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ABSTRACT 

Sea lampreys (Petromyzon marinus) are a phylogenetically ancient jawless fish, 

with a multi-staged life cycle characterized by a prolonged suspension-feeding larval 

stage, which is followed by metamorphosis into parasitic lampreys that feed on the 

protein-rich blood of fishes. The switch from a nutrient poor to protein-rich diet in the sea 

lamprey is associated with an increased capacity to deaminate excess amino acids and to 

excrete ammonia and urea following metamorphosis. The focus of this thesis was to 

determine if changes in nitrogenous waste transporter protein abundance facilitate 

ammonia and urea excretion during different stages of the sea lamprey life cycle.  

To investigate the mechanisms by which nitrogenous waste excretion (JN-waste) 

occurs in sea lampreys, individuals of various lifestages (larval/adults) were exposed to 

environmental stressors (highly alkaline water and high external ammonia) that have 

been previously shown to affect JN-waste in other fishes. Both ammocoete and adult sea 

lamprey were unable to tolerate highly alkaline (HA: pH! 9.5) water for more than 24 h. 

However, exposure of ammocoetes and adult lamprey to high external ammonia (HEA; 

0.5 mmol!L-1 ammonia) resulted in the reversal of ammonia excretion (JAmm) and a net 

uptake of ammonia over 2 days. In adults, urea excretion (JUrea) increased significantly 

but remained unchanged in ammocoetes. 

 To determine whether there was a correlation between JN-waste patterns and the 

transport proteins associated with ammonia and urea excretion in sea lamprey, western 

blot analysis of Rh glycoproteins (Rhcg2) and urea transporters (UT) was performed on 

the main lifestages of sea lampreys (ammocoete, unfed parasitic, fed parasitic, adults) 

within gill and skin tissues. The abundances of Rhcg2 in the gill were significantly higher 
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in fed parasites when compared to unfed juveniles and adult lamprey. Corresponding 

JAmm and plasma ammonia concentrations in these individuals were also greater. Larval 

sea lamprey UT protein abundances were significantly greater in gill tissues than in fed 

parasites and adult animals. This was postulated to be a function of the burrowing nature 

of the larval sea lampreys, and their relatively high rates of urea excretion compared to 

other life stages.  

The period of metamorphosis was also accompanied by marked changes in body 

condition factor (CF), along with JAmm and JUrea, which were initially depressed during the 

mid-stages of metamorphosis before increasing several-fold near the completion of 

metamorphosis. Both Rhcg2 and UT expression in the gills peaked at stage 4 of 

metamorphosis and declined to young adulthood, whereas Rhcg2 and UT expression in 

the skin of metamorphosing animals was below detectable levels. 

 It is concluded that the changes in diet, along with habitat and activity level lead 

to the observed changes in the nitrogenous waste excretion patterns of the sea lamprey, 

which is reflected by corresponding changes in the abundance of the Rh and UT proteins. 

Further research into the regulation and localization of these proteins will prove useful in 

completing the picture of N-waste excretion in these phylogenetically ancient vertebrates. 
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Stages are as follows; S2: stage 2, S3: stage 3, S4: stage 4, S5: stage 5, 
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measurements of JUrea and N = 4 for the relative quantify of UT present in 

the gill at each stage of metamorphosis.  Bars sharing the same letter are 

not significantly different from one another (P<0.05). Asterisks denote 

significant differences from ammocoetes (P<0.05). Antibody used was 

that of Danio rerio (accession no. AY788989.1; amino acids 48-69; 

1:500 dilution). 
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metamorphosing sea lampreys. Values are shown as the mean ± 1 SEM, 

and N =10 per group. Bars sharing the same letter are not significantly 

different from one another (P<0.05). 
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Bars with the same letter are not significantly different from one another 
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present in the gill at each stage of metamorphosis. Bars with the same 

letter are not significantly different from one another (P<0.05). Antibody 

used was that of Danio rerio (accession no. AY788989.1; amino acids 

48-69; 1:500 dilution). 

Figure 4.1 Detailed look at (A) the differences in diet, lifestyle, habitat, and 

environment in ammocoete, unfed juvenile, parasitic, and adult sea 

lampreys. (B) Relative abundances of Rhcg2 and corresponding JAmm in 

ammocoete, unfed juvenile, parasitic, and adult sea lampreys. (C) 

Relative abundances of UT and corresponding JUrea in ammocoete, unfed 

juvenile, parasitic, and adult sea lampreys. In panels B and C, the hatched 

dashed lines represent to protein abundances whereas the solid lines refer 

to excretion rates. 
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abundances, whereas solid lines refer to excretion rates. 
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Chapter 1  

Introduction 
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In depth sea lamprey life cycle: 

 Sea lampreys (Petromyzon marinus) belong to a group of phylogentically ancient 

jawless vertebrates, representing one of the two extant classes belonging to the superclass 

Agnatha. Fossil records suggest that body structure and presumably lifestyle in these 

organisms have remained unchanged for 350 million years (Forey and Janvier 1993; Gess 

et al. 2006). Sea lampreys are common in Atlantic Canada and in the Great Lakes, where 

the larvae, known as ammocoetes, begin their multi-staged lifecycle burrowed in the 

substrate of streams (Youson 1997). This larval phase typically lasts 3-7 years, before 

they enter a metamorphic period lasting approximately 3 months in which these relatively 

sedentary larvae transform into freshwater or marine parasites/predators that ingest large 

quantities of blood from the fishes that they attack (Beamish and Potter 1975; Wilkie 

2011). 

Lampreys undergo a “true metamorphosis” in which the animals undergo a 

complete transformation from a free-living larva to an adult, rather than the minor 

changes observed between larval and adult morphs of a species (Youson 2003). In 

animals that undergo a true metamorphosis, the larval and adult forms exhibit distinct 

phenotypes that are associated with changes in the lifestyle and habitat of the animals.  

This “true” metamorphosis is found in all families of Petromyzontiformes, to which the 

sea lamprey belongs (Youson 2003).  The difference between ammocoetes and adult 

lampreys was first recognized in the middle of the 19th century and since then there has 

been a marked increase in studies dealing with sea lamprey metamorphosis (see Bartels 

and Potter 2004; Youson and Manzon 2012 for reviews).  
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The life cycle of the sea lamprey begins following fertilization, when the eggs are 

covered with loose substrate within the spawning beds.  Free flowing water irrigates the 

eggs, and after a period of approximately 4-5 weeks pro-ammocoetes emerge from the 

substrate and move downstream to protected riverbanks where they burrow into silty 

areas. A definitive larval form is recognizable after about 5 weeks, and any subsequent 

movement of the ammocoete is related to flow conditions and habitat structure. 

Ammocoetes prefer areas with slow moving water, in which there are large quantities of 

detritus, such as behind rocks, logs or in eddies (Potter 1980).   

After 3-7 years burrowed in the substrate of streams (Hardisty and Potter 1971b; 

Youson 1980; 2003), metamorphosis is initiated within a synchronous two-week period 

beginning in early-mid July. The primary stages of sea lamprey metamorphosis (stages 1-

4) are characterized by the early development of an eye and a pronounced reconfiguring 

of the oral hood (Youson and Potter 1979; Youson 1980; 2003). However, the mid-stages 

of metamorphosis (stages 2-5) lead to changes in internal body structure, which are 

needed to allow for the acclimatization to salt water and migration to seawater where 

young adults begin feeding on fishes. There is extensive restructuring of gross and fine 

architecture of the gills, characterized by the disappearance of ammocoete mitochondrial 

rich cells (MRCs) and the appearance of marine MRCs, which are needed to excrete Na+ 

and Cl- in salt water (Peek and Youson 1979; Bartels and Potter 2004; Reis-Santos et al. 

2008). Similarly, the kidney switches from a “bilge-pump” that offloads large quantities 

of dilute urine in freshwater, to an organ that is mainly involved in excreting toxic 

divalent ions such as Mg2+, SO4
2- and Ca2+ in sea water (Zydlewski and Wilkie 2013). 

The later stages (5-7) are characterized by the complete development of eye and oral disc, 
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as well as a silvering of the body, which may help conceal the animal from potential 

predators and prey as it actively feeds on fishes in the open water column (Peek and 

Youson 1979; Youson et al. 1977; Youson and Potter 1979). Upon completion of 

metamorphosis, young adult sea lamprey migrate to lakes and oceans where they feed 

almost exclusively on teleost fishes, although they have occasionally been seen feeding 

on elasmobranch fishes (Wilkie et al. 2004), and even cetaceans (Nichols and Hamilton 

2004). Upon completion of this active feeding period (about 20 months in length), adult 

sea lampreys return to freshwater rivers and streams, cease feeding and undergo sexual 

maturation. After building a nest (redd), the migrant animals mate and then die (Beamish 

et al. 1975; Potter et al. 1978).  

1.2 Lampreys outside of North America: 

Although sea lampreys are seen as an invasive predator in the Great Lakes, where 

there is an extensive sea lamprey control program, their numbers have been in decline in 

other parts of the world where they have been part of the ecosystem for millions of years. 

River lampreys (Lampetra fluviatilis) and non-parasitic brook lampreys (Lampetra 

planeri) are becoming endangered and even extinct in some parts of Europe, especially in 

places where they are considered a delicacy (Kelly and King 2001). Overfishing in such 

locations has decimated populations of native lampreys and industrialization has brought 

with it pollution, and stream blockages (dams and weirs) which have further contributed 

to declining populations over the last 30 years (Thiel et al. 2009). As a result, 

implementation of conservation programs are needed to protect these ancient species 

from becoming extinct.  
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1.3 Changes in sea lamprey metabolism associated with feeding: 

The feeding habits of sea lamprey and their metabolism change drastically 

throughout their life cycle. These changes profoundly influence catabolic and anabolic 

processes in lampreys leading to marked changes in the patterns of nitrogenous waste 

production and excretion as they switch from the filter-feeding larval stage to the 

parasitic stage (Wilkie et al. 2006). In addition, the lamprey life style is punctuated by 

prolonged periods of starvation, with non-trophic periods lasting 3-4 months or more, 

both during/immediately following metamorphosis along with the protracted upstream 

migration/spawning phase of their life cycle (Youson 1980; 2003). During these periods 

numerous physiological cascades are switched on and off such that the primary form of 

energy is released through series of catabolic rather than anabolic reactions (Hardisty and 

Potter 1971b), which likely explains the pronounced differences in patterns of 

nitrogenous metabolism and waste excretion that have been reported (Wilkie et al. 2006). 

The detritus, diatoms, and other nutrients are ingested via a unidirectional 

respiratory current, whereby the velum draws water in through the oral hood of the 

animal, and food particles are filtered out (Sutton and Bowen 1994; Rovainen 1996).  

