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Abstract 

Volunteered Geographic Information (VGI) is becoming a pervasive form of data within geographic 

academic research. VGI offers a relatively new form of data, one with both potential as a sensitive 

way to collect information about the world, and challenges associated with unknown and 

heterogeneous data quality.  The lack of sampling control, variable expertise in data collection and 

handling, and limited control over data sources are significant research challenges.  In this thesis, 

data quality of VGI is tackled as a general composite measure based on coverage of the dataset, the 

evenness in the density of data, and the relative evenness in contributors to a given dataset. A 

metric is formulated which measures these properties for VGI point pattern data. The utility of the 

metric for discriminating qualitatively different types of VGI is evaluated for different forms of VGI, 

based on a relative comparison framework.   The metric is used to optimize both the spatial grains 

and spatial extents of several VGI study areas. General methods are created to support the 

assessment of data quality of VGI datasets at several spatial scales. 
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Chapter One 

1.0 Introduction 

1.1 Background 

Participation of the general public in the creation, collection, analysis, and/or communication of 

geospatial data, whether volunteered or unknowingly, has become ubiquitous within society as 

many aspects of our social, cultural, and economic lives interface with digital technologies that 

record and store digital traces of these processes. User-generated data has been facilitated by rapid 

advancements in internet technology, faster data transfer speeds, online social networking 

websites, easy-to-use interactive mapping and collaboration tools, and the proliferation of mobile 

computing devices (Goodchild, 2007; Gura, 2013).  Geographers have shown great interest in the 

research value of data obtained from these non-authoritative sources, described as user-generated 

content (UGC), or specifically, the subset of these data that record geospatial information 

commonly referred to as volunteered geographical information (VGI) (Goodchild, 2007).  The forms 

of VGI vary from data created without any geographic purpose in mind but nevertheless associated 

with a geographic footprint (e.g. a geo-tweet) to spatial data purposefully collected and contributed 

to a specific project. Numerous examples of these forms of data driving research and applications 

in environmental and social sciences exist, such as tracking wildlife poaching (Stevens et al., 2013), 

urban noise pollution (Gura, 2013), responses to climate change (Beaubien & Hamann, 2011; 

Worthington et al., 2012), and biogeography and citizen science (Dickinson et al., 2012).  Yet these 

developments are occurring without an understanding of how these data differ from traditional 

data sources, nor the theory or tools to assess these differences. There is growing consensus that 

issues of data quality must first be addressed before VGI as a data source, and a method of 

obtaining data about the world, can be harnessed. In an era of constrained financial resources for 



2 

 

research, can VGI be a valuable and cost-effective tool for researchers seeking empirical data across 

broad spatial areas and/or extended time periods?   

 

In order to answer this question, a stronger theoretical foundation for VGI is necessary, including 

methodological tools that will support the analysis and evaluation of these emergent forms of 

geographical information.  The most direct approach to assess how VGI differs from the 

authoritative forms of data sources that have been used previously, such as census data or 

government mapping. The first studies (Haklay 2010; Mooney et al., 2010; Zielstra, 2010) into data 

quality for VGI leveraged this comparative approach. However this framework fails when faced with 

data that do not exist in authoritative form. More general methods are required to evaluate VGI 

when reference data is lacking. VGI and Big Data offers researchers unprecedented opportunities 

for analysis across large spatial and temporal scales while maintaining fine-grained samples and 

measurements, and constraining these opportunities to those for which reference data already 

exists.  The research reported in this thesis aims to develop general methods for data quality 

evaluation for VGI in absence of reference data. 

 

One of the principle challenges, and only levers of control over analysis on behalf of the researcher, 

is deciding on the spatial scale required for analysis of VGI. Wiens (1989) summarizes the trade-offs 

inherent in arbitrary choices of spatial scale, and these issues are increasingly evident in empirical 

analyses of VGI. VGI is often obtained with modifiable extents – ranging from a single 

neighbourhood to the entire Earth.  This lack of structure is especially relevant for the more 

ambient forms of VGI as there is no central authority in which to control/suggest where and what 

kind of data should be created. While predetermined limitations may arise, such as when 

comparing VGI to satellite imagery available at a specific resolution for example, spatial grain and 
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extent are generally at the discretion of the researcher, and too often chosen arbitrarily.  Kelly 

(2011), Galpern (2012), and Calderón-Patrón (2013) all analyse study areas at several different grain 

sizes and discuss the benefits of these multi-scale analyses when analyzing different types of data, 

including VGI.  The choice of grain can pose similar problems when examining patterns in VGI as 

trends may be found at certain scales while lost at others (Feick & Robertson, 2013).  Neis (2012) 

and Haklay (2010) both found that there are areas that show less reliability within their study areas 

of OSM, particularly in rural areas of Germany (Neis) and lower socio-economic regions of London, 

England (Haklay).  These ‘lower quality’ areas would cause problems if these extents were used for 

analysis without prior review analyses.  In addition, with some forms of VGI, the relevant spatial 

scales may be unknown to a researcher, such as in newly gentrified areas or culturally delineated, 

though unofficial, neighbourhoods (Sester, 2014).   If researchers are to use these new forms of 

data, general methods are required to support the assessment of data quality of VGI datasets at 

several spatial scales. 

1.2 Objectives 

This thesis will approach the problem of measuring data quality of VGI, and focus specifically on 

identifying optimal spatial scale.  There are three main components to the research: the 

development of a metric to evaluate data quality in point-based VGI, an implementation of the 

metric in a multi-scale analysis setting, and the development of optimization based on the defined 

data quality metric.  The research objectives of this thesis are as follows: 

1) Develop a metric to assess data quality VGI point datasets, both ambient and active.  

2) Develop a methodology for optimizing spatial grain for the analysis of VGI based on the 

data quality metric defined in objective 1.  
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3) Develop a methodology for optimizing spatial extent for the analysis of VGI based on the 

data quality metric defined in objective 1.   The methodology should be robust to different forms of 

aggregation unit (regular and irregular polygons). 

4) Implement the methods in objectives 1-3 and demonstrate their use in the analysis of 

publicly available VGI point data as well a VGI citizen-science case study.  
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Chapter Two 

2.0  Identifying optimal study areas and spatial aggregation units for point-based VGI 

from multiple sources. 

 

Haydn Lawrence, Colin Robertson, Rob Feick, and Trisalyn Nelson 
 

ABSTRACT: 

Researchers in the social sciences are increasingly using new sources of geo-referenced data such 

as social media posts, web traffic, and other forms of user-generated content to gain new insights 

about how people perceive and experience their surroundings.  Many studies have shown us the 

applicability of VGI as a data source that supports a variety of interesting applications. However, 

few methods exist to offer guidance on whether sufficient VGI is available for a specific research 

task or, more fundamentally, what scale VGI can be aggregated and analysed at within a specific 

locale. In lieu of this guidance and given the patchy and heterogeneous nature of VGI, it is difficult 

for researchers to address questions such as:  “Are there enough data for a successful study?” and 

“How clustered are they?” 

 

In this paper, we introduce a new metric for evaluating feasible VGI study areas and the 

appropriateness of different aggregation unit sizes through three different components of data 

quality: coverage, density, and user-heterogeneity.  Two popular sources of passive VGI are used 

for initial testing of the metric: Twitter and Flickr. We compare the component and aggregate 

measures for different simulated point processes and demonstrate the properties of this metric.  

The three components are assessed iteratively for the point user generated data (tweets and 

photos) on a local basis by altering grain sizes.  This refinement of cell size continues until the 

coverage, density, and user-heterogeneity component are optimized relative to pre-determined 

ranges for both high quality and low quality.  We demonstrate the application of this metric with 
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Flickr and Twitter data obtained for three Canadian cities as initial study areas, including 

Vancouver, Toronto, and Moncton. The utility of the metric for discriminating qualitatively different 

types of VGI is evaluated for each of these areas based on a relative comparison framework. Finally, 

we present a use-case for this metric: identifying the optimal spatial grain and extent for a given 

data set. The results of this analysis will provide a methodology for preliminary evaluation of VGI 

quality within a given study area, and identify sub-areas with desirable characteristics. 
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2.1   Introduction 

 

In 2007, Goodchild (2007) first coined the subset of web-based user-generated content, 

including blogs, Facebook posts, or tweets with geographic properties, as volunteered 

geographic information (VGI).  Since then, VGI has figured prominently in the GIScience research 

agenda, highlighting the geospatial properties of data from applications such as Flickr, Twitter, 

and OpenStreetMap (OSM).  VGI encompasses many types of data, and can be further 

subdivided into ambient VGI, represented by Twitter and Flickr (Stefanidis, 2013), and active 

VGI, represented by OSM. Ambient VGI is less ‘volunteered’ (and may even be considered 

coerced – see Mackenzie and Janowicz 2014) as users are likely not creating the data for a 

specific research purpose.  These same sources are now being used to open up new spatial 

research questions in the social sciences (Goodchild and Janelle, 2010). Many have speculated 

that VGI gives researchers the capability to gauge the sentiment of a geographically defined 

study population without use of traditional methods of qualitative research, such as 

questionnaires or direct observation.  For example, VGI was recently employed to examine 

sentiments among community members in the path of a hurricane (Lachlan et al, 2014), 

allowing people to freely express their emotions, and importantly, enabling timely, and spatially 

defined assessment of population sentiment.  Similarly, VGI may enable access to otherwise 

difficult to access populations (Stefanidis, 2011). While methods for evaluating data quality for 

new sources of VGI is a burgeoning research area of GIScience (Neis and Zielstra, 2014; Jeffery, 

2014; McKenzie et al, 2014; Hollenstein, 2010), there are few tools available to assess the 

characteristics of VGI for a given research problem or application area.  

 

The majority of studies into data quality assessment for VGI have been narrowly defined in 

terms of geographic scale and in the data sources considered (e.g. testing specific sources in 
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isolation of others).  Two frequently cited studies of OpenStreetMap that investigated data 

quality in VGI found OSM data to be very accurate within urban areas and sporadic in remote 

areas (Zielstra and Zipf, 2010; Haklay, 2010). However these studies were limited to narrow 

geographic and temporal scales by choosing areas with expected high OSM data. While initial 

investigations of data quality of VGI have indicated there is a real potential for VGI as a valuable 

source of data, these studies have largely focused on areas where large amounts of VGI were 

expected to be found, such as Tokyo (Stefanidis, 2012) and major population centres of Europe 

(Zielstra and Zipf, 2010; Haklay, 2010). Others have focused on discrete space-time events such 

as wildfires (Goodchild and Glennon, 2010) and earthquakes (Zook et al, 2012). Other studies 

such as Hollenstein and Purves’ study of Flickr (2010) or Crooks’ study of Twitter (2013) are also 

limited by their source (Flickr or Twitter only).  The specific foci found in the studies mentioned 

above can be seen as particularly problematic when the ephemeral qualities of technology are 

considered, illustrated by the downfall of the once popular MySpace or the restricted access and 

terms of service policies for privately held data from social-networking companies such as 

Facebook.  Examples from the literature analyzing multiple sources of VGI simultaneously have 

begun to emerge, for example Croitoru et al. (2013) using Flickr, Twitter, and YouTube while Li 

et al. (2013) use both Flickr and Twitter densities for their study of user-demographics in 

California, though these studies do not look at the data quality characteristics of the data as the 

central focus. In addition, Mearns (2014) highlights the potential of moving from just Twitter 

based analysis, which the study focuses on, to data from multiple social media platforms.  They 

also describe a system which works in real time, which would be a very useful tool.  

Unfortunately, not all sources of VGI currently allow for real-time/streaming access. 
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Li et al. (2013) examined socioeconomic variables in relation to Twitter and Flickr submissions, 

finding a narrow subset of the underlying population (mostly rich and educated) were over-

represented.  However, the Li et al. study (2013) analysis of point densities was temporally 

limited to a period that was considered optimal and considered only the United States on a 

geographic scale with the demographic comparison analysis limited to a region of California.  

While the studies mentioned previously (Hollenstein and Purves, 2013; Stefanidis, 2013; Li et al., 

2013) are instrumental in our understanding of these relatively new forms of data, the isolation 

of the studies’ data to specific scales (geographic, temporal) and individual sources of VGI limits 

the generality of their results.  There is a considerable research need for general data quality 

assessment tools specific for VGI.   

