ∈ #̅⋃#̿																																																																														(3.18) 

! Constraints (3.19) ensure that "0= can only take a positive value if truck i serves load k. Thus, 

if truck i serves load k, then ∑ "ë=ëOQ = "0= which is used in constraints (20-23). 

"0= ≤ +Ñ0= + K0=
8 + K0=

9 .k,												5 ∈ #̅⋃#̿,			>e!																																																																																					(3.19) 

! Constraints (3.20) impose an upper bound for "0= (a driver’s allowable time while visiting the 

first load of the sequence). In this constraint set, n0=
8  and n0=

9  represent the remaining 

allowable time for the driver of truck i when serving load k at the beginning of the sequence 

either directly or through the depot. These two parameters are obtained from the 

preprocessing stage for all truck-load combinations. 

L"0=
0OQ

≤L+n0=
8 K0=

8 +n0=
9 K0=

9 .
0OQ

+ o L +A&=
8 + A&=

9 .

&∈#̅⋃#̿

pk,												5 ∈ #̅⋃#̿,																																	(3.20) 

! Constraints (3.21) introduce an upper bound for a driver’s allowable time when serving load k 

immediately after load j. Constraints (3.22) perform similarly when the driver returns to the 

depot in-between visits. 

	L"0=
0OQ

≤ îL"0&
0OQ

− +)& − Ü>3+D&, )&.. − *+a%, b%. − *+b%, a2.ï + +1 − A&=
8 .k, . ', 5 ∈ #̅⋃#̿			(3.21) 

L"0=
0OQ

≤ X" − *(h, a2)Y + o1 − L A&=
9

&∈#̅⋃#̿

p 	k,																					5 ∈ #̅⋃#̿,																																											(3.22) 

! Constraints (3.23) guarantee that trucks have enough time to return home when they are at 

pick-up location of loads. 
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L"0=
0OQ

≥ )= − Ü> 3(D=, )=) + *(a2, b2) + *(b2, h) − i1 −LRÑ0= + K0=
8 + K0=

9 S
0OQ

jk	 

			5 ∈ #̅⋃#̿,			>e!																																					(3.23) 

! Altogether, constraints (3.24) through (3.27) ensure that D= does not take on an unrealistically 

large or small value to prevent dwelling or lateness costs. Constraints (3.24) and (3.25) apply 

when a truck is serving one load after another load directly while constraints (3.26) and (3.27) 

are for the case of a truck serving a load at the beginning of a sequence. In constraints (3.26) 

and (3.27), ñ0=
8  is the earliest time that truck i can be available at the pickup location of load k, 

which is computed in the preprocessing stage. If truck i is moving loaded (e.g., serving load j) 

at the decision epoch, ñ0=
8 = 8 + *+90, b%. + *+b%, a2.; otherwise ñ0=

8 = 8 + *(90, a2). 

D= ≥ *+a%, b%. + *+b%, a2. + ÜM á+D&, )&. + +A&=
8 − 1.k,								', 5 ∈ #̅⋃#̿																																						(3.24) 

D= ≤ *+a%, b%. + *+b%, a2. + ÜM á+D&, )%. + +1 − A&=
8 .k,										', 5 ∈ #̅⋃#̿																																				(3.25) 

D= ≥Lñ0=
8

0OQ

K0=
8 + iLK0=

8

0OQ

− 1jk,																												5 ∈ #̅⋃#̿,																																																														(3.26) 

D= ≤Lñ0=
8

0OQ

K0=
8 + i1 −LK0=

8

0OQ

jk,																												5 ∈ #̅⋃#̿,																																																												(3.27) 

! Constraints (3.28) and (3.29) ensure that a truck arrives at the pick-up location of load k no 

sooner than after serving load j and traveling to load k through the depot if such a schedule is 

implemented. In constraints (3.28), ñ0=
9  is the earliest time that truck i can be available at the 

pickup location of load k if it visits the depot first. If truck i is moving loaded (e.g., serving 

load j) at the decision epoch, ñ0=
9 = 8 + *+90, b%. + *+b%, h. + *(h, a2); otherwise ñ0=

9 = 8 +

*(90, h) + *(h, a2). 

D= ≥Lñ0=
9

0OQ

K0=
9 + iLK0=

9

0OQ

− 1jk,																5 ∈ #̅⋃#̿																																																																										(3.28) 



82 
 

D= ≥ *+a%, b%. + *+b%, h. + *(h, a2) +ÜMá+D&, α%. + +A&=
9 − 1.k,											', 5 ∈ #̅⋃#̿																(3.29) 

! Constraints (3.30) guarantee that accepted loads are served without violating the maximum 

permissible delay. 

D= ≤ )2 + <2,																															5 ∈ #̅⋃#̿																																																																																																		(3.30) 

The presented model is for a general case where lateness is allowed for serving loads. If no 

lateness is allowed, the model can be simplified by eliminating constraints (3.24) to (3.30) and 

modifying the model using the generated information in the preprocessing stage (Appendix A). 

This approach (i.e., handling time-based constraints outside the mathematical model) is 

problematic if lateness is allowed. The following example illustrates the potential issue.   

We assume a small 10-city example within a circle-shape area with radial travel time of 

12hrs (cities are randomly selected from a 20×20 grid). For ease of exposition, one truck (with 

no time restriction to go back to the depot) and five loads are taken into account. Figure 3.3 

depicts the transportation network along with travel times and the loads’ earliest and latest 

departure times. For instance, the travel time to serve load B is 5.4 hrs, and it can be picked up at 

city 4 between times 96 and 101 for delivery to city 7. The truck is at coordinate (9, 19) at the 

time of decision making (time 0). As mentioned earlier, three tasks are performed at the 

preprocessing stage. After updating the dynamic attributes of trucks and loads, it checks for 

feasibility of truck-load and load-load assignments. Finally, it identifies those solutions that 

cannot be part of the optimal solution. The last feature can be easily explained based on the first 

movement of the truck (which is located in city 5 at time 0). If the first load is accepted, the truck 

has two options: 1) it can go directly to the pickup location of load A (travel time 8.7hrs) and 

wait for its availability (60-8.7 dwell time); 2) it can go to the depot (travel time 10.9hrs) and 

dwell there before heading to city 1 (travel time 10.3hrs) for serving the first load.  The choice of 

the second alternative depends on the tradeoff between extra travelling cost (10.3+10.9-8.7)×60 
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and the saving in dwell cost (60-8.7)×25. Since the dwell cost saving outweighs the traveling 

cost increments, the first option is eliminated in the preprocessing stage (i.e., condition (3) is 

satisfied).          

 
 

 

 
   Figure 3.3. An infeasible solution when time-based constraints handled in the preprocessing stage  

The problem arises if all time-based constraints are handled in the preprocessing stage (using the 

revised mathematical model in Appendix A). Based on the preprocessing outcome, it is feasible 

to serve load k directly after load j if k>j. The optimal solution of the integer programming model 

sends the truck to serve load A (through the depot) and the rest of the loads directly (without 

visiting the depot) one after another. In Figure 3.3, the broken lines show the empty movement 

of trucks and the solid ones represent the loaded movements. After handling load A through the 

depot at time 60, the truck moves toward the pickup location of load B and reaches the location 

too early, so it must wait until time 96. The truck cannot be at the pickup location of load C 

before time 106.8, but serving that load is still acceptable. This delay directly impacts the time 

that the truck reaches the origin of load D (time 138.5) when load D is no longer available. In 
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this example, the preprocessing stage fails because it only compares whether two loads can be 

served immediately one after the other without considering the previous load(s) of that sequence. 

Based on the preprocessing result, serving load D after load C would be feasible if the pickup 

time of load 3 is 106. This example illustrates the need for explicitly including time-based 

constraints into the mathematical model. Since the actual dwell and lateness at each pickup 

location cannot be computed before solving the model, those terms should be replaced by correct 

terms representing dwell and lateness costs.  

3.5. Experimental Design 

In this section, we explain how the model’s parameters are generated for use in the simulation 

study to provide useful insights. Our investigation of the academic literature and empirical 

reports suggested the potential influence of the following factors on a carrier’s profitability: 

radius of service, trip length, load density, advance load information, and time windows. Having 

a quick look at the recent statistics of ATA (2013), we observe that the truckload market is 

highly fragmented where almost 90% of the carriers are small with six or fewer trucks. The 

Canadian statistics are very similar to the American ones. Moreover, as mentioned earlier, the 

smaller companies usually suffer more than big companies with a sophisticated network of lanes. 

Thus, we concentrate on small companies with six trucks.  

Radius of service: defined as the furthest distance from the depot that a truckload carrier is 

willing to carry a load. Two levels are considered for the radius of service: a minimum of 18 

hours (driving) and a maximum of 36 hours (driving).    

Trip length: measured as travel time between a load’s origin and destination. The test problems 

are generated in two categories called short and long trip-length groups. In the former, the 

majority of loads (80%) are shorter than the radius of service while in the latter the majority 

(80%) of loads are longer than the radius.  
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Load density: number of loads entering the system per truck per week. Load density is inversely 

related to the average length of loads (Powell, 1996), which usually ranges between 2 to 2.5 

loads (per truck per week) for large companies with the average load length between two to four 

days. Since this study targets small carriers with shorter trip lengths, load density is studied at 

two levels, 2.5 (low load density) and 5 (high load density) loads per truck per week. 

Advance load information (ALI): it is called knowledge window (KW) by Tjokroamidjojo et 

al. (2006) who define it as number of hours that loads’ information is available in advance. Since 

the trucking industry is identified with excess capacity and a high level of competitiveness, last-

minute call for transportation services is very common in the industry. It is also unusual for a 

shipper to book a load more than two or three days in advance (Frantzeskakis and Powell, 1990). 

Thus, acquiring load information very far in advance (e.g., a week or so) does not provide 

practical managerial insights. That is why we focus our attention on the three ALI/KW levels:  

24, 48, and 72 hours. 

Time Windows: Following Tjokroamidjojo et al. (2006), hourly dwelling and lateness costs are 

set to be $25 per hour. The maximum permissible delay for serving customers is examined at 

two levels: no lateness is allowed, and lateness is permissible in which the maximum lateness is 

drawn from a discrete uniform distribution with maximum of 5 hours.  

The result of the abovementioned five factors at different levels becomes 48 combinations. 

We tested five replicates of each combination. Each replicate was a randomly generated instance 

of the experiments’ stochastic conditions (e.g., earliest availability of loads and city locations). 

We use 240 test problems (5 replicates by the 48 combinations) in our simulation study. In all 

conducted numerical experiments, it was assumed that there are 50 cities within an area with a 

predefined radius of service. The number of cities in the transportation network is referred to as 

network size. These potential cities are representative of loads’ origins and destinations. This 
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approach is commonly used in the literature. For simulation studies, some authors consider that 

the shape of the service area is square (e.g., Yang et al. 2004; Özener and Ergun, 2008). To 

capture the radius of service as one of the transportation network settings, we assumed that the 

trucking company operates in a circle-shaped area.  For each test problem, the parameters are 

generated as follows: 

! To generate each load, an origin-destination pair is selected randomly from a 50-city 

network. The initial location of trucks is also determined by placing them randomly among 

the 50 cities. 

! The earliest loads availability is generated from an exponential distribution in which the 

average inter-arrival time is determined based on load density. 

! The average operating highway speed is used since the majority of cities are connected to 

each other via highways. The average operating speed is set to 55 mph, which is typical on 

US highways (refer to the recent report by the U.S. department of energy, 2011). 

! In the trucking industry where drivers can easily be away from home between one to four 

weeks, most carriers try to have the drivers back home every fortnight (Powell, 1996). To 

be consistent with these statistics, this study sets the maximum number of hours that a 

driver can be away from home equal to 240 hours. 

! Fuel cost and driver wages are the major portion of the operational cost. However, there are 

other miscellaneous cost components such as insurance premiums and maintenance. Given 

that we consider dwelling and lateness cost separately, it is fair to set the operational cost 

equal to $1.10 per mile (empty/loaded) and revenue to $2.25 per loaded mile. The earned 

revenue per mile also conforms to the TRANSCORE (provider of intelligent transportation 

systems) survey in 2011 from 600 small carriers. The 2:1 ratio of revenue to cost is also 

supported by the work of Gregory and Powell (2002). 
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! The overall length of the planning horizon highly depends on the average speed of the 

transportation mode. The slower mode of transportation usually requires a longer overall 

planning horizon. For example, Choong et al. (2002) considered a 15-day and 30-day 

planning horizon in empty container management in which a barge was one of the 

transportation modes. A shorter planning horizon (20-day) was considered in the truckload 

industry by Tjokroamidjojo et al. (2006). Similar to the latter study, we consider a three-

week planning horizon. 

3.6. Numerical Study 

In this section, we first explain how each test problem is handled systematically in a dynamic 

context. Then, the simulation results are presented and analyzed. We used AIMMS modeling 

language and Gurobi 5.1 as a solver to run the test problems. The whole algorithm was 

programmed in MATLAB 2012b and run on a 2.8 GHz computer. As shown in Figure 3.4, the 

algorithm starts by setting the value of Θ for the deadhead coefficient policy. The clock is set 

equal to zero and the preprocessing engine is called every 12 hours (the time interval between 

two decision epochs) to update truck and load status and exclude infeasible assignments and non-

optimal assignments. Then, loads with status 1, 2, and 3 are entered into the model. In other 

words, the loads that have been already delivered and the ones that are far in future (i.e., beyond 

the KW) do not enter into the model. The next step is to call the solver to solve the proposed 

MIP model to optimality. After the model is solved, the obtained schedule is implemented up to 

the next interval and checked for the termination condition (i.e., whether all the loads are 

considered during the overall planning horizon).  

It is important to note that we need to record all the movement of trucks during the 

planning horizon since diversion of empty trucks is allowed. After the stopping criterion is 

satisfied, a simple algorithm tracks each truck’s contribution to compute the system total profit 
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for the middle two weeks of the study. The main reason for collecting data on just the middle 

two weeks is to control the anomalies of beginning and end-of horizon effects. For example, with 

KW=72hrs, the loads information of the second day must be known before the beginning of 

planning horizon. Thus, the problem is handled for the entire planning horizon while only the 

middle two weeks statistics (Day 4 to Day 17) are considered for further analysis in this chapter.   

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.4. The detail of the dynamic implementation 

As mentioned earlier, the Θ value can vary between 0 and 1. Six values are chosen for Θ: 0, 0.2, 

0.4, 0.6, 0.8 and 1. Thus, all 240 generated test problems are solved six times, each time with one 

Θ value. In order to have a valid comparison, the obtained profit from the proposed policy is 

normalized by the optimal solution of the static version (when all loads information during the 

planning horizon is known in advance). Simply put, for each test problem, we divide the 

obtained profit of the Pure-Θ Policy by the static optimal solution. Because profit depends 

heavily on characteristics of the transportation network, normalization is essential in assuring fair 

comparison across different network settings.  
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Table 3.4 provides the averages of optimal profits of static versions along with CPU times 

(in seconds) and load rejection rates for low load density. Combinations are coded with three 

letters. The combination code represents radius of service (High/Low), trip length (High/Low), 

and load density (High/Low), respectively. Some intuitive results can be observed from Table 

3.4. For example, having more high-revenue loads (the majority of loads are long) reduces the 

rejection rate while increasing the CPU time. Moreover, if lateness is allowed, the profit 

improvement is higher when trucks operate in a smaller service area (i.e., radius is low). Table 

3.5 is similar to Table 3.4 but for the high load density combinations. Compared to Table 3.4, the 

higher load density does not necessarily increase the rejection rate because higher load density 

improves economy of scope (defined earlier) by lowering empty repositioning, thereby making 

low revenue loads more profitable.  That is why increasing load density lowers the rejection rate 

when most loads are short. Another interesting observation is that the CPU time depends on the 

network settings. For example, it takes slightly more than 10 minutes on average to solve LLH 

coding with no lateness while HHH coding with lateness takes more than 50 hours to be solved 

to optimality.     