These food items are then transported through the pharynx to the gut where they are 

broken down and absorbed. The water then crosses the gills and exits the pharynx via the 

lateral branchiopores (Rovainen 1996). Amino acids that arise from digested protein in 

the sea lamprey primarily serve as lipogenic precursors (stored as lipid), whereas glucose 

is largely stored as glycogen (Moore and Beamish 1973). The early months of summer 

represent the time of year in which digestive efficiency and food availability reach a 

maximum in larval sea lampreys, which corresponds to when the greatest amount of food 
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energy is absorbed, whereas it declines during the winter months (Moore and Beamish 

1973) In the last year prior to metamorphosis, however, premetamorphic ammocoete sea 

lampreys markedly increase their body lipid stores from approximately 4% to 13.5% per 

unit body mass, which provides the needed energy during the long (2 to 3 month) non-

trophic period of metamorphosis (Hardisty and Potter 1971b; O’Boyle and Beamish 

1977).  

 It is generally accepted that larval sea lampreys require a condition factor (CF) of 

1.50 or greater (minimum length of 120mm and weight of 3.0g) to enter metamorphosis, 

where CF is a relationship between weight and body length (Youson et al. 1993).  During 

metamorphosis the CF, which is a combined measure of length and weight, decreases to 

approximately 1.3 or less when the process is completed (Potter et al. 1978). This results 

from depreciation in whole body lipid reserves, which fall from approximately 13-14% to 

7-8% of total body mass at the completion of stage 7, the final stage of metamorphosis. 

However, at the tissue level, there seems to be a two-stepped reorganization of lipid 

reserves. The first phase, observed from ammocoete to stage 3/4 individuals, involves 

lipid accumulation within the kidney and liver by shunting reserves from the intestine. In 

the second phase, comprising stages 3/4 to stage 7, lipid is depleted from kidney and liver 

and accrued in the intestine (Kao et al. 1997a/b). This lipid is primarily used as energy in 

the form of triacylglycerol (Lowe et al. 1973; Sheriden and Kao 1998). The exact 

mechanism by which metamorphosis is initiated and how metabolism is controlled are 

not fully known, however there is direct evidence that several hormonal and 

environmental cues are involved (Youson 2003; Sheridan and Kao 1998). For example, 

prior to ammocoete sea lampreys undergoing metamorphosis, there is a marked increase 
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in circulating thyroid hormones (thyroxine (T4) and triiodothyronine (T3)) which then 

precipitously drop with the initiation of transformation (Youson et al. 1997).    

Following metamorphosis, young adults do not start feeding for several months 

(up to 10 months in anadromous species; Potter 1980). During this period of emergence 

and subsequent migration downstream, the remaining lipid stores drop from 

approximately 7% whole body mass to about 1% (Beamish et al. 1979).  This drastic 

depreciation in overall lipid stores is enough to promote proteolysis in the juvenile (post-

metamorphic sea lampreys).  In animals that have completed metamorphosis, but have 

not yet begun feeding, there are signs of muscle wasting indicating that protein has been 

used to meet the animals energy demands (Youson et al. 1979). Wilkie et al. (2006) noted 

a marked up-regulation of activity in enzymes associated with amino acid transamination 

and deamination in these juvenile sea lampreys. However, it is not known if this increase 

in amino acid deamination capacity is initiated prior to the completion of metamorphosis 

or during the post-metamorphic period when lipid reserves are nearing depletion.  

Once parasitic juvenile lamprey reach open waters and begin feeding, they ingest 

the protein-rich blood of their hosts (Wilkie et al. 2006). As a result, protein catabolism 

drastically increases, providing the building blocks for growth and regeneration. Animals 

attach to hosts, penetrate the skin and body wall, and begin blood ingestion (Farmer 

1980). With their newly restructured gills and tidal breathing patterns, young adults are 

able to stay attached to hosts for extended periods of time and may consume up to 30% 

their own wet body mass per day, quickly growing in size (Farmer et al. 1975). Protein 

rich blood meals ingested by parasitic lamprey are processed in the posterior portion of 

the intestine, with absorption of taking place across caveolated cells. Subsequential 
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movement of absorbed proteins to the liver allows for transamination and the release of 

amino acids (Langille and Youson 1984). 

After about 20 months at sea, or in lakes for land-locked populations, full-grown 

adult lampreys migrate up freshwater streams, where they sexually mature and spawn. 

During this period of atrophy, lampreys once again are relying on internal lipid reserves, 

which drop from approximately 10-11% to about 4% whole body mass (much of this 

being phospholipid rather than neutral hydrolysable lipid) and protein which drops by 

approximately 26% (Beamish et al. 1979).  

  While there is a good general understanding of the role that lipids and protein play 

in fueling the sea lampreys activities at different stages in its life cycle, we know little 

about how these processes are regulated or how the animals deal with changing patterns 

of metabolic waste production or changes in diet.  The goal of this thesis was to relate the 

unique nature of the sea lamprey lifecycle and its variation in feeding patterns to life 

specific changes in metabolic waste production and excretion patterns, with a focus on 

how nitrogenous wastes are excreted at different stages in the sea lamprey’s life cycle. 

 

1.4 Nitrogenous wastes and roles of Rh and UT: 

The catabolism of protein by animals produces excess amino acids that can serve 

as a valuable fuel to drive physiological processes due to the presence of a C-skeleton 

that can be utilized for intermediary metabolism via ATP synthesis. However, the 

catabolism of amino acids leads to the generation of ammonia (NH3), which is highly 

toxic and must be excreted or converted to a less toxic nitrogenous waste (N-waste) such 

as urea, and uric acid  (Wright 1995; Ip et al. 2001; Wilkie 2002). Build-ups of internal 
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concentrations of NH4
+ may lead to depolarization of neurons and subsequent influx of 

Ca2+ into the cells resulting in neurotoxic damage in the central nervous system (Randall 

and Tsui 2002).   

 The type of waste excreted is strongly influenced by environmental factors. Most 

fishes mainly excrete ammonia due to its highly solubility in water and low production 

costs, but semi-terrestrial animals such as amphibians excrete urea during the adult 

phases of their life cycle due to the absence of sufficient water in which to excrete the 

more soluble, but more toxic ammonia. Terrestrial animals, such as mammals and 

birds/reptiles, excrete the majority of their N-waste as urea and uric acid, respectively 

(Wood 1993; Wright 1995).   

The majority of ammonia produced in fishes and lampreys occurs within the liver 

through the deamination of amino acids, but other organs such as intestine, muscle and 

kidney also contribute (Mommsen and Walsh 1992; Wilkie et al. 2006). The majority of 

amino acids, which are L-amino acids, are transaminated by transaminase enzymes to 

form #-ketoglutaric acid and L-glutamate. Successive oxidation of #-ketoglutaric acid 

and L-glutamate via glutamate dehydrogenase in the mitochondrial matrix forms 

constituents that fuel the Kreb’s cycle (pyruvate and acetyl CoA), but generate as NH4
+ 

as a by-product (Fig. 1.1; Forster and Goldstein 1969; Randall and Wright 1987).  

Although many physiological processes such as gas exchange and ion balance are 

well understood in lampreys (Fange 1972; Morris 1972; Randall 1972; Beamish 1980; 

Wilson and Laurent 2002), the modes of nitrogenous waste excretion within this species 

remain unclear and have only recently been studied in detail (Blair 2012). 



! ,.!

Ammonia exists as either un-ionized NH3 or ionized NH4
+. Depending on external 

water chemistry, the NH3/NH4
+ equilibrium shifts between NH3 and NH4

+, but at 

physiological pH the majority of total ammonia exists as NH4
+ (Fig. 1.2; Wilkie 2002). In 

fishes, it was originally thought that ammonia passively diffuses out of the gills down the 

blood-to-water partial pressure NH3 (PNH3) gradient (Wilson et al. 1994), and not ionized 

NH4
+. It is now widely accepted that NH3 crosses the gills via gas channels called Rhesus 

glycoproteins (Rh glycoproteins), and it is trapped as NH4
+ in the gill-water boundary 

layer by H+ arising from the hydration of CO2 in that region, or H+ excretion by apical 

H+-ATPases (Weihrauch et al. 2009; Wright and Wood 2009; Fig. 1.3, Fig. 1.4).  

 The first observations that Rh glycoproteins were associated with ammonia 

transport occurred in yeast and Arabidopsis (Mep1 and Amt1 respectively) (Marini et al. 

1994; 1997). Sequence alignment of these NH4
+ transporters identified very high 

similarity between Mep1 and Amt1 and the well-known Rh50 family of human 

erythrocyte proteins (Ridgewell et al. 1992; Marini et al. 1997). Further analysis revealed 

that vertebrates possess a common gene family consisting of RhAG, RhBG, RhCG, and 

that fish contain an extra copy of RhCG (Huang and Peng 2005). Subsequent studies on 

rats and mice indicated that Rh glycoprotein protein expression was localized to organs 

involved in N-waste excretion (Liu et al. 2000; Liu et al. 2001). 

 In aquatic organisms, similar Rh glycoproteins were found to be up-regulated in 

instances where diffusion alone could not keep up with the pace of ammonia production 

and/or uptake from the environment (Nawata et al. 2007; Hung et al. 2008; Sashaw et al. 

2010). It is now recognized that the paralogues Rhag, Rhbg, and Rhcg, are thought to 

work in series, facilitating movement of ammonia across gills (Wright and Wood 2009). 
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Rhag is found on erythrocyte membranes and facilitates the movement of ammonia into 

the plasma. Rhbg is located on the basolateral side of gill epithelial cells and promotes 

the uptake of ammonia from the plasma into the gill. Finally, Rhcg proteins are situated 

on the apical surface of the gill epithelial cells enabling the transport of ammonia from 

inside the gill cells to the surrounding water. Expression of these proteins has been 

observed in several diverse aquatic organisms including crab (Carcinus maenas), 

mangrove killifish (Kryptolebias marmoratus), puffer fish (Takifugu rubripes), zebra fish 

(Danio rerio) larvae and rainbow trout (Oncorhynchus myskiss) (Weihrauch et al. 2004; 

Perry et al. 2010; Hung et al. 2007; Nakada et al. 2007a; Nakada et al. 2007b; Nawata et 

al. 2007).  

Another strategy to cope with increased levels of ammonia is to convert it into a 

less toxic waste product such as urea. In vertebrates, there are two main pathways by 

which urea is produced; the ornithine-urea cycle (OUC), which leads to the hydrolysis of 

arginine, or the uricolytic pathway.  Since sea lampreys do not contain all of the 

necessary components for the OUC, the majority of urea they produce is through 

uricolysis, in which uric acid arising from purine degradation is converted to urea 

(Goldstein and Forster 1965; Wilkie et al. 1999), or from the hydrolysis of dietary 

arginine (Fig. 1.5; Wilkie et al. 2004; 2006). Once thought to readily move across 

membranes passively, it is now known that urea movement across epithelia takes place 

using specialized transporters or channels (Sands 1999).  