 

Geographic information has typically been assessed through traditional methods such as the 

authority or reputation of the data collectors, industry and/or international standards (e.g., ISO 

19157:2013), or metrics based on a comparison to reference data (e.g., root mean square error). 

However, these methods may not be available to researchers attempting to assess VGI quality.  

A lack of standards, multiple and anonymous data collectors, a lack of comparable reference 

data, and even multiple and sometimes conflicting contributor motivations all contribute to 

knowledge gaps in data quality assessment methodology for VGI (Coleman, 2009; Foody, 2013; 

Mooney, 2013b).  This constitutes the necessity of a VGI assessment tool stemming from the 

problem that while traditional data collection methods exert control over sampling plans and 

study areas, VGI, by definition, allows for virtually no control over the data collection process. 

The sampling plan when using most types of VGI is necessarily post-hoc. For large-scale web-

based social media applications, researchers are forced to collect data within the scope of the 

given APIs, for available time periods and geographic locations.  However, four parameters of 
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control available for establishing some research design for VGI include spatial and temporal 

scales of the study, the thematic focus, and the sources of VGI used in the study (i.e. changing to 

a core area and using Twitter instead of Flickr).  In this paper, we consider whether tools for 

assessment of VGI data quality can begin to be developed based on explicit consideration of 

these four parameters. 

 

Few methods exist to offer guidance on whether sufficient VGI is available for a specific research 

task or, more fundamentally, to what scale VGI can be aggregated and analysed within a specific 

locale. In lieu of this guidance and given the patchy and heterogeneous nature of VGI, it is 

difficult for researchers to address questions such as: “What areas have enough VGI of a given 

type for my analysis?”, “If a study area is defined externally, what resolution or spatial units of 

analysis can be used?”,  “How representative is the VGI as measured by user-heterogeneity?”, or 

“What correspondence is there between the VGI and pre-defined zones such as census tracts or 

ecozones?” This paper will explore these issues through the use of a metric designed to evaluate 

ambient point-based VGI, information with geographic footprints though not actively created as 

geographic information (Stefanidis, 2013). We will examine the metric, computed over various 

aggregation unit sizes through three components of VGI quality: coverage, density, and user-

heterogeneity.  The methods described here are generic in that they are designed as a 

standalone VGI assessment tool, without reference to any authoritative or expert comparative 

datasets.  A key practical outcome of this research will be a set of open source tools which will 

be directed at VGI evaluation / assessment from a user-oriented perspective, irrespective of 

scale or source (e.g. Twitter, Foursquare, or Yelp).  The last aspect is important as private 

entities may change their data dissemination policies at any time, potentially restricting access. 

We start with a definition of the aforementioned metric followed by an examination of its 
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properties for two types of spatial point processes. We follow with a case study of point data 

obtained from Twitter and Flickr for three different Canadian cities: Toronto, Vancouver, and 

Moncton, measuring the metric at different grains within two different extents for each city. We 

conclude with a discussion of current limitations and possibilities for future research for 

evaluating data quality in VGI point patterns, especially in the context of optimizing initial 

research study areas. 

 

2.2   Methods 

2.2.1 Developing a metric for evaluating VGI point patterns 

VGI datasets are highly variable. Data can vary with the particular VGI data source’s sharing 

policies such as Twitter’s tiered access model which ranges from 1% of data being available for 

free to 100% of the data (i.e., ‘the fire hose’) available at a significant cost. Additionally, due to 

the nature of VGI creation, these data are prone to uncertainty. For example, studies of 

geotagged photographs often contend with variability introduced by two mechanisms of 

tagging: in-situ tagging while photos are taken, and post-hoc bulk-tagging of photos during 

management and upload to online sharing sites (Hollenstein and Purves 2010).  These problems 

necessitate a method of determining if a chosen study area meets a researcher’s needs, 

preferably before in-depth analysis begins. As the social sciences commonly use auxiliary 

aggregated datasets, such as census data (Li et al., 2013; Granell, 2014), we develop a metric for 

assessing VGI in aggregated grids of different spatial grains to allow for associations between 

VGI and other datasets.  One of the important aspects of this approach is to mitigate the fact 

that aggregations, especially with authoritative boundaries, tend to be chosen arbitrarily 

(Jeffery, 2014) and these boundaries can impact analytic results (Openshaw and Taylor 1979). 

Thus we want a framework for evaluating VGI across aggregated geographies that can be easily 

quantified in order to test different areal units.  Like the K-function, which assesses clustering or 
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dispersion of point patterns at multiple distances (Ripley 1977, the approach here is first 

explored for multiple grains within the study area for all three metric components.  

 

There are three components to the metric: coverage, density, and user-heterogeneity.  

Coverage is defined as the ratio of the number of cells that contain data to the total number of 

cells within the study area grid.  While a lower numeric limit on the number of aggregated 

points within a grid cell could be implemented, this paper considered a cell to contain data on a 

binary scale – it either contains or doesn’t contain data.  This component is used as a global 

indicator of overall VGI coverage, on which Mooney et al. (2013a) describe a very discernable 

contrast between urban and remote areas and even within different urban areas (such as parts 

of Dublin compared to parts of Paris).  This could be used to delineate remote areas or as a 

socio-economic indicator as Neis et al. (2013) show that lower coverage (completeness) can be 

attributed to lower socio-economic standing.  Values approaching one indicate a greater 

coverage over the study area (i.e. most cells contain data) while values closer to zero are 

indicative of the opposite. 

 

Density is assessed by calculating the areas of the four quadrants of a Moran’s scatterplot and 

finding the difference between the largest area and the smallest area, normalized by study area 

size.  This method differs from the local Moran’s I value as it accounts for extreme x values 

instead of being averaged out within the algorithm, helping to find outlier core areas.  

Experiments with standard measures of spatial autocorrelation revealed that outliers were an 

important component the metric would need to be sensitive to, as often user-contributed data 

is patchy. For example, a downtown core or entertainment district may be a severe outlier in 

terms of number of submissions (high density), but depending on the aggregation scale, this 
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area may or may not be  flagged as unusual in a spatial statistic based on adjacent neighbouring 

areas. 

 

User-heterogeneity is a measure of the number of VGI submissions to the number of unique 

users averaged over the study area.  Values close to one indicate a similar number 

of contributions among unique users, which could be considered higher quality as per Linus’s 

Law.  However, values nearer to zero could be useful in a study of high value users and their 

impact on social media (Stefanidis, 2013). These three components were chosen for their ability 

to assess a point dataset irrespective of any thematic content inherent in the data, such as a 

tweet’s text or Flickr photo’s tags or image.  This helps to maintain the overall goal of this paper 

to assess VGI point patterns in a general way without creating specific criteria based on the 

technology or application used.  User-heterogeneity was chosen as a data quality component, 

density was chosen for sensitivity to spatial clustering and extreme outlier detection, and 

coverage for considering the spatial extent of the data relative to the aggregation unit. The 

density and user-heterogeneity metrics were designed specifically for assessment of VGI. 

Whereas most methods for local spatial analysis are tuned for identifying clustering of high or 

low values, we aim to detect clustering in similar values (not high, not low). Similarly for user-

heterogeneity, no existing methods captured the dynamics of the relationship between variance 

in submissions per user and hypothesized data quality. 

 

2.2.2 Implementing the metric 

The study area is rasterized into a grid specified by the bounding box size of the point pattern 

and the current grain size.  The raster is intersected with the polygonal study area and all cells 

outside of the polygonal study area are set to NA.  All points within each cell are aggregated by 

total counts and by counts of unique users.  A queen’s case neighbourhood matrix is created 
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and the three components built as per the descriptions above.  The three components are 

weighted to sum to a value of 1 and the final metric computed from these weightings.     

 

2.3   Simulation Study 

2.3.1 Simulation study data 

Two spatial point processes were chosen to simulate point patterns that could constitute 

possible VGI distributions under conditions of spatial randomness and spatial clustering. Our 

objective was to generate point pattern realizations and evaluate the metric under each 

scenario to examine its sensitivity to different configurations of locations and users.  These 

patterns were created on the unit square, though transformed to a square of 100 by 100 units.  

The two processes were run 999 times with the metric components computed for each run and 

averaged for final results.  The simulations were done in the R programming language using the 

spatstat package (Baddeley, 2005). The delineation between a poor quality distribution versus a 

good quality distribution would be dependent upon the goals of the research in question.  For 

the purposes of this paper, highly clustered areas or areas with extreme outliers are considered 

poor. Low user-heterogeneity is also considered poor as we consider the idea of community 

consensus to be the ideal context for many types of analyses of VGI. As such, areas where data 

is dominated by a one or a small number of users would reflect be less useful than areas with 

broad participation from many users (Figure 1). 

 

A uniform marked multitype Poisson process was used to realize random point patterns where 

points were randomly labelled (marks constitute the user IDs in VGI point data).  A randomly 

distributed point pattern would indicate that each location has an equal probability of a point 

event, which we consider to be high quality data. Similarly, as points are randomly labelled to 
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reflect random spatial allocation of users, each area has equal chance of being visited by each 

user.  

           ( ) 

where λ=10, types=50 

 

A stationary Matern cluster process was used to simulate a clustered area of VGI, creating a 

point pattern mirroring a few users based in a handful of areas creating the majority of data. 

          (     ) 

where κ=5, r(radius)=0.15, μ=100 

 

2.3.2 Simulation study results 

 

The simulations match the predicted results for each component of the metric (Figure 2).  

Coverage for the completely spatial random (CSR) point patterns is very high except at very 

small grain sizes.  This is caused by having too many small cells which contain no points.  The 

clustered pattern yields a low metric value except at high grain sizes, caused by having too few 

grid cells with only one point needed to be captured by the coverage component.  Density 

findings were consistent with expected spatial autocorrelation values of CSR and clustered point 

patterns.  The CSR point pattern, except at extremely small grains, revealed little spatial 

autocorrelation or few extreme values of data while the clustered simulations produced values 

that indicate clustering.  User-heterogeneity was found to be very low in a clustered area with 

few users and high amounts of data.  At the smaller grain size (2 units), user-heterogeneity is 

high in a clustered area as the cell size is so small that very few points are captured by each cell.  

The opposite can be seen with the CSR point pattern with large grains creating grids of only a 

few cells capturing a large number of points decreasing user-heterogeneity.  However, user-

heterogeneity follows the predicted outcomes at most grain sizes for the CSR point pattern by 
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having a high value showing a closer ratio of unique users to data points.  These both follow 

predicted patterns of user-heterogeneity.   

 

2.4   Empirical Case Study 

2.4.1 Study areas and Data Collection 

Three Canadian cities were chosen as study areas: Toronto, Vancouver, and Moncton.  Toronto 

and Vancouver were chosen as large cities with dense population centres while Moncton was 

chosen as a contrast to the two larger cities while maintaining a large enough population density 

to have some VGI (Table 2.1).   

 

City Population Area (km2) Population Density / 

km2 

Toronto 5,583,064 5,905 945.4 

Vancouver 2,313,328 2,882 802.5 

Moncton 138,644 2,406 57.6 

Table 2.1:  Statist ics Canada 2011 data  

 

The study areas shown in Figure 3 were chosen using rectangular bounding boxes required for 

accessing data from APIs.  The second grouping of study areas is population centres from the 

2011 Canadian census, based on a total population of at least 100,000 of which 50,000 or more 

live in the core (Figure 4).  The population centres can be found in Figure 4 for the three cities.  

These polygons are very different from the previous rectangular bounding boxes, including only 

the areas with a high density of people allowing for a much higher distribution of VGI.  The final 

study area is a rectangular bounding box of downtown Toronto.  It includes the University of 

Toronto in the top left and the two major sporting event locations and the CN Tower in the 

bottom.  
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Data was analysed using the open APIs for Flickr and Twitter, both through Python.  In total, 

1,541,170 tweets and 63176 photos were from Toronto, 398,811 tweets and 44,061 photos for 

Vancouver, and 25,533 tweets and 1571 photos for Moncton.  The tweets were analysed over a 

four month period from September 2013 while the Flickr photos are all from 2010.  This 

difference in time is an aspect taken into account as one of the purposes of this research is to 

view the point patterns of different data sets from different sources which might have different 

collection times or resolutions. 

 

2.4.2 Case Study Results 

Overall, results indicated higher metric values for CMAs compared to study areas based on 

bounding boxes (Figure 5).  Coverage and user-heterogeneity of the bounding box study areas 

show a difference between the two larger cities compared to Moncton.   However, density 

shows similarity between all three cities.   