Table 3.4. The averages of static optimal solutions (low load density) 

CODE 

Averages with no lateness Averages when lateness allowed 

Improvement Optimum 
Profit 

CPU time 
(Sec) 

Rejection 
Rate 

Optimum 
Profit 

CPU time 
(Sec) 

Rejection 
Rate 

LLL 4034.8 1.8 59% 4576.2 16.0 57% 13.42% 
LHL 15113.3 32.2 26% 17414.5 86.2 22% 15.22% 
HLL 10727.6 3.4 63% 11733.2 8.6 62% 9.37% 
HHL 28703.5 1045.2 37% 29388.8 2472.8 36% 2.39% 

                     
                           Table 3.5. The averages of static optimal solutions (high load density) 

CODE 

Averages with no Time Window Averages with Time Window 

Improvement Optimum 
Profit 

Solution 
time (Sec) 

Rejection 
Rate 

Optimum 
Profit 

Solution 
time (Sec) 

Rejection 
Rate 

LLH 14787.4 701.7 56% 16453.8 1221.1 48% 11.27% 
LHH 34833.1 2679.3 41% 39104.3 9805.7 38% 12.26% 
HLH 31341.0 25729.7 61% 33482.1 43541.0 56% 6.83% 
HHH 48347.8 120960.9 60% 50199.2 181440.3 59% 3.83% 
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3.6.1 The Impact of the Deadhead Coefficient Policy 

The simulation result for the impact of Θ on the normalized profit during the middle two weeks 

period is shown in Figure 3.5 for the case of low load density. Since the profit is normalized by 

the static optimal solution (which is usually an unrealistic benchmark), small ratios do not 

necessarily indicate a low performance of the policy (this will be discussed in the next section).  

Since the normalized profit is insensitive does not show a remarkably different behavior to the 

choice of Θ with-and-without lateness, we first present the obtained results for the test problems 

with lateness allowed and then point out the differences if delay is not permissible. As a general 

observation, the policy produces a lower normalized profit if lateness is not allowed. Figure 3.5 

comprises 4 charts that can be interpreted as follows.  

! Fig. 3.5, Chart (a): Low service radius-Low trip length-Low load density (LLL) 

      Seen from chart (a), a properly tuned deadhead coefficient policy can obtain 80% of static 

optimal profit with 72 hrs KW. We also observe that the profit is sensitive around the best 

value of Θ but the sensitivity declines by extending the KW. For example, shifting from the 

best Θ of 0.8 to a value of 0.6 when lateness is allowed decreases the normalized profit by 

9 percentage points (from 68% to 59%) for the smallest KW while it only drops by 8 and 5 

percentage points for larger KWs. 

! Fig. 3.5, charts (b): Low service radius-High trip length-Low load density (LHL)  

      A properly tuned deadhead coefficient policy of Θ=0.6, yields the highest profit 

independent of the KW and the lateness option. The obtained normalized profit is the best 

across all combinations with low load density (almost 90% with KW=72hrs). The profit is 

less sensitive around the best value of Θ when the knowledge window is longer than 24hrs. 

Thus, under this setting, the choice of Θ becomes more important when KW is limited to 
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one day. For the no lateness option, it is more crucial to obtain loads information beyond 

the next day (under Θ=0.6, the improvement is 16 percentage points, from 73% to 89%). 

! Fig. 3.5, charts (c): High service radius-Low trip length-Low load density (HLL) 

      Unlike the previous combinations, the best Θ value (resulting in the highest profit) depends 

on KW and is identical for the no lateness option.  The best Θ values for 24, 48, and 72hrs 

advance load information are 0.4, 0.6, and 0.8, respectively. This intuition can be explained 

by looking at the problem from the dispatcher’s point of view. Given that the carrier is 

operating in a large service area, the dispatching policy typically needs to be less 

conservative to become more profitable when the KW is shorter. The lower level of 

conservatism helps the carrier to improve load acceptance by taking more risk. Although a 

smaller Θ is recommended for a shorter KW, the profit will drop remarkably if the selected 

value is too small (e.g., Θ=0.2). The main reason is that most loads are short (low revenue) 

so taking more risk does not necessarily lead to a higher profit.  

! Fig. 3.5, charts (d): High service radius-High trip length-Low load density (HHL) 

      Similar to the HLL combination, the Θ value that produces the highest normalized profit 

depends on the KW. Using the same approach, the dispatching policy needs to be more 

optimistic in order to gain more profit when KW becomes smaller. However, unlike the 

HLL combination, a low value of Θ (e.g., 0.2 or 0) still produces a high profit for short KW 

(e.g., 24hrs) because the dispatching policy tends to be less conservative (smaller Θ) 

compared to the HLL setting in which a majority of loads are low revenue.  
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               Figure 3.5. Simulation results for combinations with low load density 

Figure 3.6 depicts the simulation results on the normalized profit for the case of high load 

density. The charts of this figure are interpreted as follows. 

! Fig. 3.6, chart (a): Low service radius-Low trip length-How load density (LLH) 

If chart (a) of Figure 3.5 is compared to chart (a) of Figure 3.6, it is easy to explain why a 

smaller Θ (Θ=0.4) yields a higher normalized profit. A less conservative dispatching policy 

makes more profitable choices because the number of incoming loads is higher in the 

current combination. In the case of no lateness option, the dispatching policy tends to be 

more conservative because the loads cannot be served even if they are one minute late. 

! Fig. 3.6, chart (b): Low service radius-High trip length-How load density (LHH) 

The normalized profit is insensitive to Θ in the range of 0.4-0.8 regardless of the size of the 

knowledge window and lateness option. This can be explained from the fact that even if the 

dispatching policy’s level of conservatism leads to different loads selection, there are 
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enough high revenue loads to make almost the same amount of profit. This argument is 

also valid when the service radius is high (Fig. 3.5, chart (d)). 

! Fig. 3.6, chart (c): High service radius-Low trip length-High load density (HLH) 

The best Θ value (resulting in the highest profit) depends on KW.  The best Θ values for 

24, 48, and 72hrs advance load information are 0.4, 0.6, and 0.8, respectively. Under this 

setting, the decision maker with the shorter knowledge window should select a less 

conservative policy to make more profitable decisions. 

 

 
Figure 3.6. Simulation results for combinations with high load density 

We have examined the performance of the algorithm under a variety of network settings. It is 

interesting to consider which of the settings often seen in practice. TRANSCORE conducted a 

carrier benchmark survey on more than 600 for-hire trucking companies in 2011 

(www.transcore.com). The majority of surveyed companies (66%) were small companies with 

fewer than 6 trucks. The average trip length reported was about 900 miles with an average of 

slightly less than 3 loads per truck per week. The reported characteristic is very close to the LHL 
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network setting examined in our simulation study. Thus, it is fair to state that the Pure-Θ Policy 

can produce quality solutions (almost 90% of static optimal solution) for a practical 

transportation network setting.  

3.6.2 The Benefit of Advance Load Information 

The benefit of advance load information is briefly discussed under the best choice of Θ. Figure 

3.7a illustrates the normalized profit for all combinations with low load density. As explained 

earlier, the coding represents radius of service, trip length, and load density, respectively. For 

example LLL-24 is where all factors have low values and only first-day load information is 

available. Some interesting insights can be drawn from this figure. First, the Pure-Θ Policy often 

performs better when lateness is allowed. Second, the majority of benefit is gained by acquiring 

the second-day load information. Although access to the third-day load information yields much 

smaller marginal benefits, it is still worthwhile when the majority of loads are short because it 

helps the carrier to select more profitable sequence(s) of short loads. However, this small benefit 

disappears when most loads are high revenue. Finally, access to the second-day load information 

becomes crucial when the carrier operates in a larger service area (i.e., larger radius of service). 

This is because only one-day advance load information is not enough for the dispatcher to 

position the trucks in a vast area and thus many profitable loads might be lost. 

The normalized profit for all combinations with high load density is shown in Figure 3.7b. 

Similar results are obtained from these test problems.  At first glance, we can observe that the 

policy is often more effective when lateness is allowed. There is a benefit from getting advance 

load information, however, the margin of benefit decreases as KW increases to the third-day load 

information. Moreover, similar to the low-density case, the second-day load information is very 

important for carriers that operate in a larger service area. Finally, for carriers that operate in a 

smaller service area, the benefit of ALI is larger when the majority of loads are short. One 
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possible explanation is that advance load information in such a setting provides a higher level of 

flexibility for the dispatcher to select and determine a sequence(s) of loads. 

Figure 3.7. Normalized profit with the best choice of ΘΘΘΘ 

Based on the evaluation of the Pure-Θ Policy, we observed its very good performance for one of the 

most practical transportation settings. For some less practical settings, as mentioned earlier, low 

optimality ratios cannot be considered with certainty as a low performance of the Pure

Thus, we take the following two steps for additional analysis. First, the enhanced version of the Pure

Policy is developed based on a widely used approach in the DVRPs literature. Second, the Pure

Policy and its enhanced version are numerically compared with two other dispatching methods to 

provide a better understanding of their efficiency.  
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referred to as sampling method) is a widely used approach for incorporating common features of 

solutions to create a good plan (Pillac et al., 2011). 

Bent and Van Hentenryck (2004) proposed the multiple scenario approach (MSA) for 

partially dynamic vehicle routing problems with stochastic demands. Experimental results show 

a dramatic improvement compared with the approaches not using stochastic demand information. 

Ichoua et al. (2006) also proposed a solution method for a dynamic stochastic vehicle routing 

problem with time windows (VRPTW). Their proposed method, which extended the parallel 

Tabu search by Gendreau et al. (1999), benefits from stochastic knowledge of future demand.  

Hvattum et al. (2006) studied dynamic stochastic vehicle routing problems with time 

windows. Minimizations of the total traveling distance and the number of used vehicles were 

considered as the objective functions. They developed a deterministic model for the VRPTW and 

then extended it to a two-stage stochastic one. Since computing the expected recourse function is 

extremely hard, a sampling approach called hedging heuristic was proposed. A recent research in 

the dynamic stochastic context is the study by Schilde et al. (2011). They analyzed a daily 

problem arising in the Austrian Red Cross. The problem of serving patients between their home 

and hospital was modeled as dial-a-ride with the expected return transport. To solve the problem, 

they proposed four variants of variable neighborhood search. Only two of the proposed meta-

heuristics take the advantage of stochastic demand information.  

Since all the multiple scenario approaches in the literature were used for less than 

truckload problems, the method had to be modified for a proper implementation of our MSA-Θ 

Policy in truckload situations. Among the available approaches in the literature, the hedging 

heuristic by Hvattum et al. (2006) deals with multiple period problems, which are closer to the 

proposed problem in this study. The MSA can improve the deadhead coefficient policy from two 
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aspects: 1) it can suggest a dwelling strategy before returning drivers to the home depot 2) it can 

virtually extend the knowledge window of the dispatcher by generating multiple scenarios. 

At each decision epoch, based on the predefined knowledge window, new load(s) may 

enter into the system. Since the dispatcher does not have any information about the loads’ 

arrivals after the KW, a number of scenarios are generated for an interval (referred to as the 

scenario interval) beyond the KW of the dispatcher. These loads are generated based on the 

transportation network characteristics. Since the MSA operates with a number of scenarios, it 

first needs a consensus function to develop a final plan (called the distinguished plan) to be 

implemented at each decision epoch. Second, it should decide whether to keep drivers at the 

delivery location of the last assigned load or return them to the depot. Table 3.6 presents the 

outer loop of the MSA-Θ Policy while Table 3.7 explains how a distinguished plan is formed at 

each decision epoch. 

Table 3.6. The outer loop 

A. At the start of each decision epoch 

a. Take the distinguished plan of the previous interval and freeze the plan up to the 
current time. Then, update the attributes of all loads and trucks.   

b. Add the new loads to the system (i.e., the realized loads during the last interval) 

c. Find the distinguished plan for the current interval by using the MSA sub-procedure 

B. Evaluate the solution during the middle two weeks 
 

Based on the abovementioned points, the MSA has different parameters, which should be set 

carefully for achieving a quality solution. These parameters are 1) the number of generated 

scenarios (ω) at each decision epoch, 2) the backhaul (deadhead) coefficient (Θ), 3) scenario 

interval (δ), 4) acceptance threshold (Ψ), and 5) waiting threshold (Φ). The first parameter is self 

explanatory and the second one is the deadhead coefficient discussed as introducing the Pure-Θ 

Policy. The acceptance threshold (Ψ) is a measure to determine frequently accepted loads in the 

ω scenarios. A load is considered frequently accepted if the number of scenarios where the load 
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is accepted, among all scenarios, is greater than or equal to Ψ. The scenario interval (δ) is the 

time interval after the KW for which the algorithm generates future loads (called stochastic 

loads).  Finally, waiting threshold (Φ) is used to decide whether a truck should wait or return to 

the depot after serving the last load of the sequence. In a single scenario, scheduling a truck to 

serve a stochastic load (as the last load) is a direct indication that waiting for future loads is 

justifiable. Thus in all ω scenarios, one can count the number of scenarios that waiting is 

recommended for a truck. If this frequency is larger than the waiting threshold (Φ), the 

recommendation for that truck is to wait. The waiting decision can be changed at the next 

decision epoch.  

Table 3.7. The MSA-ΘΘΘΘ sub-procedure 

1. Generate ω sample scenarios beyond the KW for the next δ intervals. Each sample scenario 
includes known loads which are within KW and the stochastic loads that come after the KW. 

2. Develop a preliminary plan by repeating the following for all generated scenarios. 

2.1.  Call the Gorubi solver to optimize the mathematical model for the sample scenarios. 

2.2. For  i :=1 to number of available trucks, repeat the following: 

2.2.1.  Find a load that appears the most as the first load of truck i while disregarding the 
ones that have been already placed. If the relative frequency of the selected load is 

greater than or equal to the acceptance threshold (Ψ), the truck i sequence is formed by 
scheduling that load at the first stop of that truck.  

2.2.2. The process of constructing the truck i sequence continues by finding the subsequent 
loads using a similar approach. While forming the truck i sequence, a load is served 
through the depot only if the majority of solutions in the pool support such a decision. It 
is also checked that the formed truck sequence does not violate the allowable number of 
hours that a truck driver can be away from the depot.      

3. Generate the distinguished plan from the preliminary one. For each truck, count the number of 
scenarios where waiting is reasonable for a truck. If this number is larger than the waiting 

threshold (Φ), the recommendation is to wait. 

3.1.  If stochastic loads are scheduled after a known load, this suggests waiting at the delivery   
location of the known load. 

3.2. If stochastic loads are scheduled at the beginning of a truck sequence, this means that 
nothing is assigned to the truck and so it waits at the delivery location of the load currently 
being served (if it is moving loaded) or at its current location.  

3.3. Stochastic loads are removed from the truck’s sequence to form the distinguished plan  
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The preliminary numerical experiments reveal that increasing the number of scenarios slightly 

above 25 (e.g., 30 or 40) is not statistically helpful to improve the accuracy of the algorithm. 

Based on this observation, we set the number of scenarios equal to 25 and tune the other 

parameters as follows. The values 0.2, 0.5, and 0.8 are considered for each parameter Φ, Ψ, and 

Θ. These parameters were chosen (from the range of 0 to 1) because the preliminary experiments 

showed that the algorithm is insensitive within ±0.1 of the selected values. The scenario interval 

(δ) is set to one, two, and three days. Although the number of parameters was reduced to only 

four factors with a few levels, the resulting 81 combinations is still large. In order to overcome 

this issue, we use the idea of orthogonal array in Taguchi method (Taguchi and Yokoyama, 

1994). This method is a statistical tool which helps us not only to identify the importance of each 

parameter but also suggests which combination of parameters result in a higher performance 

without checking all possibilities. Using Taguchi method, the parameters of MSA are set by 

checking only nine setting combinations (L9 design). The parameters’ values (Φ=0.5, Ψ=0.5, 

Θ=0.8) consistently result in higher performance of the algorithm across different combinations. 

However, the best choice of scenario interval (δ) depends on how much load information is 

available at the time of decision making. The δ value decreases when the KW increases, so the 

values are one, two, and three days for 72hrs, 48hrs, and 24hrs KWs, respectively.  

3.7.2 Comparison with Other Policies 

The proposed policies (Pure-ΘΘΘΘ and MSA-ΘΘΘΘ) are compared with two other dispatching methods. 

The first one is rooted in practice and used by small trucking companies (called a practical 

policy). The second one is only based on the multiple scenario approach and statistically 

independent of Θ Θ Θ Θ value (called Pure MSA). Given the distinct features of our problem when 
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compared to other problems reported in the literature (e.g., returning trucks back home on a 

regular basis), there are limited appropriate policies available. 

Practical Policy (PP): The steps of this policy are developed according to the Operations and 

Traffic Department of Logikor Company (introduced earlier). The details of this algorithm are 

depicted in Table 3.8. This process is often a manual task in small trucking companies. The 

dispatcher starts with a truck with the lowest remaining service hours. Then, the loads are 

visualized on a map and a sequence with the largest positive contribution is assigned to the truck. 

Although this is a manual process, we improve it by checking all feasible sequences (this is not a 

computational drawback because of the small number of new loads at each decision time). 

