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Abstract

In prokaryotes, transcriptional regulation commonly involves a transcription factor
(TF) binding to a particular conserved sequence of nucleotides (operator). Binding
elicits a transcriptional response, either activation or repression. The evolution of
gene regulation has been identified as a primary driver of species diversity, making it
an important area of research. This work examined the dynamics of the interactions
between TFs and operators, and TFs and their primary target genes in attempt
to assess the rapid evolution of transcriptional regulatory networks (TRNs) across
a diverse set of prokaryotes. Using software packages, operator sequences from
Escherichia coli K12 were compared to every bacterial and archaeal genome within
the NCBI’s RefSeq database. This revealed that, based on genome composition,
native TFs have a greater probability of interacting with sequences within their
host’s genome than those of other species, indicating that appropriate operators may
form spontaneously, and often, within a genome. TFs and target genes were assessed
through co-occurrence patterns. Recently, research has shown that repeated co-
occurrence of two genes is evidence for a functional interaction. Co-occurrence can
be observed and quantified in phylogenetic profiles by measuring mutual information
(MI); this is a metric of how often two genes co-occur adjusted for what is expected
by chance. By measuring MI for all two-gene combinations from a subset of genomes
from NCBI’s RefSeq database, results showed that, in > 97% of the organisms
observed, TFs form looser functional interactions than other genes, indicating that
TFs do not form lasting associations on the evolutionary time scale. These results
suggest regulatory interactions are not as specific or conserved as those between
most other gene products. Together, these results suggest that TRNs evolve rapidly
across most, if not all prokaryotes.
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1 General Introduction

Transcriptional regulatory networks (TRNs) are vastly interconnected networks with

three primary components: transcription factors (TFs), TF binding sites, and target

genes. Recently there have been efforts to characterize TRNs in many organisms

across both prokaryotes [1, 2] and eukaryotes [3]. The elucidation of such networks

aids in the understanding of how transcriptional regulation (TR) is carried out

globally (for example, in response to immediate environmental changes), as well as

how these networks can adapt, or reorganize, on an evolutionary timescale when

compared across species.

The question of how TRNs rewire has become a targeted area of study. This is

primarily due to the recent paradigm that variation in gene expression serves as a

driving force in species diversity [3, 4]. It has already been hypothesized that TRNs

rapidly evolve [5, 6, 7], however this has only been demonstrated by comparing

small reconstructions of a TRN between well-studied model organisms and other

closely related species. Though these results support the hypothesis, they have

not demonstrated the possibility for rapidly evolving TRNs across diverse sets of

organisms.

The objectives of this work were to characterize the evolutionary dynamics of

the primary components of a TRN: TFs, their binding sites, and their target genes

for a diverse set of prokaryotes, including some Archaea. It is hypothesized here

that if TRNs rapidly evolve in all prokaryotes, then TF binding sites should be

non-specific enough to facilitate novel binding of TFs to new promoter regions and

homologous TFs, on average, should not be observed to regulate homologous genes.

By assessing these components of a TRN, it is possible to surmount the daunting

task of reconstructing them, making it possible to test this hypothesis over a large

set of prokaryotes.
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Ultimately, reorganization of TRNs can serve as a possible source of variation for

organisms in unstable environments. This work, though computational in nature,

is assessing the success of this predicted evolutionary strategy and thus attempts

to answer questions beyond those asked with traditional bioinformatics. Aspects of

phylogenetics, evolutionary biology, bacterial ecology and genetics, and theoretical

biology are integrated here alongside bioinformatic approaches to discover if the

ability for a TRN to rapidly evolve is a trait observed for all currently sequenced

prokaryotes.

1.1 Transcriptional regulation

The regulation of gene expression is a phenomenon ubiquitous to all known life. TFs

are proteins that play an important role in regulating expression by modulating the

rate of transcription of an open reading frame by binding to a specific stretch of

DNA and affecting the action of RNA polymerase. Though not all domains of life

regulate gene expression in identical fashions, the existence and action of TFs is

uniform.

There are two classes of TFs currently identified in prokaryotes, global and local

[8]. Global TFs are generally responsible for regulating and co-regulating a large

number of genes. Typically these genes include genes coding for other TFs, and other

genes that are diverse in terms of their protein products. For example, in Escherichia

coli K12, there are 7 clearly identified global TFs. Together these TFs are involved in

half of all known regulatory interactions involving TFs [1, 9]. Cyclic-AMP response

protein (CRP) is one of E. coli’s best studied global TFs. According to recent

databases [1, 10, 11, 12] CRP is involved in the regulation or co-regulation of 473

genes including 245 operons. The set of genes regulated by CRP, also called the CRP

regulon, includes other TFs, membrane-bound transport proteins, enzymes involved

in aerobic and anaerobic respiration, and many more [1, 10]. Local regulators control

a small number of genes and sometimes act as co-regulators with a global regulator.

An example of a classic local regulator is LacI, known to regulate the lac operon,
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responsible for lactose metabolism in E. coli [13].

This dichotomy of TFs is also observed outside of E. coli. For example, CodY

is a global TF found to regulate 151 genes in Bacillus subtilis [11, 14]. These global

TFs have been termed “regulatory hubs” [15] and it has been proposed that the

existence of these hubs enables TRNs to be particularly robust to random pertur-

bations [16]. Such perturbations could include gene duplication, loss, mutation, and

transfer within or between organisms.

1.2 Transcription factor binding sites

When Jacob and Monod first elucidated the regulatory mechanisms of the lac

operon, they called the site where lacI bound, the operator [13]; this classic term

is still widely used today, especially when referring to the lac operon. The term

“operator” will be used here to refer to any TF binding site.

Operators are typically short DNA motifs between 12 and 30 base pairs in length

and are known for not having a highly specific consensus sequence; because of this,

they are often referred to as “fuzzy” in nature [17]. Due to their short length and

inherent fuzzy properties, motif search algorithms are constantly being developed

and improved upon in order to facilitate the identification and prediction of operators

[18].

Another consequence of these inherent properties of operators is that they have

low information content (IC) [17, 18]. The IC of a sequence of DNA is dependent on

the length of the motif, as well as the background frequency of each nucleotide [19].

Simply, IC is calculated by aligning similar motifs and counting the occurrences of

each nucleotide at each position into a weight matrix (see Figure 1.1 for example with

CRP-bound operators) and using that matrix to calculate how frequently another

motif would be expected to occur, by chance, in a DNA sequence where the a priori

nucleotide frequencies are known [19]. Short, variable sequences result in low ICs,

i.e. they are likely to exist in the search sequence often, just by chance.