 

The population centre study areas had very different results.  Full coverage was found in the 

population centres at larger grain sizes while showing similar trends from the lowest grains.  As 

anticipated, density varied between the larger cities compared to the smaller city, Moncton.  

Finally, user-heterogeneity maintained differentiation between the larger cities compared to 

Moncton.  Exact metric component values can be found in Figures 6, 7, and 8.  User-

heterogeneity was never found to be higher than 0.34 (Toronto downtown core).  While cursory 

analyses of only the Rogers Centre and of the University of Toronto did find higher values (0.56 

and 0.43 respectively), user-heterogeneity was not found with high values within the Canadian 

urban city study areas. 

 



20 

 

The overall trends in all three types of study areas showed decreases in coverage and density as 

grain size decreased while user-heterogeneity increased as grain size decreased.  The downtown 

Toronto core showed the highest metric values among the three study area types.  Coverage is 

complete at all grain sizes and density and user-heterogeneity is much higher in the Toronto 

core.  Figure 9 shows the metric values with all three components combined at different 

weightings for the random study areas and the population centres.  When all three components 

are set at equal weighting, there is little differentiation between the three cities.   

 

2.5   Discussion 

2.5.1 Large vs. small cities 

A distinct difference in metric values was found between Toronto/Vancouver and Moncton.  

This could be explained by socio-economic factors, as detailed in Li et al.’s conclusions (2013) 

where tweet density was correlated with well-educated people with advanced degrees, high 

income, while Flickr photo density was correlated with White and Asian people with advanced 

degrees.  Moncton had an Asian population of less than 1% and the percent of people with 

advanced degrees (20.1%) was less than the national average (22.9%), Toronto (33.6%), and 

Vancouver (30.7%) as per the 2006 Canadian census.  The physical size difference between 

Vancouver and Moncton is negligible, though population density is very different (Table 1) 

which may also be a factor in the variation.  When using the population centres as opposed to 

the random bounding boxes, similar values can be seen.   

 

The opposite can be seen for density as the population centres show a difference between 

big/small cities with Moncton having higher density values than the other two.  The clustering in 

Figure 3 of Moncton follows the three major streets and the downtown and shopping areas.  
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The random bounding box created a similar density for all three as it is averaging the water/ 

remote areas.   

 

User-heterogeneity shows similar results for all three cities.  User-heterogeneity is not reliant on 

population density nor area with the number of people who tweet or post photos being the 

more important factor.  This is similar to the results found by Mooney and Corcoran (2013a) in 

their study of OSM in London, Paris, and Berlin.  Even though Berlin has a much lower 

population density than Paris, Paris showed less contributed data and only a third of the number 

of unique users. Further study can be done using different sized cities to see if there is a 

connection between user-heterogeneity in urban areas in contrast to remote areas or within 

different urban areas.  One important aspect is that the study area did not affect user-

heterogeneity, as both the metric values for the bounding box and the population centres were 

similar.  This is due to the fact that while many low user/high data areas would be found in 

residential/ remote areas, the heavily traveled areas such as downtown cores or shopping 

centres would likely have high user/high data ratios.   

 

2.5.2 Study area and grain size 

The study area had a large effect on coverage and density.  It also had a lesser effect on user-

heterogeneity, especially with the use of the downtown Toronto core.  This is not particularly 

surprising as correctly choosing a study area is a fairly important aspect of any study.  The one 

point counter to this stems from the use of the population centre.  An inset rectangular 

bounding box for the Toronto core still produced higher results in all three metric component 

values.  While researchers may be looking for high or low values dependent upon the research 

at hand, the Toronto core produced results much closer to complete spatial randomness than 

the population centres derived from the authoritative data sets (i.e. Canadian census).  This 
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leads to the idea that a well-chosen study area is superior to using authoritative-driven 

boundaries such as a census tract, and perhaps suggests data-driven methods for defining study 

areas is required for the types of VGI analyzed here.    

 

Changes in grain size led to marked differences in the metric values calculated for each study 

area.  When grain size is too large, it creates a grid of very few cells which compares to just using 

the study area as a whole.  For all three cities, a 10,000 metre (m) grid cell size (10 km by 10 km) 

did not prove to be informative.  The 2000 m grid cell size gave a stronger idea of what is 

happening within each study area and while the 500 m grid cell size showed much lower metric 

values when compared to a complete spatially random point pattern, you can start to see trends 

within certain sub-areas better.  The downtown Toronto core (Figure 8), the 250 m grid cell size 

gives a good indication that the data are following either a certain street or possibly a subway 

line.  The 100 m grid cell size doesn’t quite give the same overall information, but gives a much 

more detailed view of the University of Toronto, Rogers Centre, and Air Canada Centre, all 

considered areas to be relatively high in VGI.  

 

A key point found through both the simulations and the case studies is that there are grains 

where the metric starts to show less of an increase or decrease (inflection point), where the 

slope of the values to grain size becomes more level.  These inflection points offer the ability to 

assess diminishing returns in the metric as grain size becomes larger or smaller, allowing for the 

selection of an optimal grain size.  As with traditional data analysis such as identifying priority 

areas for biodiversity (Jenkins, 2013) or in the clustering of disease (Jeffery, 2014), finding the 

optimal grain is critical for analysis of point data.  Figure 5 demonstrates that both coverage and 

user heterogeneity don’t follow constant rates of increase/decrease, possibly indicating optimal 

grain sizes at 2000 m or 5000 m for coverage and 5000 m for user-heterogeneity.  These grains 
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might indicate an optimal spatial grain which could be used by a researcher.  While there are 

strong similarities between Toronto and Vancouver, Moncton tends to differ in overall metric 

values and sometimes even in trend.  Moncton has approximately 140,000 inhabitants 

compared to roughly 2 million and 5 million found in Vancouver and Toronto respectively.  One 

reason for this could be a limitation on the detectable patterns imposed by data volume of the 

smaller city.  In addition, though Flickr is used for many purposes, there would be much more 

tourism found within Toronto and Vancouver, which could impact the overall spatial 

heterogeneity of the dataset, where tourist centres and landmarks in major cities capture a 

disproportionate share of the data.  This is an interesting finding and may allow for the use of 

metrics such as these to help delineate qualitatively different types of VGI distributions linked to 

city size and function, though further study with more cities would be required. 

2.6   Conclusions and Future Work 

It has always been important to find a proper study area and grain size when using aggregated 

point data however VGI leaves researchers at the mercy of the data.  Without control of the 

sampling procedures, researchers need to find ways to assess their study areas for data quality 

based upon the conditions of their studies.  Current study areas tend to include authoritative 

delineations of areas (spatial grain) such as census tracts or census metropolitan areas (CMAs) 

which are built from authoritative data or historic boundaries that do not capture the transient 

nature of VGI.  Strong increases in the three component values of the current metric are shown 

to happen as the study area is refined and grain size is modified from finer to coarser 

resolutions.  This provides a basis for the creation of an algorithm using a metric similar to the 

metric described in this paper to find an optimal study area and spatial grain inherent to a pre-

defined criteria. For example, such criteria could be realized by modifying the weights of the 

three components and optimizing an aggregated measure.   
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Other properties could potentially be incorporated into the methodology described here. The 

temporal characteristics of VGI, especially in the sense of user-heterogeneity of a study area, for 

example, could provide information about the transience of users based on the times they were 

observed within one area to gauge if they are resident to the area, traveling to the area, or 

commuting to the area. Similarly, semantic measures of text data could be examined using 

similar analytical methods. This paper focused solely on the spatial point patterns of VGI though 

further analysis using the text could prove useful for study area optimizations.  Finally, the grids 

for defining units of analysis were based on a regular lattice, and alternate tessellations could be 

explored.   

 

By definition, researchers have far less control over VGI compared to traditional data collection 

methods. However, given the increasing ubiquity of geographically referenced data, it is unlikely 

for VGI to become less used, and may become normalized into the toolkit of all researchers.  

Given that traditional research methods were defined on a paradigm of researcher control over 

the research design, there is cause for greater understanding of how VGI differs from traditional 

data, and what its value is in a given context. One of VGI’s greatest benefits for the social 

sciences is the potential for a more nuanced, organic and evolving way to sense people (e.g. 

assessing emotion) and places (e.g., areas people take photos and how they characterize them). 

To realize this, baseline measures of data quality are required, and the analysis presented here 

is a first attempt at the creation of a relativistic assessment tool for these new types of data.   
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2.8 Figures 

  
Figure 2.1: Matern clustered real izat ion ( left)  and a uniform marked mult itype Poisson real izat ion ( right).   

Distinct users are shown in different colours and symbols.  These simulations were done using general ized 

parameters in the R programming language using the spatstat package (Baddeley, 2005).  The purpose of  

these f igures is to outl ine what is  considered a poor quality distr ibution and a good quality distribution 

within the scope of this paper.   
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Figure 2.2:  Coverage (top),  density (centre),  and user -heterogeneity (bottom) for clustered point 

pattern ( left)  and complete spatially random point pattern (r ight).   These show the mean metric 

values over 999 iterations of the respective process at the six differen t grain sizes.  
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Figure 2.3:  Moncton, NB (top),  Toronto, ON ( centre),  Vancouver, BC (bottom).  These are the 

data for both Flickr and Twitter.  The inside bounding box contains both types of data while 

the outside box contains only Fl ickr data.   This was done to test two different sources with 

two different spatial  extents.  
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Figure 2.4:  Moncton (left),  Toronto (centre),  and Vancouver (r ight) Canadian census population 

centres (CMAs).  
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Figure 2.5:  Metric component values for the randomly chosen bounding boxes ( left)  and census 

population centres (right) –  coverage (top),  density (centre),  and user -heterogeneity (bottom):  
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Figure 2.6:  Metric component values for the randomly chosen bounding boxes at 500 (left),  2000 

(centre),  and 10000 (r ight)  grain sizes.  
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Figure 2.7:  Metric component values for the census population centres bounding boxes at  500 

(left),  2000 (centre),  and 10000 (r ight)  grain sizes.  
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Figure 2.8:  Metric component values for the Toronto c ity core bounding boxes at 100 (left),  250 

(centre),  and 500 (right) grain sizes.  
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Figure 2.9:  Metric component values for the randomly chosen bounding boxes ( left)  and census 

population centres (right) by different metric weightings (coverage, density, and user -

heterogeneity).  
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Chapter Three 

3.0 Identifying optimal spatial extent of VGI data for analysis based on predefined 

quality metrics 

Haydn Lawrence, Colin Robertson, Rob Feick 
 

ABSTRACT: 

Technology has become ubiquitous in our modern lives.  As with most technology, social media 

use has become an ordinary facet of many peoples’ everyday lives.  Many of these data include 

geographically characterized data freely created by users (Volunteered Geographic Information, 

or VGI), whether through tweeting, emailing, or uploading pictures and videos.  Flickr, Twitter, 

and Facebook are all sources of VGI in which the user may not be knowingly adding the data for 

public consumption (ambient VGI). Some data is created through more active participation in 

projects such as OpenStreetMap or citizen science initiatives (active VGI).  Many of these data 

are accessible to the public and indeed researchers have started to harness these new types of 

data.  However, these data are fairly chaotic when compared to the data researchers have been 

using previously, usually created by an authoritative source by experts in a field.  In addition to 

these problems, VGI is often obtained with modifiable extents – ranging from a single 

neighbourhood to the entire Earth.  With some forms of VGI, the relevant spatial scales may be 

unknown to a researcher, such as in newly gentrified areas.  If researchers are to use these new 

forms of data, general methods are required to support the assessment of data quality of VGI 

datasets at several spatial scales.  In this paper we focus on the impact of spatial scale in the 

analysis of VGI, specifically focusing on the optimal extent or study area based on a previously 

defined data quality metric for VGI. We present a scale-sensitive approach to the analysis of 

active VGI using a case study (RinkWatch project).   
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3.1 Introduction 

The rise of “Web 2.0” technologies continue to transform society into a data-dependent one, 

where academic research, commerce, and governmental processes increasingly rely on data 

produced in full or in part by contributions of anonymous citizens. Web technologies that 

depend on user-contributions and feedback (YouTube, Facebook, Twitter, Flickr, FourSquare, 

Wikipedia, blogs, etc,) are being repurposed for a variety of applications including some that 

include geographical information. The user-generated content (UGC) created from these 

applications may have hidden scientific, social or cultural value, and tools and methods are 

being developed to unlock these values through machine learning, data mining and 

computational methods (Li et al, 2012; Elwood, 2011;Goetz & Zipf, 2012).  However, there is 

little consensus on how to deal with the greater uncertainties inherent in data produced by non-

experts. In the geographical literature, research into data quality evaluation for VGI has been at 

the forefront of VGI research (Barron et al, 2013; Girres & Touya, 2010; Mooney et al, 2010).  As 

analysis of VGI has become increasingly common (Neis and Zielstra, 2014; Jeffery, 2014; 

McKenzie et al, 2014; Hollenstein, 2010), research has started to coalesce around the 

importance of spatial scale in the analysis of certain types of VGI (e.g., Feick and Robertson, 

2014). Should data be aggregated, and if so, where should the focus of analysis be?  Can we 

continue to use traditional units of aggregation, such as census tracts, or should new 

approaches be considered?  What repurposing of VGI is suitable for what types of research 

questions, and how can we assess the impact of data quality parameters on research outputs?  