Finally, the process continues for the remaining trucks. The contribution of each truck is 

computed based on the earned revenue, moving cost (either empty or loaded), lateness cost, and 

dwelling cost. Moreover, in order to reduce the attractiveness of isolated locations, a portion of 

the average empty movement cost from the delivery location of the last load to other pickup 

locations is deducted from the truck contribution. This portion is almost half of the overall 

average cost to avoid overestimating the potential cost of the next empty movement. This is to 

hedge against possible empty movement cost as a result of choosing a particular load.  

Table 3.8. The Steps of the Practical Policy 

A. At the start of each decision epoch 

a. Sort the trucks in ascending order of their remaining service hours 

b. Sort the available new loads in ascending order of their pickup times and put them in a set 

called ℵ 

c. Repeat the following for each truck 

c.1. Create all feasible load sequences 

c.2. Calculate the truck contribution for feasible sequences. If there is no sequence 
with positive contribution, move to the next truck; otherwise go to step c.3 

c.3. Schedule the truck to serve a sequence with the largest contribution 

c.4. Update the set ℵ by removing the currently assigned loads 

B. Evaluate the solution during the middle two weeks 
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Pure MSA: This policy is developed according to the main concept of the Pure-ΘΘΘΘ Policy (in 

Section 2) where the Θ Θ Θ Θ coefficient only applies to the cost of the last movement. As we have 

observed in the previous section, the impact is remarkable in case of practical advance load 

information (e.g., 3 days). However, it is evident that sufficiently large advance load information 

lowers the Θ Θ Θ Θ impact with regard to cost of other movements. After conducting statistical tests, it 

was observed that the Θ Θ Θ Θ impact becomes insignificant if the scenario interval (δ) is set to at least 

10 days regardless of the ALI choice. Despite the computational deficiency (because of a long 

scenario interval), the solution quality of the Pure MSA can be viewed as a proper benchmark. 

The other parameters of this policy are tuned with aid of the same previous approach (Taguchi 

method): ω=50, Φ=0.5, and Ψ=0.5.  

As mentioned earlier, the Pure-Θ Policy performs slightly better when lateness is allowed. 

Thus, we considered combinations without the lateness option to provide sterner test of our 

proposed methods. Table 3.9 provides information on CPU time and normalized profit (ratio of 

optimality) for all four dispatching policies under different network settings. Some interesting 

and intuitive results can be obtained by comparing the Pure-ΘΘΘΘ Policy with the MSA-ΘΘΘΘ Policy. 

First, the benefit of scenario generation becomes more important when the dispatcher knowledge 

window is limited. Thus, with only one-day load information, the MSA-Θ Policy yields a higher 

normalized profit than the Pure-Θ Policy in almost all factor combinations. Next, while it is true 

that CPU time increases dramatically compared to the Pure-Θ Policy, the solution times at each 

decision epoch are still less than one minute. Finally, the impact of scenario generation 

disappears when load density is high, most loads are long, and more than one day ALI is 

available. It is easy to see that in such a good market, the Pure-Θ Policy brings the same benefit 

but much faster. Table 3.9 also shows that, in comparison to the PP, our Pure-Θ Policy yields 
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consistently superior solutions; beyond 24 hours of ALI, this marginal of superiority is 

particularly substantial. The Pure MSA Policy is just marginally superior to the MSA-Θ Policy: 

an average of only 1.2 percentage points with ALI=24.  However, as the table also shows, the 

small improvement in solution quality comes at a significant computational price. This reinforces 

the earlier observation that our proposed policies represent a better tradeoff between solution 

quality and run time.  Thus, whether compared to what occurs in practice (the PP) or to a more 

sophisticated model grounded in the scientific literature (i.e., the Pure MSA Policy), it is clear 

that the policies we have proposed are very competitive alternatives.   

Table 3.9.  The proposed policies versus the Practical Policy (PP) and the Pure MSA 

KW: 24 hrs Ratio of Optimality CPU Time (Sec) at  Each Decision Epoch 

CODE Pure-ΘΘΘΘ  MSA-ΘΘΘΘ  PP Pure MSA Pure-ΘΘΘΘ  MSA-ΘΘΘΘ  PP Pure MSA 

LLL 47.9% 52.4% 33.2% 52.6% 0.01 6.0 <0.01 120.4 
HLL 18.7% 26.3% 16.4% 28.6% 0.01 6.2 <0.01 119.0 
HHL 25.3% 31.1% 25.0% 33.9% 0.02 6.5 <0.01 150.4 
LHL 73.3% 81.2% 64.1% 82.4% 0.02 6.4 <0.01 124.4 
LLH 60.8% 66.1% 43.0% 66.4% 0.04 23.1 <0.01 396.1 
HHH 22.3% 32.9% 16.7% 33.4% 0.08 24.7 <0.01 482.1 
HLH 42.2% 45.2% 28.5% 46.3% 0.05 24.2 <0.01 486.2 
LHH 73.1% 76.3% 64.7% 77.3% 0.05 23.4 <0.01 397.5 

Average 45.4% 51.4% 36.4% 52.6% 0.04 15.1 <0.01 284.5 
KW: 48 hrs Ratio of Optimality CPU Time (Sec) at  Each Decision Epoch 

LLL 64.4% 69.6% 36.5% 69.7% 0.02 5.9 <0.01 132.5 
HLL 62.8% 69.8% 41.9% 71.1% 0.03 6.0 <0.01 126.1 
HHL 74.2% 79.5% 58.9% 79.8% 0.03 6.3 <0.01 157.2 
LHL 89.0% 91.8% 69.5% 92.3% 0.03 6.1 <0.01 137.3 
LLH 72.4% 74.6% 48.6% 75.1% 0.06 20.1 <0.01 397.3 
HHH 64.9% 64.9% 50.8% 65.2% 0.11 21.6 <0.01 498.6 
HLH 63.3% 64.8% 53.5% 64.8% 0.08 21.2 <0.01 488.4 
LHH 81.2% 81.2% 69.4% 81.5% 0.06 21.1 <0.01 402.9 

Average 71.5% 74.5% 53.7% 74.9% 0.05 13.5 <0.01 292.5 
KW: 72 hrs Ratio of Optimality CPU Time (Sec) at  Each Decision Epoch 

LLL 65.4% 71.2% 40.6% 71.5% 0.03 5.7 <0.01 143.9 
HLL 63.5% 70.4% 42.2% 70.7% 0.05 5.7 <0.01 137.6 
HHL 74.3% 79.7% 59.1% 80.0% 0.06 5.9 <0.01 160.9 
LHL 89.4% 91.8% 69.9% 92.3% 0.05 5.8 <0.01 144.0 
LLH 74.8% 77.1% 48.9% 77.2% 0.13 17.5 <0.01 404.4 
HHH 66.0% 66.0% 54.2% 66.2% 0.29 19.9 <0.01 510.4 
HLH 64.0% 64.9% 53.9% 65.3% 0.21 19.3 <0.01 501.1 
LHH 82.5% 82.5% 71.6% 82.9% 0.17 18.2 <0.01 414.0 

Average 72.5% 75.5% 55.1% 75.8% 0.12 12.3 <0.01 302.0 
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3.8. Conclusion and Future Research Directions 

There are many research studies on long haul transportation dispatching rules that did not 

address the requirement of drivers and trucks to regularly return to their domiciles. This 

overestimates the capacity of the transportation network. Moreover, the majority of them assume 

that all loads information is available in advance. Thus, many of these models are not suitable to 

be implemented in a dynamic context. One contribution of this study is that it develops a 

comprehensive two-index MIP model that is flexible enough to include many operational details 

and can be implemented in a dynamic environment by using a rolling horizon approach. The 

two-index MIP is more efficient compared to existing general three-index models in the 

literature. Using the characteristics of the problem at the preprocessing stage along with the two-

index MIP enables us to find the optimal solution of the static problem for small trucking 

companies.  

Another contribution of this research is to develop a policy that can help carriers improve 

their razor-thin profit. To achieve this goal, a simple policy (deadhead coefficient policy/Pure-Θ 

Policy) was proposed and its performance evaluated under a wide variety of network settings 

through the simulation study. Although the static optimal solution is not a realistic bound, it is 

used as a benchmark to normalize the obtained profit of the Pure-Θ Policy. The policy performs 

the best (almost 90% of static optimal solution) in one of the practical transportation network 

settings when the second-day load information is available, regardless of whether the lateness 

option is in effect.  

Finally, we incorporated the idea of a multiple scenario approach in hedging heuristic by 

Hvattum et al. (2006) to improve the Pure-Θ Policy. The MSA-Θ Policy has a more noticeably 

higher solution quality when the knowledge window is limited. The average ratio of optimality 

improves from 45.4% to 51.4% when only the next day load information is available. The 
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margin of benefit will decrease as the dispatcher knowledge window increases. Moreover, the 

possible benefit can disappear if a carrier operates in a good market with more than one day ALI. 

Also, the Pure-Θ Policy and MSA-Θ Policy were compared against two other policies (namely a 

Practical Policy and the Pure MSA). The numerical experiments show that our proposed policies 

are competitive dispatching alternatives in terms of solution quality and computational 

efficiency.  

In practice, the home depot is usually close to the area with more demands (loads). Since 

there is one home depot in our simulation study and loads are uniformly generated within the 

area of service, it is a reasonable assumption to consider the location of the depot at the center. 

Finding the optimum location of depot is beyond the scope of this work and can be viewed as a 

future research direction. Another possible research direction is to address information 

uncertainty since loads information (e.g., pick-up time or cancellation) may change even after it 

is received by the carrier. Issues such as truck breakdowns and accidents can also be considered 

by relaxing the assumption of constant traveling time. Eventually, designing efficient dispatching 

policies to handle large trucking companies with a few hundred trucks and drivers can be viewed 

as other interesting extensions. 
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4.1. Introduction 

In the trucking industry, many freight transportation service providers (also known as carriers) 

face highly variable demands from clients as well as other challenging issues reported by the 

American Trucking Associations (ATA, 2014). The tight US regulations on hours of services 

followed by driver shortage and high driver turnover are among the most important concerns. 

These challenges along with the rise in operational cost (e.g., driver wage) and market 

fluctuations have forced many small trucking companies to file for bankruptcy, e.g., in the first 

quarter of 2014, 390 carriers with 10,650 tractors went out of business. The Ontario Trucking 

Association also reports that Canadians face similar concerns (http://ontruck.org/). 

To survive in this environment, carriers are continuously investigating various strategies to 

improve their operational efficiency. One of the major and indisputable operational issues is 

empty repositioning of the assets (Crainic, 2000; Wieberneit, 2008; Özener et al., 2011). The 

statistics on empty repositioning signal sub-optimal operational efficiency in the trucking 

industry.  For example, empty mile as a percent of total miles are 22% for reefer fleets, 27.5% 

for private fleet flatbeds, and 21% for bulk operations in the US 

(http://www.logisticsmgmt.com). A similar issue reported by Barla et al. (2010) is that one in 

every three heavy trucks on major Canadian highways travels empty. Given the size of North 

America’s trucking industry, empty repositioning costs carriers over a hundred billion dollars 

annually (Ergun et al., 2007a).    

It is important to keep in mind that eliminating empty repositioning is rarely a fruitful quest 

since there are several empty repositioning determinants that are not under the full control of 

managers (e.g., geographic imbalance, market conditions, hours of service rules, trip length of 

loads). There are also some other potential factors (e.g., fleet size) over which managerial 

influence is limited, at least in the short run (Repoussis and Tarantilis, 2010).  In such 
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circumstances, collaboration and information sharing among logistic participants is viewed as an 

attractive alternative. Sharing advance load information (ALI) is considered because one of the 

least costly methods when freight transportation service clients and carriers collaborate with each 

other is to communicate timely load information (from clients to carriers) and pickup and 

delivery plans (from carriers to clients). The potential benefits of ALI were examined in a few 

research studies (e.g., Tjokroamidjojo et al., 2006; Zolfagharinia and Haughton, 2014) in the 

truckload context. 

Apart from ALI, there are some other strategies that can help carriers improve operational 

efficiency. One of these strategies is diversion capability, which was first defined by Regan et al. 

(1995) as the dispatcher capability to divert an empty moving vehicle to serve a newly arising 

request for shipment delivery. Several studies indicate the potential benefit of diversion 

capability in the context of vehicle routing problems, VRPs (Ichoua et al., 2006; Branchini et al., 

2009; Klundert et al., 2010; Respen et al., 2014, Ferrucci and Bock, 2015). However, with the 

exception of Regan et al. (1998), we are not aware of any other study that investigates this 

strategy in the context of the truckload trucking industry.  

Another key strategy is to set an appropriate decision interval; i.e., the duration between 

time points at which the dispatcher makes the core operational decisions aimed at serving 

shipment requests (e.g., deciding which vehicle will serve a given request).  A longer interval 

(i.e., lower decision frequency) means delaying the decisions to account for additional 

information on loads to be delivered.  However, this benefit of more informed decisions comes at 

the detriment of newly arrived loads waiting longer to be taken into account. Most studies in the 

VRPs literature consider a continuous decision interval, triggered by a new load arrival, (Ichoua 

et al., 2006; Jaillet and Wanger, 2006; Branchini et al., 2009; Respen et al., 2014). An exception 

is Klundert et al. (2010) who discussed the possible benefit of extending the decision interval to 
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one minute instead of every 30 seconds. Still, to the best of our knowledge, no study investigates 

the potential benefit of choosing an appropriate decision interval on the performance measure of 

a carrier. 

Our present study to address this gap and several other gaps in the research literature is 

inspired by a low asset-based third party logistics provider (3PL) located in Ontario, Canada. 

They have a few drivers and tractors that operate in a relatively small geographic area. The next-

day load information is often collected until late evening and the dispatching decision is made 

daily. The decision is whether to handle new loads using their own trucks or outsource them to 

other carriers. This problem is a pick-up and delivery with full truckload (DPDFL) in which load 

requests are realized as time progresses (i.e., dynamic nature). The primary goal of this study is 

to simultaneously investigate how a carrier’s performance is affected by the above-mentioned 

three strategy factors: ALI, diversion capability and decision interval. A contribution of jointly 

studying multiple strategies over which a carrier has some control is to extend the scope of 

analysis beyond solely ALI. To achieve that goal, we focus on three key points. We first develop 

a mixed integer programming model that is flexible enough to properly handle the problem’s 

dynamic aspects. Second, an efficient algorithm based on time-window discretization is 

developed and its convergence to optimality is proven. This algorithm is helpful for solving the 

problem’s much larger static version: the version in which the carrier has advance information on 

all loads in the planning horizon of interest (e.g., a one-month horizon). Finally, we examine the 

impact of potential factors including the aforementioned strategies. For the purpose of this 

chapter, we define the term policy to mean any combination of the three strategy factors of 

interest here. 

The rest of this article is organized as follows. In section 4.2, we review the related research 

works to position the current study in relation to the existing literature and to present its novelty. 
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Section 4.3 is devoted to defining the problem, stating its underlying assumptions, and formulating 

the proposed problem. In section 4.4, we explain how a special case of the problem formulation is 

used to develop an efficient algorithm for the static version. The major focus of section 4.5 is on 

dynamic implementation of the model, designing the experiments, solving the test problems, and 

conducting the statistical analysis. In section 4.6, we first evaluate the performance of the proposed 

algorithm (to obtain the benchmark solution) for the static version under different network settings. 

Then, multiple policies are compared against each other based on their deviation from the benchmark 

solution. This comparison helps us to draw valuable managerial insights. Finally, in section 4.7, we 

conclude our work and propose interesting future research directions.  

4.2. Literature Review 

In this section, the related studies are reviewed and classified based on the important features. 

Although the proposed problem is a truckload case, we also consider less-than-truckload studies 

that consider or test at least one of the following factors: advance load information, diversion 

capability, or decision interval. 

4.2.1 Advance Load Information (ALI)/Knowledge Window (KW) 

The dispatcher’s KW is defined as how much advance notice the dispatcher has about relevant 

particulars on clients’ loads (shipment requests); e.g., earliest and latest pick-up time.  That is, 

the KW increases when the client of transportation services communicates load information 

further in advance of when loads are available for pick-up. A few studies have investigated the 

importance of ALI. The study by Powell (1996) proposed a stochastic dynamic load assignment 

problem formulation. He showed that when some stochastic information about future demand is 

available, the proposed model outperforms the deterministic one, which is updated as new 

information arrives.  The model was evaluated under three conditions: fleet size, demand 

uncertainty and ALI. Not surprisingly, the stochastic model is superior with more fleet density, 

higher uncertainty but not with more ALI. 
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Mitrović-Minić et al. (2004) developed a double-horizon heuristic algorithm for the same-

day dynamic pick-up delivery problems with time windows. The heuristic solved the problem 

with short-term (minimizing total distance) and long-term goals (efficiently serving future 

requests). The benefit of ALI was found to be positive but smaller for larger instances. Also, 

Jaillet and Wanger (2006) addressed the benefit of advance information for two variations of the 

traveling salesman problem. By defining the notion of disclosure dates for incoming requests, 

they analytically showed how ALI helps to improve competitive ratios. 