Since operators intrinsically possess low ICs, and they exist as target sites for TF
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(a) Weight matrix for CRP-bound operators

(b) Sequence logo for CRP-bound operators

Figure 1.1: Weight matrix (a) constructed from 215 operator sequences recognized
by the TF, cyclic AMP response protein (CRP). CRP is a global TF in E. coli; this
matrix was constructed by aligning experimentally determined CRP binding sites
and counting the occurrence of each nucleotide at each position. Sequence logo (b)
is a graphical representation of the CRP weight matrix that uses IC to determine
the height of the nucleotides at the corresponding positions; the height of a letter
is representative of how often that nucleotide occurs at its corresponding position,
adjusted for what would be expected.

binding, it is important to ask how a genome has adapted in response to possibly

frequent binding of TFs to false operators. There exists the possibility though that

the genome has not adapted, and instead a high rate of false positives persists. If

this is so, small mutations will cause de novo binding sites to appear frequently.

The existence of such a property would facilitate the evolution of new operators and

the reshuffling of a gene’s TF profile (the set of TFs involved in regulating a gene)

[17], thus providing a means for the rapid evolution of a TRN.

1.3 Co-occurring genes and functional interactions

When there exists two or more genes whose protein or RNA products rely on each

other to function, the genes’ homologs will tend to either be present all together in

one organism, or they will all be absent [20, 21]. An example of two genes whose

products rely on each other for proper functioning is recA and recF. RecA is a

protein involved in homologous recombination, specifically in response to errors in

DNA replication [22]. RecA-dependent recombination is stabilized by, among other
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proteins, RecF [23, 24]. RecF knockout mutants show a decrease in RecA mediated

DNA repair, thereby hindering the organism’s ability to repair DNA damage during

replication [25]. To contrast, FtsH is a protein involved in the degradation of im-

properly folded cytoplasmic and membrane proteins [24, 26]. FtsH is not dependent

on or required for the functioning of either RecA or RecF, thus homologs of ftsH

and recA or recF are under no constraints to be co-present in an organism, whereas

there exists selective pressure for recA and recF homologs to co-occur.

The presence and absence of genes and their homologs is documented into ma-

trices called phylogenetic profiles (PPs) where presence and absence across a range

of species are recorded as a 1 and 0 respectively. Using PPs, the extent to which two

genes co-occur can be directly observed and quantified. Co-occurrence is measured

here by assessing how often two homologs are co-present and co-absent across all

observed species above what is expected by chance using a metric called mutual

information (MI). If the homologs of two genes appear in nearly all species, it is

expected that they will co-occur frequently by chance; however, if a different gene

pair is only present in half of the species, then frequent co-occurrence may indicate

that the gene pair act together functionally, structurally, or in the same chemical

pathway, as described above. MI is maximal if a gene pair is present in 50% of

species and the pair always occur together [27]. There is no maximum score for

mutual information, however the minimum score is 0 and this occurs when the gene

pair is present or absent in all species.

Giving support to using MI as a metric for predicting functional interactions,

it has recently been demonstrated that pairs of genes for proteins involved in the

same metabolic pathways tend to possess higher MI than those genes for proteins

which have no known interactions [20]; the same can be said for genes contained

within the same operon [28]. Drawing from the previous example with recA, recF,

and ftsH: the MI score for recA and recF as gene pairs is six orders of magnitude

greater than when calculating pairs with ftsH (unpublished research). Using this

principle of co-occurring genes, the strength of functional interactions between TFs

and their target genes was assessed.
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In a flexible TRN, there is frequent reshuffling of TF to target gene pairs [6].

As a consequence, these gene pairs in one organism will not be under evolutionary

constraints to consistently co-occur in other related species. This will result in low

MI between the gene for the TF and its target gene. If the properties of rapidly

evolving TRNs are truly ubiquitous, then low MI should be observed for most TF

and target gene pairs in all organisms.
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2 Operator sequence specificity from the

Escherichia coli perspective

Operators, short segments of a genome recognized by TFs, play a pivotal role in the

regulation of gene expression by directing the binding of a TF, which then elicits an

activation or repression response in the transcription of an open reading frame. Since

operators are short sequences, the likelihood of one occurring by chance in a genome

is higher than that of a long sequence, such as an open reading frame. The frequency

of Escherichia coli operator occurrence in a diverse set of non-redundant, Prokary-

otic genomes is analyzed here to determine if there is a bias towards high rates of

false positives in closely related organisms. It is hypothesized that operators are not

markedly unique sequences compared to their host genome and “near-operators”

occur often, by chance. These results may have impacts in the understanding of

how regulatory networks are able to reorganize in short evolutionary time scales.

2.1 Materials and Methods

2.1.1 Sequence Data

Operator sequence data for sites recognized by 175 different TFs (2841 sequences) in

E. coli str. K12 substr. MG1655 were retrieved from the most recent release of Reg-

ulonDB, a manually curated database which collects its data from literature sources

[1, 10]. Gene expression analysis, site mutagenesis, binding of cellular extracts or

purified proteins and, inference based on consensus sequence techniques were used

together or separately to identify all of these operators [1, 10]. Operators inferred

from consensus sequence techniques alone are unverified computational predictions

and thus were not included in the analysis. Any TF that had fewer than 10 oper-
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Figure 2.1: Schematic of Consensus/Patser sequence processing. Sequence data is
collected from RegulonDB, Consensus creates PSWM which are then used in Patser
to compare to query genomes.

ators associated with it was not included in the analysis. Genome sequences were

collected from NCBI’s RefSeq database [29, 30, 31] by April 2013.

2.1.2 Consensus and Patser implementation

Using PYTHON, a programming language, each set of operators recognized by a

single TF in E. coli was processed through existing software packages, Consensus and

Patser [32, 33, 34] available at <ftp://beagle.colorado.edu/pub/consensus>.

Consensus was used to create weight matrices for each set of operator sequences

and Patser queried input genomes (Figure 2.1) by aligning the weight matrices to

every possible position and returning a p-value for the null hypothesis that the

aligned sequence is dissimilar to the weight matrix. Python scripts are available at

<https://github.com/marc-delgrande/masters_thesis>.