In this paper we focus on the impact of spatial scale in the analysis of VGI, specifically focusing 

on the optimal extent or study area based on a previously defined data quality metric for VGI 

(Lawrence et al, 2014). We present a scale-sensitive approach to the analysis of active VGI using 

a case study (RinkWatch project).  
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3.2 VGI Data Quality 

Goodchild first coined the subset of UGC, which include geographic information, as Volunteered 

Geographic Information (VGI) (Goodchild, 2007). The idea behind Goodchild’s optimistic view of 

VGI’s potential was that there were over 7 billion potential citizen sensors, and that similar to 

the success of open source software development and projects such as Wikipedia, any errors or 

biases in data produced by these contributors would, over time, be averaged out (i.e., Linus’s 

Law). However, the reality of VGI has been more complicated. This can be easily seen in a 

cursory view of one of the largest VGI initiatives, OpenStreetMap (OSM). While OSM has been 

the subject of numerous data quality assessments and results have demonstrated that data can 

be of high quality relative to reference data (Haklay 2010), there have also been demonstrations 

of biases relative to demographic and socioeconomic class. In geosocial data such as geotagged 

tweets or photos, biases have been found for urban areas relative to rural (Li et al, 2013; Hecht 

and Stephens, 2014). There may be patterns in the type of data quality issues and the form of 

VGI under consideration. VGI can be thought of as either ambient in nature (Stefanidis, 2013; Li, 

2013), consisting of data created without any geographic purpose in mind but nevertheless 

associated with a geographic footprint (e.g. a geo-tweet), or actively created with an intentional 

geographic component, such as in OpenStreeMap (OSM) or various citizen science initiatives.  In 

this paper, we focus on active VGI through a citizen science case study. 

Data quality has always been an important issue concerning spatial data and GIS.  With VGI, the 

possibilities for data quality variability is exacerbated by the researcher’s lack of control over the 

sampling design and a lack of standards and training on the part of contributors. One of the 

most widely studied examples of active VGI is still that of OSM.  The first studies were on the 

veracity/quality of its data in comparison to authoritative datasets including Haklay’s study on 

OSM to the Ordnance Survey datasets of London (2010), OSM in Germany from 2007 to 2011 
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(Neis, 2012), and OSM in France (Girres, 2010).  These studies showed that OSM had high 

quality in comparison to ground-truthed datasets, though only for urban areas and even within 

urban areas, poorer neighbourhoods were lacking in data.  Dickenson (2010) pointed out several 

aspects of VGI data, specifically citizen science in this case, that can be problematic: trained vs. 

amateur data collectors, age of users, and length of the project, where the first year of a project 

may acquire many amateurs but over subsequent years, these users will become better at the 

task required.  The ‘90-9-1’ rule is another problem found in crowdsourced data, including VGI 

(Neis, 2002).  The 90-9-1 rule states that 90% of the users contributing information do so a few 

times at most, while 9% contribute intermittently and in different ways.  Only 1% of the users 

are considered active users who contribute data on a regular basis and through many different 

avenues in regards to active VGI.  This leads directly to the notion articulated by Haklay, that 

analysis of VGI is really analysis of outliers rather than typical contributors (Hacklay 2013). 

Irrespective of the these issues of VGI’s quality, it has become a popular method of collecting 

data (Goodchild, 2010; Wiersma, 2010; Freifeld, 2010) in part due to allowing the general public 

to take on the burdens of normal sampling and data collection (e.g. time, financial, or 

manpower costs).  Elwood et al. (2012) used the example of a project which attempted to 

spatially differentiate linguistic trends via the use of “pop” vs. “soda” for carbonated soft drinks 

among contributors through an active VGI website specifically created to ask respondents to 

select the term they use for carbonated soft drinks.  This project asked people to enter their zip 

code/postal code and which term they use which is then mapped online.  The issues arose with 

the sampling required by rigorous studies, as this did not provide a random sampling nor did it 

have any information about the characteristics of the sample population.  The authors 

acknowledged this but do not find it particularly debilitating.  The reasoning was that surveys 

have many stages and this kind of project would at least be very useful in the selection of study 
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sites or the formulation of hypotheses.  As an example, they stated that significant research 

time and funding could be saved with just one Flickr.com image showing some form of problem 

in an area that would have been sampled.   

A further issue with VGI was studied by Coleman (2009) who looked at the types of users 

creating these data and their motivations while Li et al. (2013) showed that georeferenced 

Tweets were over-represented by mostly rich and educated users.  Haklay (2010) found similar 

results in the fact that poorer neighbourhoods were underrepresented by OSM data in London.  

This inherently leads to questions about the general quality of the data, especially as it pertains 

to sampling bias.  Unfortunately, VGI does not allow much control over the sampling process for 

a study, even with planned active VGI initiatives, such as NatureWatch (www.naturewatch.ca).  

Dickenson (2010) again lists numerous citizen science initiatives where sampling bias formed, 

both temporally (Royle, 2005; 2007) with the standardization of sampling effort, and spatially 

(Betts, 2007; Niemuth, 2007) looking at roadside surveys and their representativeness of the 

surrounding areas.  Several other studies of the sampling of VGI include Goodchild and Li’s study 

of different approaches to quality assurance (2012), Foody (2013) demonstration of issues of 

representativeness for land cover interpretations from volunteers, and Dickenson’s (2010) notes 

showing the same issue in ecological citizen science.   

The spatial distribution of VGI can be highly heterogeneous. Haklay (2010), Zielstra (2010), and 

Neis (2012) all describe areas of low coverage in their study areas of OSM.  The distribution of 

data in these studies tended to reflect boundaries delineated by socio-economic factors and the 

urban-rural divide.    When researchers would like to study an area using a VGI dataset (such as 

Twitter, OSM, or a specifically created initiative), they may not have the time or ability to do a 

full analysis of the data to gauge its potential usefulness to their research.  One of the only 

http://www.naturewatch.ca/
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levers of control accessible to a researcher employing VGI for a study is the decision of where to 

define the study area boundaries, which given the above discussion, may capture varying 

degrees of spatial heterogeneity in submissions. 

In addition to deciding on a study area extent, when analyzing active VGI point datasets, 

researchers have to decide if they will aggregate the points to a certain scale (unit of 

aggregation).  There are many reasons for aggregation, including being able to analyse the data 

with authoritative datasets (e.g. census data) (Clark, 2013) or to protect privacy, especially in 

instances of health or medical data (Jeffery, 2009).   

The importance of spatial scale in geographical analysis has a long history.  Wiens (1989) 

describes the relationship between grain size and internal versus external variance, and the 

importance of choosing an aggregation size that effectively captures the process being 

investigated.  The choice of grain size can be affected by many factors beyond process factors, 

such as  previous studies which researchers wish to compare findings (Calderón-Patrón, 2013; 

Kelly, 2011), where researchers are bound by standard spatial grains within a discipline 

(Galpern, 2012), or by the technology available such as spatial resolution of satellite imagery.  In 

addition, spatial grain can depend on the scale of auxiliary dataset required for a study such as 

census tracts for socio-economic comparisons.  In some cases, spatial grain can even be 

arbitrarily chosen (Chase, 2013).   

Researchers are now starting to view multi-scale approaches to analysis as beneficial (Kelly, 

2011; Galpern, 2012) to absolutely essential (Calderón-Patrón, 2013).  Li et al. (2013) examined 

socio-economic information associated with ambient VGI users in California by using counties 

instead of census tracts as people tend to work and live in the same county though not 

necessarily the same census tracts.  However, any results deriving from the analysis of that data 
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would reflect only a subset of the population.  Lawrence et al. (2014) iterated over square 

tessellations at different grain sizes to study how the grain size would affect a predefined metric 

over several defined extents (Toronto, Vancouver, and Montreal).  This paper showed that grain 

size can be quantifiably delineated at points where the metric becomes optimal and therefore 

useful for further analysis.  Feick and Robertson (2014) used a hexagonal tessellation at various 

sizes to help elucidate cross-scale patterns of spatial agreement and disagreement in Flickr tags 

in Vancouver, Canada. 

How does the inherent heterogeneity within a VGI dataset affect they study area’s outcomes 

(90-9-1 rule)?  How can we address the differences in users and user submissions in relation to 

active VGI?  If a study area is chosen with non-uniform coverage, how dispersed or clustered can 

the data be for an analysis, and should we rather focus on a smaller sub-area?  We have seen 

from Lawrence et al. (2014), that the choice of grain for analysis can be optimized with respect 

to the general data quality parameters for VGI; density, coverage and user heterogeneity.  Here, 

we explore how extent can be optimized based on a predefined metric consistent with the 

study’s overlying goals.  As VGI becomes more prominent in research, tools developed to aide 

researchers in quickly gauging optimal grains and extents will be needed.  This paper details 

different approaches to finding the optimal extent of an active VGI study area using the case 

study of RinkWatch (www.rinkwatch.org) – see Appendix for complete description of the 

RinkWatch project.  It uses a predefined metric (Lawrence et al. 2014) to create a benchmark for 

an optimal extent for the study area, which is also dynamically changed using gridded 

tessellations, authoritative polygonal boundaries, and geometric Voronoi polygonal methods.   

 

http://www.rinkwatch.org/
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3.3 Methods 

The overall optimization of study areas was completed using two different algorithms, 

accounting for both regular and irregular types of tessellations.  The regular, or gridded, 

tessellations used a quad-tree approach while irregular tessellations (authoritative datasets, 

such as census tracts and dissemination areas, and Voronoi tessellations) used a recursive 

adjacency algorithm.  Both algorithms use a predefined metric to assess optimal areas which 

returns a value between 0 and 1. 

The metric constitutes three different components: coverage, density, and user-heterogeneity 

(Lawrence, 2014).  To determine the metric value, individual data points are aggregated within 

the specified type of area (grid or polygon).  Coverage assesses if the area under question, either 

a quad-tree node or an irregular polygon, contains a minimum threshold of data points, and is 

given as the percentage of cells in a candidate study area that are ‘covered’ by the minimum 

number of points.  General approaches to a minimum threshold could be statistical in nature 

(e.g. examining the distribution through a histogram or excluding a certain percentage from 

each tail of the distribution).  The minimum threshold could also be data-driven, as census data 

requires a certain count to maintain anonymity or based on natural factors such as a study of 

viable rinks located only within appropriate climates.  There was no maximum threshold applied 

as this would be a function of the optimization.  The purpose of coverage is to identify areas 

with appropriate amounts of data for analysis and to exclude potentially ineligible sub-areas 

such as lakes, protected areas, or institutions (e.g., military base) unsuitable for analysis.  

User-heterogeneity measures the ratio of data submissions to the number of unique 

contributors in an area.  In terms of OSM, this would be a ratio of the number of edits to the 

number of unique users in a given geographical area. The intuition behind this formulation is 
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that where edits are distributed over a large number of contributors, there may be broader 

consensus on the representations than if contributed by a single user.  In the context of 

thematic analysis of geosocial data, high user-heterogeneity may indicate more certainty in an 

identified pattern or trend (Linus’s Law).  