Recently, the studies by Tjokroamidjojo et al. (2006) and Zolfagharinia and Haughton 

(2014) evaluated the benefit of ALI. Zolfagharinia and Haughton (2014) extended the earlier 

study by accounting for the requirement that drivers must regularly return to their home base. 

They found that the majority of profit improvement is attainable from acquiring the second-day 

load information. 

4.2.2.Diversion Capability  

As mentioned earlier, truck diversion is a model capability of changing the immediate 

destination of an empty truck (not a loaded one) to serve a new request. Regan et al. (1998) 

developed a dynamic framework to simulate the operations of small trucking companies. They 

evaluated the performance of relatively easy-to-implement and fast heuristics in truckload 

operations. The combinations of three load acceptance rules, eight assignment rules, and two 

modification strategies (including diversion capability) were taken into account. The authors 

found significant profit improvement from diversion capability. However, incorporating simple 

heuristic rules might not take full advantage of available information and result in myopic 

decisions. In their model, Zolfagharinia and Haughton (2014) incorporated the diversion 

capability but did not investigate its benefit. Even though we are not aware of any other work 
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considering diversion capability in truckload transportation, there are multiple studies in the 

literature on vehicle routing problems, which are briefly reviewed below. 

 Ichoua et al. (2006) addressed a pick-up (or delivery) problem with courier service 

applications. The customers should be served within their time windows where service delay is 

also acceptable but penalized.  The objective was to minimize the distance and lateness costs. By 

incorporating a diversion option as a dynamic rule, Ichoua et al. (2006) enhanced the Tabu 

search algorithm that Gendreau et al. (1999) developed. They found, through numerical 

experiments, that diversion capability can reduce the cost by 4.3%.       

Branchini et al. (2009) consider a real-life Brazilian transportation problem with a 

relatively low level of dynamism where 60% to 80% of requests are known before the day starts.  

The objective was to maximize profit (revenue – cost of traveling – lateness cost). They 

developed three heuristics (Nearest Neighbor, Best Insertion, and Granular Local Search) and 

included diversion capability along with two other strategies. They found that the diversion 

reduces travel distances and customer rejection. However, the improvement in profit is not very 

significant.       

The impact of diversion capability on the traveling salesman problem (TSP) was 

investigated by Klundert et al. (2010).  Their work was inspired by the largest service 

organizations in the Netherlands.  Their problem was different from the traditional TSP in the 

sense that requests materialize as time progresses and customers are mobile (e.g., leased cars). 

Their analyses reveal that the diversion of salespersons can improve the system responsiveness 

by an average of 20% (measured as the customer’s average waiting time for receiving service). 

In a more recent study, Respen et al. (2014) evaluated the impact of vehicle tracking devices on 

the performance of VRPs with soft time windows and dynamic traveling times. The obtained 

results show significant reductions in total travel time and lateness.     
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As previously noted, there could be some advantages in operational flexibility through 

diversion. However, the benefit depends on the measure of performance and the structure of the 

problem. The margin of benefit is quite important because of the potential diversion drawbacks 

(Ferrucci and Bock, 2015). For one thing, technical devices must be installed for 

communications between drivers and the dispatcher(s).  Moreover, because drivers may need to 

react quickly (e.g., sudden lane switch on a highway) and must deal with the visual distraction of 

using devices such as the truck’s navigating system, there is an ever-present risk of driver errors 

that can cause road accidents (Young and Salmon, 2012; Stavrinos et al, 2013). 

4.2.3.Decision Interval 

For conformity with the literature, the decision interval (defined in section 4.1) is taken here to 

be synonymous with the re-optimization interval since the objective at each decision time is 

optimize dispatch operations in light of new information since the previous decision time. In 

some studies, dispatching decisions (e.g., load-vehicle assignments) are triggered when a new 

request enters the system. Because the times of those entries are dynamic, the decision times are 

not known in advance (this is called the continuous decision case).  Other studies assume that the 

decision times are predefined (the discrete case). The discrete case is often seen in the truckload 

context (Powell , 1987;  Powell et al., 1988; Powell, 1996; Powell et al., 2000; Godfery and 

Powell , 2002; Tjokroamidjojo et al., 2006; Zolfagharinia and Haughton, 2014; Zolfagharinia 

and Haughton, forthcoming). This helps carriers to receive more inputs before taking action 

about the requests.  In the discrete case, the observed decision interval ranges between four hours 

(Godfery and Powell, 2002) to daily decisions (e.g., Tjokroamidjojo et al., 2006). However, the 

existing works in the truckload literature neither explain their choice of discrete decision interval 

nor investigate its impact on carriers’ efficiency. The present work fills that gap in the extant 

literature. 
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4.2.4.Research Contributions 

To highlight the other novel aspects of this work, we carefully point out the limitations of 

relevant works in the truckload literature (Powell, 1987; Powell et al., 1988; Powell, 1996; 

Regan et al., 1998; Yang et al., 1998; Powell et al., 2000; Godfery and Powell, 2002; Yang et al., 

2004; Tjokroamidjojo et al., 2006; Zolfagharinia and Haughton, 2014). Table 4.1 highlights the 

key features within this body of works in order to cast a clear light on the features that represent 

sources of novelty for the present work.  A concise and informative picture of this body of work 

now follows as a preamble to clarifying the novelty of our contributions. 

As Table 4.1 shows, a very persistent feature for works on truckload (TL) problems is the 

use of tour capability; i.e., designing continuous truckload routes. We incorporated this in our 

choice of modeling approach because it is well known to be particularly important for the type of 

TL carrier operation we study: small trucking operations within relatively small geographic 

regions (i.e., unlike large nationwide or international carrier operations for which the average 

time to serve a load is very long: two to four days).  Prominent in the stream of the literature on 

the large carrier context are works by Powell and colleagues who simplified the problem to 

different versions of assignment problems.  Relevant works in the literature stream on small TL 

carrier operations include Regan et al. (1998) who developed heuristic rules for the continuous 

decision case defined earlier. Other studies in this latter stream used mixed integer programming 

to formulate the problem and a rolling horizon approach for implementation (Yang et al, 1998; 

Yang et al, 2004; Tjokroamidjojo et al., 2006; Zolfagharinia and Haughton, 2014). 

As noted in subsection 4.2.2 on diversion capability, the work by Regan et al. (1998) relied 

only on heuristic rules. The major concern is that simple heuristic rules do not take full 

advantage of available information and may lead to myopic decisions. The defined problem was 

the same in the studies by Yang et al. (1998, 2004). The objective was to minimize the total cost 
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(including delay, empty and loaded movement, and load rejection costs). However, the very 

important cost of vehicle dwelling (waiting at the pick-up location for a load) was not part of 

their model. Another limitation of their model is that it does not consider any subcontracting 

option, which is a very common practice in reality. 

Tjokroamidjojo et al. (2006) addressed a full truckload pickup and delivery problem in 

which the carrier’s total cost was taken into account. They also investigated how much a trucking 

company can reduce cost by obtaining additional information further in advance. However, their 

proposed mathematical model was subject to some limitations. For example, their method was 

unsuitable if delay is permissible. Moreover, diversion was not part of the model and the 

decision interval was set as daily (without testing its potential impact). Compared to the work by 

Zolfagharinia and Haughton (2014), the problem in this study is simpler because its focus on 

local truckload operations means that it need not consider the issue of regularly returning drivers 

to their home depot.  Nonetheless, we develop an efficient algorithm that can be extended to 

solve more general cases like Zolfagharinia and Haughton (2014). Summarizing the limitation of 

related studies, we can put the contributions of this chapter in three broad categories: 

! We developed a flexible mixed integer programming formulation to model the dynamic 

pickup and delivery problem faced by a real-world logistics provider. The special case of 

the model (no lateness allowed) is reformulated using integer programming. 

! To provide a quality benchmark solution, we developed an efficient algorithm using the 

idea of time window discretization (introduced by Wang and Regan, 2002). We proved that 

the algorithm converges to the optimal total cost and test its computational efficiency.   

! We uncovered managerial insights through a comprehensive simulation study. To the best 

of our knowledge, this is the first study to examine the impact of diversion capability and 

re-optimization interval in the presence of different levels of ALI. Moreover, this study 

assesses how different policies deviate from the benchmark solution. 



11
5 

 

A
u

th
o

r(
s)

 
a

n
d

 p
u

b
li

ca
ti

o
n

 y
ea

r 
P

ro
b

le
m

 
T

y
p

e 
T

o
u

r 
C

a
p

a
b

il
it

y
 

D
em

a
n

d
 

P
ro

b
. 

In
fo

rm
a

ti
o

n
 

O
b

je
ct

iv
e 

F
u

n
ct

io
n

 
M

o
d

el
in

g
 

A
p

p
ro

a
ch

 

D
iv

er
si

o
n

 
D

ec
is

io
n

 
In

te
rv

a
l 

T
h

e 
B

en
ef

it
 

o
f 

 A
L

I 
S

u
b

- 
co

n
tr

a
ct

 
In

cl
u

d
ed

 
T

es
te

d
 

P
o

w
el

l 
 (

1
9

8
7
) 

T
L

 
X

 
√ 

M
ax

. 
P

ro
fi

t 
S

F
 

X
 

X
 

D
is

cr
et

e,
 

2
4

h
rs

 
X

 
X

 

P
o

w
el

l 
et

 a
l.

 (
1

9
8

8
) 

T
L

 
X

 
X

 
M

ax
. 

P
ro

fi
t 

S
F

 
X

 
X

 
D

is
cr

et
e,

 
6

h
rs

 
X

 
X

 

P
o

w
el

l 
 (

1
9

9
6
) 

T
L

 
X

 
√ 

M
ax

. 
P

ro
fi

t 
S

F
 

X
 

X
 

D
is

cr
et

e,
 

2
4

h
rs

 
√ 

X
 

R
eg

an
 e

t 
al

. 
(1

9
9

8
) 

T
L

 
√ 

X
 

M
ax

. 
P

ro
fi

t 
H

eu
ri

st
ic

 R
u
le

s 
√ 

√ 
C

o
n
t.

 
X

 
X

 

Y
an

g
 e

t 
al

. 
(1

9
9

8
) 

T
L

 
√ 

X
 

M
in

. 
C

o
st

 
M

IP
 

√ 
X

 
C

o
n
t.

 
X

 
X

 

G
o

d
fe

ry
 a

n
d

 P
o

w
el

l 
 

(2
0

0
2

) 
T

L
 

X
 

X
 

M
ax

. 
P

ro
fi

t 
A

D
P

 
X

 
X

 
D

is
cr

et
e,

 
4

h
rs

 
X

 
X

 

M
it

ro
v
ić

-M
in

ić
 e

t 
al

. 
(2

0
0
4

) 
V

R
P

 
√ 

X
 

M
in

. 
T

o
ta

l 
D

is
ta

n
ce

 
T

ab
u
 S

ea
rc

h
 

X
 

X
 

D
is

cr
et

e,
 

1
5

m
in

 
√ 

X
 

Y
an

g
 e

t 
al

. 
(2

0
0

4
) 

T
L

 
√ 

√ 
M

in
. 

C
o

st
 

M
IP

  
√ 

X
 

C
o

n
t.

 
X

 
X

 

Ja
il

le
t 

an
d

 W
an

g
er

 (
2

0
0

6
) 

T
S

P
 

√ 
X

 
M

in
. 

C
o

st
 

H
eu

ri
st

ic
 R

u
le

s 
X

 
X

 
C

o
n
t.

 
√ 

X
 

Ic
h
o

u
a 

et
 a

l.
  

(2
0

0
6
) 

D
V

R
P

T
W

 
√ 

X
 

M
in

. 
C

o
st

 
T

ab
u
 S

ea
rc

h
 

√ 
√ 

C
o

n
t.

 
X

 
X

 

T
jo

k
ro

am
id

jo
jo

 e
t 

al
. 

(2
0

0
6

) 
T

L
 

√ 
X

 
M

in
. 

C
o

st
 

IP
 

X
 

X
 

D
is

cr
et

e,
 

2
4

h
rs

 
√ 

√ 

B
ra

n
ch

in
i 

et
 a

l.
 (

2
0

0
9
) 

D
V

R
P

T
W

 
√ 

√ 
M

ax
. 

P
ro

fi
t 

H
eu

ri
st

ic
 R

u
le

s 
√ 

√ 
C

o
n
t.

 
X

 
X

 

K
lu

n
d

er
t 

et
 a

l.
 (

2
0

1
0

) 
T

S
P

 
√ 

X
 

M
ax

. 
R

es
p

o
n
si

v
en

es
s 

IP
 

√ 
√ 

D
is

cr
et

e,
 

3
0

 &
 6

0
S

ec
. 

X
 

X
 

R
es

p
en

 e
t 

al
. 

(2
0

1
4

) 
D

V
R

P
T

W
 

√ 
X

 
M

in
. 

T
ra

v
el

 T
im

e 
&

 
L

at
en

es
s 

H
eu

ri
st

ic
 R

u
le

s 
√ 

√ 
C

o
n
t.

 
X

 
X

 

Z
o

lf
ag

h
ar

in
ia

 a
n
d

 
H

au
g
h
to

n
 (

2
0

1
4

) 
T

L
 

√ 
X

 
M

ax
. 

P
ro

fi
t 

M
IP

 
√ 

X
 

D
is

cr
et

e,
 

1
2

h
rs

 
√ 

X
 

F
er

ru
cc

i 
an

d
 B

o
ck

 
(2

0
1
5

) 
D

V
R

P
 

√ 
X

 
M

ax
. 

R
es

p
o

n
si

v
en

es
s 

T
ab

u
 S

ea
rc

h
 

√ 
√ 

D
is

cr
et

e,
 

2
0

S
ec

. 
X

 
X

 

T
h
e 

p
re

se
n
t 

st
u
d

y
 

T
L

 
√ 

X
 

M
in

. 
C

o
st

 
IP

 a
n
d

 M
IP

 
√ 

√ 
D

is
cr

et
e,

 
1

2
 &

 2
4

h
rs

 
√ 

√ 

N
o
te

: 
T

L
=

T
ru

ck
lo

ad
; 

T
S

P
=

T
ra

v
el

in
g
 S

al
es

m
an

 P
ro

b
le

m
; 

D
V

R
P

T
W

=
D

yn
am

ic
 V

eh
ic

le
 R

o
u
ti

n
g
 P

ro
b

le
m

 w
it

h
 T

im
e 

W
in

d
o

w
s 

  
  

  
  

  
 A

D
P

=
A

d
o

p
ti

v
e 

D
y
n
am

ic
 P

ro
g
ra

m
m

in
g

 

  
  

  
  

  
 I

P
: 
In

te
g
er

 P
ro

g
ra

m
m

in
g

; 
M

IP
=

M
ix

ed
 I

n
te

g
er

 P
ro

g
ra

m
m

in
g

 
  

  
  

  
  
 S

F
: S

to
ch

as
ti

c 
F

o
rm

u
la

ti
o

n
 

T
a
b

le
 4

.1
. 
S

u
m

m
a
ri

zi
n

g
 t

h
e 

m
o
st

 r
el

a
te

d
 s

tu
d

ie
s 

to
 t

h
e 

cu
rr

en
t 

st
u

d
y
 

 



116 
 

4.3..Problem Definition 

The dynamic pickup and delivery with full truckload (DPDFL) problem under study is defined 

by the following assumptions: 

! The carrier has a fixed fleet of trucks. 

! Each truck can handle one load at a time (i.e., full truckload transportation). 

! The carrier knows of customers’ demands (loads) gradually as time elapses. 

! It adopts the literature’s standard assumption that each trip is executed without a break. 

! Each truck’s attributes are current location and status. 

! Each load has static attributes (the earliest and latest pickup time, the maximum 

permissible delay time, the pickup location, and the delivery location) and dynamic 

attributes (e.g., load has been previously accepted and waiting to be served by one of the 

company-owned trucks). 

! The shipment cost is a linear function of travel time which itself is a linear function of 

distance.  

! There is a hard time-window to serve a load. Thus, a load will be subcontracted if it 

cannot be served within the predefined time window. 