The organisms selected for analysis were a subset of those used by Price and

colleagues in their 2008 study on the frequency of horizontally transfer of genes for

TFs [9]. The operator sequences used to construct the weight matrices were those

that are recognized by global TFs. The proportion of positive matches for a given

operator was recorded as the number of alignments that returned a p-value less than

0.05 normalized to the length, in base pairs, of the query genome.
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2.1.3 MEME and MAST implementation

A pipeline similar to that of the Consensus/Patser analysis was scripted using the

software packages MEME (Multiple Em for Motif Elicitation) and MAST (Motif

Alignment & Search Tool) [35, 36, 37] available at <http://www.sdsc.edu/MEME>.

MEME constructed weight matrices from the operator sequence data for E. coli

that were used to search for significant alignments with MAST in query genomic

sequences. Data were first collected on the same set of genomes used previously

and later on the entire set of genomes available through NCBI’s RefSeq database,

excluding genomes smaller than 2.5 Mbp in size. These reduced genomes be-

long largely to obligate parasites and symbionts, which are known to contain a

reduced number of genes; as the number of genes decreases, the number of TF

families appears to decrease quadratically and thus these organisms do not have

a sufficient number of TFs to obtain meaningful results [38]. All genomes were

grouped into one of five taxonomic categories: Enterobacteria, Gammaproteobac-

teria, Proteobacteria, all other Bacteria, and Archaea. The taxonomy was deter-

mined using NCBI’s taxonomic database. Python scripts are available at <https:

//github.com/marc-delgrande/masters_thesis>.

The MEME/MAST software packages required first-order input hidden Markov

models (HMM) for each query genome; these were generated using the previously de-

veloped software package fasta-get-markov [39] and incorporated into the pipeline.

First-order HMMs provide information regarding individual nucleotide as well as

dinucleotide frequencies.

2.1.4 Statistics and Graphics

All graphics and statistics were produced using R, a statistical analysis package with

ggplot2 libraries [40, 41]. A Shapiro-Wilks and F-test were used to determine test

for normality and equal variance respectively. Where assumptions were met, the

student t-test and ANOVA were used to test the null hypothesis that the average

proportion of binding sites is equal between genomes. For non-parametric data, the
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Wilcoxon rank-sum and Kruskal-Wallis tests were used [42].

2.2 Results and Discussion

2.2.1 Patser results reveal the need for a more specific search tool

A first analysis of the taxonomic distribution of potential operators with Patser

(Figure 2.2) revealed no substantial difference in the proportion of predicted op-

erators except in those genomes with a high GC content. Streptomyces coelicolor,

Xanthomonas campestris, and Methylococcus capsulatus all have genomic GC con-

tents > 63%, compared to 50.8% in E. coli and 33% in all the operators recognized

by global TFs combined.

Patser returns a potential operator when it aligns with a sequence within the

query genome that increases the IC of the weight matrix. It follows then that most

alignments in genomes with high GC contents would fail to be reported as potential

operators when compared to a weight matrix of low GC with Patser. Indeed this is an

acceptable observation, however Patser is unable to distinguish possible differences

between genomes with similar GC, demonstrated by heavy overlapping in Figure

2.2.

When calculating IC (and thus the significance of an alignment), Patser’s al-

gorithm assumes an independent, multinomial distribution of nucleotides [32, 33].

This means that two genomes with equal GC content could return the same num-

ber of potential operators regardless of taxonomic relationship, thereby not truly

evaluating if the differences in frequency of potential operators has any taxonomic

relevance.
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Figure 2.2: Propotion of Patser positive alignments for operators bound by global
TFs. Each box plot represents 7 data points (one for each global TF in E. coli).
Number of matches normalized to number of base pairs in the query genome to yield
the proportion of positive matches.
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2.2.2 Motif Alignment and Search Tool shows high rates of false oper-

ators in Escherichia coli

For the reasons mentioned above, this analysis was conducted again with MAST,

a more statistically robust alignment tool. MAST contrasts with Patser in two

primary ways: (i) in calculating the p-value of an alignment and (ii) MAST considers

not only the a priori nucleotide frequencies, but a HMM trained to the search

sequence as well.

As previously mentioned, Patser returns a positive match if the alignment in-

creases the IC of the weight matrix. The IC is used to calculate a p-value which

is used to determine the significance of the alignment [32]. The most significant

problem with this method is that there are no standard procedures for calculating a

p-value from IC [33]. Further, considering only independent nucleotide frequencies

does not provide a detailed enough description of a genome. The predicted order

of nucleotides has, in recent years, been considered a very important descriptor

between genomes with otherwise similar nucleotide frequencies [43].

MAST uses a combined approach when calculating the significance of an align-

ment. First by calculating the significance of the weight matrix using the a priori

HMM as the null, and second, when a matching sequence is found, by calculating

the probability that a random sequence of the same length would match just as well

or better (see Algorithm section in [36]). This combined approach measures both

the significance of the weight matrix as well as the matching sequence. These two

p-values are combined using established methods to determine the significance of

the alignment [36].

By using HMMs to determine the significance of an alignment, MAST does not

assume a multinomial distribution of nucleotides. Instead, the HMM provided a

more descriptive breakdown of a genome by also evaluating the relative frequency of

dinucleotide sequences. It was reasoned that, by using HMMs in combination with

more robust techniques for determining significant alignments, differences in the

frequencies of predicted operators could be more appropriately evaluated between
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species with similar GC content allowing for elucidation of possible taxonomically

relevant differences.

MAST results for the analysis of the same groups of genomes and operator sets

as conducted with Patser are illustrated in Figure 2.3. The numbers of potential op-

erators returned by MAST were several orders of magnitude less than those returned

by Patser so the matches were normalized to the number of open reading frames in

the search genome (data collected from NCBI by April 2013) rather than the num-

ber of base pairs. This analysis revealed a possible trend that is illustrated by the

apparent drop in significant matches as the organisms become less taxonomically

related to E. coli.

The same analysis was extended further to a subset of NCBI’s Prokaryotic, Ref-

Seq genomes (see section 2.1.3). Figure 2.4a shows the results for operator motifs

recognized by E. coli ’s 7 global TFs (outliers defined as greater or less than 1.5

times the interquartile ranges indicated by the whiskers; outliers not shown). A

Kruskal-Wallis multiple comparison (KMC) test confirmed that the median number

of positive matches identified in the enterobacteria was greater than that of any

other group (χ2 = 2642.243, p < 2.2× 10−16). Similar results are reported for oper-

ator motifs bound by 42 of E. coli ’s local TFs, shown in Figure 2.4b (χ2 = 6534.329,

p < 2.2 × 10−16).

These data indicate that the incidence of false positives is more frequent within

the Enterobacteria, the group to which the regulators that recognize these operators

are typically native, than other groups. This is consistent with the idea that operator

sequences are not markedly unique when compared to their host genome sequence.