The dipolar structure of the urea molecule, along with its low olive oil-water 

partition gradient, suggests that it cannot easily pass through the phospholipid bilayers of 

gill epithelial cells (Wilkie 2002). Recent work indicates that many fish use facilitated 
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urea transporters (UTs), to excrete the urea (JUrea) across the gills (Smith and Wright 

1999; Walsh et al. 2001). This excretion of urea in gill epithelia depends on the Na+/K+ 

ATPase to set up an ion gradient allowing for the co-transport of urea and Na+ out of the 

fish and into the surrounding water (Wilkie 2002; Fig. 1.6). UTs have been observed in a 

wide variety of marine and fresh water aquatic species, including European eel (Anguilla 

anguilla), Lake Magadi tilapia (Alcolapia grahami), and rainbow trout (Mistry et al. 

2001; Walsh 1997; McDonald and Wood 1998), but not in lampreys. A central goal of 

this thesis was to determine if basal vertebrates such as sea lamprey also use UTs and Rh 

glycoproteins to rid their bodies of N-waste and to determine if excretion patterns are 

related to changes in life stage and diet.  

 

 1.5 Effects of changes in water chemistry, life stage and feeding on nitrogenous waste 

production and excretion: 

The amount of ammonia produced and excreted by fish is subject to both extrinsic 

and intrinsic factors. The external environments lampreys are exposed to are not static. 

Situations may arise, such as an increase in environmental ammonia or pH, that inhibit or 

prevent ammonia excretion by decreasing the NH3 diffusion gradient down which 

ammonia exits the gill (Wright and Wood 1985; Wilkie and Wood 1991; Sashaw et al. 

2007). Moreover, the life stage of P. marinus can also greatly influence the amount of 

nitrogenous waste produced and excreted. During the parasitic phase of sea lampreys, 

high rates of blood ingestion (up to 30% body weight/day) increase protein uptake, and 

therefore the rate of amino acid deamination (Farmer et al. 1975; Wilkie et al. 2004; 
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Wilkie et al. 2006). Thus, P. marinus likely employ physiological strategies to tolerate or 

prevent build-ups of internal ammonia concentrations when feeding at such high rates. 

Current evidence suggests that the sea lampreys’ capacity to excrete ammonia 

greatly increases following metamorphosis, when they are likely to be ingesting large 

amounts of protein as they prey on teleosts, and even elasmobranchs (Wilkie et al. 2004) 

and cetaceans (Nichols and Hamilton 2004). Indeed, the activity of glutamate 

dehydrogenase increases several-fold following metamorphosis (Wilkie et al. 2006). 

More impressively, ammonia excretion rates increase by 15-25 fold following feeding by 

lampreys (Wilkie et al. 2004). Another goal of the present thesis was to determine if these 

increases in ammonia production and excretion rates following metamorphosis were 

accompanied by increases in Rh glycoprotein expression in the gills and skin of 

lampreys. These measurements were coupled with experiments designed to determine 

how ammonia is being excreted across the gills following feeding, and in response to 

environmental challenges such as high external ammonia (HEA) and alkaline pH.  

Lampreys also exhibit a very high capacity to excrete urea, which increases 10-15 

fold following feeding on rainbow trout (Wilkie et al. 2004). Increases in JUrea of up to 

450 times in lampreys have been observed when animals are removed from basking 

sharks (Cetorhinus maximus: Wilkie et al. 2004), which retain high levels of urea in their 

blood to maintain osmotic balance in sea water (Hammerschlag 2006). Urea transport 

proteins have not yet been identified in lampreys, although fragments of putative UT 

genes have been uncovered through searching the lamprey genome. Another major goal 

of this thesis was to therefore determine if UT expression increases in the lamprey 
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following metamorphosis, and after the fish experience increased urea loads due to 

feeding.  

 

1.6 Hypothesis and Research Objectives: 

Parasitic sea lampreys ingest greater amounts of protein than do their larval, 

metamorphosing and upstream migrant counterparts. It was therefore hypothesized that 

their capacity to tolerate and excrete nitrogenous wastes arising from protein catabolism 

was greater compared to other life stages (Wilkie et al. 2004). To test this hypothesis, a 

wide array of experiments to elucidate both the capacity and mechanisms used by several 

key life stages of sea lampreys (larval, metamorphic, parasitic, and up-stream migrant) to 

excrete ammonia and urea were undertaken. The specific objectives of this thesis were to: 

1. Determine the mechanisms by which nitrogenous wastes are excreted (JAmm and 

JUrea) at different stages of the sea lamprey life cycle. 

2. Ascertain how the ammonia and urea excretion capacity change during the life 

cycle of the sea lamprey. 

3. Determine the role of Rh glycoprotein and UT abundances with respect to N-

waste excretion during the life cycle of the sea lamprey. 

4. Investigate how N-waste accumulation and excretion changes during the 

metamorphic period of the sea lamprey life cycle. 

 

To investigate the following objectives, several experimental and 

analytical techniques were employed.  Firstly, both JAmm and JUrea, as well as 

internal concentrations of ammonia and urea, were determined using both 
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colorimetric and enzymatic based assays on sea lamprey of different life stages, 

and in sea lampreys exposed to chemically modified water conditions. These 

experiments were intended to provide insight into the observed changes in 

excretion patterns and capacity during several life stages, and provided a 

physiological and mechanistic basis for the observed changes in JAmm and JUrea in 

sea lamprey. Secondly, protein quantification of Rh glycoprotein and UT were 

done to shed light on the mechanism(s) used by lampreys to excrete urea and 

ammonia. Western blot analysis of Rh and UT proteins, along with some 

sequence analysis of an amplified cDNA of the UT were used to determine how 

the expression patterns of these excretory proteins changed over the complex life 

cycle of the sea lamprey, and following feeding by juvenile, parasitic lampreys.  

 

 

  



! ,+!

 

FIGURES: 
 

 

Fig.1.1. Deamination of amino acids in fish, which primarily occurs in the liver. The 

ingestion of protein rich foodstuffs likely increases the rates of transamination and 

deamination in lampreys.  
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Fig.1.2. Equilibrium of ammonia (pKa of 9.5 at 15oC). Under normal conditions (15 oC 

and pH= 7.6) this equation is pushed far left. 
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Fig. 1.3. Diffusion of ammonia out of freshwater fish. Normally, the CO2 excreted across 

the gill is hydrated to HCO3
- and H+, which acidifies he unstirred boundary layers next 

the apical membrane of the gill. The intracellular enzyme, carbonic anhydrase (CA), 

catalyzes the hydration of CO2 in the gill cytosol, also leading the generation of H+ n the 

cytosol, which is then thought to be pumped across the apical membrane by a H+-

ATPase, which further acidifying the gill boundary layer. As a result, NH3 passively 

diffuses down its PNH3 gradient via Rh glycoproteins, and JAmm is sustained due to H+ 

trapping of the NH3 in the gill boundary layer, where the NH3 is converted to NH4
+. 
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Fig. 1.4. Model illustrating how ammonia is thought to be transported across the fish 

gills. Rh proteins – Rhag (in erythrocyte membranes), Rhbg (in the basolateral 

membranes of branchial epithelial cells), and Rhcg (in the apical membranes of branchial 

epithelial cells) – facilitate the excretion of ammonia from blood to water via the gills of 

freshwater fishes. Based on Wright and Wood (2009) and Weihrauch et al. (2009). 
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Fig. 1.5. Production of urea by arginase. This process can arise following ingestion of 

dietary arginine and/or during times of muscle proteolysis.  
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Fig. 1.6. Urea handling within a fish gill. This diagram outlines two possible urea 

transporters: (1) Na+: urea antiporter or (2) a Na+- urea facilitated transporter. The latter is 

more likely involved in the excretion of urea and is dependent on (3) a Na+/K+-ATPase to 

set up an ion gradient such that Na+ and urea can be transported across the basolateral 

membrane. 
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Chapter 2: 

Plasticity of Urea Excretion and Urea Transporter Abundance During the Complex 

Life Cycle of the Sea Lamprey (Petromyzon marinus) 
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ABSTRACT 

 Ammonia excretion (JAmm), and urea excretion rates (JUrea) were determined in 

several distinct lifestages of sea lamprey (Petromyzon marinus) exposed to both highly 

alkaline water (pH 9.5) and high external ammonia (HEA: 0.5 mmol!L-1). Though 

ammocoete and adult sea lamprey were unable to tolerate the highly alkaline water for 

greater than 24 h, each readily survived HEA. In both ammocoete and adult lampreys, 

respective plasma ammonia levels increased by 2-fold and 6-fold after 2d. These 

increases in plasma ammonia were due to a complete reversal of JAmm, resulting in a net 

uptake of ammonia by both ammocoetes and adult lampreys during HEA. Ammocoetes, 

but not adults, were able to gradually restore JAmm to control levels after 2 days. JUrea on 

the other hand was significantly different only in adult lamprey, where it remained 

elevated by 2-3 fold during the entire 48 h exposure. Using primers for a conserved 

region of urea transport proteins (UT), amplification of a 109bp fragment was 

accomplished with sea lamprey gill tissue. Subsequent western blot analysis with 

zebrafish (Danio rerio) UT antibody revealed expression of the UT protein in several 

tissues of sea lamprey including; gill, skin, kidney and muscle. Life stage differences in 

UT protein were observed with ammocoetes having the greatest proportion of UT 

localization in the gills, where UT Abundance was 2-6 fold greater than in the other life 

stages.  However, UT was also expressed in the skin, with UT abundance being greatest 

in the skin of the adults, where abundance was 8-fold greater than in the skin of other life 

stages. For the first time, this study provides evidence for UT proteins in sea lampreys. 

Moreover, UT abundance was influenced by life stage, suggesting that in activity level, 
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body plan, environmental conditions and feeding habits influence the sites and 

mechanisms of N-waste excretion in sea lampreys.  
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INTRODUCTION 

 Over the last decade, our understanding of how nitrogenous wastes (N-wastes) are 

produced and handled by aquatic vertebrates and invertebrates has revealed that the two 

main products, ammonia and urea, are excreted using specialized Rh glycoproteins and 

urea transporters (UT), respectively (Weihrauch et al. 2009; Wright and Wood 2009).  

The UT appears to be a Na+:Urea co-transporter located on the basolateral membrane of 

the branchial epithelium that facilitates the outward diffusion of urea (Walsh 1997; 

McDonald et al. 2006). The Rh glycoproteins on the other hand are thought to function as 

gas channels, through which NH3 diffuses down favorable partial pressure gradients 

across the gills and into the water (Wright and Wood 2009).   

There are three types of Rh glycoproteins in the fish gill. The first, Rhag is found 

on erythrocytes, and facilitates NH3 unloading from the blood, whereas Rhbg and Rhcg 

are found on the basolateral and apical membranes of the gills (Weihrauch et al. 2009; 

Wright and Wood 2009). It has recently been proposed that Rhcg works in close 

association with apical H+-ATPases, Na+ channels and possibly the Na+/H+-exchanger 

(NHE), as part of a metabolon in which the NH3 that passes through the Rhcg, is trapped 

as NH4
+ by H+ extruded by V-ATPases (proton pumps) associated with the metabolon 

(Wright and Wood 2009). 