Taking all the aforementioned assumptions into account, the optimal DPDFL solution specifies 

the carrier’s cost minimization decisions concerning (i) whether to serve new loads using 

available trucks or subcontract them, and (ii) the sequence of accepted loads that should be 

served by each truck.  

4.3.1.Common Mathematical Models 

There are two common ways to formulate a DPDFL problem. The first approach uses an 

extended version of the assignment problem (e.g., assignment with timing constraints) to exploit 

the problem’s characteristics. This is the most common approach in the literature (see Yang et al. 

1998; Powell et al., 2000; Yang et al., 2004; Tjokroamidjojo et al., 2006; Zolfagharinia and 
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Haughton, 2014). In the second approach, the problem can be formulated as a variant of 

capacitated arc routing problems (CARP) in which each directed arc represents one load with 

designated origin and destination. A recent work by Liu et al. (2010a, b) proposed an integer-

programming model to formulate CARP for truckload industries and a quality lower bound. 

They also developed a heuristic method based on graph theory to solve the proposed model since 

the exact method is incapable of handling large problem instances. However, they captured 

neither time windows nor the fleet size of the transportation network for fulfilling demands.  

Comparing both approaches in the literature, the former is shown to be more promising to 

use because the dimensionality of the model grows quickly in the latter case. Among the related 

studies, the one by Tjokroamidjojo et al. (2006) used an effective approach to handle DPDFL. 

The utilized approach consists of two parts, a preprocessing part for time-based restrictions and 

an assignment problem afterwards. Since time-window restrictions are explicitly handled outside 

the mathematical model, the approach performs well by reducing the number of constraints and 

decision variables. Although our approach is similar to Tjokroamidjojo et al. (2006), we must 

handle some of the time-based constraints inside the MIP because most of the loads and trucks 

attributes are determined after solving the model (Zolfagharinia and Haughton, 2014). 

4.3.2. The Model Inputs 

The notations, parameters, and decision variables used in formulating the proposed model are 

presented below.  

Notations: 

I    set of trucks, indexed by i, and u=1,…, |I| 

J    set of loads, indexed by j, k, and r=1,…, |J| 

L   set of dummy loads, indexed by j, k, and r= |J|+1,…, |J|+|I| 
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Parameters: 

ηi :  the location of truck i at the time of decision making 

<&: maximum permissible delay for serving load j 

aj:  departure city of load j (pick up location) 

bj:  destination city of load j (delivery location) 

*(. , . ): travel time between any two points in the service area. It can be described as 

function of distance. 

αj: the earliest availability of load j 

sj: cost of subcontracting load j 

5: the empty traveling cost per hour of driving 

7: the penalty cost per hour for a truck being idle at any load location (dwelling cost) 

6: the penalty cost per hour for late pickup 

H: a very large positive number. 

8: time at the decision epoch 

Decision Variable: 

K0=: if truck i serves load k directly at the first stop, 1 otherwise 0.   

A&=: if load k is served immediately after load j, 1 otherwise 0.   

Ñ0=: if load k is served by truck i after another load, 1 otherwise 0. 

D=: arrival time at the pickup location of load k 

 
The real-time location of each truck is important at each decision epoch because of the problem’s 

dynamic nature. If the current location of truck i is denoted with 90, *(90, :) shows the traveling 

time from the current location of truck i to the location q. Dwell time is the waiting time 

experienced by a driver/truck if the truck must wait at any city location to pick up the next load. 

Although we consider the same dwell cost for all locations in this study, the model is flexible 

enough to address varying dwelling costs across locations.  

To acknowledge dynamic features of the problem, we first define TST(i) as the status of 

truck i at the decision epoch τ. TST(i) can take two values 1 and -1 meaning truck i is moving 
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loaded or empty (either moving empty or idle at any city location) respectively.  If truck i is 

moving loaded (i.e., TST(i)=1) at the time of decision making (e.g., serving load j), it will be 

available at the later time, 8 +*(90, b&) at the destination location of load j (i.e., the diversion is 

not allowed if a truck is moving loaded).  

If a truck is empty, TST(i)=-1, then truck i is available for scheduling at time τ at its 

current location. There is also a need to keep track of load status which is denoted with LST(j). 

There are four possible load statuses. If load j is being served at the decision epoch, LST(j) is 

equal to 2. The other loads which were already served by company-owned trucks (i.e., LST(j) 

=0). The loads which are accepted but have not received service yet (i.e., LST(j) =1) enter the 

model. In order to distinguish new loads from the current ones (i.e., the loads being served, 

LST(j) =2, or waiting to be served, LST(j) =1), their statuses will be LST(j) =3. We also define 

ST(i,j) as a binary parameter to address the status of the truck and load together. If truck i is 

serving load j at the decision time, then ST(i,j) takes 1, otherwise 0.   

To distinguish between pre-planning and diversion strategies, a parameter v(j) is defined at 

the preprocessing stage. If an empty truck (e.g., truck i) is moving toward the pickup location of 

a load (e.g., load j), the pre-planning strategy freezes the assignment of load j to truck i (i.e., if 

the assignment of load j is fixed to truck i, v(j)=i otherwise v(j)=0). This feature will be 

incorporated in the proposed mathematical model. 

4.3.3.Preprocessing Stage 

As mentioned in section 4.3.1, we tackle the static version of the problem in two stages. The first 

stage is preprocessing. This stage consists of two phases. In the first phase, we show how to 

compute the necessary pieces of information. Then, in the second phase, we explain how the 

generated information is used to solve the proposed mathematical model.   
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 4.3.3.1.Preprocessing Stage: Phase I 

At each decision epoch, trucks and loads have different attributes. Based on their current 

statuses, the dwelling and lateness duration can be computed. The lateness can occur in two 

situations: i) truck i serves load j as the first load; ii) a truck serves load k after load j. 

DL0(>, '): the lateness duration at the load pickup location j if truck i serves load j first. 

For,	TST(>) = −1, DL0(>, ')=ÜMá	+0, D+η-, a%. + 8 − α%.. If the truck is moving loaded, TST(>) = 1, 

toward the destination of a load (e.g., load k), DL0(>, ') = ÜMá+0, 8 + D(η-, b2) + D+b2, a%. − α%..  

DL1(', 5): the minimum lateness at the load pickup location k if the same truck serves load 

k immediately after load j.  Load k will experience some lateness if there is not enough time to 

reach the pickup location of load k immediately after serving load j. This is denoted with 

DL1(', 5) = ÜMá	 60, 6α% + D+a%, b%. + D+b%, a2.7 − α27.					 

To some extent similar to what is explained for calculating lateness time, truck dwelling 

might occur in following cases: i) truck i serves load j as the first load, ii) a truck serves load k 

after load j, iii) truck dwell time after delivery of the last assigned load, and iv) dwell time if the 

truck is not assigned to any load. 

DW0(>, '): the dwell time at the load pickup location j if truck i serves load j first in the 

current decision epoch. For empty trucks,	TST(>) = −1, DW0(>, ') = ÜMá	 60, α% − (8 + D+90, a%.7. 

If truck i is moving loaded toward the destination of load k at the current decision epoch, similar 

reasoning leads to dwell time being DW0(>, ') = ÜMá	 â0, α% − 68 + D(90, b2) + D+b2, a%.7ä in 

which 8 + D(90, b2) is when truck i is available after completing the service of load k.  

DW1(', 5): the minimum dwell time of a truck at the pickup location of load k if it comes 

directly after serving load  j, DW1(', 5) = ÜMá	 â0, α2 − 6α% + <% + D+a%, b%. + D+b%, a2.7ä.  
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It is important to note that all the calculated minimum values (e.g., DW1(', 5);) turn to actual 

values if no lateness is allowed. This means that the exact lateness and dwell times can be 

computed in the pre-processing stage under this assumption. 

4.3.3.2.Preprocessing Stage: Phase II 

In this phase, the following two tasks are performed: 1) updating all dynamic attributes of trucks 

(e.g., current truck location) and loads (e.g., a load is waiting to be served or being served), and 

2) identifying infeasible truck-load and load-load combinations. Since the first task is 

straightforward, only the last function of the preprocessing stage is discussed here.  

Given the current status of the trucks, we determine whether a particular truck can serve a 

certain load. This must be done for all available truck-load combinations. It is obvious that 

certain truck-load combinations are not feasible if the truck cannot be available at the pickup 

location of the load without violating the maximum delay. Thus, the following modifications are 

applied to the decision variables: K0& = 0		if		DL0(>, ') > <%. 

Similar to what is done for truck-load combinations; we examine the feasibility of serving 

load k immediately after load j. Here, the best-case scenario for load-load combinations is 

determined. The best possible case is if load j is served on time so that no delay is carried toward 

serving load k. It is evident that load k cannot be served after load j when there is not enough 

time for the truck to be at the load k pick-up location without violating its time window. Thus, 

the following adjustments are done because if a load-load combination is not feasible in the best-

case scenario, it cannot be feasible at all (i.e., if			DL1(', 5) > <=	then	A&= = 0).	On the other hand, 

if the minimum lateness is smaller than or equal to the maximum allowable delay of <=, the 

combination is not conclusively infeasible. This is extremely important because the decision at 

this stage is made based on the minimum lateness, but not the actual lateness. Therefore, 

considering different possible assignment decisions, some load combinations with DL1(', 5) ≤
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<=	 might be infeasible after solving the problem. This illustrates why we need to have time 

components in the mathematical model. 

4.3.4. Mathematical Model 

Having defined all parameters and dynamic aspects of the model in the preprocessing stage, it is 

time to formulate the conceptual model. Before formulating the proposed model, the two 

following points should be addressed.  

First, it is important to check which loads enter the model and their notations. As defined 

earlier, J represents the set of all loads entered in the model. However, we are required to 

differentiate them in order to have a neat mathematical formulation. To do so, the set of new 

loads is denoted with # ̅(LST(j) =3), the set of accepted jobs waiting for service, # ̿(LST(j) =1), and 

the set of jobs being served at the decision epoch, #G (LST(j) =2). Thus, # = #	̅⋃	#	̿⋃	#G.  

Second, we introduce a simple concept to calculate the dwelling cost that a truck 

experiences. Since the mathematical model is re-optimized during the knowledge window, a 

truck may incur dwell costs before picking up loads, after serving all the assigned loads, or when 

it is not assigned to any load. The approach is to introduce one dummy load for each available 

truck. These loads have zero trip length (i.e., *+a&, b&. = 0, ' ∈ $). It is also assumed that the 

driving distance from the delivery location of all loads to the pickup location of these dummy 

loads is zero (i.e., *+b&, a=. = 0, ' ∈ # and 5 ∈ $). Moreover, the earliest pickup time of these 

loads are the same and equal to the predefined knowledge window (i.e., )= = 8 + òô, 5 ∈ $). 

Finally, in the second phase of the pre-processing stage, the possibility of serving dummy loads 

before any other load will be excluded (i.e., they must be served at the end of each truck 

sequence). Introducing dummy loads aids in calculating dwelling cost by only including the time 

that a truck has to wait for a load to become available (either an actual load or a dummy one). 

Having the parameters and decision variables defined, the model is then formulated as follows. 
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öõ:n>3		6 L ÜMá	(0, D= − )=)

=∈(P	H⋃P)̿

+ 7 L ÜMá	(0, )= − D=)

=∈(P	H⋃P⋃̿	ú)

+L ù=
=∈P	H

î1 −L(K0= + Ñ0=)
0OQ

ï

+ 5 L L *(90, a2)

=OP	H⋃P̿0OQ,UVU(0)[a9

K0= + 5L L L *+;%, a2.

=OP	H⋃P̿&∈PG,VU(0,&)[90OQ

K0=

+ 5 L L *+b%, a2.

&OP	H⋃P̿

A&=	

=OP	H⋃P̿

																																																																																																	(4.1) 

Subject to: 

L(K0= + Ñ0=)
0OQ

≤ 1,												5e#	̅																																																																																																																										(4.2) 

L(K0= + Ñ0=)
0OQ

= 1,												5e# ̿ ∪ $																																																																																																																			(4.3) 

K0= = 1,																																	> ∈ !, 5 ∈ #,̿ û(5) = >																																																																																											(4.4) 

L K0=
=OP	H⋃P∪̿ú

= 1,																						> ∈ !																																																																																																																								(4.5) 

L 	A&=
=∈P	H∪P⋃̿ú

− ]LK0&
0∈Q

+ L A^&
^∈P	H∪P̿

_ = 0,																				. ' ∈ # ̅ ∪ #	̿																																																																	(4.6) 

Ñ0& + K0& + L (Ñë= + Kë=)
ëOQ,ëí0

≤ 2 − A&=,														> ∈ !, . ', 5 ∈ # ̅ ∪ # ̿ ∪ $																																															(4.7) 

L 	A&=
&∈P	H∪P̿

−LÑ0= = 0
0OQ

,																																												5 ∈ # ̅ ∪ # ̿ ∪ $																																																															(4.8) 

D= − *+a&, b&. − *+b&, a=. −ÜMá+D&, α&. ≥ +A&= − 1.k,													', 5 ∈ # ̅ ∪ # ̿ ∪ $																															(4.9) 

D= − *+a&, b&. − *+b&, a=. − ÜMá+D&, α&. ≤ +1 − A&=.k,												', 5 ∈ # ̅ ∪ # ̿ ∪ $																												(4.10) 

D= −L L R8 + *+90, ;&. + *+;&, M=.SK0= −
&OPG,VU(0,&)[90OQ

L X8 + *(90, M=)Y
0OQ,UVU(0)[a9

K0= 

≥ iLK0=
0OQ

− 1jk,							5 ∈ # ̅ ∪ # ̿ ∪ $									(4.11) 

D= −L L R8 + *+90, ;&. + *+;&, M=.SK0= −
&OPG,VU(0,&)[90OQ

L X8 + *(90, M=)Y
0OQ,UVU(0)[a9

K0= 
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≤ i1 −LK0=
0OQ

jk,				5 ∈ # ̅ ∪ # ̿ ∪ $								(4.12) 

D= − )= − <= ≤ 0,																													5 ∈ # ̅ ∪ #	̿																																																																																													(4.13) 

	

The objective function is composed of six terms. The first term computes the lateness cost during 

the interval over which the problem is optimized. Late service occurs when the truck arrives to 

the load’s pick-up location after its availability. This penalty only applies to actual loads and not 

dummy loads. The second term captures total dwelling costs that all trucks experience. This is 

the cost of waiting at the pickup locations of loads (including dummy ones), which can occur 

when a load is either at the beginning of the sequence or after another load. The rest of the 

objective function calculates, respectively, the subcontracting costs and the empty repositioning 

costs (to serve loads with the carrier’s own trucks). 

The mathematical model has twelve constraint sets. The first two sets (4.2 and 4.3) ensure 

that all previous accepted loads (including dummy loads) will be covered, but there is no 

guarantee to take all new loads by company-owned trucks. Constraints (4.4) are preplanning 

restrictions to prevent trucks diversion. Constraint set (4.5) forces trucks to serve exactly one 

load at the beginning of a sequence. If the first load is dummy load for a truck, the decision for 

that truck is to wait. The next set of constraints (4.6) ensures that if load k is served after load j, 

load j is either scheduled to be the first load or placed after another load r. The constraints (4.7) 

ensure that load k can be scheduled after load j if they are visited by the same truck. The 

constraints (4.8) guarantee that a load is not scheduled at the beginning of a sequence if it is 

served after another load. Altogether, constraints (4.9)–(4.12) ensure that D= does not take on an 

unrealistically large or small value to prevent dwelling or lateness costs. Constraints (4.9) and 

(4.10) apply when a truck is serving one load after another load directly while constraints (4.11) 

and (4.12) are for the case of a truck serving a load at the beginning of a sequence. Finally, 
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constraints (4.13) guarantee that all accepted loads are served within <= hours from their earliest 

availabilities. 

4.3.5 Special Case: No Lateness is allowed 

If no lateness is allowed, the mathematical model can be simplified by taking time-based 

constraints into the pre-processing stage. Keskinocak and Tayur (1998) used the same method 

for an Aircraft scheduling problem when the exact departure times should be met. This method 

was also utilized by Tjokroamidjojo et al. (2006) in the truckload trucking industry.  