There is enough information present in operator sets to distinguish them from the

sequence of distantly related organisms, however when compared to their host’s or

a closely related organism’s genome, the IC is low enough that the sites occur often

by chance.

If operators were highly unique compared to the host genome or possessed suffi-

cient IC, false positives would not be observed at such high rates. Further, the rate

of false positives would be relatively consistent across most taxa. As a result, this
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Figure 2.3: Proportion of MAST positive alignments for operators bound by global
TFs. Each box plot is composed of 7 data points (one for each global TF in E.
coli). Number of matches normalized to number of identified genes in the query
genome. Organisms identified as, “reduced genomes” were not included in any
further analyses (see Materials and Methods).
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Figure 2.4: MAST results for operator motifs in RefSeq genomes. (a) Results for
global operator motifs, (b) results for local operator motifs. KMC test confirmed
that the number of potential binding sites identified in Enterobacteria is significantly
higher than all other categories. Outliers not shown.
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may indicate that high incidences of potential operators do not serve as a disadvan-

tage in prokaryotes. They may facilitate an organism’s ability to rapidly reorganize

its regulons and thus adapt to changing environments.

2.3 Conclusion

A comparison of MAST and Patser as tools for motif search revealed that the use

of HMMs and robust calculations of p-value significantly influence the number of

possible results by, in some cases, several orders of magnitude. While identifying the

frequency of false positives was the goal of this study, Patser was not specific enough

in its criteria for identifying matching sequences and provided too many results to

draw meaningful conclusions. The use of MAST provided increased specificity and

allowed for a more accurate estimation of the frequency of false positives.

Using sets of operators from E. coli, the frequency of possible matches was much

higher within the Enterobacteria than all other taxonomic groups indicated here.

Since the increase in the frequency of matches was so large, especially for operators

recognized by global operators, it is unlikely that the increase in matches was due

to true positive binding sites alone; recall the number of matches was normalized to

the number of open reading frames, thus a 1% increase in frequency represents, on

average, an additional 40-50 matches in the Enterobacteria.

This high rate of false positives could be partially due to the low IC of operators.

With low IC, the possibility of a binding site occurring by chance is very high. It

could be that maintaining operators with non-unique sequences provides a mecha-

nism by which regulons are able to rewire rapidly. A trait that can be advantageous

upon encountering new environmental pressures.

2.3.1 Recommendations

Further work into developing motif finding software is still needed as models to

describe genetic sequences are continuously being improved [18]. Strong evidence for

determining taxonomic relationships based on HMMs would further substantiate the
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conclusions made here regarding results from the MAST software. Current research

[43] shows that there is some taxonomic relevance to simple HMMs, but more work

is still required in this area as it is not clear what mechanisms primarily dictate

higher-order HMMs.

This work has been conducted using operator sequence data from E. coli and

has been limited by the currently available operator sequence data. To further

substantiate these conclusions, this work should be repeated from the perspective

of many other organisms. This, however, is limited by the rate of experimental

determination of operator sequences. Currently it may be possible to echo this

work from the B. subtilis perspective, however far fewer operator datasets would be

available. Extending this analysis as-is to eukaryotes may prove to be unrealistic

without considering the architecture of the Eukaryotic genome (euchromatin ver-

sus heterochromatin) as well as the many different classes and actions of TFs not

witnessed in prokaryotes. Further, the size of a Eukaryotic genome would present

additional computational challenges in terms of time spent on the analysis as well

as time spent parsing through the large amounts of data that would be returned for

meaningful information.
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3 Loose evolutionary relationship between

transcription factors and other gene products

It has been suggested that nearly half of the TFs in Escherichia coli have been

recently acquired via horizontal gene transfer (HGT) [9]. It has also been suggested

that the network of genes regulated by any TF in E. coli and other well-characterized

organisms is both flexible and subject to rapid evolution [5, 6, 7]. Using curated

and predicted TFs, these claims are assessed here across a large, diverse set of

prokaryotes.

3.1 Materials and Methods

3.1.1 Phylogenetic profiles and mutual information

Phylogenetic profiles (PP) and mutual information (MI) scores were previously con-

structed and calculated as described by Moreno and Jokic [20]. The PPs used a

non-redundant subset of genomes (GSSa = 0.90) [44, 45] available through NCBI’s

RefSeq database [29, 30, 31] by the beginning of June 2013 totalling 920 genomes.

Orthologs were determined as reciprocal best hits (RBH) as described in [46]. The

detection of a RBH was indicated with a 1 and the absence with a 0.

MI was used as a measure of similarity between the PP of a pair of genes [27, 44].

Pairs of genes that co-occur often have higher MI scores than pairs that seem to

appear independent of one another. It has been shown that gene pairs with high MI

scores tend to be those involved in some form of functional interaction [20, 27, 44].

The MI data was filtered so that only the top scoring gene pair for each unique gene

remained.
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3.1.2 Profiles of phylogenetic profiles, the p-cubic analysis

Profiles of phylogenetic profiles (p-cubic) were constructed from the remaining MI

data for organisms with ≥ 100 identified TFs (see 3.1.5), reducing the set of genomes

to 597. In short, a p-cubic is an inverse cumulative representation of the relative

abundance of genes with MI scores above a given threshold (see Figure 3.3 for

examples). As the MI score threshold increases along the x-axis the curve drops,

indicating fewer gene pairs with the given MI score or higher. MI scores were

incremented (or “binned”) from [0 − 1] by 0.001. Two or more p-cubic curves can

be compared: the position of one curve relative to another indicates the abundance

of high or low scoring gene pairs. Curves that lie low and drop quickly are those

groups in which there was a lower abundance of high MI scores for the gene pairs.

For additional details on p-cubic analysis see Figure 2 in [20].

3.1.3 P-cubic differences, the ∆P3

To evaluate the difference in p-cubic between TF-coding and non TF-coding gene

interaction pairs for each organism, the sum of the difference of the y values for

each curve were calculated and these values were divided by the number of bins

to yield a difference of p-cubics (∆P3); see Figure 3.1. For p-cubics in which the

curve representing genes coding for TFs fell below the curve for all other genes,

indicative of regulatory genes forming looser associations than all other genes, ∆P3

was > 0. Values of ∆P3 ≤ 0 indicated either equal association strength (∆P3 = 0)

or regulatory genes forming stronger associations (∆P3 < 0). After filtering, this

analysis was performed on 597 prokaryotes, including some Archaea.
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Figure 3.1: Schematic for calculating ∆P3 Values. The sum of the difference of y
values between TF interactions and non-TF interactions is normalized to the number
of MI threshold increments (bins) used to construct the p-cubics. Arrows on the
graph indicate for which curve the nonTFi and TFi values are derived from.
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3.1.4 Transcription factor identification

Verified sets of TFs for E. coli str. K12 substr. MG1655 and Bacillus subtilis sub-

str. 168 were downloaded from RegulonDB [1, 10] and the Database of Transcription

regulation in Bacillus subtilis (DBTBS) [47] respectively. The gene IDs from the

verified lists were used to distinguish TFs from all other genes in the MI content

datasets. These data were used to benchmark analyses on predicted TF sets.