Alterations in UT and Rh glycoprotein abundance and distribution in fishes have 

been noted when ammonia excretion is inhibited in response to changes in water 

chemistry (greater pH), high external ammonia exposure (HEA) or air exposure (Sashaw 

et al. 2010; Braun et al. 2009; Zimmer et al. 2010; Nawata et al. 2010). However, less is 

known about the plasticity of urea and ammonia excretion and transporter abundance and 
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distribution following feeding, although Zimmer et al. (2010) demonstrated that natural 

increases in plasma ammonia, such as those encountered post-feeding, were observed to 

increase Rh mRNA expression. Early development is also a period in which nitrogenous 

waste excretion and associated protein expression patterns have recently been 

investigated. Braun et al. (2009) demonstrated that UT-mediated urea excretion 

predominated in embryonic zebrafish (Danio rerio), until hatching when there was a 

surge in ammonia excretion that was associated with greater Rhag, Rhbg and Rhcg1 

expression. Few other studies, however, have examined the ontogeny of UT and Rh 

glycoprotein mediated nitrogenous waste excretion in fishes. Moreover, there is 

uncertainty about how conserved these mechanisms of nitrogenous waste excretion are in 

the vertebrates, in particular the extant jawless fishes, represented by the hagfishes 

(Myxinae) and lampreys (Petromyzontidae).    

Ammonia and urea excretion (JAmm and JUrea) patterns have been well studied in 

the sea lamprey, Petromyzon marinus (Wilkie et al. 1999; Wilkie et al. 2004; Wilkie et al. 

2006), however the mechanism by which N-wastes are excreted is still unclear. The Rh 

glycoproteins have been isolated in a variety of tissues in lampreys including the gills and 

skin (Blair 2011), but the possible presence of UT transport proteins has not been 

investigated. However, UT and Rh glycoproteins were recently described in the Pacific 

hagfish (Eptatretus stoutii; Braun and Perry 2010). The goal of the present study was to 

relate the changes in JAmm  and JUrea  and the mechanisms of excretion to the pronounced 

changes in habitat, diet and internal and external anatomy that characterize the complex 

life cycle of the lampreys.    

 Sea lampreys begin their multi-staged lifecycle as larvae called ammocoetes that 
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live burrowed in the substrate of streams for 3- 7 years feeding on detritus and suspended 

matter (Sutton and Bowen 1994).  The ammocoete phase is then followed by a true 

metamorphosis lasting approximately 3-4 months (Youson 1980; 2003), which 

culminates in the transformation of the ammocoetes into juvenile lampreys that 

subsequently enter a parasitic phase in which they attach themselves to, and feed on the 

blood of teleost fishes (Beamish and Potter 1975; Farmer 1980; Renaud et al. 2009), 

elasmobranchs (Wilkie et al. 2004), and even cetaceans (Nichols and Hamilton 2004). 

After approximately 12-20 months, the adults cease feeding, sexually mature, and 

migrate upstream to spawn and eventually die (Beamish and Potter 1975; Wilkie 2011). 

 Due to the marked changes in morphology, feeding habits, and habitat of the sea 

lamprey, we hypothesized that changes in N-waste production and excretion patterns 

would be reflected by changes in JUrea and UT protein abundance, and to increases or 

decreases in internal ammonia and urea concentration in the tissues of lampreys at each 

of the 4 major stages of their life cycle, ammocoetes, juvenile, parasitic juvenile, and 

adult. Because ammocoetes excrete physiologically relevant levels of urea (Wilkie et al. 

1999), the major goal of this study was to test the hypothesis that UT protein abundance 

would be greatest during this burrow-dwelling life-stage when they would likely have 

greater difficulty excreting ammonia due to a lack of water flow through the burrows.  

Indeed, the sand particles comprising the wall of the ammocoete burrow are thought to be 

cemented together by mucus to prevent collapse of the burrow (Sterba 1962; Beamish 

and Jebbink 1994). For this reason irrigation of the gills with food-laden, oxygenated 

water can only take place when the oral hood of the animals extends above the substrate-

water column interface (Hardisty and Potter 1971), with the expired water being ejected 
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into the surrounding burrow.  As a result, N-wastes including ammonia may be higher in 

this microenvironment, resulting in greater difficulty off-loading ammonia via the gills. 

Previously, Wilkie et al. (1999) demonstrated that urea production was stimulated 

in ammocoetes during HEA, but they did not look at other life stages of the sea lamprey. 

A stimulation of JUrea has also been reported in some teleosts including goldfish 

(Carassius auratus) and rainbow trout (Oncorhynchus mykiss) during HEA (Fromm and 

Gillette 1968; Wilkie et al. 2011) and at alkaline pH (Wilkie and Wood 1991; Walsh et 

al. 1990). To determine the relative importance of urea production in ammocoetes and 

adult lampreys, we first measured basal JAmm and JUrea in each life stage, followed by 

HEA or highly alkaline water (pH 9.5) exposures to determine if the lamprey’s reliance 

on JUrea increased when JAmm was inhibited.  

The sites of ammonia and urea excretion were previously determined using a 

divided flux chamber for ammocoetes, and by renal catheterization for the much larger 

adult lampreys (Wilkie Lab 1999). The potential role of the UT in facilitating urea 

excretion at different life stages was also determined by generating a partial clone of the 

lamprey UT, and using a UT-specific antibody to localize and quantify UT abundance in 

ammocoetes, juvenile (non-feeding), parasitic juvenile and adult sea lampreys.   
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MATERIAL AND METHODS 

Experimental Animals and Holding  

Adult sea lampreys (Petromyzon marinus), were obtained courtesy of R. 

McDonald, at the Department of Fisheries and Oceans Canada (DFO) Sea Lamprey 

Control Center (Sault St. Marie, Ontario). Ammocoetes were collected by pulsed DC 

electrofishing from streams flowing into the North Humberland Strait, New Brunswick 

(DFO scientific collection permit SG-NBT-12-110 and SG-NBT-11-098). A subset of the 

New Brunswick animals underwent metamorphosis in the laboratory, which provided a 

pool of juvenile and parasitic juvenile sea lampreys that were used to determine how UT 

abundance in the gills changed with life stage in these animals. The ammocoetes were 

held in 70 L aquaria filled with a layer (4-5 cm deep) of sand that provided burrowing 

substrate for animals, and the ammocoetes were fed baker’s yeast (1 g/larvae; Holmes 

and Youson 1994) on a weekly basis (Fleischmanns, St. Louis, MO). Metamorphosing 

lampreys were held in static and aerated 50-60 L aquaria in groups of 15-20, in which the 

water was changed weekly, and without feeding.  Following the completion of 

metamorphosis (3-4 months), the newly transformed juvenile parasitic lampreys were 

allowed to feed on rainbow trout weighing 100-500 g that were purchased from Rainbow 

Springs Hatchery (Thamesford, ON), and held in 100-500 L flow-through tanks, which 

received a constant flow of aerated well-water (dissolved O2 of approximately 80-100% 

saturation). These rainbow trout were fed three times a week to satiation using sinking 

pellets (3.0 Corey Feed Mills, Elmira, ON). Upstream migrant lampreys do not feed, and 

were housed in 700 L Living Streams (Frigid Units Inc., Toledo, OH) receiving aerated 

well-water on a flow through basis. Animals were all held under a 12 h light/12 h dark 
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photoperiod. All experiments were conducted in accordance with the guidelines of the 

Canadian Council on Animal Care and were approved by the Wilfrid Laurier University 

Animal Care Committee. 

 

Experimental Protocols 

Experiment 1: Effect of high pH and high environmental ammonia (HEA) on JAmm and 

JUrea 

To investigate whether the inhibition of JAmm in sea lampreys resulted in a greater 

reliance on JUrea, animals (n=10 for ammocoetes; n=8 for adults) were exposed to either 

an elevated pH (!9.5) or high external ammonia (HEA; 0.5 mmol!L-1 NH4Cl) for 2 days. 

It was hypothesized that nitrogenous waste excretion would decrease as external pH and 

ammonia increased if passive NH3 diffusion was the major mechanism of JAmm, and that 

this would be followed by compensatory increases in JUrea. Accordingly, ammocoetes and 

adult sea lampreys were held in opaque flux chambers with volumes of 0.200 L for larval 

lamprey (1.5-3.0 g) and 5.0 L for the much larger (100-200 g) adult lampreys. The 

chambers holding the ammocoetes received a constant flow of water near 0.1 L!min-1, but 

flow to the larger chambers holding adults was 0.5-1.0 L!min-1 of well-water (pH =8; 

T=11°C; DO2 80-100%) draining from a head tank, and distributed to each chamber 

using a flow-splitter. After an overnight acclimation period, control Jamm and Jurea were 

determined over 4 h, followed by exposure to water of pH 9.5, or 0.5 mmol!L-1 external 

ammonia. Prior to each JAmm and JUrea measurement period, water flow to each chamber 

was cut -off, and the volume of each chamber was adjusted (to approximately 20-30 
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times the mass of the larvae (100 mL) or adult sea lamprey (3.0 L)), after which water 

samples (5 mL) were taken at 0 h, 2 h, and 4 h of each flux measurement period.  

Maintenance of water pH for the high pH experiment was achieved using an 

autotitrator (TT80 Autotitrator, Radiometer, Copenhagen, DM) connected to a PHM84 

pH meter fitted with a GK2401C pH Electrode (Radiometer). When water pH fell below 

pH 9.5, the autotitrator activated a solenoid valve that opened, leading to the drop-wise 

addition of 0.2M KOH into the head-tank from a 10 L polypropylene carboy. 

Maintenance of pH within the chambers during the flux periods was achieved by 

independently measuring the pH using an external pH meter and electrode (Oakton 11 

series, Eutech instruments, Singapore) at regular intervals and manually adding drops of 

1M KOH using a disposable, polypropylene Pasteur pipet. Between flux periods water 

flow was then re-established to each flux chamber.  

The elevation of water ammonia concentration in the HEA series was achieved 

through the addition of the appropriate amounts of NH4Cl (0.1 mol!L-1) to the water, and 

water pH was maintained at pH 8.0 using the autotitrator system. It should be noted that 

the addition of Cl- ion through dissociation from ammonia had a negligible effect on the 

overall system water quality. 

Upon completion of all the flux periods (2 d), each sea lamprey was lightly 

anesthetized using 0.5 g!L-1 MS222 buffered with 1.0 g!L-1 NaHCO3. After 

approximately 5 minutes in the anaesthetic dose, lampreys were then euthanized with an 

overdose of MS222 (1.5 g!L-1 MS222 buffered with 3.0 g!L-1 NaHCO3). Blood samples 

were collected from larval lampreys in a drip wise fashion after making an incision 

through the heart and collecting drops of blood into a 500 µL centrifuge tube. Blood 
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collection from the adults was via caudal puncture, using a 28 G needle connected to a 1 

mL disposable syringe pre-rinsed with heparin (Na+ heparin; SigmaAldrich, St. Louis, 

MO) syringe (18G). The blood collected was centrifuged at 10,000xg for 3 minutes in a 

microcentrifuge (Eppendorf 5415D, Hamburg, Germany), and the plasma transferred to 

0.5 mL centrifuge tubes, and frozen in liquid nitrogen. An incision down the mid-ventral 

line exposed the liver, kidney and intestine, which were removed and quickly snap 

frozen. The remaining skin and muscle from the trunk of the animal were separated and 

snap frozen. Gill filaments were dissected under slight magnification by an initial 

anterioventral incision, removal of the filamentous tissue, and snap freezing in liquid N2. 