In this special case, constraints (4.9) to (4.13) are checked in the pre-processing stage and 

therefore eliminated from the mathematical model. Moreover, there should be a small 

modification in the objective function. This modification includes omitting the second term of 

the objective function (lateness cost) and replacing the total dwell costs by the following terms: 

7L L DW0(>, 5)K0=
&OP	H ⋃P⋃̿ú

	
0∈Q

+ 7 L L DW1(', 5)

=OP	H⋃P⋃̿ú

A&=
&OP	H ⋃P̿

																																																									(4.14) 

4.4. Developing a Benchmark 

In this section, we propose an efficient method that can handle medium sized problems. This 

method helps us to gauge the efficiency of different policies compared to the lowest attainable 

cost where all information is available to the decision maker. This method is based on time 

windows partitioning. We adopt the idea of time window discretization, which was proposed by 

Wang and Regan (2002). They broke down time windows into several parts and treated each part 

as a sub-load. Our method is different in the sense that it breaks the time windows into several 

time points where each load can be only handled at one of those time points. Our approach is 

more efficient because it allows us to use the formulation of the special case (i.e., no lateness 

option). 
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4.4.1 Discretization of Time Windows 

If truck i serves a load (e.g., load k), one of the following cases will occur. In the first case, the 

truck reaches load k earlier than )= so it must wait. It is evident that the load is handled as soon 

as it becomes available. In the other case, the truck arrives at the pickup location of load k 

between )= and )= + <=. In this case, if the time window is modified to two single points (i.e., )= 

and )= + <=), the truck can handle the load at those times only. 

LEMMA 1. If l≥w, the adjustment of pickup time to )= + <= will never reduce the minimum 

total cost. 

PROOF.  It is enough to show that for any arbitrary feasible solution of the original problem, the 

time adjustment to )= + <= never reduces the total cost. Thus, for any arbitrary feasible solution 

of the original problem, we are required to check the impact of this adjustment on the current 

load (e.g., load k) and all the subsequent load(s). Regardless of the pickup location and time 

windows of the next load, this adjustment simply increases the lateness cost of the current load 

by 6 × X)= + ü= − O2Y. Without partitioning the time windows, if there is another load scheduled 

after load k (e.g., load r), there are only two possible scenarios.  

1- The truck arrives at load r before the load availability:  D° = D2 + D(a2, b2) + D(b2, a°) < )^ 

Without any adjustment, the truck must wait for )^ − D°. If the truck picks up load k at a later 

time (i.e., )= + ü=), it will spend less time waiting to pick up load r. The maximum saving on 

the dwell cost is equal to 7 × X)= + ü= − D=Y. Since lateness cost is greater than or equal to 

dwell cost, the maximum possible saving is never greater than the cost increment.  

2- The truck arrives at load r after its earliest availability, but without violating its  maximum 

permissible delay: α° ≤ O° = D2 + D(a2, b2) + D(b2, a°) ≤ α° + <^	

    Since α= + ü= ≥ O2, applying the adjustment will result in one of following situations:  
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2.1. It may make scheduling of load r after load k infeasible (i.e., O° > )° + <^), thus 

excluding some of the feasible solutions will never lower the total cost. 

2.2. Serving load r after load k may be feasible, but it inflates the lateness cost by 6 × X)= +

ü= − D2Y. 

Using the same approach, it is evident that this adjustment will never reduce the total cost for 

subsequent loads that can be scheduled after load r. Thus, the adjustment of pickup time to 

)= + <= will never reduce the minimum total cost. �  

COROLLARY 1. If l<w, replacing the lateness cost by the dwell cost and adjusting the pickup 

time to )= + ü= will never reduce the minimum total cost. 

PROOF.  Follows from Lemma 1 and a simple property that replacement of the lateness cost by 

a larger value will never reduce the minimum total cost. The property is very trivial because for 

every dispatching decision with the lateness cost adjustment (> l), there exists a dispatching 

decision with a lower or equal total cost with the original l value. �  

Since the adjustment of pickup times to )= + ü= makes the problem over-constrained 

(because it might eliminate some of the feasible load combinations), we denote the minimum 

total cost with Zover. If l≥w, Zover is obtained after the pickup time adjustment to )= + ü=; 

otherwise we first replace l with w and then make the pickup time adjustment. Thus, based on 

Lemma 1 and Corollary 1, Zover ≥ Zopt. 

LEMMA 2. If l≥w, the pickup time is set to )= will never increase the minimum total cost. 

PROOF.  It is sufficient to show that for any arbitrary feasible solution of the original problem, 

the time adjustment to )= never increases the total cost. Thus, for any arbitrary feasible solution 

of the original problem, we have to check the impact of the adjustment on the current load (e.g., 

load k) and the all the subsequent load(s). Regardless of the pickup location and time windows of 
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the next load, this adjustment simply reduces the lateness cost of the current load by 6 × XO2 −

)=Y. Without partitioning of time windows, if there is another load scheduled after load k (e.g., 

load r), only one of the following two scenarios will happen.  

1- The truck arrives at load r before the load availability:  D^ = D2 + D(a2, b2) + D(b2, a°) < )^  

Without any adjustment, the truck must wait for )^ − D^. If the truck picks up load k earlier as 

the result of adjustment (i.e., )=), it will spend more time waiting to handle load r. The 

maximum cost increment on the dwell cost is equal to 7 × XD= − )=Y. Since l≥w, the achieved 

saving is greater than the maximum cost increment.  

2- The truck arrives at load r after its earliest availability, but without violating the maximum 

permissible delay:  α° ≤ D^ = D2 + D(a2, b2) + D(b2, a°) ≤ α° + <^	

Given the amount of lateness at loads r and k before the adjustment, there are only two possible 

scenarios.  

2.1. The lateness at load r is greater than or equal to the lateness at load k: XD= − )=Y ≤ X)^ −

D^Y. This means that the adjustment of reducing the lateness at load r will drop by XD= − )=Y. 

2.2. The lateness at load r is less than the lateness at load k: XD= − )=Y > X)^ − D^Y. In this 

circumstance, the entire lateness at load r is eliminated. However, it increases the dwell time 

by the difference of the lateness amounts. Based on the assumption of l≥w, this cost 

increment never exceeds the already obtained saving (6 × XO2 − )=Y). 

Following the same approach, it is evident that this adjustment does not increase the cost of 

serving subsequent loads that are scheduled after load r. Therefore, under no circumstance will 

this adjustment increase the minimum total cost. �  

COROLLARY 2. If l<w, replacing the dwell cost by the lateness cost and then adjustment of 

pickup time to )= will never increase the minimum total cost. 
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PROOF.  The proof is similar to Corollary 1 proof.  It follows from Lemma 2 and a trivial 

property that replacement of the dwell cost by a smaller value will never increase the minimum 

total cost. �  

Since the adjustment of pickup times to )= makes the problem under-constrained 

(because it might include some of the infeasible load combinations), we denote the minimum 

total cost with Zunder. If l≥w, Zunder is obtained after the pickup time adjustment to )=; otherwise 

we first replace w with l and then apply the pickup time adjustment. Hence, Zunder ≤ Zopt 

according to Lemma 2 and Corollary 2. 

4.4.2. Discretization Scheme of Time Windows 

Generally, the larger time window results in a larger gap between Zunder and Zover. Thus, one can 

use an iterative algorithm to narrow the gap by increasing time points. In the context of our 

proposed problem, Figure 4.1 illustrates how increasing the time points does not guarantee 

reducing the gap between Zunder and Zover (and can even worsen the gap) when time windows are 

partitioned equally. In Figure 4.1 (a) and (b), time windows are partitioned into two and three 

equal intervals (three and four time points), respectively. Assume that because of a high 

subcontracting cost, the lowest total system cost can only be achieved by serving both loads 

using the available truck at city 2. If the time window of load k is partitioned to three points 

(Figure 4.1 (a)), it is still feasible to serve load r in the over-constrained problem. However, as 

seen from Figure 4.1 (b), increasing the time points (i.e., shorter but equal intervals) not only 

increases the lateness of load k, but also makes serving load r infeasible. Thus, increasing the 

number of equally spaced time points does not guarantee reducing (or maintaining) the (Zover -

Zunder) gap.  

 

 



130 
 

 

 

                Figure 4.1.  The inefficiency of partitioning time windows into equal intervals 

In order to make sure that increasing the number of time points will never increase the time 

adjustments in under- and over- constrained problems and so reduce (or maintain) the (Zover -

Zunder) gap, the time points from previous integrations are maintained as the iterative algorithm 

runs. The following is our proposed iterative algorithm where Zunder, ∆ and Zover, ∆ are minimum 

total costs for under- and over-constrained problems at iteration ∆. 

Step 1. For the first iteration, ∆=1, the time window of each load is modified into two 

points by using the beginning and end points of the original time window (set of all time 

points are denoted with Ω).   

Step 2. Optimize under- and over-constrained problems and compute Zunder,∆/Zover,∆. If the 

obtained ratio is less than or equal to a specified threshold, the algorithm stops; otherwise 

go to step 3. Since adding time points increases the size of problem, the algorithm can be 

stopped if a predefined solution time is exceeded.    

Step 3. Add one time point to the existing time points of each load from the last iteration 

and update Ω. A new time point is added in a way that the largest available time interval 

breaks into two parts. Return to step 2 after updating Ω. 

LEMMA 3. In the proposed iterative algorithm, the ratio of Zunder,∆/Zover,∆ converges to one as 

the number of iterations grows. 
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PROOF. We prove this lemma with the aid of mathematical induction.  

∆=1: if a truck reaches the pickup location of a load (e.g., load k) within its time window, the 

time adjustment will be )= + ü= and )= in over- and under-constrained problems, respectively. 

As previously noted, the time adjustment in an over-constrained problem is X)= + ü= − D2Y and in 

an under-constrained problem is XD2 − )=Y. 

∆=2: The third point, call it p3, is between )= and )= + ü=. Thus, D2 is either between )= and p3 

or between p3 and )= + ü=. In an over-constrained problem, if )=≤D2≤p3, the time adjustment is 

Xp3 − OkY which is smaller than the time adjustment with ∆=1 (i.e., X)= + ü= − D2Y). Otherwise, 

the time adjustments are the same in both ∆=1 and 2 (i.e., X)= + ü= − D2Y).  Hence, the time 

adjustments do not increase and so Zover,2≤ Zover,1. In an under-constrained problem, if )=≤D2≤p3, 

the time adjustment is XOk − )5Y which is the same as the time adjustment with ∆=1. Otherwise, 

the time adjustment is XOk − p3Y which is smaller than the time adjustment with ∆=1 (i.e., 

XD2 − )=Y). Thus, the time adjustments do not increase and so Zunder,1≤ Zunder,2).  

∆=n, n+1:Using the same approach, it is simple to show that  Zunder,n≤ Zunder, n+1 and Zover,n+1 

≤Zover ,n; Thus, lim∆→¶
ß®©™´¨,∆

ßÕÆ´¨,∆
= 1.  �  

In order to implement the proposed algorithm, the original mathematical model (M1) 

should be modified in an appropriate way (M2) for solving under- and over-constrained 

problems. Thus, K0= and A&= are replaced by K0=
Ø

 and A&=
–Ø, respectively. K0=

Ø takes the value of one if 

truck i serves load k at time point ± at the first stop. Similarly, A&=
–Ø

 becomes one if load k is 

served at time point ± after load j, which was served at time point “ by the same truck.  The 

modified model is presented below. 

öÅ:n>3	6L L LDL0(>, 5, ±)	K0=
Ø

ØOΩ=O(P	H ⋃P)̿

+	
0∈Q

6 L L LLDL1(', 5, “, ±)	A&=
–Ø

–OΩØOΩ=O+P	H ⋃P.̿

	

&O+P	H ⋃P.̿
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+7L L LDW0(>, 5, ±)	K0=
Ø

ØOΩ=O+P	H ⋃P⋃̿ú.

+	
0∈Q

7 L L LLDW1(', 5, “, ±)	A&=
–Ø

–OΩØOΩ=O+P	H ⋃ P⋃̿ú.

	

&O+P	H ⋃ P.̿

 

+L ù=
=∈P	H

]1 −LÑ0= −
0OQ

LL K0=
Ø

ØOΩ0OQ

_ + 5 L L *(90, a2)

=O+P	H ⋃ P.̿0OQ,UVU(0)[a9

L K0=
Ø

ØOΩ

 

+5L L L *+;&, M=.

=O+P	H ⋃P.̿&∈PG,VU(0,&)[90OQ

L K0=
Ø

ØOΩ

+ 5 L L *+b%, a2.LLA&=
–Ø

–OΩØOΩ=O+P	H ⋃P.̿

	

&O+P	H ⋃ P.̿

							(4.15) 

Subject to: 

LLK>5
±

±eΩ0OQ

+LÑ0=
0OQ
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Similar to the original model (M1), the objective function is to minimize the total cost including 

lateness cost, dwell cost, subcontracting cost, and empty repositioning cost. Since time windows 

are converted into time points, the loads can only be handled at some specific times. Thus, the 

model becomes similar to the special case where no lateness is allowed. This means that all 

dwell and lateness times (and associated costs) can be calculated outside the mathematical 

model. Moreover, all time-based constraints are considered at the pre-processing stage. The 
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constraints (4.16-4.22) are similarly defined as constraints (4.2-4.8) of the original model (M1). 

Although discretization of time windows increases the size of problem (e.g., more decision 

variables), the under- and over-constrained problems are integer programming problems that can 

be solved more efficiently by applying the pre-processing stage (numerical illustrations are 

presented in section 4.6). 

4.5. Experimental Design, Implementation, and Analysis 

4.5.1 Factor Selection and Levels 

In this section, we explain how the model’s parameters are generated for use in the numerical 

study to provide useful insights. We observe in recent statistics from the ATA (2013) that the 

truckload market is highly fragmented where almost 90% of the carriers are small with six or 

fewer trucks. The Canadian statistics are very similar to the American ones. Moreover, the 

smaller companies usually suffer more than big companies with sophisticated lane networks. 

Therefore, we concentrate on small companies with six trucks. Trucking companies may operate 

within different service areas; however, it is more likely for smaller trucking companies to 

operate locally. Therefore, our numerical experiments use a radius of 18 driving hours to fittingly 

portray the operating area of local operators (e.g., the low asset-based 3PL company which 

inspired this study). 

Our investigation of the academic literature and empirical reports suggested the potential 

influence of the following factors on a carrier’s operational costs: trip length, load density, and 

subcontracting cost. These factors are usually not easily controlled by trucking companies and 

are often dictated by the market conditions. In such circumstances, trucking companies should 

focus on strategies that are usually under managerial influence. This presents us with the choice 

of three other factors; namely advance load information, diversion capability and re-optimization 

interval. 
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Trip length: measured as travel time between a load’s origin and destination. The test problems 

are generated in two categories called short and long trip-length groups. In the former, the 

majority of loads (80%) are shorter than the radius of service while in the latter the majority 

(80%) of loads are longer than the radius.  

Load density: number of loads entering the system per truck per week. Load density is inversely 

related to the average length of loads (Powell, 1996), which usually ranges between 2 to 2.5 

loads (per truck per week) for large companies with the average load length between two to four 

days. Since this study targets small carriers with shorter trip lengths, load density is studied at 

two levels, 2.5 (low load density) and 5 (high load density) loads per truck per week. 

Subcontracting Costs: subcontracting happens when it is uneconomical or impossible to serve a 

load. The associated cost may have different sources. If the load is subcontracted to another 

carrier, it is often more costly than serving it using company-owned trucks. If the load is 

rejected, lost revenue and loss of goodwill are translated into cost terms (Powell 1996, Yang et 

al., 2004). Similar to the previous studies, we assume the subcontracting cost is explained as a 

linear function of a load’s duration (trip length). Thus, subcontracting longer loads are more 

costly for the company. Two values are selected for subcontracting costs, low of $20/hr and high 

of $80/hr. These values were chosen after conducting preliminary experiments and observing the 

behavior of the model. 

Advance load information (ALI): We consider the low and high ALI/KW values as, 

respectively 24 and 72 hours of advance notice to the carrier about loads.  The low value of 24 

hours is chosen because the trucking industry’s excess capacity and intense competition make 

last-minute calls for transportation services very common.  The choice of 72 hours as the high 

value is based on the rarity of shippers booking loads more than two or three days in advance 
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(Frantzeskakis and Powell, 1990). Thus, experiments on acquiring load information very far in 

advance (e.g., a week or so) will not provide practical managerial insights. 

Diversion capability: Consistent with earlier discussion about the connection between 

preplanning and diversion strategies, we treat diversion as a binary factor.  When the capability 

is on (vehicle diversion is allowed), the dispatcher can change truck-load assignments in 

subsequent decision epochs; when the capability is off, the pre-planning strategy is in effect; i.e., 

all decisions are fixed once they are made. 