The final component is a density measure which uses the data space, or similarity among the 

aggregated data counts, within a Moran's Scatterplot to estimate how evenly distributed values 

in a study area are by evaluating the variance in the quadrants of the scatterplot defined by the 

measured values on the X-axis and the spatially lagged values on the Y-axis.   Moran's I is not 

used as it would average the outlying data counts (x values) into the statistic, which in the 

context of analysis of VGI (particularly geosocial data), extreme outliers may be common (e.g., a 

landmark or downtown core captured by one cell on the map).  Density, when paired with the 

adjacency aspects of the simulations mentioned later, finds areas of similarity both within 

spatial space, or actual geographic space, and within data space (Figure 1 for a general 

illustration). Density is thus formulated such that values near 1 indicate evenness in the Moran’s 

scatterplot quadrants, and values near zero indicate high variance in the Moran’s scatterplot 

quadrants. 

There were three types of aggregation methods applied to the RinkWatch data: grids 

(quadtrees), authoritative datasets (census tracts and dissemination areas), and geometric 

(Voronoi polygons).  The quadtree gridded approach was chosen for its ability to create variable 

resolutions recursively, while the authoritative datasets were used for later association with 

ancillary census data for analysis.  The final aggregation method, Voronoi polygons, were used 

for their geometric properties as the RinkWatch data, as stated earlier, has individual locations 
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that tend not to overlap (e.g. there would probably not be three backyard rinks on the same 

street). 

Optimizations for regular tessellations were performed using quad trees.  A quad tree is a data 

structure where each level has four spatially identical nodes branching from a parent node 

(Bereuter, 2013).  Bereuter explains that this type of data structure can speed up spatial queries 

by continuously subdividing a homogenous study area until heterogeneous data values are 

found.  Examples of the use of quadtrees can be found in image retrieval (Ramanathan, 2011) 

and environmental modelling (Popinet, 2011).  The quad-tree implementation was recursive, 

moving down the tree until all four child nodes' metric values were less than the parent node's 

metric value plus a small recursion tolerance (0.05 in the case of this implementation, where the 

metric value is between 0 and 1).  For all the child nodes, if a child node's value was greater than 

the parent's node metric value plus the buffer, the recursion would move to a level deeper.  

When the algorithm reached the bottom, the current grid area and metric value would be 

passed up the tree and merged with each of the other nodes that matched the abovementioned 

criteria, determining if the new grid area creates a greater metric value whereupon the 

algorithm would send up the newly merged grid area.  Grid areas must be adjacent to be 

merged and would be discontinued if found to be an island.   At the end of the algorithm's run, 

the area with the largest area and highest metric would be identified as the optimal area (Figure 

2).   

Optimization for irregular tessellations used an algorithm which iteratively merged adjacent 

polygons from a seed polygon.  The algorithm iterates over every polygon present in the study 

area, treating each as a seed.  The seed polygon’s neighbours are evaluated to find the 

neighbouring polygon that would create the highest overall metric value of the two combined.  
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If this metric was higher than the metric of the current seed, the seed was replaced with the 

new merged polygon.  This process would be repeated until no adjacent polygons were found to 

create a higher metric value.  Adjacency was determined non-recursively using a global 

adjacency matrix similar to the AMEOBA algorithm (Valles, 2014).  First and second order 

adjacency were used for analyzing the dataset (Figure 3).   

All data points within a polygon were aggregated for metric value determination with the metric 

normalized by polygon area.  The polygon delineations used were census tracts, dissemination 

areas, and Voronoi polygons.  This paper set a lower limit of 1000 m2 for the threshold of 

gridded areas.  Metric component weightings for analysis were varied: 50% density and 

coverage, and 33% density, coverage, and user-heterogeneity.   Hereafter, these will be referred 

to as 505 weighting and 333 weighting respectively.   The 505 weighting was used for the 

analysis of the active VGI dataset case study as user-heterogeneity was considered a less useful 

component.  This is due to the fact that user heterogeneity measures the ratio of data points to 

unique users and the case study will use a minimum of 20 data points per user for inclusion, 

causing a small user-heterogeneity metric component value. 

3.4 Case Study 

Several citizen science initiatives are being created to harness VGI, including RinkWatch 

(www.RinkWatch.org), NatureWatch (www.naturewatch.ca), and a site to generate data on the 

distribution of plants and animals (Lukyanenko, 2011).  The RinkWatch (www.RinkWatch.org) 

project was designed to exploit the popularity of outdoor skating by recruiting citizens to 

contribute to a web-based log about the quality of ice on their homemade rinks. It was 

anticipated that the change over time in the length of the outdoor skating season and intra-

seasonal changes in skating conditions could be used as proxy indicators of winter weather 

http://www.rinkwatch.org/
http://www.naturewatch.ca/
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trends, complementing weather station observations. More importantly, observed changes in 

the indicator activity would likely trigger greater public response than would observing changes 

in weather station readings, especially as many weather stations are situated at airports which 

tend to be outside of city limits.  RinkWatch was officially launched on January 8th, 2013 and ran 

in the winters of 2013 and 2014.Users were asked to register and add daily readings of whether 

their rinks were “skateable” or “not skateable”.  Current research (Damyanov et al., 2013) shows 

that rinks tend to be skateable after 3 days of consistent temperatures of -5 degrees Celsius.   

For the analysis, skateability is defined as the percentage of days that the users recorded that 

their rinks were skateable over the season (with skateable being a binary yes/no variable).     

The case study of evaluating RinkWatch data to identify optimal areas was focused on the 

Kitchener/Waterloo (KW) area of southern Ontario, Canada.  The RinkWatch data is slightly 

unique in comparison to other implementations of active VGI like OSM.  OSM may still have 

several users contributing data on the same point (i.e. the same location) while RinkWatch 

would more likely be one user per geographic location (e.g. the person in charge of the rink or 

homeowner).  The KW area has an estimated population of 317,933 and an average winter 

temperature of -7.7 degrees Celsius over the last three years (statscan).  This area was chosen 

due to the high participation rates with the RinkWatch initiative in addition to the familiarity of 

the area to researchers.  985 rinks (unique users) were created over the two year study period, 

with 22661 individual readings (data points) specified.  There are 21 rinks in the KW area that 

will be used for the skateability analysis, each with 20 or more readings (Figure 4).  The goal is to 

find a study area within the KW area that would allow an optimized analysis of local 

temperatures for the winter season, more specifically ignoring outliers (both high and low 

density areas of readings) while defining an area of adjacent (i.e., connected) cells within the 

study area.  The minimum threshold for aggregation of points by a unique rink for this study was 
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set at 20, or approximately three weeks of continuous participation.  Final analysis of the 

optimal study area found will be done using a spline interpolation of skateability on the entire 

study area and the optimal area.  The smoothness of the optimal area will be compared to the 

entire area to gauge the suitability and usability of the optimal area.   

3.5 Results 

Measures of spatial pattern inherent to the metric were able to determine an optimal 

geographic area for subsequent analysis of a VGI point dataset.  Through use of the RinkWatch 

active VGI dataset, it was shown that the optimization algorithms, using the metric, discovered 

suitable sub-areas of study when the focus of skateability analysis was the goal.  In addition, 

there were several differences between the regular tessellations when compared to the 

irregular tessellations, with the irregular tessellations showing higher metric values and more 

homogenous data values compared to the grid areas which incorporate several extreme 

outliers.  The regular tessellation algorithm returned optimal areas with very low metric scores 

(0.148/0.216 for the 333/505 metric inputs) compared to both the irregular tessellation (census 

tracts) and geometric tessellation (Voronio polygons), both of which showed very similar values 

(0.656/0.68 and 0.968/0.9997) (Figures 5 and 6).    

The gridded area (Figures 5a and 6a) found an area of like values [22, 30, 25, 27, 67, 76] though 

this same area contains much larger values [158, 394, 179] which do not meet the criteria 

needed for the skateability analysis described earlier.  The metric value is also very low for both 

the 505 and 333 weightings.  Coverage would play a large role in the lower values as the grid 

area is rectangular by design leaving a lot of empty space.  In addition to this, the addition of the 

large outliers to the list of values would decrease user heterogeneity.   



52 

 

The irregular polygon analyses found higher metric values overall (Figures 5b, 5c, 6b, 6c).  The 

census tract analysis identified four polygons with similar numbers of readings [20, 22, 65, 67].  

The individual polygonal metrics were normalized by the area of the polygons.  The Voronoi 

polygon analysis identified the same region [20, 22, 27].  User heterogeneity decreased the 

metric values of both of these analyses as each aggregated point has just one unique user (rink).  

The final analysis was using a lag order of 2 (Figure 7), or allowing a polygon that is connected by 

one empty polygon.  This showed no real difference with a weighting of 333 but the 505 

weighting found a different final optimal area [20, 22, 27, 35, 76].  Dissemination areas were 

tested but proved to be a too fine for an analysis of a point dataset of this number.   

The skateability of each rink can be seen in Figure 8.  These percentages represent the amount 

of time the rinks were skateable over a variable length period dependent upon user 

contributions.   A cursory analysis of the skateability percentages does not yield any definite 

areas of local skateability variation nor do comparisons of the skateability (Figure 8) show a 

relationship to the overall counts of data (Figure 4) (e.g. high skateability does not necessarily 

mean high number of readings).  High counts of readings and of skateability can be found both 

in the central areas of the area and in the more suburban fringes.   

Overall, the spline interpolation analysis shows a much smoother spline surface created than 

the surface created from the entire dataset (number of readings >= 20) (Figures 9 and 10).  This 

allows us to better gauge the variability in the local area for skateability.  While local variation 

would show differences from the official weather data stations (located at the airport in the KW 

region) and among different areas of the KW region (e.g. rural vs. urban), the variation shown 

using the entire dataset for the study areas is unusable (left images of Figures 9b and 10b).  

Though there are many levels of users, from people who have been building rinks for decades to 
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people learning for the first time, there should not be the amount of variability in the 

skateability of rinks as shown in the left images.  The optimal area using both weightings (505 

and 333) demonstrate much smoother surfaces than the overall area with similar values of 

skateability.  The major outliers were not included in the optimal area.  Figure 9 shows a 505 

weighting with the [77.3, 100] values not included.  These are too high and probably denote low 

numbers of readings and therefore unreliable data.  The 333 weighting (Figure 10) shows similar 

results, with large areas of [0] denoted by the -596% - 0% and too many areas of large areas of 

[100] denoted by the 101% - 231%.  It should be noted that a spline creates the best surface 

based on fitting a smooth surface to the data, causing the values under 0% and over 100%.   

3.6 Discussion 

Lawrence et al. (2014) showed that analysis of ambient VGI (Flickr and Twitter) at different 

grains can result in very different outcomes.  His paper focused on utilizing a metric created to 

assess the quality of VGI at various spatial grain sizes.  For this paper, through the use of several 

types of optimization methods, we aimed to use the same data quality metric to define an 

optimal study area, or extent, from the complete input study area based on the spatial 

characteristics inherent in general active VGI point patterns.  The results showed that the 

optimization methods were able to find optimal study areas that matched the predefined 

criteria for the active VGI case study of skateability of RinkWatch: similarity in data counts by 

each unique contributor, spatial adjacency, and a minimum amount of data counts.  The analysis 

of the results of the Voronoi polygon optimal area to the Voronoi polygon complete data area 

showed a much more realistic pattern of skateability than the same analysis conducted on the 

entire data set. Filtering out outliers and preserving spatial connectedness in spatial analysis of 

VGI point patterns may be an important pre-processing step for future studies of user-

contributed data. 
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The findings of metric values showed that the differences between different spatial extents can 

be quite diverse.  The first optimization method used was the quadtree gridded algorithm.  

While the optimal area result encapsulated a reasonable subset of the overall data matching the 

criteria needed for a skateability analysis, it could not overcome the inherent deficiency of 

standard grids being used.  The optimal area found for the RinkWatch data contained several 

aggregated counts of readings that were much higher than the surrounding counts.  This would 

bias the skateability analysis as a rink with 394 contributions would be much more accurate than 

the average rink with 73 contributions.  While there could be uses for finding the most prolific 

contributors, such as an analysis to assess socio-economic factors that may explain strong 

participation rates, this was not the focus of this paper.  Often, multi-scale approaches to an 

analysis may be constrained to a gridded approach, especially in cases of comparison to raster 

data, though there are efforts to combat this such as Galpern’s study of landscape gene flow at 

multiple spatial scales using landscape connectivity (2012).  