All tissue samples were stored at-80°C until analyzed. Water samples were frozen at  

-20°C until analyzed for water ammonia and urea concentration. 

 

Experiment 2: Effects of Sea Lamprey Life Stage and Parasitism of Fishes on UT 

Expression and Nitrogen Excretion 

 To determine how UT abundance changed with life stage in the sea lamprey, 

basal rates of JUrea  and JAmm were measured in ammocoetes, juvenile, and adult sea 

lampreys, followed by blood and tissue collection as described above.  However, an 

accompanying feeding study was undertaken to determine how increased postprandial 

(following feeding) ammonia and urea-loads influenced the abundance of UT proteins in 

parasitic juvenile lampreys. In this study, the parasitic juvenile lampreys were fed 

rainbow trout (~150-200 g trout per parasitic juvenile) for 2-3 weeks, during which time 

the lamprey grew from approximately 2.5-3.0 g to approximately 10.0 g following the 

feeding period. At the conclusion of the feeding period, the trout with the lamprey still 
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attached, were gently transferred to 10 L of aerated water, containing 0.1 g!L-1 of tricaine 

methanesulfonate (MS222) buffered with 0.2 g!L-1NaHCO3. Almost immediately, the 

parasitic lampreys detached from the animal and were used for either determinations of 

post-feeding JAmm and JUrea, or euthanized with a lethal dose of anaesthetic (1.0 g!L-1 

tricaine methanesulfonate). Blood, gills, kidney, muscle, liver, intestine and skin of the 

parasitic lampreys were then collected, and feeding was verified by examining the gut 

contents for the presence of partially digested blood, which appeared as a black emulsate 

in the intestine. The blood was collected into 100 µL hematocrit tubes, and centrifuged at 

3,500 x g for 5 minutes, to pack the red blood cells.  The plasma was then drawn off, 

transferred to 500 µL centrifuge tubes and, along with the tissues, snap-frozen in liquid 

N2 and then stored at -80ºC until analyzed. Subsets of the gill, skin, kidney and intestine 

were also stored in 70% ethanol to be used in a separate study for immunohistochemistry 

analysis.   

 

Analytical Methods 

Ammonia and Urea Determination 

Water ammonia concentration was determined spectrophotometrically using 

thesalicylate hypochlorite colorimetric assay, which in the presence of ammonia forms a 

blue idophenol with an optimal absorbance at 650nm (Verdouw et al. 1978). Plasma 

ammonia concentrations were determined enzymatically using glutamate dehydrogenase, 

which catalyzed the oxidation of NADH at 340nm (Sigma Aldrich, AA0100). Water and 

plasma urea concentrations were determined colorimetrically using ferric chloride, 

diacetyl monoxime and thiosemicarbizide, which produces a pink chromogen in the 
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presence of urea, that is quantified at 525nm (Rahmatullah and Boyde 1980). Each of 

these spectrophotometric assays was conducted using a Molecular Devices 

Spectramax190 plate spectrophotometer (Molecular Devices, Sunnyvale, CA). To ensure 

confluence throughout each assay, linearity of standard curves were only accepted with 

and r2 > 95%. All absorbances were taken at equal time intervals with water ammonia 

measured 90 min following reagent mixing, whereas plasma ammonia was measured at 0 

min and 15 min following mixture of reagents. Urea absorbance’s were taken following a 

30 min cooling period of the samples after 15 min of boiling the sample and reagent 

mixture. In all cases if samples fell out of the range of the standard curve, appropriate 

dilution of the samples (10x or 25x) were done to ensure absorbance’s fell within 

experimental range.   

RNA isolation and cDNA synthesis  

 Gill tissue from sea lamprey was ground with a mortar and pestle under liquid 

nitrogen prior to RNA extraction. The total RNA was then obtained from the ground 

tissue (100 mg) using 1 mL TRIzol Reagent (Invitrogen) according to the manufacturer’s 

protocol, and then dissolved in nuclease-free water and quantified using a NanoDrop ND 

1000, and then stored at -80°C. Before synthesis of cDNA, 1µg of sample was treated 

with amplification grade DNase I (Invitrogen, 18068-015, Grand Island, NY) according 

to the manufacturers protocol, and used to make cDNA using MultiScribe Reverse 

Transcriptase (Invitrogen, 4311235, Grand Island, NY) in conjunction with an Oligo-dT 

primer (Invitrogen, AM5730G, Grand Island, NY). 
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Polymerase chain reaction  

 Degenerate primers (Fig.2.1), designed according to conserved regions of UT 

sequences, were used to amplify a target sequence of approximately 110 bp.  The 

polymerase chain reaction (PCR) used 15 µL in a gradient cycler (Eppendorf, 5331, 

Hamburg, DE), with PCR reagent concentrations for all reactions of 2 mmol L-1 MgSO4, 

200 µmol L-1 dNTP mix, 200 nmol L-1 of each primer and 1 unit of Taq DNA 

polymerase.  The thermal cycling parameters included initial incubation at 95°C (5 min) 

allowing activation of Taq polymerase followed by 35 cycles of 95°C (1 min), 60.5°C (1 

min), 72°C (1 min), with a final extension time of 72°C for 5 min. Products were held at 

4°C until analysed using gel electrophoresis (1.2% agarose in 1 % TAE buffer, 40 mM 

Tris acetate, 1 mM EDTA + 10 µL RedSafe DNA Stain) and visualized under UV light.  

Subsequently, bands were excised from the gel, purified and sequences were then 

determined at the University of Guelph Bioinformatics lab (Guelph, Ontario). 

 

Sequence Alignment and Identities 

 cDNA sequence alignment and identifications were achieved using ClustalX, 

whereas determination of amino acid sequence was done using ExPasy 

(http://www.expasy.org/proteomics). Subsequent alignment and scoring of amino acid 

sequences against known UT fragments (Accession numbers: AF278537.1; AF165893.2; 

NM_001020519.1; AB470074.1; AF257331.1; AB049726.1) was done using Clustal 

Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). 

 



! ((!

Antibodies and Western Blot Analysis  

 Affinity purified polyclonal antibodies to Danio rerio (Zebrafish) UT (accession 

no. AY788989.1; amino acids 48-69) were a gift from SF Perry (U. of Ottawa), and used 

for western blot analysis to localize and quantify UTs in ammocoetes, juveniles and adult 

lampreys.  

Snap frozen tissues were homogenized in ice-cold buffer solution containing 50 

mM Tris pH 7.5 with protease inhibitor (Roche, Laval, QC) using a hand held probe 

sonicator, briefly (> 10 s) at 80% power (Fisher Scientific, XL2000-350R, Ottawa, ON). 

Homogenized samples were centrifuged at 16,000xg for 3 minutes at 4°C, and the 

supernatant transferred to a clean 1.5 mL centrifuge tube from which protein 

quantification was determined using the bicinchoninic acid (BCA) protein assay (Sigma 

Aldrich, BCA1; Smith et al. 1985). For samples that contained excess lipid, a secondary 

centrifugation period was needed to allow form preliminary removal of lipid layer. In all 

cases, protein from zebrafish gill was used as a positive control. Exactly 20 µg of zebra 

fish gill protein and 40 µg of lamprey tissue protein were loaded into each lane of a 12% 

sodium dodecyl sulfate (SDS) polyacrylamide gel and electrophoresed for 40 minutes at 

200V (Biorad 165-5052; 165-3301, Hercules, CA). The protein size marker used was 

obtained from GeneDirex (PM007-0500, Las Vegas, NV). Following electrophoresis, 

both gel and nitrocellulose membranes were incubated for 30 minutes in 20% methanol 

transfer buffer. Transfer of protein from the gel to the nitrocellulose membrane was 

achieved using a semi-dry unit run at 20 V for 27 minutes (Biorad 170-3940, Hercules, 

CA). Membranes were then treated with Ponceau’s stain for 5 minutes to determine 

transfer efficiency, followed by subsequent washing (3 washes, 10 minutes per wash) 



! ()!

with 1x Tris-buffered saline containing 0.1% Tween 20 (1x TTBS). Blocking of the 

membranes was done using 5% skim milk with 0.05% sodium azide in 1x TTBS. After 

membrane blocking, a 2 h incubation with the primary UT antibody was done (1:500 UT 

dilution), followed by washing with 1x TTBS (3 washes, 10 minutes per wash), and 

incubation in peroxidase-conjugated secondary anti-rabbit Ig (1:3000 dilution; Bio-Rad, 

170-6515, Mississauga, ON) for 1 hour. After discarding the secondary antibody, 

membranes were washed with 1x TTBS (3 washes, 10 minutes per wash) and detection 

using enhanced chemiluminescence was performed (GE Healthcare, RPN2132, Baie 

d’Urfe, QC). Following detection of UT, blots were washed with 1x TTBS (3 washes, 10 

minutes per wash). Each blot was then incubated for 1h in the dark using a primary "–

actin antibody conjugated with Cy3 fluorescence tag (C5838; Sigma Alderich; St. Louis, 

MO). Relative quantification of protein expression was performed by scanning in images 

of nitrocellulose on Quantity One software (Bio-Rad, Hercules, CA), and size and density 

of the bands were analyzed using GelEval software (FrogDance software, Dundee, UK). 

To control for any variation in banding due to protein loading, densities of the UT bands 

were normalized to those of "–actin. 

 

Calculations 

Whole body and extra-renal nitrogenous waste excretion rates were calculated 

using the following equation: 
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Where JN-waste refers to rate of ammonia or urea excretion in nmol N!g-1
!h-1 , [N-

waste]initial is the concentration of ammonia or urea in water at the beginning of the flux 

determination period, and [N-waste]final is the concentration of ammonia or urea at the 

end of the flux determination period; V is the volume of water in the flux chamber; M is 

the mass of each lamprey;  &T is the duration of the flux determination period. 

 

Statistical Analysis 

 Paired data, as with the HEA exposures, was analyzed using repeated measures 

ANOVA, followed by a Student Newman-Keuls post-hoc test. Unpaired data were 

analyzed using a standard ANOVA, followed by a Tukey’s post-test. If a given data set 

did not meet all of the assumptions of standard ANOVA, a nonparametric ANOVA was 

used, followed by a Dunnet’s post-test. The level to which all data was analyzed was 

P<0.05, and all data are presented as the mean ±1 SEM. Statistical analysis was 

performed using a commercially available software package (GraphPad Instat 3.0 or 

SPSS ver. 20.0). 
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RESULTS 

Effect of high pH and high external ammonia (HEA) on Jamm and Jurea in ammocoete and 

upstream migrant sea lampreys  

 Ammocoetes and adult lamprey were unable to tolerate exposure to pH 9.5, which 

led to unexpected mortality in 24 h or less. As a result, no additional animals were 

exposed to pH 9.5 due to the lamprey’s inability to tolerate the more alkaline water.  