Lists of TFs were also collected for E. coli and B. subtilis from the HAMAP

(High-quality Automated and Manual Annotation of Proteins) database [48]. The

HAMAP database, as its name suggests, uses a combination of manual and au-

tomated curation while also maintaining cross-references to more than 60 other

databases. Using these cross-references, an identifier from the Gene Ontology (GO)

database [49] was used to extract proteins that had been submitted to HAMAP

and annotated as DNA-dependent transcriptional regulators (GO:0006355). Since

the time of writing, the GO database has undertaken an initiative to completely re-

design their methods for annotating TFs and has begun to phase out the identifier

used here [50, 51]. For this reason, GO identifiers were not used beyond E. coli and

B. subtilis.

3.1.5 Transcription factor prediction

Transcription factor prediction for the same non-redundant set of genomes as men-

tioned previously was conducted using 147 hidden Markov models (HMMs) from

the Protein Families database (Pfam) [52] downloaded from DNA-binding domain

database (DBD), a comprehensive and accurate database of predicted TFs [53]. Us-

ing a combination of hmmer [54] and hmmfetch [52]processed together using PYTHON

[34], the HMMs were compared against all annotated proteins for each genome with

the resulting datasets filtered for organisms with ≥ 100 matches of ≥ 80% coverage

of a HMM, reducing the dataset from 920 to 597 organisms. In recent work [55], a

cutoff of ≥ 60% was used when matching to Pfam HMMs; it was reasoned however,

that this allowed for too many false-positives so the increased 80% cutoff was used.
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3.1.6 Codon adaptation index

As a representative set of highly expressed and highly conserved genes, ribosomal-

protein (r-protein) coding genes were used to construct codon usage tables (CUTs)

for each genome. R-protein coding regions were found for each organism available in

NCBI’s RefSeq database [29, 30, 31] using COG and arCOG identifiers [56] provided

by Yutin et al. [57], available at <ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/>.

Reconstructions of phylogenetic trees using r-protein sequences produces trees that

match closely with commonly accepted taxonomy [30, 57], thus horizontal transfer

of the r-proteins used here is likely a rare event. This makes r-protein coding genes

a reliable source for constructing CUTs.

EMBOSS packages cusp and cai [58] were used to construct codon usage tables

derived from r-protein coding genes for each organism and to compare the codon

usage of other protein-coding regions to those of r-protein coding genes. From this

comparison, a codon adaptation index (CAI) is calculated for each protein-coding

region. A low CAI is indicative of possible horizontal gene transfer (HGT) [59].

A normalized difference in the CAI of genes coding for TFs was calculated as the

difference in average CAI for TF genes and average CAI for all genes, normalized

to the average CAI for all genes:

xTF − xG
xG

(3.1)

Where xTF is the average CAI for the set of genes coding TFs, the TF CAI, and

xG is the average CAI for the set of all genes, the genomic CAI.

3.2 Results and Discussion

3.2.1 Protein family hidden Markov models are adequate for predicting

transcription factors

To benchmark the methods used for identifying TFs across all prokaryotes, a 3-way

comparison was carried out between verified TFs, HAMAP identified TFs, and the
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TFs recovered from Pfam HMMs in E. coli and B. subtilis (Figure 3.2). In E. coli

there were only 7 false positives, 3 of which are considered TFs by HAMAP. In B.

subtilis there were 43 false positives, 32 of which have been identified as TFs as

indicated by HAMAP.

In E. coli only 4 of the 7 false positives were true false positives, one of which

belongs to a family of proteins involved in TR (GI: 16129176; SirB family), however

the role of this particular protein has not been definitively determined. InB. subtilis,

only 5 of the 43 were true false positives. Of these, 3 are cold shock proteins and

though they have not been experimentally implicated in TR, it is known that this

family of cold shock proteins is involved in regulating gene expression [30]. These

cold shock proteins also each contain a DNA binding site implying they may be

DNA-binding transcriptional regulators. Tables A.1 and A.2 outline information

collected from NCBI regarding the false positives, including those indicated as TFs

by HAMAP. Figure A.1 illustrates the decision tree used to determine a true TF.

Though this method of predicting TFs returns false positives, it appears that

many of these are not true false positives. For this reason, the TFs recovered by Pfam

HMMs were determined robust enough to use for the remainder of this analysis.

3.2.2 P-cubics show that transcription factors have less conserved inter-

actions than other genes

Upon identifying TFs in 597 prokaryotes, it would have then been ideal to assess

the p-cubic for the set of genes that are primarily transcribed by these TFs for each

organism. Such a task may have been possible with a very small number of well-

characterized organisms, however automating such a job over a diverse group was not

possible within a reasonable time frame. Instead, p-cubics for the most conserved

associations among TFs, as determined by MI content, were used in place of a TF’s

experimentally identified primary target gene. These p-cubics were compared with

the most conserved associations for all other gene pairs for each respective organism

to evaluate the conservation of TF associations.

P-cubics for verified TFs in E. coli and B. subtilis (Figures 3.3a and 3.3c) show
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Figure 3.2: TFs identified by manual curation (verified), semi-automated curation
(HAMAP), and Pfam HMMs (80% PFAM coverage) in E. coli (a) and B. subtilis
(b). Though each dataset has discrepancies, there is a large intersection in datasets
for both organisms.
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that the conservation of associations within the these TFs are consistently less than

that of all other gene pairs. P-cubics for TFs identified by Pfam HMMs (Figures 3.3b

and 3.3d) also produced similar results. In each case, the results show that asso-

ciations formed by TFs are not as well conserved as those formed by all non TFs.

This is reflected in the ∆P3 values: 0.859 and 0.766 for E. coli and 0.486 and 0.511

for B. subtilis, known and predicted TFs respectively. Further, though the datasets

for predicted TFs do not completely match those of the literature-based sets, the

verified and predicted datasets agree with each other, demonstrating that the pre-

dictions still provide with adequate data to test the conservation of associations for

TFs.