The irregular polygon study areas (census tracts, dissemination areas, and Voronoi polygons) 

were then tested and found to mostly provide higher metric value optimal areas based on the 

predetermined criteria mentioned above.  The dissemination area, however, was too fine 

grained to be useful for the necessary analysis.  While multiple lag orders were attempted (i.e. 

allowing for adjacency of n orders, or allowing polygons to be included even if they were 

separated by n empty polygons), the dissemination areas did not provide any useful results 

which are sparsely populated over an area.  There would be very little use in creating several 

rinks in the same location in one neighbourhood, especially at the distance required to be 

adjacent using the dissemination areas.  The census tract and Voronoi polygon optimal areas 

were much more conducive to a skateability analysis. 
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The census tract and Voronoi optimal areas proved to capture the best areas of all the different 

types of study areas tested, showing good compatibility with the criteria needed for the final 

skateability analysis.   There was very little difference between using a metric component 

weighting of 333 compared to the 505 weighting.  The 333 weighting was used to see if user-

heterogeneity would change the outcomes of the optimizations, which it did not.  This is not 

surprising as user-heterogeneity would always be very low due to the fixed location of the active 

VGI in question (fixed physical rink location).  A lag order of two did change the optimal area for 

the 505 weighting, shown in Figure 7.  The overall characteristics of this area are similar to the 

ones resultant from a lag order of one in average counts and number of polygons when 

normalized by area (Figure 6).   

The skateability analysis using spline interpolation helps to visualize the difference between 

using the complete study area versus the optimal Voronoi area.  Figures 9 and 10 show that 

skateability within the extent shown is not as high as the complete set of points would have us 

believe.  The value of 100% (bottom right of Figure 9) is a highly suspect value which should be 

further analysed and most likely omitted from the analysis.  These spline surfaces help to 

address the question about local weather variation within the KW region.  We are looking for 

areas which are similar to each other yet give enough information, in this case having a 

minimum of 20 readings.  We can then compare these (optimal) areas to each other and the 

official weather station data for further analysis in the future. 

The optimization proved to be highly beneficial to a cursory skateability analysis of the 

RinkWatch data in the case study.  Optimization of grain could also pose problems with further 

study though.  This paper used grid size iterations of 500 m2to check for the optimal grain size to 

reduce computation complexity with 1000 m2 proving to be the optimal grain, though smaller 
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blocks could provide higher metric values (iterations of 10 m2 for example).  While possibly 

providing a more optimal extent, this could create problems in future comparisons to other 

studies or within different geographic areas of the same study.  Also, in general, it is easier to 

understand a gridded tessellation of 1000 m2 as opposed to less specific numbers such as 670 

m2.  However, studies such as Chaudhry and Mackaness (2012), in which the grid sizes of 500, 

1000, 2000, and 4000 m2 were arbitrarily chosen for their study of Flickr tag similarity in the city 

of Edinburgh, would benefit from optimization.   

While studies such as this may benefit from an optimization of study area extent and grain size, 

researchers should always base their study area on the theoretical criteria they are looking for 

and the natural characteristics of the dataset.  Along these lines, how data quality is defined is 

determined by the researchers conducting the study.  This paper was not looking at user-

heterogeneity (neither high nor low) as there was only a necessity to have a lower minimum to 

the number of readings each unique contributor had created.  A further study of user 

participation may require the inclusion of user-heterogeneity looking at user participation.  This 

further addresses the need for tools to assess a study area for VGI, especially in cases where the 

researchers have limited access to data (e.g. Twitter’s 1% stream), based on data quality 

measures at different grains and extents.  

The need for methods to optimize study area extents and grains can be seen in other VGI 

studies.  Feick and Robertson’s study (2014) of Flickr tags in Vancouver, Canada used multiple 

geographic aggregation units (from 0.25 ha to 1024 ha) showing that different patterns in the 

tagging similarity occur across scales, and fine-scale patterns can be obfuscated when 

aggregated at larger scales.  Even well-established fields utilizing expert level sampling 

procedures can have similar difficulties.  Galpern (2012) states that the optimal spatial grain is 
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usually unknown before a landscape genetic analysis and gives the example of looking at various 

grains to filter out unimportant variation in the landscape of wide-ranging organism gene flow.  

As understanding of various sources of VGI are still in their infancy, an approach to the 

utilization of a VGI dataset without a multiscale focus may leave important information hidden 

or ignored by the grain or extent chosen.  Sester et al. (2014) states that these data have no 

explicit scale and generalizes VGI as mostly large scale data (POIs as an example) where scale 

must be determined otherwise integration and visualization become problematic.  They also 

discuss how many delineations that may be found in VGI are not official and may have semi-

permanent boundaries, as in the case of the “uptown” of a city, a “bad” neighbourhood, or 

cultural delineations. 

Overall, the optimizations were successful in identifying sub-study areas that met criteria 

defined by the data quality metric. Finding the right study area without predefined borders can 

be challenging.  The data is created by users based on certain criteria they have assumed from 

the project, irrespective of the researchers needs and through this, researchers need to find 

new methods of studying this somewhat chaotic form of data.  The need to identify sub-areas 

with like characteristics becomes apparent when attempting to analyse VGI, exemplified by the 

optimal sub-areas found in this study allowing for a less biased analysis of the chosen VGI 

dataset (i.e. skateability).  This partitioning method could be used for a new focused study area 

or a better idea of the overall study area’s characteristics.  This paper has shown that spatial 

grain and extent can be optimized through simple algorithms using a predefined metric, 

allowing for easier and faster study of data or comparison of different grains and extents to 

better understand how the data quality of a study using VGI can be used for analysis.  This can 

be of particular use for public consumption of real-time data collection and immediate 

dissemination (Sester et al., 2014).  While this paper focused on the optimal extent using 
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different grains and optimization approaches, there is no limit to the number of areas that could 

be returned for further study in any study.  For example, the algorithm could have a minimum 

threshold for the metric values it returns, allowing for several study areas of interest (extents) to 

be further analysed by the researchers.  The use of measures of spatial pattern (the metric in 

this case) helped to determine the optimal geographic grain and extent using the RinkWatch 

active VGI dataset, locating areas of similar characteristics while excluding outlier data points 

which could create bias, and thereby facilitating a cursory analysis of skateability in the case 

study region.  We anticipate that these findings will facilitate a wider adoption of multi-scale 

analysis of VGI and promote the data quality assessment of user-generated content in 

geography and other disciplines.  
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3.8 Figures 

 

Figure 3.1: Voronoi polygons of test data highl ighting the density metric component.  The image 

on the right denotes a Voronoi tessel lat ion created from generic test data.   The four polygons 

found are al l  adjacent in geographic (real)  space (a) and close together in the Moran’s Scatterplot 

(b).   The spatial  lags for the Moran’s Scatterplot (y -axis) and the count values normalized by area 

(x-axis) show that all  four of the polygons found are simil ar.  

  

(a) (b) 
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Figure 3.2a: Quadtree branch creation - The f irst square (metric value of 3) is div ided into four 

nodes.   The top left and bottom right nodes metric values (5 and 7) are greater than the parent 

node’s metric  value (3) and are further subdivided.   In the third diagram, the top left quadrant 

has no nodes with metric  values higher than the parent node, so it stops dividing though the 

bottom right continues unti l  i t also reaches the condition that the four child nodes have lower 

metrics than the parent.  

Figure 3.2b: Quadtree return values - The algorithm then takes the nodes from the lowest branch 

and merges them.  I t f inds the metric  value for them (8 in this general case) and checks that value 

with the parent node’s value (7).   If  the value is higher,  the merged polygon is sent up  the tree 

instead of the complete parent polygon.  This example returned two polygons with metrics 9 and 

5. 
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Figure 3.3: The polygon adjacency algorithm –  The algorithm checks each neighbour (green)  

around the merged polygon (red).  Images (a) through (d) show one iteration of polygon choice 

based on metric values and merging.  It  checks for the overall higher metric (green and red 

polygons together) and is merged into the red polygon (e) if  found to be the high er than the 

starting value.  Adjacent polygons are then checked based on the new polygon until  no adjacent 

polygons create a higher overall metric value.  

  

(a) (b) (c) 

(d) (e) 
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Figure 3.4: Aggregated reading counts of unique rinks with over 20 readings.  Figure  (a)  shows the 

exact reading counts while (b) shows the counts proportional ly (same data).  

  

(a) (b) 
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Figure 3.5: Three types of spatial  grains used to compute the optimal area at  metric input -  

coverage 33%, user-heterogeneity 33%, and density 33%.  (a) Quad-tree gridded polygons are 

used left,  (b) census tracts centre, and (c)  Voronoi polygons r ight.   
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Figure 3.6: Three types of spatial  grains used to compute the optimal area at  metric input -  

coverage 50%, user-heterogeneity 0%, and density 50%.  (a) Quad-tree gridded polygons are used 

left,  (b)  census tracts centre, and (c)  Voronoi polygons right.    
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Figure 3.7: Metric values for the optimal area using metric inputs of coverage 33%, user -

heterogeneity 33%, and density 33% and a lag  order (adjacency) of 2.  

  

(a) (b) 
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Figure 3.8: Skateabi lity percentage based on readings of Kitchener/Waterloo, Ontario, Canada 

(minimum 20 readings).  Figure (a) shows the skateabi lity percentage over the RinkWatch season 

while (b) shows the percentages proportionally  (same data).  

  

(a) (b) 
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Figure 3.9: Using Voronoi Polygons, a  spl ine interpolation surface fit  based on r ink skateability.   

The left surfaces (a)  are the optimal areas with the r ight surfaces (b) showing the complete study 

area.  Metric component weightings are coverage 33%, user -heterogeneity 33%, and density 33%.  

A spline creates the best surface based on the curvature created by the heights of the data 

points,  causing the values under 0% and over 100%.  The optimal area shows a smoother 

interpolation surface, al lowing for higher trust  in an analysis  of the data.  
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Figure 3.10: Using Voronoi Polygons, a  spl ine interpolation surface f it based on r ink skateabil ity.   

The left surfaces (a)  are the optimal areas with the r ight surfaces (b) s howing the complete study 

area. Metric component weightings are coverage 50%, user -heterogeneity 0%, and density 50%.  A 

spline creates the best surface based on the curvature created by the heights of the data points,  

causing the values under 0% and over 100%.  The optimal area shows a smoother interpolation 

surface, suggesting a more realist ic skateabil ity surface in an analysis  of the data.  
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Chapter Four 

4.0 Conclusion 

4.1 Discussion and Conclusions 

VGI data quality assessment is a timely issue for academic research, as VGI offers an inexpensive 

and highly sensitive data source with vast potential to transform how researchers collect and 

analyze data.  There are still many issues before VGI can be adopted as a ‘normal’ data source, 

though studies from Haklay, Girres, Goodchild, and others have shown VGI can be of ‘high 

quality’.  This thesis focused on one the aspects of VGI in which a researcher can control – 

spatial scale.  The research had four objectives to help assess the measurement of data quality 

at multiple spatial scales:  

1) A metric assessing data quality of ambient and active VGI. 

2) A methodology to optimize spatial grain using the metric from 1) 

3) A methodology to optimize spatial extent using the metric from 1) 

4) A case study using the optimal spatial scale demonstrating the overall quality of the 

optimal area 

Through these objectives, the research showed that a multiscale approach to finding the 

optimal grain and extent can be beneficial to researchers before they start a large scale analysis.  

The spatial grain analysis of the three Canadian cities elicited several differentiations between 

the cities that, with further study, could be used by researchers to better understand their study 

areas.  The reasons behind these differences remain speculative (due to tourism for example), 

however the methods introduced here allow a pre-filtering of VGI to identify sub-areas that 

support more comprehensive analysis. In addition, the optimization algorithms used in the case 

study of RinkWatch showed that areas of similarity and high quality can be found easily and 
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efficiently, with the case study analysis showing a vast improvement from the overall study area 

when the optimal study area was considered instead.  