Ammocoetes readily tolerated exposure to HEA (nominal = 0.5 mmol!L-1 

ammonia; actual [ammonia] = 0.56 ± 0.017 mmol!L-1 ammonia) for 52h.  Under control 

(pre-exposure to HEA) conditions JAmm was -147 nmol N!g-1
!h-1, but following exposure 

to HEA there was net uptake of ammonia at all time periods (Fig. 2.1A).  At 24 h and 48 

h, however, the rates of net ammonia uptake were not significantly different from zero or 

the controls, suggesting that the fish were in net ammonia balance. There was no 

significant difference in JUrea between control rates of approximately -30 nmol N!g-1
!h-1 

and those observed during the 52h exposure to HEA, which accounted for approximately 

20 % of total nitrogenous waste excretion (Fig. 2.1B).  This inhibition of JAmm was 

accompanied by a marked increase in plasma ammonia, which increased 2-fold during 

HEA reaching 450 µmol N!L-1 (Fig. 2.3A). 

 Similarly, adult sea lamprey exposed to HEA (nominal = 0.5 mmol!L-1 ammonia; 

actual = 0.52 ± 0.013 mmol!L-1 ammonia) underwent a net uptake of ammonia over the 

entire 2 day exposure period.  In control animals, JAmm was approximately -300 nmol 

N!g-1
!h-1, but after exposure to HEA, there was a net uptake of ammonia at all time 

periods (Fig. 2.2A). JUrea significantly increased by 3- to 4-fold following HEA exposure 

at all time periods compared to control rates of approximately -6 nmol N!g-1
!h-1 (Fig. 
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2.2B). The corresponding increase in plasma ammonia was approximately 6-fold after 2 

days, stabilizing near 1400 µmol N!L-1 (Fig. 2.3A). 

 
Sequence analysis of amplified UT fragment and its distribution in P. marinus tissues 

A 109bp cDNA amplification product was obtained using a primer set designed to 

flank highly conserved regions of previously sequenced UT proteins from aquatic 

vertebrates (Fig. 2.4A). The corresponding amino acid sequence of this amplicon shared 

a high similarity to several UTs, including 64% identity with the spiny dogfish, Squalus 

acanthias UT (Fig. 2.4B). 

Western blot analysis using an antibody specific to zebrafish yielded a single band 

at approximately 38 kDa in the gill, skin, kidney, intestine, and muscle of adult sea 

lamprey, compared to a single band at approximately 48 kDa for zebrafish (Fig. 2.5).  

 

Relative abundance of urea transport protein (UT) in the gill and skin of ammocoete, 

unfed juvenile, fed parasite and upstream migrant sea lamprey  

As the sea lamprey transformed, entered the parasite phase and then senesced as 

adults, the relative abundance of UT proteins within the gill tissue decreased by more 

than 90% by the adult stage (Fig. 2.6A). The abundance of UT protein in ammocoete gills 

was found to be 6-10 fold higher than that of both fed parasitic juveniles and adult sea 

lamprey, whereas in unfed juveniles, UT abundance was not significantly different than 

ammocoetes, fed parasites or adults (Fig. 2.6B).  

 As with the expression of UT protein in gill tissue, there were differences 

observed in UT abundance within the skin of ammocoete, unfed juvenile, fed parasites 
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and adult sea lamprey. Adult individuals were found to have 4-8 fold more UT protein 

abundance in their skin when compared to ammocoetes, unfed juvenile, and fed juveniles 

(Fig. 2.7B). 
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FIGURES 
!
 

Fig. 2.1. The influence of a 2 day exposure to HEA (0.5 mmol!L-1 ammonia) on (A) JAmm 

and (B) JUrea of ammocoete P. marinus (n=10). Negative values indicate excretion, while 

positive values indicate net ammonia uptake. Control bars are open, whereas treatment 

indicated by closed bars.  Significant differences from control values are denoted by an 

asterisk (P<0.05). 
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Fig. 2.2. The influence of a 2 day exposure to HEA (0.5 mmol!L-1 ammonia) on (A) JUmm 

and (B) JUrea of adult P. marinus (n=6). Negative values indicate excretion, while positive 

values indicate net ammonia uptake. Control bars are open, whereas treatment indicated 

by closed bars. Significant differences from control values are denoted by an asterisk 

(P<0.05). 
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Fig. 2.3. Plasma ammonia concentrations (µmol N!L-1) in ammocoete and adult P. 

marinus exposed to HEA (0.50 mmol!L-1 ammonia; n= 6 or 8) ±SE. Control bars are 

open, whereas treatment indicated by closed bars. Significant differences from control 

values are denoted by an asterisk (P<0.05).
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Fig. 2.4.  (A) Amplicon (109bp) of putative sea lamprey UT protein along with associated 

primer set and their melting point (Tm). (B) Alignment of part of the amino acid 

sequenced yielded from the amplification product with several known aquatic UT 

proteins, with the highest fragment identity coming from Squalus acanthias (64%). 

Letters underscored by an asterisk are all identical amino acids, whereas stacked dots 

refers to similar amino acids. Accession numbers are as follows: AF278537.1; 

AF165893.2; NM_001020519.1; AB470074.1; AF257331.1; AB049726.1. 
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Fig. 2.5. Distribution of UT protein in several tissues of adult sea lamprey probed with zebrafish UT antibody (accession no. 

AY788989.1; amino acids 48-69; 1:500 dilution). Tissues labeled are as follows; M: Muscle, G: Gill, S: Skin, K: Kidney, L: liver, I: 

Intestine.  
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Fig. 2.6. (A) Representative western blot illustrating differences in Urea Transport  (UT) 

protein abundance in gill tissue between ammocoetes, unfed juveniles, fed parasites, and 

adult P. marinus (A, U, P, Ad; approximately 35 kDa). (B) Relative normalized density 

of UT expression in gill tissue of ammocoete, unfed juvenile, fed parasite, and adult P. 

marinus (n=4). Bars sharing the same letter are not significantly different from one 

another (P<0.05). Samples normalized to !-actin. Antibody used was that of zebrafish 

(accession no. AY788989.1; amino acids 48-69; 1:500 dilution). 
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Fig. 2.7. (A) Representative western blot illustrating differences in skin Urea Transporter 

(UT) protein abundance in ammocoete, unfed juvenile, fed parasite, and adult P. marinus 

(A, U, P, Ad; approximately 35 kDa). (B) Relative normalized density UT expression in 

skin tissue of ammocoete, unfed juvenile, fed parasite, and adult P. marinus (n=4). Bars 

sharing the same letter are not significantly different from one another (P<0.05).  

Samples normalized to !-actin. Antibody used was that of zebrafish (accession no. 

AY788989.1; amino acids 48-69; 1:500 dilution).
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DISCUSSION 

Evidence for a UT protein in P. marinus 

 Amplification and subsequent sequence analysis of a small, 109 base pair fragment of sea 

lamprey cDNA confirm for the first time, that sea lamprey express UT-like mRNA (Fig. 2.4). 

Though this amplicon is only a small portion of the transporter, which is normally 1700-2000 base 

pairs long, the high sequence identity with the spiny dogfish, and UTs reported in other aquatic 

organisms and mammals are strong evidence that this transcript likely codes for a UT in the 

lampreys. Western blot analysis, using an antibody to the zebrafish UT, of several tissues of adult 

sea lamprey tissue (gill, skin, muscle, kidney, intestine, liver), revealed a single band at 

approximately 38 kDa, with signals appearing most consistently in the gill and skin, as well as in 

the kidney and the muscle (Fig. 2.5). The molecular weight of this lamprey UT protein was found 

to be smaller than that reported in another extant agnathan, the Pacific hagfish, in which the UT 

band was approximately 48 kDa (Braun and Perry, 2010), suggesting that lamprey may have an 

smaller isoform of the UT protein.    

   

Relative abundance of urea transport protein (UT) in the gill and skin of ammocoete, unfed 

juvenile, fed parasite and upstream migrant sea lamprey  

It was postulated that the changes in habitat, feeding and life style with life stage would 

influence the tissue distribution patterns of the sea lamprey UT. Indeed, western blot analysis (Fig. 

2.6A) of four distinct life stages revealed that the gill tissue of ammocoetes had significantly 

higher amounts of UT protein compared to both fed parasitic juvenile and adult sea lampreys (Fig. 

2.6B). The present study and earlier work by our laboratory indicates that ammocoetes excrete a 

greater percentage of their total N-wastes (15-30 %) as urea than do the free-swimming parasitic 
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juvenile and adult life stages (Wilkie et al. 1999; Wilkie et al. 2006). This greater reliance on urea 

excretion in the burrow-dwelling larval phase may therefore explain why the abundance of 

lamprey UT in the gill is greater in this life stage, compared to the later free-swimming phases of 

the sea lamprey’s life cycle. It is also notable that many fish rely on JUrea during larval 

development (Depeche et al. 1979; Wright et al. 1995; Korsgaard et al. 1995; Chadwick and 

Wright 1999). In addition, mRNA expression of UT has been shown to be greater in the larval 

phase of zebrafish, and is increased further following ammonia exposure (Braun et al., 2009). 

The burrow-dwelling life-style of ammocoetes likely impairs ammonia excretion by 

reducing the blood-water NH3 diffusion gradient across the gills (Wilkie et al. 1999). Ammocoetes 

prefer to burrow into fine sandy substrate, and it has been postulated that the secretion of mucus by 

this life stage stabilizes the burrow by cementing the sand particles together (Sterba 1962; Beamish 

et al. 1994). Such a mucus lining might also slow water passage through the burrow, and 

potentially lead to higher concentrations of ammonia (Randall et al., 2004; Swink and Neff, 2008). 

This would be particularly true in regions where ammocoetes tend to aggregate, often including 

regions with large amounts of decaying organic matter (Hardisty 1944; Potter 1980; Sutton and 

Bowen 1994; Smith et al. 2011).  

Although urea is expensive to produce (4-5 mol ATP per urea; Campbell 1991) depending 

upon whether the urea is produced by the ornithine urea cycle (OUC) or derived from excess 

purines through uricolysis (Wood 1993; Wright 1995; Wilkie 1999), it is much less toxic than 

ammonia. Accordinglythe burrowing lifestyle of ammocoetes may present conditions that favor 

the detoxification of ammonia to urea. The limited evidence on ammocoetes suggests, however, 

that urea production in ammocoetes is mainly through uricolysis (Wilkie et al. 1999), and possibly 

arginine hydrolysis (Wilkie et al. 2006). It may be fruitful to examine earlier stages of the larval 
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development to determine whether or not the OUC play a role in ammonia detoxification during 

the very early stage of embryonic development or during metamorphosis.  Indeed, Neal (2013; 

Chapter 3) has shown that the contribution of urea to N-waste excretion approaches 50 % during 

the latter stages of metamorphosis in the sea lamprey.  