The cumulative proportion plot in Figure 3.4 summarizes the ∆P3 values col-

lected from each organism’s p-cubic analysis with the predicted TF datasets. Almost

all organisms examined here exhibited p-cubics in which genes for TFs tended to

form less conserved associations than those formed between all non-TF gene pairs

(97.8% with ∆P3 > 0).

Other works have suggested that regulatory networks evolve rapidly [5, 6, 7, 9],

however these inferences were made based on observations from a small number of

organisms by comparing only well characterized networks. The results here present

an overwhelming absence of co-occurring, conserved interactions between TFs and

their possible target genes across a large number of prokaryotes, demonstrating that

these interactions are indeed rapidly evolving across most, if not all, prokaryotes.
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Figure 3.3: Comparison of p-cubics for curated (RegulonDB/DBTBS) and predicted
(Pfam HMM) TFs in E. coli (a, c) and B. subtilis (b, d). In both the curated and
predicted sets the p-cubic for TFs falls below that of non TFs, showing that TFs have
less conserved co-occurrences than non TFs. Since the predicted datasets produce
similar results as the curated sets, predicted TFs may be adequate for analyzing the
p-cubic for TFs versus non TFs in other prokaryotes.
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Figure 3.4: Cumulative proportion of ∆P3 between TF-coding genes and non TF-
coding genes across prokaryotic genomes with ≥ 100 predicted TF-coding genes. The
majority of ∆P3s are > 0 indicating a lack of conserved co-occurring interactions
for TFs.
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3.2.3 Low codon adaptation indices suggest frequent horizontal gene

transfer

Previous work has suggested that half of all TFs in E. coli may have arisen via

HGT into the γ-Proteobacteria lineage [9]. This frequent horizontal inheritance

may likely be contributing to the rapid evolution of associations involving TFs. To

test the possibility of this being true for other prokaryotes, the CAI was calculated

for all the genes of the genomes used in the p-cubic analyses. Figure 3.5 shows the

cumulative frequency of the normalized difference for the TF CAI (see section 3.1.6,

equation 3.1). In > 97% of organisms, genes coding for TFs had a lower CAI than

other genes. After removing the 77 organisms for which the set of TF CAIs were not

significantly different than the genomic CAIs (Wilcoxon Rank-Sum test p ≥ 0.05),

> 98% had TF-coding genes with lower CAIs than other genes.

Of the 77 organisms where there was no notable difference between TF CAI and

genomic CAI, they did not belong to a particular taxonomic group, nor did they

identify with a particular environment (e.g. soil, aquatic, etc.). It could be that the

environments these organisms exist in do not experience perturbations as extreme

as others, thus there is a decreased need for HGT as a source of relatively quick

genetic variation. It could also be that these organisms do not rely on HGT and

instead have evolved another strategy for maintaining adequate genetic variation

under changing environmental pressures.

Though assessing CAI alone is not adequate for determining HGT [60], these

data show that genes for TFs in nearly all studied organisms have skewed codon

usages. This result is an indication that these genes could be frequently involved in

HGT across all prokaryotes.
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Figure 3.5: Comparison of the TF CAI and genomic CAI. The strong majority
of TF-coding genes have a CAI less than that of non TF-coding genes indicating
possible frequent HGT that is ubiquitous to TFs across prokaryotes.
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3.3 Conclusion

The use of HMMs from Pfam [52] have provided an appropriate method for pre-

dicting TFs in prokaryotes. Of the results that did not agree with the curated sets,

most were confirmed to be true TFs via manual referencing to NCBI [30]. Further,

the p-cubic analyses performed with the putative TFs returned similar results as

those performed with the curated sets.

P-cubic analyses revealed that the associations formed by TFs are not as con-

served as those formed by all other gene pairs. This result could be due, in part, to

frequent horizontal transfer of genes that code for TFs. Comparing the TF CAI to

the genomic CAI showed that TF-coding genes often have a skewed codon usage,

suggesting that these genes have been subject to recent horizontal transfer.

It has been shown that changes in regulation have led to major phenotypic

changes in both eukaryotes [4] and prokaryotes [6, 61]. Thus, understanding the evo-

lutionary dynamics of TFs will provide insight to understanding variation between

species [20]. Combined, these results provide new indications that rapid evolution

of regulatory networks is a property maintained in possibly all prokaryotes.

That this property of TRNs appears ubiquitous to all sequenced prokaryotes is

of significant importance as it likely evolved early in at least this group of organisms.

Altering the way genes are accessed is a newly discovered source of variation. This

is in contrast with the traditional way that variation is referred to in the evolution-

ary context, which involves altering the genes, and presents as a newly discovered

evolutionary strategy.

3.3.1 Recommendations

The development of a high quality, publicly accessible, and frequently updated set

of HMMs that accurately predict TFs will be crucial for future research interested in

targeting TFs across a large number of diverse species. Incorporating datasets from

recent works [62, 55], existing databases, such as Pfam [52] and SUPERFAMILY [63],

and curated sources [1, 10, 47] will be required to construct such a resource. Once
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collected, these reference HMMs should be able to facilitate the accurate prediction

of TFs in any organism.

With existing datasets and acceptably predicted TFs, a survey on the proportion

of TFs that show evidence of recent horizontal transfer would offer greater insight

into the possibility of HGT being the cause of loosely conserved interactions be-

tween TFs and other gene products. Past works [60, 64] have focused on developing

comprehensive methods for detecting genomic islands (portions of genetic sequence

that have recently been horizontally inherited [64]). By targeting genes that code

for TFs and using these tools to determine evidence of horizontal transfer, it will

be possible to predict the proportion of TF-coding genes that have been subject to

recent HGT. Further, the proportion of genomic islands that carry TFs with them

should be assessed. This may provide some insight into how new genes, and new

TFs integrate into a TRN.
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4 Summary

By comparing transcriptional regulatory networks between Escherichia coli, Bacillus

subtilis, and organisms closely related to the two, it has been suggested that these

networks evolve rapidly. Within these model organisms, rebuilding such networks is

a daunting task both computationally and experimentally; it is currently not feasible

to rebuild them for a large, diverse set of organisms. This limits the conclusions that

can be drawn regarding the flexibility of transcriptional regulatory networks across

all prokaryotes. Further, the contribution of operators to the potential for rapid

evolution of these networks has not been substantially explored.