Chapter Two found that there were quantifiable differences in the metric used when assessing 

the two larger cities of Vancouver and Toronto, Canada compared to the smaller city of 

Moncton (~140,000 inhabitants).  This finding is important as it may denote the ability to assess 

different types of cities and possibly different areas within large urban centres in a quantifiable 

way, allowing for optimization algorithms to assess VGI data for certain characteristics needed 

for an analysis.   The graphs in Figure 2.5 clearly show inflection points where the metric values 

start to decrease, signifying optimal grain sizes, which could then be utilized in an optimization 

algorithm.  While further examples with more diverse types of cities should be analysed, these 

preliminary findings allow for ability to hypothesize methods for grain size optimization.  The 

use of the maximal value would not be optimal due to diminishing returns.  Both coverage and 

user-heterogeneity for the CMAs (Figure 2.5 – right) show a strong decrease in the trend of the 

metric component values at 5000 m2, possibly signifying an optimal grain allowing for the 

creation of an algorithm to quantify these inflection points and comparing them to pre-set 

thresholds of change. 

Additionally, an interesting finding was shown through the analysis of the downtown core 100 

m2 grid (Figure 2.8) when underlaid with the street map of Toronto, showing high metric values 

along major transportation lines (subway line and University Ave.).  An algorithm similar to the 

ones found in Chapter Three might be able to delineate urban facilities, such as transportation 

lines.  This would require further research to verify, however all of the methods reported here 

could be fully automated into a VGI analysis and evaluation system.   
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Chapter Three used several optimization methods to create optimal extents of an active VGI 

citizen science dataset.  The key findings showed that the areas returned from the optimizations 

provided a better study area in which to gauge localized skateability (Figures 3.9 and 3.10).  The 

optimal areas were defined to find spatially adjacent polygons/grids with similar values.  In the 

case of a RinkWatch skateability analysis, the researchers would want to omit outliers from the 

study.  A participant who created over 300 data would skew the results if the overlying region’s 

other participants had a much lower average (72 readings in the case study).  While some 

variation would be acceptable in a region the size of Kitchener/Waterloo, the variation seen in 

the spline interpolations (Figures 3.9b and 3.10b) highlights an example of the difficulty of 

analysis of ‘raw’ VGI.  One caveat to this would be the levels of expertise of the participants (i.e. 

rink builders/maintainers) which could also cause some variation as new rink builders may have 

created substandard rinks.  We believe though that the variation in Figures 3.9b and 3.10b still 

don’t account for these issues. 

There was not a large difference found among the different irregular tessellation optimizations.  

The Voronoi polygons and the authoritative census tracts both returned similar metric values.  

However, these two tessellations showed much higher metric values than the regular, quadtree 

optimization.  This is due to the fact that the square grids capture all points within them.  If the 

grain size is set too small, the optimization methods cannot find enough adjacency between 

optimal areas though if the grain is too large, it captures too many points due to its shape.  A 

fluid, moving window would be a significant improvement to a regular tessellation optimization 

method. Further study could evaluate how these differences would change for point patterns of 

different densities.  
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Overall, the objectives were met and the goal of assessing data quality through the use of a 

multiscale approach proved to be successful.  The ability to filter outliers and find similarity 

between VGI data points (active and ambient) was shown to be plausible.  In addition, while this 

research returned only one optimal area in Chapter three, it is possible to return a number of 

optimal areas by setting a lower (and possibly upper) threshold allowing researchers to view and 

assess the different sub-areas given, which could be useful in other applications of the metric. 

The thesis was limited in several aspects.  The first was the use of only three Canadian cities in 

Chapter Two.  The use of more diversity would be much more telling of possible differences 

found through use of the metric.  This could include different sized cities and cities from 

different areas of the world.  Another factor that could play a large role in the differentiation of 

different areas of a study area would be through the inherent characteristics of the VGI – tags 

for Flickr, tweets for Twitter, and various pieces of information for OSM (e.g. POIs).  This thesis 

did not use these attributes to maintain a generality among the findings, but the use of these 

attributes could be used in the future.  The final limitation was the quadtree implementation.  

While it has the advantage of being an efficient algorithm, O(log n), it does not meet the needs 

of finding optimal areas in a study area well based on the patterns explored here  As stated 

previously, a moving window of varied size would prove to be a better method. 

4.2 Research Contributions 

This thesis adds to the growing research of VGI, focusing on data quality issues through the use 

of multiscale analyses.  The creation of methods to quickly guide an analysis using VGI to 

optimal study areas and grains would be beneficial to all.  In addition to this, the ability to view 

VGI at different scales could glean significantly more information about a study area and the 

characteristics inherent in the data that might not be readily apparent.  Along these lines, this 
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research doesn’t necessarily pertain only to future studies, but could be used in previous studies 

of VGI possibly resulting in new findings.   

While the evidence in support of multiscale approaches is a key contribution, the thesis also 

produced several other findings that contribute to the overall research on VGI.  The 

differentiation found among the graphs in Chapter Two (Figures 2.5) show observable points 

where the spatial grain being used creates a lower/higher metric, allowing for optimal spatial 

grains to be computed.  While more examples within the case study would have to be included, 

this is a very interesting finding.  In addition, while outside the scope of this research, Chapter 

Two results showed interesting pictures of the Toronto City Core (Figure 2.8) with high metric 

grid cells at the 100 m2 grain size possibly delineating transportation lines.  This also requires 

further study, but as VGI is often a real-time data source, it would be interesting if certain 

characteristics of an urban area can be characterized by specific aspects of VGI. 

Finally, all of the methods reported in this thesis were developed using open source software 

and will be made available to the research community as R scripts. This will greatly facilitate the 

uptake and further extension of these methods and contribute to the academic and industrial 

uses and study and user-generated data.  We envision that as the methods developed in this 

thesis mature, we may develop them into an R package on the Comprehensive R Archive 

Network (CRAN) and/or develop a map interface for implementing data quality assessment tools 

for publicly available geosocial data streams.  

Overall, this thesis has presented a very optimistic view of data quality in terms of VGI, both 

active and ambient.  Through this, several mutliscale processes were created which can be easily 

implemented and used in the study of VGI, even if in a very cursory, exploratory fashion.  While 

it is hoped that these ideas are appropriated by the research community, current research 
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suggests that multiscale, multi-applicational (e.g. Flickr and Twitter by Li et al. 2013) practices 

are increasingly the focus of VGI research (Feick & Robertson, 2013; Calderón-Patrón, 2013; 

Kelly, 2011; Galpern, 2012; Chase, 2013).  
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Appendix 
 

Introduction - RinkWatch 

Active participation of the general public in the collection, analysis, and/or communication of 

geospatial data for environmental science has a long tradition, with the example of the Audubon 

Society’s Christmas bird count dating back to 1900 (Dickinson et al., 2012; Silvertown et al., 

2011). In recent decades, resource managers and public environment agencies have created a 

range of citizen-based monitoring programs that seek to gather evidence for decision-making 

(Conrad & Hilchey, 2011). Geographers are showing growing interest in the research value of 

data obtained from interested citizens (often called volunteered geographical information, or 

VGI) which include applications in tracking wildlife poaching (Stevens, Vitos, Lewis, & Haklay, 

2013), urban noise pollution (Gura, 2013), biological responses to climate change (Beaubien & 

Hamann, 2011; Worthington et al., 2012), and the well-known Cornell-based e-Bird initiative 

(Dickinson et al., 2012). Studies have shown that data collected from well-constructed citizen 

science projects such as these can be reliable and robust (Michael F. Goodchild & Glennon, 

2010; Haklay, 2010; Mooney, Corcoran, & Winstanley, 2010).  While still a relatively new 

phenomena, best practices for online, VGI-based citizen-science are starting to emerge. For 

example, Newman et al. (Newman et al., 2010) describe a number of key attributes of successful 

projects that include allowing users to contribute data, making outcomes derived from user data 

visible and accessible to users, and reducing data entry errors by simplifying user interface 

designs - as important factors in successful web-based citizen science.   When sound project 

design and data collection principles are followed, citizen science data has proven to be useful 

for scientific use, with example studies including models of plant phenology (Jeong, Medvigy, 

Shevliakova, & Malyshev, 2013), climate change-driven adaptations in indicator species 

(Silvertown et al., 2011), protein structure modelling through game-driven crowdsourcing 
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(FoldIt) (Eiben et al., 2012), and numerous papers using data from The Cornell Lab of 

Ornithology projects (Bonney et al., 2009).   

 

There are many important  design considerations when creating a VGI initiative, with resources 

like Bonney et al. (Bonney et al., 2009) and Dickinson and Bonney (Dickinson et al., 2012)  being 

very useful in this regard. However, even after a project has been designed and is ready for 

launch, there is no guarantee that people will participate in it. The recruitment of new 

participants and retention of existing participants are important project considerations that are 

ideally considered from the outset of the project design phase (Chu, Leonard, & Stevenson, 

2012). This can have important consequences on the sampling design in the resultant project – 

as the data obtained for analysis will be directly related to the success of participant recruitment 

and retention. Despite the critical role of users (i.e., citizens) in citizen science, much more 

attention has been paid to technology, while the recruitment and retention aspects of citizen 

science project design have received less attention in the literature.   

 

In this paper, we report on design guidelines for recruitment of citizen science participants in 

VGI through the experience of www.RinkWatch.org, a VGI-based project that collects data about 

skating conditions on backyard and neighborhood outdoor ice rinks across North America. 

Launched in January 2013, by the end of its first season RinkWatch had approximately 1,300 

registered users providing approximately 14,000 discrete entries from nearly 1,000 outdoor 

rinks. Such levels of participation vastly exceeded initial expectations of this unfunded initiative. 

The aim of this paper is to identify deliberate project design choices and attributes that worked 

in the project’s favour and simple instances of good luck that helped make the project so 

popular. We also compare the impact of traditional mainstream media with social media in 

http://www.rinkwatch.org/
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attracting users to the project website, while describing some missed opportunities as well. In 

doing so, we suggest our experience with RinkWatch can provide useful lessons to researchers 

contemplating VGI-initiatives.  

Background 

Individuals’ understanding of climate change, and the willingness of the general public to 

engage proactively in responses to it, are complex phenomena (O’Connor, Bord, & Fisher, 1999; 

Semenza et al., 2008; Weber, 2010; Wolf & Moser, 2011). Despite increasing availability of 

information and growing public awareness that climate change is an important challenge, it 

nonetheless remains difficult to get the general public to take actions that enhance their ability 

to adapt to its potential impacts (Burch, 2010).  Part of this may be due to the uncertainty of the 

impacts of climate change, especially at local levels, which makes action unlikely unless the issue 

is framed such that individuals contextualize potential implications within their own 

communities (see Morton, Rabinovich, Marshall, & Bretschneider, 2011).  If the success of e-Bird 

and similar broad-based initiatives are indicative, citizen science, with its emphasis on engaging 

individuals in the creation of environmental knowledge, may provide an opportunity to enhance 

awareness of the implications of climate change at local and household levels, thereby creating 

the potential for a more actively engaged public. The same way that charismatic mega-fauna 

species are used in the environmental conservation movement to catalyze conservation 

resources (Clucas, McHugh, & Caro, 2008; Wilson, 1985), a key element of climate citizen 

science recruitment lay in identifying activities that enjoy broad-based familiarity and are also 

linked to changes in climate (or any target issue), which we’ll refer to as charismatic indicator 

activities (CIA). The concept of characteristic mega-fauna, or a flagship species, is described as 

follows: “A species that has become a symbol and leading element of an entire conservation 

campaign”(Simberloff, 1998). We propose that the same concept be applied to identifying 
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problems with great potential for citizen science, and in particular in the recruitment of 

participants.  

 

In many parts of the Northern Hemisphere, outdoor skating is an exemplary CIA, enjoying 

longstanding and widespread popularity across much of Canada, the northern US, and northern 

Europe. Although statistics are unavailable, in many communities and neighborhoods where the 

climate allows, temporary rinks are made in backyards and neighborhood parks by individuals 

who flood the ground repeatedly during freezing conditions. These rinks range in size and 

investment from simple, ad hoc ice sheets to more elaborate structures.  Popular media and 

anecdotal accounts from people living in rinkmaking areas such as southern Ontario, southern 

Quebec, and New England suggest that milder winters have made maintaining a rink more 

difficult in recent decades, consistent with studies using climate data that rising average 

temperatures will make it increasingly difficult to do so (Damyanov, Matthews, & Mysak, 2012).  