Re-optimization Interval (Ropt): this interval determines at what frequency the mathematical 

model should be optimized. As we have noted, this paper adopts the literature’s convention of 

using re-optimization interval and decision interval interchangeably. Though, as demonstrated in 

the literature review, no published study has provided analytical or statistical justifications for its 

choice of a re-optimization interval, the literature still gives some insight on a suitable range of 

intervals to be tested.  Specifically, based on Zolfagharinia and Haughton (2014) who used half a 

day and Tjokroamidjojo et al. (2006) who used one day (but also suggested every other day as a 

possible alternative in future research), we tested two intervals: every 12 hours and every 48 

hours. 

4.5.2 Test Problems and Dynamic Implementation 

Here we explain the particulars of the test problems, the relevant experimental context, and 

deployment of the DPDLF model to generate the output data to be analyzed. Starting with the 

test problems, we covered 320 of them in our numerical experiments.  The 320 resulted from 

testing 5 replicates for each of the resulting 26 factor combinations (two levels for each of the 

abovementioned six factors). Each replicate was a randomly generated instance of the 

experiments’ stochastic conditions (e.g., earliest availability of loads and city locations). 
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In all conducted numerical experiments, it was assumed that there are 50 cities within the 

service area. The number of cities in a transportation network is referred to as network size. 

These potential cities are representative of loads’ origins and destinations. This approach is 

commonly used in the literature. Some authors of past studies consider that the shape of the 

service area is square (e.g., Yang et al. 2004; Özener and Ergun, 2008) while others (e.g., 

Zolfagharinia and Haughton, 2014) assume a circle-shaped area. Similar to the latter studies, we 

consider a circle-shaped area with following parameters: 

! To generate each load, an origin-destination pair is selected randomly from a 50-city 

network. The initial location of trucks is also determined by placing them randomly 

among the 50 cities. 

! Following the common assumption in the literature, hourly dwelling and lateness cost are 

set to be $25 per hour. The maximum lateness is drawn from a discrete uniform 

distribution with maximum of 5 hours. 

! The earliest availability of each load is generated from an exponential distribution in 

which the average inter-arrival time is determined based on load density. 

! The average operating highway speed is used since the majority of cities are connected to 

each other via highways. The average operating speed is set to 55 mph, which is typical 

on US highways (refer to the recent report by the U.S. department of energy, 2011). 

! Fuel cost and driver wages are the major portion of the operational cost. However, there 

are other miscellaneous cost components such as insurance premiums and maintenance. 

Given that we consider dwelling and lateness cost separately, it is reasonable to set the 

operational cost equal to $1.10 per mile. This operational cost is also supported by 

theoretical studies (e.g., Gregory and Powell, 2002) and empirical reports (e.g., 
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TRANSCORE, provider of intelligent transportation systems, survey in 2011 from 600 

small carriers).  

! Consistent with what the research literature has established as an appropriate horizon 

length for truckload operations (e.g., Tjokroamidjojo et al., 2006 and Zolfagharinia and 

Haughton, 2014), we assume a three-week planning horizon. 

We used AIMMS modeling language and Gurobi 5.5 as a solver to run the 320 test problems. 

The whole algorithm was programmed in MATLAB 2012b. As shown in Figure 4.2, the 

algorithm starts with setting ALI/KW and Ropt.  

  

 

 

 

 

 

 

 

 

 
                                 

      Figure 4.2. The detail of the dynamic implementation 

The clock is set equal to zero and the preprocessing engine is called to update the truck and load 

status and exclude infeasible schedules. Then, the loads with status 1, 2, and 3 are entered into 

the model. In other words, the loads that have already been delivered and the ones that are far in 

future (i.e., beyond the knowledge window) are not included in the model. The next step is to 

call the solver to handle the proposed MIP model to optimality. After the model is solved, the 
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obtained schedule is implemented up to the next interval (τ= τ+Ropt) and checked for the 

termination condition (i.e., whether all the loads are considered during the overall planning 

horizon). It is important to note that we have to record all the movement of trucks during the 

planning horizon if diversion of empty trucks is allowed. After the stopping criterion is satisfied, 

a simple algorithm tracks each truck’s cost to compute the system total costs for the middle two 

weeks of the study. 

4.5.3 Statistical Analysis 

After solving all the test problems, we used a linear regression model (comprising the six 

selected factors) to statistically test how the carrier’s cost is impacted by the subset of factors we 

already specified as being under managerial influence: ALI, diversion capability, and the re-

optimization interval. 

The dependent variable is the total cost during the middle two weeks of the planning 

horizon. The effect coding is used for categorical variables to make them appropriate for 

inclusion in the regression model. As the main focus of our study is to examine the impact of 

ALI, diversion capability and re-optimization interval, we control the impact of other factors (i.e. 

trip length, load density, and subcontracting cost). Thus, the control factors are first entered in 

the model (refer to model 1 of Table 4.2). Then, at the next step, ALI, diversion and re-

optimization intervals are entered (model 2 of Table 4.2). The obtained results illustrate that 

slightly less than half of the variation in the total cost is explained by the control factors. 

Furthermore, it indicates that strategy factors (regression model 2) can explain the variations in 

total cost by almost 5% over and above all the control factors. Finally, the statistical output 

reveals the existence of interaction effects (regression model 3).   
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Table 4.2.  The summary of the regression model 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .684a .468 .463 7121.99 

2 .720b .519 .510 6806.90 

3 .741c .549 .523 6711.80 

a. Predictors: (Constant), Subcontracting cost, Density, Length 

b. Predictors: (Constant), All main factors including ALI, Diversion, Re-optimization 

c. Predictors: (Constant), All main factors and two-way interactions of ALI, Diversion 

and Re-optimization with other factors 
 

The details of statistical tests for the third model are depicted in Table 4.3. It shows that all the 

main factors (including control and strategy ones) except diversion are significant at the 5% 

level. The obtained statistical results are intuitive and easily explained for trip length, load 

density, subcontracting cost, and ALI. Not surprisingly, the trip length, load density, and 

subcontracting costs are positively correlated with the total cost. Neither diversion capability nor 

its two-way interactions with other control factors significantly impact the total cost. This 

observation is not consistent with what was found by Ichoua et al. (2006), who showed that 

diversion can improve system performance for vehicle routing problems. One possible 

explanation is the quality of advance load information in our model. Similar to previous works in 

the truckload literature, we assumed that the quality of information is perfect during the 

knowledge window of the dispatcher. For example, if the knowledge window of a dispatcher is 

three days, all load information during the next three days remains constant (i.e., no new loads 

will be realized and none of current loads will be cancelled). This assumption significantly 

reduces the need for truck diversion because no changes occur during the knowledge window.   

Although both ALI and re-optimization interval significantly impact the total cost (more ALI and 

shorter re-optimization intervals reduce total cost), it is more appropriate to interpret their 

significant interactions.  
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Table 4.3.  The detailed statistical results of the regression model 

Model 3 
Standardized Coefficients 

t Sig. 
Beta 

 

(Constant)  200.744 .000 

Length .219 5.673 .000 

Density .480 12.423 .000 

Subcontracting Cost .435 11.258 .000 

ALI -.210 -5.420 .000 

Re-optimization (ROPT) .082 2.109 .036 

Diversion (Di) .008 .208 .835 

ALI* Length -.017 -.450 .653 

ALI* Density -.030 -.788 .431 

ALI* Subcontracting Cost -.085 -2.203 .028 

ROPT * Length -.002 -.058 .954 

ROPT *Density -.023 -.606 .545 

ROPT *Subcontracting Cost .074 1.924 .055 

ROPT *ALI -.122 -3.156 .002 

Di * Length -.015 -.380 .704 

Di * Density .005 .122 .903 

Di * Subcontracting Cost -.003 -.086 .931 

Di *ALI .009 .239 .811 

 

Starting with ALI, the extent to which more ALI reduces total cost (i.e., helps the carrier to 

improve its performance) depends on subcontracting costs.  As Figure 4.3(a) depicts, a carrier 

reaps savings from advance load information as subcontracting cost rises. By the same token, 

ALI becomes less attractive as subcontracting cost falls. The interactions of re-optimization 

intervals with subcontracting cost and ALI have remarkable impacts on the carrier’s cost. Figure 

4.3(b) and (c) helps to explain these impacts. Seen from Figure 4.3(b), the re-optimization 

interval does not make a considerable difference when subcontracting cost is low. However, the 

impact becomes significant when subcontracting cost is large. This result can be explained as 

follows. More frequent re-optimization means greater operational responsiveness by delivering 

more shipments with company-owned trucks instead of incurring the penalty cost of 



 

subcontracting those shipments to other carriers. Thus, the higher that penalty, the larger will be 

the carrier’s costs reductions from being responsive.
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e shipments to other carriers. Thus, the higher that penalty, the larger will be 

the carrier’s costs reductions from being responsive. 

 

Figure 4.3. Significant two-way interaction effects  

Figure 4.3(c) depicts that the impact of the re-optimization interval is highly dependent on how 

much advance load information is available. The longer re-optimization interval is equivalent to 

level of postponement in decision making. Based on the assumptions, once a decision is 

made at a decision epoch, no modification is possible regarding whether to serve load(s) by using 

the company’s trucks or subcontracting. Therefore, on the one hand, postponement can provide 

the dispatcher with more information before decision making. On the other hand, it reduces the 

company’s responsiveness in using its own trucks. When limited advance load information is 

available (e.g. one day), the company’s responsiveness in using its own trucks becomes essential. 
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Thus, the benefit (in terms of cost reduction) from responsiveness outweighs the possible benefit 

of longer intervals (i.e. having additional information). In short, the suggestion is to shorten the 

intervals when access to ALI is limited. The situation alters when more advance load information 

is available (e.g., three days). In such circumstances, the importance of company responsiveness 

in using its own truck reduces since greater gains will come from accessing additional ALI. In 

this case, a longer re-optimization interval leads to lower cost. 

4.6. Comparison with the Benchmark Solutions 

In this section, we pursue three important goals. First, the efficiency of the proposed algorithm 

(in terms of solution quality and run-time) is examined under different network settings. Second, 

with different levels of advance load information, the various carrier policies are compared 

against each other according to their deviations from the proposed benchmark. Although the 

benchmark solution is obtained when all load information is available in advance (and so results 

in unrealistically low total cost), it is still a fair illustration of how much further the obtained 

results might be improved. Finally, to further illustrate the performance of the proposed 

benchmark, we numerically investigate a case where lateness cost is not equal to dwell cost.  

Table 4.4 illustrates the efficiency of the proposed algorithm in two iterations. The first 

column represents each individual combination of controlled factors (i.e. trip length, load 

density, and subcontracting cost). As mentioned earlier, each combination was replicated five 

times and the key information about Zunder,∆, run-time (in seconds), and Zunder,∆/Zover,∆ (ratio) are 

collected for each iteration. As seen from this table, the lowest ratio is 0.9866 and the optimal 

solutions were found for more than half of the replicates in the first iteration. Moreover, the 

second iteration improves the lowest ratio to 0.9967.  The level of load density has direct impact 

on the problem size and the run time. It takes on average 4 seconds to compute Zunder,1 where 

load density is low (i.e., the average number of loads is 51 per test problem) while it takes almost 
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11 seconds in the case of high load density (i.e., the average number of loads is 96). It is evident 

that the proposed algorithm produces a very high quality ratio in a matter of seconds.  

                                    Table 4.4. The performance of the proposed algorithm 

Code 
Iteration ∆=1 Iteration ∆=2 

Zunder,1 CPU (Sec) [Zunder,1/Zover,1] Zunder,2 CPU (Sec) [Zunder,2/Zover,2] 

LLL-1 69301 3.15 1 ---- ---- ---- 

LLL-2 69466 4.51 1 ---- ---- ---- 

LLL-3 70369 3.4 0.9995 70369 5.21 0.9998 

LLL-4 68231 3.71 1 ---- ---- ---- 

LLL-5 71584 7.24 1 ---- ---- ---- 

LLH-1 70918 4.48 1 ---- ---- ---- 

LLH-2 70437 3.25 1 ---- ---- ---- 

LLH-3 71293 3.95 1 ---- ---- ---- 

LLH-4 68931 3.87 1 ---- ---- ---- 

LLH-5 74303 4.12 1 ---- ---- ---- 

LHL-1 65001 7.46 0.9987 65019 12.21 0.9999 

LHL-2 65900 4.57 0.9997 65917 8.7 1 

LHL-3 63816 12.31 1 ---- ---- ---- 

LHL-4 65959 8.46 0.9989 65972 16.21 0.9998 

LHL-5 68068 12.12 0.9979 68118 13.12 0.9996 

LHH-1 73298 17.82 0.9982 73317 18.01 0.9994 

LHH-2 73555 11.68 0.9952 73707 13.73 0.9999 

LHH-3 67898 20.22 0.9995 67898 24.26 1 

LHH-4 72861 9.14 0.9986 72892 12.43 0.9997 

LHH-5 75862 11.45 0.9966 75949 13.56 0.9997 

HLL-1 63459 3.1 1 ---- ---- ---- 

HLL-2 64318 4.84 1 ---- ---- ---- 

HLL-3 62681 4.37 1 ---- ---- ---- 

HLL-4 65480 3.89 1 ---- ---- ---- 

HLL-5 65360 3.51 1 ---- ---- ---- 

HLH-1 65444 3.62 1 ---- ---- ---- 

HLH-2 67207 5.1 1 ---- ---- ---- 

HLH-3 67301 3.29 1 ---- ---- ---- 

HLH-4 66869 3.32 1 ---- ---- ---- 

HLH-5 68784 3.56 1 ---- ---- ---- 

HHL-1 65245 8.09 0.9986 65284 11.87 0.9996 

HHL-2 62241 14.12 1 ---- ---- ---- 

HHL-3 63176 11.5 0.9993 63213 15.32 0.9999 

HHL-4 67890 9.38 0.9937 68200 13.59 0.9993 

HHL-5 63915 11.03 0.9976 63997 13.42 0.9996 

HHH-1 84328 8.86 0.9981 84391 10.31 0.9990 

HHH-2 85638 14.65 0.9996 85641 15.43 0.9998 

HHH-3 87634 8.61 0.9973 87789 13.96 0.9994 

HHH-4 94932 9.41 0.9866 95894 10.81 0.9967 

HHH-5 89239 11.15 0.9867 89385 18.98 0.9994 

      Note: Code=Trip Length-Load Density-Subcontracting Cost 
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To have a clearer understanding of the efficiency of the proposed algorithm, after the 

preprocessing stage, Gurobi 5.5 was used to solve the mathematical model (M1) where all 

information is available in advance. Since it takes a relatively short time (less than 10 minutes) to 

find a value for a LP4 lower bound solution and a feasible solution across the board, we run the 

solver for a much longer period (e.g., three hours) to get a higher quality solution. The best LP 

lower bound solution and the best feasible solution are analogous to under- and over-constrained 

solutions in that they both provide a range that includes the optimal total cost. It is evident that a 

narrower range indicates a higher quality solution. This helps us to provide stronger evidence on 

the efficiency of the proposed algorithm compared to solving the original mathematical model 

(M1).  

Figure 4.4 illustrates two average ratios (named performance ratios) in a radar chart: 1) the 

average ratio of under-constrained to over-constrained solutions in two iterations; 2) the average 

ratio of the best LP lower bound solution to the best feasible solution in a three-hour run time for 

the M1 model. The performance ratio (ranges between 0 and 1) indicates the solution quality of 

the solution method. As also seen from Table 4.4, within a few seconds, the proposed algorithm 

is able to find the optimal solution for more than half of test replicates and a very competitive 

ratio for the rest. However, not surprisingly, the obtained results from solving the M1 model 

indicate a poor performance. Although the average percentage is higher under the HHH setting 

(generally converges faster when the factors take higher values), it is still not acceptable because 

the best LP lower bound solution deviates remarkably from the best feasible solution (e.g., the 

performance ratio can be as low as 0.4). Moreover, it is not efficient at all from the 

computational aspect and so solving model M1 is not considered as a quality benchmark.   

                                                           
4 Linear Programming 
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Figure 4.4. The efficiency of the proposed algorithm based on performance ratios   

Now, we can compare different policies against each other based on their deviation from the 

quality proposed lower bound. These policies are identified with the aid of the statistical analysis 

in Section 5. Both ALI and re-optimization interval have significant impact on the total cost 

while diversion capability does not. Thus, one can define four policies considering different 

levels of advance load information and the re-optimization interval.     