By analyzing the individual components of a transcriptional regulatory network:

transcription factors, target genes, and operators, it is possible to assess the evolu-

tionary dynamics of these networks without reconstructing them. If the components

of a network appear flexible or to be rapidly evolving, then the entire network itself

must be rapidly evolving. This work attempts to assess the evolutionary stability of

the components of transcriptional regulatory networks in order to conclude on the

stability of them across all prokaryotes.

The rate of false positives for potential operators is assessed here from the E.

coli perspective by using two different motif alignment softwares on experimentally

determined E. coli operator sequences and searching available prokaryotic genomes

in NCBI’s RefSeq database. Initially the motif search tool, Patser, returned an

overwhelming number of positive potential operators in each organism for all sets of

operators used. Though the purpose of this analysis was to determine a rate of false

positives, the results provided by Patser were too non-specific and so meaningful

conclusions could not be drawn. Using a new software package, Motif Alignment

and Search Tool, which uses a more strict definition for identifying significant align-

ments, it was possible to assess the frequency of potential operators. It appears that
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E. coli operator sequences are particularly noisy within E. coli and closely related

species. This presents as a possible mechanism for rapid reshuffling of regulons (the

set of genes regulated by a transcription factor) and may facilitate the frequent,

spontaneous formation of operators within a genome.

The number of operator sequences available for both E. coli and other organisms

limits this work to only focusing on a few operator sets within one organism. As more

operator sequence data becomes available for other organisms, this procedure can be

repeated from the perspective of many other species to further assess these claims.

B. subtilis is likely the next organism to have enough data on operator sequences to

repeat this analysis. This work is also currently biased towards culturable organisms,

as these are the primary types of organisms that can be sequenced with enough depth

to be classified as reference sequences in NCBI’s database. This limits the types of

species analyzed to primarily ones of significant medical, industrial, or agricultural

importance. Difficult to culture organisms are usually recovered from environments

that are impossible to recreate in the lab. The environmental stresses these species

face may be drastically different than those of the species analyzed here. It will be

important to determine how life in these environments affects TRN structures as

these species’ sequences become available in the future.

It was possible here to predict the conservation of co-occurrence between tran-

scription factors and target genes across a diverse set of species. This was achieved

by using protein domain hidden Markov models provided by the Protein Family

database to predict genes that code for transcription factors. Putative transcription

factors were compared to databases of those confirmed for E. coli and B. subtilis to

verify the competency of the prediction methods. Very low rates of false positives

were observed for transcription factor prediction in both organisms.

With predicted transcription factor datasets phylogenetic profiles were used to

calculate mutual information between gene pairs, taking the most often co-occurring

gene pairs as proxy for true transcription factor to target gene interactions. With

these predicted interactions compiled, p-cubics comparing the evolutionary stability

of interactions between transcription factor and target gene versus all other gene
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pairs revealed that, in > 97% of organisms, interactions involving transcription

factors are less evolutionarily stable than the average of all other interactions. The

primary advantage to this analysis is that it allows for the assessment of the stability

of transcription factor and target gene interactions without the need for computa-

tional reconstruction of TRNs and experimental determination for interactions of

homologous gene products.

A possible reason for this lack of conserved interactions is that transcription

factors may be involved in frequent horizontal gene transfer. This has been sug-

gested by previous research in E. coli, but has not been definitively shown for other

prokaryotes [9]. As a predictor of horizontal gene transfer, the codon adaptation

index of predicted transcription factors of an organism was compared to that for

all other genes. Indices were created using codon usage tables derived from riboso-

mal protein coding genes. It was observed that, for > 98% of genomes analyzed,

the average codon adaptation index of transcription factor coding genes was signifi-

cantly less than that for all other genes. Low codon adaptation indices, though not

definitive evidence, are indicative of horizontal gene transfer. Though this is not

decisive evidence, it certainly supports the idea that horizontal gene transfer may

be frequently occurring with transcription factors.

Perhaps a reason for widespread horizontal transfer of transcription factors is

that genomic islands which contain open reading frames require immediate regula-

tion upon integration in order to be maintained. Thus, for most horizontal transfer

events, a transcription factor must be present. This idea has not been explored in

recent literature, but is certainly a testable hypothesis with current technologies.

Overall, it is shown here the operators, transcription factors, and target genes

have loosely constrained evolutionary dynamics for most of the prokaryotes studied.

Recent literature has suggested that TRNs evolve rapidly in a few model organisms

and closely related ones. This work not only demonstrates that this is true for a

larger set of prokaryotes, but presents a method to test for such dynamics with-

out reconstructing TRNs, which is not only a computationally difficult task, but

also requires substantial amounts of data from wet-lab experiments. Rapid reor-

34



ganization, or evolution, of a TRN presents a method for varying gene expression

in the face of changing environmental pressures. That this property is observed in

many prokaryotes means this may have evolved early on as a method for accessing

variation beyond that involving only gene mutations.
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E: Increments and Duplication Events of Enzymes and Transcription
Factors Influence Metabolic and Regulatory Diversity in Prokaryotes.
PLoS ONE 2013, 8(7):e69707.

[56] Tatusov RL, Koonin EV, Lipman DJ: A Genomic Perspective on Protein
Families. Science 1997, 278(5338):631–637.
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A False positive transcription factor predictions

The information below is for the potentially falsely predicted TFs. These predicted

TFs were not identified as TFs by the manually curated lists from RegulonDB [1, 10]

for E. coli or DBTBS [47] for B. subtilis; TFs were identified only from predictions

by protein domain HMMs provided by the Pfam database [52].

Each putative TF was assessed based on the information that could be manu-

ally collected from NCBI [30]. If, within the metadata contained by searching the

GI, there was enough information to suggest the protein’s involvement in DNA-

dependent transcriptional regulation as well as at least a putative DNA-binding

domain, it was considered a true TF. See Figure A.1 for the decision tree which was

used to determine sufficient evidence for a TF.
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Experimentally
determined?

yes no

Transcription
factor

Annotated
GO:0006355 or
GO:0037000?

yes no

Helix-turn-helix
or DNA-

binding motif?

yes no

Transcription
factor

Not a tran-
scription
factor

Not a tran-
scription
factor

Figure A.1: Decision tree for determining validity of potentially falsely predicted
TFs. Gene ontology (GO) annotations 0006355 and 0037000 are specific for tran-
scriptional regulation; to confirm that these proteins are involved in DNA dependent
transcriptional regulation, it was also important to verify a helix-turn-helix or DNA
binding domain.
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Table A.1: NCBI data for non-curated TFs predicted by Pfam HMMs in E. coli

GI NCBI Definition NCBI Description Pfam Regulator
16130977 antitoxinof the HigB-HigA

toxin-antitoxin system
Contains non-specific and specific
DNA-binding sites; part of XRE
family