A major difference between ammocoetes and post-metamorphic juvenile lampreys is gill 

morphology and breathing mechanics. In ammocoetes, respiration is unidirectional in which water 

currents generated by the velum draw in water via the oral hood, which then passes across the gills, 

before exiting the pharynx through the laterally located branchiopores (Rovainen 1996; Bartels and 

Potter 2004; Wilkie 2011). Following metamorphosis, however, the gills lie in gill pouches that are 

tidally ventilated via the branchial musculature (Peek and Youson 1979; Rovainen 1996; Bartels 

and Potter 2004). This change allows the parasitic lamprey to breath while attached to its 

prey/host, however, it could also be a less efficient means of N-waste excretion due to mixing of 

residual expired waste-laden water with the inspired clean water that is pumped into the gill 

pouches. This could also be an important factor contributing to the greater reliance on renal urea 

excretion in parasitic and adult sea lampreys, which has been observed (M.P. Wilkie, unpublished 

observations). 

A single UT band at 38 kDa was also found in the skin of ammocoetes, juveniles, fed 

parasites and adult sea lampreys (Fig. 2.7A), where UT abundance was found to be greatest in the 

skin of adult sea lampreys compared to the other lifestages (Fig. 2.7B). It is well documented that 

the African lungfish (Protopterus annectens), and many amphibians use UTs to excrete urea via 

the skin (Hung et al. 2009; Ussing and Johansen 1969; Garcia-Romeu et al. 1981; Lacoste et al. 

1991). The mRNA of lungfish UTs (lfUT) is markedly upregulated following several weeks of 

terrestrialization (air exposure) to presumably facilitate lfUT protein synthesis, and the offloading 
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of urea, which builds-up in the animals when they are out of the water (estivation; Hung et al. 

2007).  As sea lampreys do not have scales (Pfeiffer and Pletcher 1964), it is possible that 

physiologically relevant amounts of urea excretion take place via the integument at some point 

following metamorphosis, particularly in adults. Urea excretion across the skin could be seen in 

adult sea lampreys because they have a well-vascularized dermis (Potter et al. 1995), which would 

promote urea (and ammonia) delivery to epithelial UTs and Rh glycoproteins.  In contrast, 

ammocoetes lack vascularization in the dermis, which could preclude JUrea by this route.  

 We cannot explain why adult lampreys fitted with indwelling renal catheters excreted 

more than 90 % of urea via the urine (M.P. Wilkie, unpublished observations).  The kidney also 

possessed at UT, but slightly larger than the 38 KD protein focused on here.  Further experiments 

are required to tease out the differences if any in the properties of the UTs in lampreys, and their 

relative importance in nitrogenous waste excretion. 

Further investigation of the life stage differences in sea lamprey kidney expression of UT 

proteins would provide much needed insight on the possibility of a transition from branchially-

mediated excretion in ammocoetes, to a mainly renal urea excretion in the adults. Indeed, western 

blots of the kidney of adult sea lampreys exhibited significant banding, but at a slightly higher 

molecular weight, possibly suggesting the presence of another UT isoform (Fig. 2.6). It is possible 

that adult sea lampreys are using a system closely related to the one found in the proximal tubules 

of the Japanese eel (Anguilla japonica) eUT-C which has a molecular weight of approximately 40 

kDa (Mistry et al. 2005).  
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Life stage differences in JAmm and JUrea when exposed to highly external ammonia (HEA: 0.5 

mmol!L-1 ammonia) 

Exposure of ammocoetes and adult sea lampreys to HEA (0.5 mmol!L-1 ammonia) resulted 

in a complete reversal of JAmm, with a net uptake of ammonia observed in the first 24 h of HEA 

(Fig. 2.1A and 2.2A), which was most likely due to a reversal of the blood-water PNH3 gradient. It 

was notable, however, that in ammocoetes there was no longer a difference in net-uptake of 

ammonia by 48 h compared to ammocoete excretion rates, whereas in adults there continued to be 

net ammonia uptake at this time. Given that the ammocoetes and adults were exposed to identical 

concentrations of ammonia, these findings suggest that ammonia excretion by the ammocoetes is 

more efficient than in adults. Indeed, plasma ammonia concentrations were 3-fold higher in the 

adults under the same conditions.  The difference could be because flow across the ammocoete gill 

is unidirectional which would make it easier for the animals to establish and maintain blood-water 

PNH3 diffusion gradients at HEA. Indeed, Wilkie et al. (1999) reported that ammocoetes were able 

to restore and maintain JAmm during exposure to 2 mmol L-1 total ammonia after 3 d, at which time 

the animals had achieved sufficient build-ups of internal ammonia needed to re-esablish blood-

water PNH3 diffusion gradients across the gills. In adults, the gill is tidally ventilated which would 

lead to higher concentrations of ammonia next to the gill and less favourable blood-water PNH3 

gradients, due to mixing of ammonia-loaded exhalant water, with fresh inhalant water. Such 

differences could also explain why Rhcg abundance on the skin increases following 

metamorphosis in the sea lamprey, which would provide an accessory route for JAmm but this 

requires further investigation (Blair 2011; Neal 2013, Chapter 3). Ammocoetes can also withstand 

very high concentrations of external ammonia, with a 96-h LC50 of approximately 3 mmol!L-1 total 
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ammonia, which is about 3-fold higher than other ammonia tolerant fish (Wilkie et al. 1999; 

United States Environmental Protection Agency, 1995).   

Unlike earlier studies (Wilkie et al. 1999), the JUrea of ammocoetes exposed to HEA did not 

significantly increase in the present study. It should be noted, however, that JUrea in the control 

(unexposed) animals were already substantially higher compared to rates measured in the earlier 

studies (Wilkie et al. 1999). This may have been a reflection of how long the animals had been in 

captivity and/or the time of year.  Unlike Wilkie’s previous (1999) study, these were freshly caught 

summer animals that were used within 2-4 weeks of capture, and which were actively feeding on 

their natural diet of detritus, algae and diatoms (Moore and Beamish 1973; Sutton and Bowen 

1994) prior to capture and not kept in the lab for several months being fed yeast before 

experimentation. Another factor is that sufficient time may not have elapsed during HEA to 

stimulate greater reliance on JUrea. For instance, Wilkie et al. (1999) reported that 3 d of HEA 

exposure was needed to stimulate increased JUrea in ammocoetes exposed to 2 mmol L-1 ammonia 

Braun et al. (2009) noted that larval zebrafish exposed to 0.5 mmol!L-1 ammonia only increased 

JUrea after 120 h of HEA. Similarly, in the hagfish, JUrea did not increase following HEA exposure, 

but only after direct ammonia injections (Braun and Perry 2010). In other words, internal ammonia 

concentrations may not have increased sufficiently to promote increased JUrea in ammocoetes. 

Wilkie et al. (1999) reported that plasma ammonia had risen to more than 2 mmol L-1 when JUrea 

was stimulated in ammocoetes exposed to HEA. In the present study, plasma ammonia 

concentrations were about 1/5 this value after 2 days of HEA.  

In adult sea lampreys exposed to HEA, JUrea was significantly higher immediately following 

exposure to HEA and plasma ammonia was 4 times greater than that observed in the ammocoetes, 

at approximately 1.4 mmol L-1 The higher plasma ammonia concentrations in the adults, despite 
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being exposed to the same concentration of ammonia, over a similar time course (and water pH), 

further suggests that that the adult sea lampreys were much less tolerant to ammonia than burrow-

dwelling ammocoetes. Such findings may also at least partially explain why Rh glycoprotein 

abundance is less in the gills of ammocoetes compared to latter stages (Neal et al. Chapter 3). As 

gas channels, the movement of NH3 is bi-directional through Rh glycoproteins, and dependent 

upon the NH3 partial pressure gradient. In the burrow-dwelling environment of the ammocoetes, 

build-ups of ammonia would impair JAmm via this route. Thus, greater reliance on extrabranchial 

routes for JAmm, presumably via the kidneys, would allow the lamprey to minimize ammonia 

uptake across the gills in the event of increases in external ammonia.  The greater reliance on JUrea 

could also provide the ammocoetes with an accessory means to rid the body of nitrogenous wastes. 

Future studies should test these hypotheses by quantifying both UT and Rh glycoprotein 

abundance in the gills, skin and kidneys of ammocoetes, juvenile and adult lampreys following 

ammonia exposure.  

Some fishes, including the gulf toadfish (Opsanus beta), Magadi tilapia (Alcolapia 

grahami), lungfishes, along with several larval stages of fish produce urea using the ornithine urea 

cycle (OUC; Mommsen and Walsh 1989; Randall et al. 1989; Loong 2005; Depeche et al. 1979, 

Wright et al. 1995).  This seems unlikely in the sea lampreys, even during HEA, because key OUC 

enzymes are absent or only present at low levels (Wilkie et al. 2006). Sea lampreys do contain the 

machinery to produce urea via uricolysis (Wilkie et al. 1999; Wilkie et al. 2004), however. Thus, it 

is likely that this increased ammonia load stimulated the uricolytic pathway in adults, leading to 

the increased JUrea observed. Arginine arising from proteolysis in this terminal life stage, may have 

also also lead to the generation of urea, due to the presence of arginase in the liver and muscle of 

juvenile and adult lampreys and the high amounts of arginine generated in the muscle due to 
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proteolysis in the adult sea lampreys (Wilkie et al. 2006). Skin UT abundance may therefore be a 

function of urea generation in the closely situated white muscle, with subsequent dermal 

offloading due to proximity of formation, and the relatively short distance to excrete urea through 

the skin.  

 

Perspectives: 

Taking into account their ancient origins (over 350 million years old), the presence of a sea 

lamprey UT underscores the primitive origins of urea transport proteins in vertebrates (Forey and 

Janvier 1993; McDonald et al. 2012). Owing to the broad spectrum of their habitat, feeding and 

lifestyle throughout the sea lamprey life cycle, it is not surprising that dramatic changes in N-waste 

production (Wilkie et al. 2006) and excretion mechanisms change as well. Presently, the fragment 

of lamprey UT presented is not sufficient to develop a credible evolutionary pattern for the UTs in 

the vertebrates.  However, our data do suggest that the UT studied here is closely related to UT-C 

found in Japanese eel (McDonald et al. 2006). Elongation of this gene fragment, along with 

immunohistochemical analyses of gill, skin and kidney of the primary stages of sea lamprey, will 

go a long way in resolving both the evolutionary and functional gaps in our present knowledge of 

lamprey UTs. Nevertheless, it does appear that at least in sea lampreys, UTs may play an important 

role in allowing lampreys to live in burrow-dwelling habitats where ammonia excretion could be 

more challenging than in the open water column, which characterizes the sea lamprey’s habitat 

following metamorphosis. 
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Chapter 3: 

Effects of Metamorphosis and Feeding on Nitrogenous Waste Excretion Patterns, Rh 

glycoprotein and Urea Transporter Abundance in Sea Lampreys (Petromyzon marinus) 
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ABSTRACT 

The phylogenetically ancient sea lamprey (Petromyzon marinus) begins its complex 

lifecycle as a burrow-dwelling, suspension feeding larval ammocoete, and following a 3-4 month 

metamorphic period, free swimming juveniles emerge from their burrows and swim downstream 

where they feed on the blood of fishes. During the non-trophic metamorphic period, sea lamprey 

rely on the breakdown of internal lipid and then protein reserves to meet their energy requirements. 