To make the policies comparable under different settings, we focus on their deviation 

from the proposed lower bound. If the optimal solution is found at the first iteration (i.e., 

Zunder,1/Zover,1=1), this solution will be used as a benchmark; otherwise  Zunder,2 will be chosen (the 

fifth column of Table 4.4). This approach does not impact our general conclusion since the ratio 

(Zunder, ∆/Zover, ∆) is very competitive (i.e., close to one). Table 4.5 illustrates the deviation of four 

policies from the proposed benchmark. Applying ANOVA and Student Newman Keuls (SNK) 

tests reveal a significant difference between the average deviations of policies at 5% level. When 

ALI is limited to one day, the choice of an appropriate re-optimization interval (Ropt=12hrs) 

significantly impacts the total cost. This impact is more remarkable when subcontracting is high. 

The deviation drops by 5.74% on average when the model is re-optimized more frequently. 
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Table 4.5. The average deviation of each policy (in percentage) from the benchmark solution 

Code 
% of deviation from the benchmark solution 

ALI=24hrs, 
Ropt=24hrs 

ALI=24hrs, 
Ropt=12hrs 

ALI=72hrs, 
Ropt=24hrs 

ALI=72hrs, 
Ropt=12hrs 

LLL 7.22% 6.03% 4.03% 5.49% 

LLH 16.45% 3.68% 2.97% 2.86% 

LHL 19.34% 16.93% 10.59% 13.95% 

LHH 18.36% 10.50% 6.75% 7.45% 

HLL 15.21% 10.79% 9.96% 11.41% 

HLH 20.08% 11.07% 5.46% 6.34% 

HHL 22.22% 20.11% 14.51% 17.60% 

HHH 20.66% 14.45% 9.68% 9.80% 
Average 17.44% 11.70% 7.99% 9.36% 

 

Although the choice of the appropriate re-optimization interval is helpful to reduce total cost, 

additional advance load information can result in more savings. With three-day ALI, there is a 

reduction in the average deviation from the benchmark solution regardless of the re-optimization 

interval. It is interesting to point out that having access to additional load information and 

selecting an appropriate re-optimization interval can reduce the deviation from the benchmark 

solution to less than 10% in most combinations.  

Although there is an average improvement by acquiring additional information regardless 

of the re-optimization interval, it is not true across all individual combinations. In the HLL 

setting, not only does additional load information not improve the deviation, but it also worsens 

it if the appropriate re-optimization interval is not chosen. This reinforces the importance of the 

re-optimization interval selection in relation to advance load information. The obtained results 

also provide an important managerial insight for carriers with limited ALI. By using an 

appropriate re-optimization interval, such carriers limit their loss resulting from insufficient ALI 

to an average of no more than 4 percentage points (the deviation increases to 11.70% (with 

ALI=24hrs, Ropt=12hrs) from 7.99% (with ALI=72hrs, Ropt=24hrs). 

To further illustrate the performance of the suggested algorithm, we conducted the 

numerical experiments for a case that dwell cost is greater than lateness cost (w>l). Even though 

a very large value can be considered for the theoretical ratio of dwelling cost to lateness cost, a 
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more practical value was selected (e.g., dwell cost is double lateness cost: w=$50/hr, l=$25/hr). 

The performance of the algorithm with three iterations is illustrated in Table 4.6.  

     Table 4.6. The performance of the proposed algorithm when dwell cost is double lateness cost 

Code 
Iteration ∆=1 Iteration ∆=2 Iteration ∆=3 

Zunder,1
 [Zunder,1/Zover,1] Zunder,2

 [Zunder,2/Zover,2] Zunder,3
 [Zunder,3/Zover,3] 

LLL-1 66301 1 - - - - 

LLL-2 66665 0.9967 66759 0.9991 66787 0.9996 

LLL-3 67521 0.9939 67664 0.9981 67664 1 

LLL-4 65209 0.9989 65243 0.9997 65243 0.9999 

LLL-5 68683 1 - - - - 

LLH-1 67897 0.9994 67916 0.9997 67916 0.9999 

LLH-2 67613 0.9956 67719 0.9989 67754 0.9995 

LLH-3 68821 0.9908 68965 0.9975 69056 1 
LLH-4 65879 0.9977 65935 0.9994 65935 0.9997 

LLH-5 71337 0.9983 71399 0.9996 71399 0.9998 

LHL-1 62313 0.9877 62725 0.9968 62741 0.9984 

LHL-2 63713 0.9833 64110 0.9909 64124 0.9993 

LHL-3 61787 0.9976 61893 0.9994 61902 0.9997 

LHL-4 63808 0.9895 63965 0.9967 64031 0.9986 

LHL-5 65787 0.9892 66011 0.9976 66076 0.9984 

LHH-1 70475 0.9837 71021 0.9956 71074 0.9973 

LHH-2 71617 0.9840 72113 0.9974 72147 0.9987 

LHH-3 65882 0.9939 66028 0.9985 66069 0.9992 

LHH-4 70780 0.9862 71034 0.9970 71090 0.9985 

LHH-5 73543 0.9874 73866 0.9971 73919 0.9986 

HLL-1 60518 0.9996 60525 0.9999 60528 1 

HLL-2 63487 1 - - - - 

HLL-3 60466 0.9949 60673 0.9991 60701 0.9995 

HLL-4 62426 0.9981 62463 0.9993 62470 0.9996 

HLL-5 62395 0.9988 62426 0.9995 62435 0.9997 

HLH-1 62624 1 - - - - 

HLH-2 66376 1 - - - - 

HLH-3 65012 0.9936 65256 0.9983 65296 0.9991 

HLH-4 63853 0.9978 63853 0.9992 63860 0.9995 

HLH-5 65682 0.9947 65826 0.9986 65851 0.9993 

HHL-1 63718 0.9923 64005 0.9981 64020 0.9984 

HHL-2 59794 0.9917 59944 0.9977 59975 0.9982 

HHL-3 62344 0.9974 62488 0.9999 62488 1 

HHL-4 65203 0.9832 65812 0.9961 65872 0.9982 

HHL-5 61897 0.9851 62281 0.9961 62357 0.9982 

HHH-1 83252 0.9966 83252 0.9980 83290 0.9982 

HHH-2 83389 0.9974 83389 0.9989 83399 0.9991 

HHH-3 86789 0.9922 87185 0.9986 87226 0.9993 

HHH-4 92645 0.9850 93491 0.9969 93566 0.9985 

HHH-5 87958 0.9863 87958 0.9966 88028 0.9978 

       Note: Code=Trip Length-Load Density-Subcontracting Cost 
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Compared to the results with original parameters (Table 4.4), the lowest ratio (0.9832) is 

marginally lower than 0.9866, the lowest ratio found earlier at the first iteration. However, 

additional iterations (i.e. third iteration) can improve the lowest ratio to 0.9973. This provides 

strong evidence that the algorithm is highly efficient in producing a quality benchmark even if 

dwell cost is larger than lateness cost.  

4.7. Conclusion and Future Research Directions 

In the trucking industry, many carriers face highly variable demands from clients as well as other 

challenging issues reported by the American Trucking Associations (ATA, 2014). Despite 

several attempts in the literature, the need for operational improvements by incorporating simple 

and effective policies is still felt.  

Inspired by a real life case, we model a small trucking company located in Ontario, 

Canada. The main approach is to design a mathematical model for the static version of the 

problem and apply it in the dynamic context using a rolling horizon approach. The computational 

efficiency of the proposed mathematical model is improved by adding a feature named the pre-

processing stage. This feature serves the following roles. First, it is possible to reduce the 

dimensionality of the problem by eliminating some infeasible solutions. Second, it helps us 

develop an efficient formulation for a special case of the problem (where no lateness is allowed) 

by handling all the time-based constraints outside the mathematical model.  

One of the major contributions of this study is that it develops an algorithm based on 

discretization of time windows. This method allows us to convert any problem with the lateness 

option to the special case of the problem. That is why the algorithm is computationally efficient 

and can easily handle medium sized problems with almost 100 loads in a matter of seconds. 

Moreover, we proved that this algorithm converges to the optimal total cost. The numerical 
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analysis shows that the proposed algorithm converges very quickly under various network 

settings and even different parameters. 

Another contribution of this study is to provide valuable insights for carriers on how they 

can improve their operational efficiency. Through comprehensive numerical experiments and 

statistical analysis, we found that ALI and the re-optimization interval significantly influences 

the total cost. However, diversion capability and its interactions with other factors are not 

statistically significant. The findings also show that the impact of the re-optimization interval 

depends on the subcontracting cost and level of advance load information. 

Finally, given the values we considered for the ALI and the re-optimization interval, four 

policies are investigated and compared against each other according to their deviations from the 

benchmark solution. The obtained results emphasize the importance of the re-optimization 

interval when ALI is limited to one day. Moreover, by choosing the appropriate re-optimization 

interval, carriers do not lose more than an average of 4 percentage points in deviation from the 

benchmark compared to accessing three-day load information. Finally, it was observed that 

three-day load information and the appropriate re-optimization interval can reduce the deviation 

from the benchmark to less than 10% in most combination settings. 

This research study can be extended in various directions. There are several real-life 

situations in which the quality of information is uncertain during the knowledge window of the 

dispatcher (e.g., the possibility of load cancelation). There are also some circumstances that 

some clients are not willing to communicate their load information in advance, e.g., military 

clients because of security issues (existence of partial load information). Thus, it is interesting to 

model and investigate some of the flexibility features (e.g., diversion capability) under the new 

assumption.  
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Another interesting research direction is to investigate the possible benefit of diversion 

capability, re-optimization interval, and ALI where historical information is available and 

reliable. This would provide clarification regarding how historical information might impact the 

significance of those factors. We also consider a fixed travel time as a function of distance. 

However, there are various factors such as road congestion, weather conditions, or accidents that 

might impact travel times. Therefore, it is insightful to see the impact of those complexities in 

deriving managerial insights. We targeted small trucking companies that constitute the majority 

of carriers in North America. Designing an efficient solution algorithm to handle large trucking 

companies with a few hundred trucks and drivers is an important step to seek answers for similar 

research questions, but in another context. 
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CHAPTER 5 

 

 

 

CONCLUSION: INSIGHTS AND LOOKING AHEAD 
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Past research studies on long haul transportation dispatching rules do not incorporate the concept 

of a home domicile. This is quite important because of human related considerations and 

maintaining the trucks on a regular basis. Lack of this feature will result in overestimating the 

capacity of a transportation network therefore reducing the model accuracy. In addition, most 

studies assume that all loads information is available in advance. Thus, many of these models are 

not suitable to be implemented in a dynamic context. A major contribution of the second chapter 

is that it develops a comprehensive MIP model that is flexible enough to include many 

operational details. The use of a rolling horizon approach allows it to be implemented in a 

dynamic environment. The other major contribution of the second chapter is gauging the benefit 

of advanced load information in the truckload industry. In this regard, a comprehensive set of 

numerical experiments covering five factors is designed. The results of the study illustrate that 

access to the second day loads information can improve profit by an average of 22%. Obtaining 

more information can further increase the benefit, however the margin decreases to 6%. 

Moreover, other transportation network settings have the ability to affect the overall impact of 

ALI.  For example, the impact of ALI on a carrier’s profit is greater when the majority of 

carrier’s loads are long or the carrier is operating within a large service area. The rejection rate 

can be also reduced by accessing loads information further in advance by obtaining the second-

day loads information. The reduction in rejection rate becomes trivial by moving beyond the 

second day load information. It is also important to note that the improvement in the rejection 

rate depends on the radius of service and load density. The benefit (in terms of lowering the 

rejection rate) becomes larger if the radius of service grows. The rejection rate also improves to a 

greater extent when the load density is lower.  

The third chapter extends the previous study by addressing the uncertainty after the 

knowledge window. In this work, the focus is on developing novel policies to help trucking 
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companies to improve their razor-thin profit. The contributions of this chapter are threefold. 

First, the dynamic pickup and delivery problem is reformulated as a two-index mixed integer 

program. This formulation is more efficient compared to three-index formulations in literature 

(e.g., Keskinocak and Tayur,1998; Tjokroamidjojo et al., 2006; Zolfagharinia and Haughton, 

2014). The main reason for reformulation is to solve the static version of the problem to 

optimality during the entire planning horizon. Second, we design a novel dispatching policy that 

generates quality solutions under one of the most practical transportation network settings. With 

only two day ALI, the proposed policy produces almost 90% of the attainable profit during the 

planning horizon. Finally, the proposed policy is enhanced by incorporating the scenario 

generation approach. The finding shows that scenario generation can significantly improve the 

performance of the policy when the ALI is limited to one day. The scenario generation benefits 

decline when additional load information becomes available to the dispatcher. We also compared 

our developed polices with two other dispatching methods. The first method is rooted in practice 

and designed by consulting our industry partner. The second method is purely based on the 

scenario generation approach. The result shows the performance of the proposed policies both in 

terms of solution quality and computational efficiency. 

Similar to the previous works, the last study is within the context of truckload 

transportation. However, it differs in two aspects: 1) it targets local operators; 2) all load requests 

are being handled through either the company owned trucks or other carriers (subcontractors). 

The main inspiration of this study is a small third party logistics provider (Logikor Inc.) located 

in Ontario, Canada. The major goal of this study is to identify effective strategies that reduce the 

total operational costs. To achieve this goal, the current study extends the existing literature in 

the following ways. First, it develops a mathematical model that can capture all important cost 

components during the knowledge window of the dispatcher by introducing dummy loads. 
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Second, it proposes an efficient method based on time window discretization to solve the static 

version of problem during the planning horizon. Third, it investigates the impact of ALI, re-

optimization interval, and diversion capability.  

The statistical analyses reveal that ALI and re-optimization interval have significant 

impact on the total cost, but that diversion capability does not.  The result on the impact of 

diversion capability is not consistent with some studies in the context of vehicle routing 

problems (e.g., Ichoua et al., 2006). One possible explanation is the quality of ALI in the 

problem under investigation. Similar to previous works in the truckload literature, we assumed 

that the quality of information is perfect during the knowledge window of the dispatcher (i.e., no 

new loads will be realized and none of current loads will be cancelled during the KW). Our 

industry partner also experiences a negligible load cancelation rate. This assumption significantly 

reduces the need for truck diversion because no changes occur during the knowledge window. 

Finally, we introduce different policies based on combinations of significant strategies (i.e., ALI 

and re-optimization interval). The obtained results illustrate that selecting an appropriate re-

optimization interval is essential when ALI is limited to one day. 

The studies in this thesis can be expanded in various directions. Some of these interesting 

research areas are listed below: 

! In chapters 2 and 3, it is assumed that when a truck returns to the home domicile, it is 

immediately ready for the next trip. However, this is true only if a backup driver is 

available to take the responsibility of the incoming truck and the truck does not require 

major maintenance. Thus, the impact of relaxing that assumption is worth 

investigating. 

! In chapters 2 and 3, it was assumed that the home base of the carrier is located in the 

center of the service area. This cannot always be the case. Thus, it is interesting to 
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know how an appropriate selection of the depot within the service area can improve the 

operational efficiency of carriers. We anticipate observing stronger impact when high 

geographical imbalance exists. 

!  One of the strong assumptions in all previous chapters is the quality of load 

information during the knowledge window. Although we assume the quality of load 

information is perfect, many real world cases experience a high level of uncertainty. 

Thus, another possible research direction is to address information uncertainty as loads 

information (e.g., pick-up time or cancellation) may change even after it is received by 

the carrier. 

! The travel time was assumed to be a linear function of distance. In reality, the constant 

travel time can be viewed a restrictive assumption. Since various factors (e.g., weather 

condition, road accidents, and truck breakdowns) can influence travel time, it is 

interesting to test the robustness of different policies where travel times are not 

constant. 

! Using a mathematical model is an appropriate choice where small trucking companies 

are targeted. However, designing an efficient algorithm to handle large trucking 

companies with a few hundred trucks and drivers is an important step to seek answers 

for similar research questions. 

! Another fruitful research agenda is to evaluate the benefits of collaboration through 

information sharing in intermodal transportation. This would represent an intriguing 

transition from the unimodal focus of this dissertation. 
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APPENDIX A. 

When no lateness is allowed, there would be no non-linear terms to be linearized. Moreover, all 

the time constraints (3.24-3.30) can be handled outside the mathematical model. Thus, we only 

need to make four changes in the original model. First, omitting the lateness term from the 

objective function since no lateness is allowed. Second, in the objective function, the dwell cost 

term in (3.10) is replaced by term (A.1). As explained in section 3.4.3.2, the dwell cost will not 

apply for the loads that are scheduled right after the depot. The final changes are conducted in 

the body of constraints by replacing constraints (3.21) and (3.23) with (A.2) and (A.3), 

respectively. 
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