HTH 3:PF01381.17 Yes

16128444 modulator of gene expres-
sion with H-NS

Transcriptional regulator HHA:PF05321.6 Yes

16130098 putative kinase Contains a winged HTH and ATP bind-
ing domain

HTH 11:PF08279.7 No

16129583 oriC-binding complex H-
NS/Cnu; binds 26 bp cnb
site; also forms a complex
with StpA

See definition HHA:PF05321.6 No

90111706 putative transcriptional
regulator, HxlR-type,
DUF24 family

Transcriptional regulator HxlR:PF01638.12 Yes

90111708 antitoxin of the ChpBS
toxin-antitoxin system

Autoregulated Antitoxin-MazE:PF04014.13 No

16129176 putative inner membrane
protein, SIRB family

SirB family proteins are regulators of
transcription

SirB:PF04247.7 No

44



Table A.2: NCBI data for non-curated TFs predicted by Pfam HMMs in B. subtilis

GI NCBI Definition NCBI Description Pfam Regulator

16080092 two-component response

regulator controlling re-

sistance to antibiotics

affecting the envelope YtsB

Transcriptional regulator Trans reg C:PF00486.23 Yes

16079466 transcriptional regulator Transcriptional regulator HTH 8:PF02954.14 Yes

16078218 DNA transport protein competence protein CoiA; likely has a

DNA-binding domain

CoiA:PF06054.6 No

16080470 LacI family transcriptional

regulator

Transcriptional regulator LacI:PF00356.16 Yes

16077579 cold-shock protein Contains a DNA-binding site; part of

Csp family that contains other regula-

tors

CSD:PF00313.17 No

16079765 transcriptional regulator Transcriptional regulator TrmB:PF01978.14 Yes

255767247 DNA/RNA binding protein DNA-binding protein YizB; predicted

regulator

PadR:PF03551.9 Yes

Continued on next page
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Table A.2 – continued from previous page

GI NCBI Definition NCBI Description Pfam Regulator

16078980 two-component response

regulator DesK

Contains HTH DNA-binding domain;

LuxR C like is a response regulator;

Transcriptional regulator

GerE:PF00196.14 Yes

16080564 regulator (stress mediated) Putative stress-responsive transcrip-

tional regulator

PspC:PF04024.7 Yes

161511067 DNA-binding transcrip-

tional regulator FrlR

Transcriptional regulator GntR:PF00392.16 Yes

16080420 transcriptional repressor Transcriptional regulator HTH 3:PF01381.17 Yes

16080817 regulator of sulfur assimila-

tion CysL, activates cysJI

expression

Transcriptional regulator HTH 1:PF00126.22 Yes

16078903 LysR family transcriptional

regulator

Transcriptional regulator HTH 1:PF00126.22 Yes

16078380 transcriptional regulator

sensing organic peroxides

Transcriptional regulator MarR:PF01047.17 Yes

Continued on next page
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Table A.2 – continued from previous page

GI NCBI Definition NCBI Description Pfam Regulator

16077652 GntR family transcriptional

regulator

Transcriptional regulator GntR:PF00392.16 Yes

255767803 transcriptional regulator Predicted regulator PadR:PF03551.9 Yes

16081093 two-component response

regulator YycG

Transcriptional regulator Trans reg C:PF00486.23 Yes

255767747 transcriptional regulator Predicted regulator HTH 5:PF01022.15 Yes

16079579 negative regulator of gluco-

neogenesis

Transcriptional regulator HTH DeoR:PF08220.7 Yes

16078003 NO-dependent activator of

the ResDE regulon

Transcriptional regulator Rrf2:PF02082.15 Yes

16078431 MarR family transcriptional

regulator

Transcriptional regulator MarR:PF01047.17 Yes

16077343 two-component response

regulator NatK

Transcriptional regulator LytTR:PF04397.10 Yes

255767206 HTH-type transcriptional

regulator

Predicted regulator HTH 3:PF01381.17 Yes

Continued on next page
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Table A.2 – continued from previous page

GI NCBI Definition NCBI Description Pfam Regulator

255767729 transcriptional regulator Predicted regulator CodY:PF06018.9 Yes

16078021 copper efflux transcrip-

tional regulator

Transcriptional regulator MerR:PF00376.18 Yes

16077549 XRE family transcriptional

regulator

Transcriptional regulator HTH 3:PF01381.17 Yes

16080361 two-component response

regulator YvqE responding

to cell wall stress

Transcriptional regulator GerE:PF00196.14 Yes

16077975 cold-shock protein DNA and RNA-binding motifs; proba-

ble regulator

CSD:PF00313.17 No

16077886 Mal operon transcriptional

activator

Transcriptional regulator HTH 6:PF01418.12 Yes

16080716 hypothetical protein

BSU36630

Predicted regulator Rrf2:PF02082.15 Yes

255767629 cysteine biosynthesis tran-

scriptional regulator

Transcriptional regulator Rrf2:PF02082.15 Yes

Continued on next page
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Table A.2 – continued from previous page

GI NCBI Definition NCBI Description Pfam Regulator

16078972 ArsR family transcriptional

regulator

Transcriptional regulator HTH 5:PF01022.15 Yes

16078970 transcriptional regulator Predicted regulator HTH 11:PF08279.7 Yes

16077726 hypothetical protein

BSU06580

Uncharacterized protein conserved in

bacteria

Trp repressor:PF01371.14 No

16077600 ArsR family transcriptional

regulator

Transcriptional regulator HTH 5:PF01022.15 Yes

16077877 transcriptional regulator Transcriptional regulator HTH 8:PF02954.14 Yes

16080432 ArsR family transcriptional

regulator

Transcriptional regulator HTH 5:PF01022.15 Yes

16080516 LacI family transcriptional

regulator

Predicted regulator LacI:PF00356.16 Yes

16081087 NtrC/NifA family tran-

scriptional regulator

Transcriptional regulator HTH 8:PF02954.14 Yes

16080419 transcriptional repressor Transcriptional regulator HTH 3:PF01381.17 Yes

255767639 transcriptional repressor Transcriptional regulator HTH 11:PF08279.7 Yes

Continued on next page
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Table A.2 – continued from previous page

GI NCBI Definition NCBI Description Pfam Regulator

16079252 cold-shock protein DNA and RNA-binding motifs; proba-

ble regulator

CSD:PF00313.17 No

16080491 transcriptional regulator Transcriptional regulator HTH 3:PF01381.17 Yes
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