 

The geographically widespread popularity of outdoor rinkmaking, its obvious link to winter 

weather conditions, and the fact that it is an activity engaged in by families of various socio-

economic backgrounds make it an excellent opportunity for engaging the general public in VGI-

based citizen science (i.e., a case study CIA). Further, we believe that through the empirical 

collection of reports from citizens about the quality of ice on their homemade rinks, the change 

over time in the length of the outdoor skating season and intra-seasonal changes in skating 

conditions can be tracked and used as proxy indicators of winter weather trends, 

complementing weather station observations. More importantly, observed changes in the CIA 

would likely trigger greater public response and outcry than changes in weather station 

observations. In creating RinkWatch we set four goals: to obtain data about outdoor skating 
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conditions to assess its potential value as a proxy indicator of winter weather conditions and 

trends; to assess the potential of VGI as a means of acquiring large amounts of data across wide 

spatial scales; to encourage participation in environmental citizen science more generally; and, 

to use RinkWatch as a means of generating a wider public discussion about the impacts of 

climatic variability and change on citizens’ day-to-day quality of life.  Other examples of winter-

based climate citizen science include IceWatch (www.naturewatch.ca), which seeks ice-on/ice-

off data for lakes and rivers, and #Snowtweets (http://snowcore.uwaterloo.ca/snowtweets/), 

which asks users to take snow depth measurements and send these to the research team via 

Twitter. We hypothesized that RinkWatch, because of its explicit link to a popular outdoor 

activity, would possibly catalyze the public more so than these efforts. In this paper we explore 

this hypothesis through the narrative of the recruitment and retention of participants during 

RinkWatch’s launch.  

RinkWatch Launch 

RinkWatch was officially launched on January 8th, 2013.  It was created and maintained by a 

small team of three researchers using open source tools (Django, Apache, and PostgreSQL) on a 

server in The Spatial Lab housed at Wilfrid Laurier University.  Users were asked to register and 

add daily readings of whether their rinks were “skateable” or “not skateable”.  As usership 

increased, functionality was added and the team grew to maintain the social media aspects of 

the project.  One of the first additions to the site post launch was a forum for users, used 

immediately as a make-shift gallery for pictures of the users’ rinks.  A map interface was also 

added showing all the rinks that were skateable and not skateable the previous day, while 

redefining the word “skateable” to: 

“Was the ice solid enough for you to skate, even if you chose not to for other reasons (e.g. too 

cold outside, didn't feel like shovelling, had a hockey tournament, etc.)?” 
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By the end of the outdoor skating season, there were 1,334 registered users, 979 rinks, and 

13,797 readings in the RinkWatch database.  There were 845 rinks located in Canada, 123 in the 

United States, 1 in Norway, 1 in Turkey (an indoor ice rink), and several that were either 

erroneously placed or deliberately misplaced, such as a rink in South Africa named “skating on 

sand”.  The user forum had a total of 94 topics with 403 posts.  The percentage of return users, 

defined by having at least 7 readings (one week), was quite high (52.4%).  The average user 

added 17.4 (median: 7, s.d. 27.5) readings over the season.  In addition, while there were more 

rinks found in urban areas, rural rink participation was comparable to urban rinks.  Figures 

Appendix-1a and Appendix-1b show the coverage of rinks in North America and the users who 

inputted the most number of readings as of June, 2013.  Overall, the season elicited many more 

readings than had been expected. Exploratory analysis of temperature readings revealed that 

patterns of skateability in areas near weather stations are consistent with official meteorological 

stations recordings.  

Media Events and Website Visits 

The first successful event for RinkWatch occurred with the Montreal Gazette newspaper article 

that appeared online on January 8th and in print the following day.  The Gazette story started a 

chain reaction of interview requests from large Canadian newspaper chains including a live 

interview on a popular morning radio show in Toronto CBC Radio’s Metro Morning, which has an 

average listenership of over 1 million (“Consider this: CBC Radio’s Metro Morning in Toronto a 

model of success,” 2012).  By the end of February, thirty-five radio interviews in both English 

and French had been given by project team members, most in Canada, and stories about 

RinkWatch had run in most large daily Canadian newspapers (see Table 1). On January 23rd, a 

feature story about RinkWatch was aired on both CBC’s national evening television and radio 

news. The audio broadcast on CBC radio began at 1800H eastern time and the full video version 
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aired on national television at 2100H Eastern.  The impact of this story is shown in Figure 

Appendix-2 which tracks deviation of the number of unique visitors from the hourly means 

found between January 16 and April 1 on a weekly basis.  The number of visitors during the 

broadcasts was much larger than the weekly mean of unique visitors for those hours.  

 

Canadian media coverage of RinkWatch was extensive.  Figure Appendix-3 presents the number 

of daily visits to RinkWatch.org from mid-January to late February, with the media sources of 

important spikes identified.  Media coverage of RinkWatch in the US was both smaller in volume 

and different in nature, but was nonetheless highly effective in attracting visitors to the website.   

RinkWatch was featured on the home page of Scientific American for several weeks, from which 

over 300 unique visitors proceeded to the project website. The most one-day visitors to the 

project website took place on February 7th after there appeared almost simultaneously a short 

story about RinkWatch in the Huffington Post (via Grist.org) and a posting about RinkWatch was 

made by an influential US blogger, Andrew Sullivan (The Dish).  

 

Social media generally proved to be an important source of visitors to the project website. The 

project team established a Facebook page for RinkWatch, which contained photos and stories 

but was primarily designed to channel people to the main project website. A RinkWatch Twitter 

account was created, which was actively used to disseminate online articles about the project 

and connect RinkWatch team members with reporters and citizens through retweeting and 

following. Table 2 lists the RinkWatch website visitors by originating or referring source; as can 

be seen, online media was very effective at generating visitors, with Facebook being the most 

effective in generating visits. However, visitors referred from social media showed much less 

interaction both in average visit duration and in the number of pages visited, as compared to 
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more traditional media news sites.  Twitter, Facebook, and The Dish referrals showed the lowest 

interaction through duration and pages visited, while CBC.ca, Yahoo! News, and Scientific 

American show higher rates of interaction. Google search and direct visitors had the highest 

interaction, but these would also capture return visitors and regular users.  One of the most 

noticeable features of visitors was their interaction with the site based on the referral site they 

used.   

 

Overall, forty-four percent of visitors stayed on the website for less than 10 seconds and viewed 

only one page, with another 9% staying less than 30 seconds.  This leaves approximately 46% of 

visitors staying at least 30 seconds or more, which can be seen as a more than acceptable rate of 

initial user retention.  Durations of 61-600 seconds suggest users who might have more than a 

spontaneous interest in the site.  A visitor on the site for more than 600 seconds would be 

interacting with the site in a meaningful way, most likely browsing or contributing to the forum 

though may also signify being away from the computer or browsing other sites while leaving the 

window open.  Canadians appeared to have higher pages per visit and average visit duration 

compared to Americans and most other countries other than Norway (Canada/US: 6.17/3.61 

page views and 3:37/2:08 minutes).  Canadians also had the lowest bounce rate (leaving the site 

from the initial landing page instead of viewing other pages in the site).  Popular social media 

site referrals tended to show less interaction with the site than those from more “authoritative” 

sources, such as news outlets.  Google referrals probably contain referrals from radio and 

television reports with direct visitation (i.e. from using a URL) consisting of return users. 

Rink readings data input pages showed the most page views, with the initial splash page (output 

information) and forum being the next most viewed pages.  This does show that the site was 

being used for its intended purpose; the input of readings with output pages being almost as 
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important.  The “About” page, which describes the project’s reasoning and methods, also 

received many page views in addition to the longest average time on page.  Many of the web 

based media articles on RinkWatch linked to the "About" page. 

Discussion – Lessons Learned 

A number of important lessons were learned in launching and promoting RinkWatch. Firstly, 

media attention and user participation rates exceeded our original beliefs about the extent of 

public interest in outdoor skating in North America. We deliberately counted on this interest 

when we conceived of RinkWatch. We expected it would resonate well with Canadians, for 

whom outdoor skating is as much a cultural icon as it is a pastime (e.g. the Canadian five dollar 

note bears an image of children skating), but had not expected such an enthusiastic response 

from Americans. Had we undertaken greater preparatory research of our potential audience we 

might have recognized this sooner and adjusted our initial press release distribution accordingly.  

These points support the idea that ice rinks and skating culture are good examples of CIAs, a 

concept which could be further developed for future projects.   

 

Secondly, there appear to be differences between user-interaction on the website and whether 

they arrived at the site via traditional mainstream media versus online / social media. While 

both platforms delivered website visitors in sudden bursts, blogs, online only newspapers, and 

Facebook and Twitter generated predominately short-duration visits. Visitors who learned of 

the site via traditional media were more likely to remain on the site. For our project, radio 

seemed to be a very effective means of publicizing the site and generating usership. We should 

note that many different types of radio programs featured stories on RinkWatch, including local 

and national news programs, morning talk-shows, daytime AM talk radio, and extended call-in 

programs; all were effective in generating visits to the website commensurate with the size of 
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the listening audience. An important lesson is therefore to not overlook ‘old’ media in the 

pursuit of ‘new’ media.  However, launching a web-based VGI project without a complementary 

Facebook page and Twitter account would seem to be missing an inexpensive and easy vehicle 

for funnelling visitors to a project website and for cultivating a relationship with reporters, most 

of who use Twitter regularly.   

 

Finally, when eliciting data from the public, the details of the data required must be explicit and 

well defined otherwise the data may not meet the desired standards.  The current definition will 

be further refined for the 2013/2014 winter season.  This is important, as shown in several of 

the afore mentioned studies (Bonney et al., 2009; Dickinson et al., 2012; Gura, 2013), citizen 

science data use is gaining acceptance in many fields as a valid way to collect certain types of 

data.  It is also important that users have the ability to provide feedback outside of the data they 

may be offering.  Email contacts and social media help but the largest repository of feedback 

was found in the forums directed at the RinkWatch project team and among themselves.  There 

were few problems when it came to data input and management.  One issue that arose was 

users wanting to be able to input more data than what the system allowed, including historic 

data from many years of logging their rinks' details.  The site was changed to allow for historic 

data for the 2012/2013 winter season, but functionality for past seasons has not been added 

yet.  Users also wanted to add comments to their data inputs to further explain their data, 

especially before the more concrete version of "skateable" was added to the site.  This was done 

in the form of a text input field.  In retrospect, it should not have been surprising that people 

had been tracking information on their rinks outside of official needs and historic data input 

should have been allowed for from the beginning.  Data output is also an important factor that 
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has yet to be fully implemented in RinkWatch.  Currently, efforts are underway to improve data 

analytics and visualization for users on the site to promote user retention.   

 

With the new 2013/2014 season, it is hoped that usership will not only be maintained at current 

levels, but can be increased.  To help retain current usership in the new winter season of 

2013/2014, more outputs for individual users and the general public will be made available in 

addition to the creation of a gallery to showcase their rinks.  A badge or reputation game-like 

reward system will also be implemented, giving the users a personal attachment to their 

participation.  It is also hoped that new usership can be generated outside of North America, 

allowing for a better spread of data for analysis.  Northern Europe and Asia would be key areas 

that would greatly help in analysis of the data for environmental/climate change purposes.  The 

data collection will be updated, using a more concise definition of “skateable” and allowing for 

more specific data about the individual rinks to be inputted.  This will allow for a more detailed 

analysis of the data and allowing for further separation into useful subsections (i.e. publically vs. 

individually maintained rinks). 

 

Overall, the greatest question is that of what elements of RinkWatch captured public interest in 

a way to warrant such media attention and how can this be replicated for other citizen science 

projects.  In the case of RinkWatch, the project aims allowed citizens to become champions of 

the project, taking ownership, providing recommendations and feedback, and developing a 

community structure.  Furthermore, RinkWatch taps into a very personal aspect of community 

life and culture that allows people to take part in an aspect of climate change research in the 

same way that the allure of lions or pandas help garner support for conservation efforts.  These 

ideas lend well to media attention, but researchers must be vigilant and take the initiative 
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during the launch of a citizen science project.  Social media and traditional media both played a 

large role in RinkWatch’s success.  However, a project must be able to quickly adapt, both 

technologically and conceptually, to unexpected media attention and user suggestions, with 

RinkWatch’s post-launch addition of a forum serving as a good example. 
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Figures 

 

Figure Appendix-1a: All  Rinks for 2013 season (the rink from Norway is  not shown for clarity)  
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Figure Appendix-1b: Top 5% active users  
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Figure Appendix-2:  Deviation from the RinkWatch hourly means for January 23/24  
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Figure Appendix-3:  Visits from outside web sources (non -direct  referrals)  
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