It was predicted that during metamorphosis, changes in feeding habits would be accompanied by 

changes in both ammonia and urea excretion rates (JAmm and JUrea), along with changes in the 

abundance of Rh glycoproteins and urea transport (UT) proteins which facilitate excretion. There 

was a slight decrease in JAmm and JUrea through most of metamorphosis, but rates of excretion 

substantially increased in late stage 7 and in juvenile animals. Interestingly, animals experienced a 

period of urotely (<50% JN-waste is urea) in late stage 7. Rhcg2 and UT protein abundances were 

observed to be the greatest during the mid-stages of metamorphosis and corresponded to internal 

buildups of both plasma ammonia and urea, respectively. Post-feeding Rhcg2 and UT protein 

abundance in gill tissue was also investigated in parasitic sea lamprey. A two-fold increase in 

Rhcg2 was observed in feeding parasites, whereas there was a decrease in UT abundance in 

actively feeding parasite gill tissue. It is postulated that post-metamorphic sea lampreys rely more 

on renal routes of JUrea than gill-mediated JUrea, and that restructuring of the kidneys during 

metamorphosis aids in the removal of urea in the urine of these animals. 
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INTRODUCTION 

The Rhesus glycoprotein (Rh) family facilitates the movement of NH3 across the gill 

epithelium of fishes and aquatic crustaceans (Weihrauch et al. 2009; Wright and Wood 2009).  

According to this model, paralogues of the Rh glycoproteins Rhag, Rhbg, and Rhcg work in series, 

with Rhag promoting hepatically-produced ammonia offloading by red blood cells at the gills, and 

Rhbg and Rhcg promoting ammonia excretion across the basolateral and apical membrane of the 

gills, respectively (Weihrauch et al. 2009; Wright and Wood 2009).  The apically located Rhcg 

proteins are thought to be the focal point of an NH3 metabolon, in which NH3 excreted across the 

gills is trapped as NH4
+ due to acidification of the gill boundary layers by other transporters 

including apically located H+-ATPases coupled to Na+-channels, and possibly apical Na+/H+-

exchangers (Wright and Wood 2009).  The Rh glycoproteins have been observed in many aquatic 

organisms including crab (Carcinus maenas), mangrove killifish (Kryptolebias marmoratus), 

puffer fish (Takifugu rubripes), zebra fish (Danio rerio) larvae and rainbow trout (Oncorhynchus 

mykiss) (Weihrauch et al. 2004; Perry et al. 2010; Hung et al. 2007; Braun et al. 2009; Nakada et 

al. 2007a; Nakada et al. 2007b; Nawata et al. 2007). 

 In the extant jawless fishes, Rhbg and Rhcg have been partially characterized in hagfish 

(Braun et al. 2010), but it remains unclear what role they play in the lampreys. The goal of the 

present study was to determine how Rh glycoprotein abundance in the gills was influenced during 

metamorphosis in the sea lampreys (Petromyzon marinus) and following the ingestion of protein-

rich blood during the parasitic phase of the sea lampreys’ complex life cycle.  

The anadromous sea lamprey undergoes a true metamorphosis that results in the animal 

transforming from a blind, relatively sedentary filter-feeding larvae called an ammocoete, into a 

free-swimming parasitic juvenile. The parasitic juvenile phase last 12-20 months, before the 
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animals return to freshwater streams as adults, spawn and die (Beamish and Potter 1975; Youson 

2003).  During the 3-4 month non-trophic period of metamorphosis, sea lampreys proceed through 

seven distinct stages characterized by the formation of an oral disc and rasping tongue which 

allows the parasitic lamprey to attach to the substrate or their host, the appearance of eyes, a switch 

from unidirectionally ventilated to tidally irrigated gills, and “silvering” of the body (Beamish and 

Potter 1975; Youson and Potter 1979; Youson 2003).  In addition to these external changes there is 

a restructuring of internal body structure, an increase in overall metabolic rate, and a greater 

capacity to deaminate the excess amino acids derived from the protein rich blood the lampreys 

ingest from their hosts/prey (Wilkie et al. 2004; 2006).  This period following metamorphosis is 

likely characterized by changes in the ammonia and urea excretion machinery of sea lampreys, 

which includes the urea transporters (UTs) and the Rh glycoproteins in the gills. One goal of the 

present study was to test the hypothesis that changes in internal ammonia and urea concentrations, 

and altered ammonia and urea excretion (JAmm and JUrea) patterns that accompany metamorphosis 

are matched by quantitative changes in UT and Rhcg abundance in the gills.   

The ingestion of large quantities of protein rich blood in parasitic juvenile sea lampreys can 

also result in marked increases in internal ammonia and urea leading to elevated post-feeding JUrea 

and JAmm as occurs in sea lampreys following feeding on basking sharks (Cetorhinus maximus) and 

rainbow trout (Oncorhynchus mykiss; Wilkie et al. 2004; 2006). Thus, the final goal of the present 

study was to test the hypothesis that post-feeding surges in ammonia excretion in parasitic 

lampreys are reflected by corresponding increases in the abundance of Rhcg in the gills of sea 

lampreys, the main site of ammonia excretion following metamorphosis (Chapter 2). In the present 

study, we specifically focused on Rhcg 2, which has recently been localized 

immunohistochemically to the apical membrane of sea lamprey gills (Blair 2011).  
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METHOD AND MATERIALS 

Experimental Animals and Holding  

In the first part of this study, anadromous sea lampreys were collected by pulsed DC 

electrofishing in New Brunswick, Canada from streams flowing into the North Humberland Strait 

(DFO scientific collection permit SG-NBT-11-098 and SG-NBT-12-110). A subset of these 

animals underwent metamorphosis in the laboratory, which provided a pool of metamorphosing 

and parasitic sea lampreys that were used to determine how life stage affects Rh glycoprotein and 

UT abundance in the gills. The larval and metamorphosing sea lamprey (ammocoetes) were then 

held in 70 L aquaria filled with a 4-5 cm deep layer of sand that provided burrowing substrate for 

these burrow-dwelling animals. The larvae were fed bakers yeast (1g/larvae; Holmes and Youson 

1994) on a weekly basis (Fleischmann’s yeast), whereas the metamorphosing animals were not fed 

during this non-trophic period of their life cycle (O’Boyle and Beamish 1977).  Juvenile, parasitic 

lampreys fed on rainbow trout (Oncorhynchus mykiss) weighing 100-500 g that were purchased 

from Rainbow Springs Hatchery (Thamesford, ON), and held in 100-500 L flow-through tanks, 

which received a constant flow of aerated well-water (dissolved O2 of approximately 80-100% 

saturation). These rainbow trout were fed three times a week to satiation using sinking pellets (3.0 

Corey Feed Mills, Elmira, ON).  

Adult sea lampreys, captured in the initial stages of their upstream migration, were 

provided courtesy of Rod McDonald, Sea Lamprey Control Center, Fisheries and Oceans, Canada 

(DFO) in Sault Ste. Marie, Ontario.  The adults were housed in 700 L living streams receiving 

aerated well-water (dissolved O2 approximately 80-100% saturation) on a flow through basis. It 

was not necessary to feed the adult lampreys, which naturally do not feed at this life stage.  
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All animals were held under a 12 hour light/12 hour dark photoperiod, and all experiments 

completed were approved by the Wilfrid Laurier University Animal Care Committee, in 

accordance with the guidelines of the Canadian Council on Animal Care. 

 

Experimental Protocols 

Experiment 1: Nitrogenous Waste Metabolism, UT and Rh Glycoprotein Abundance in 

Metamorphosing Sea Lampreys 

To identify the factors that might explain the greater capacity to excrete N-waste after 

metamorphosis and feeding in the parasitic stage, the patterns of N-waste excretion along with Rh 

and UT protein abundance were followed through 6 of the 7 stages of metamorphosis. The animals 

used in these experiments were collected as large ammocoetes in June 2012, and brought back to 

the aquatic holding facilities at Wilfrid Laurier University in well-aerated containers where they 

were sorted into 2 groups. The first group were those most likely to enter metamorphosis, which 

included animals with a condition factor (CF) greater than 1.5, and respective minimum mass and 

length of 3.0 g and 120 mm, due to the presence of large lipid stores (Holmes and Youson, 1994). 

The second group was comprised of smaller animals, unlikely to enter metamorphosis, which were 

used in measurements focusing on the ammocoete life stage. After sorting, the large ammocoetes 

were distributed to 50-60 L aquaria in groups of 15-20, containing well water at 15 °C and a 4-5 

cm deep layer of sand lining the bottom of the aquaria since metamorphosing lampreys remain 

burrowed until the late stages of metamorphosis (Youson and Potter 1979).  The water in the 

aquarium was changed weekly (50 % replacement) during the experiment, and no mortalities were 

noted.  A separate sentinel tank containing 15 large ammocoetes burrowed in cotton allowed us to 
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follow the progress of metamorphosis with greater accuracy, without disturbing the animals that 

were burrowed in the sand of the other aquaria.  

Staging was mainly based on changes in dentition, eye development, and development of 

the oral disc as described by Youson and Potter (1979). The stage of metamorphosis was 

determined by one investigator, the animals photographed and the stage of metamorphosis then 

verified by a qualified second investigator (Figures 1, 2). Between June and October, animals from 

stages 2 to 7 (n=9 for each stage) were removed from the aquaria, and transferred one at a time to 

individual opaque, polyethylene flux chambers (approximately 200 ml volume) receiving a 

constant flow (0.1 to 0.5L!min-1) of well-water (pH =8; T=11°C; dissolved O2 80-100%) draining 

from an aerated, head tank. Each aerated container contained approximately 0.2 g of aquarium 

cotton into which the animals could burrow.  After an overnight acclimation period, control rates 

of JAmm and JUrea were determined at pH 8.0 over 8 h. Prior to each flux measurement period, water 

flow to each chamber was cut off, and the volume adjusted to 0.100L after which water samples 

(5mL) were collected at 0, 2, 4, 6, and 8 h. After 8 h, each sea lamprey was lightly anesthetized 

using 0.5 g!L-1 tricaine methanesulfonate (MS222; Syndel Laboratories, Nanaimo, British 

Columbia) buffered with 1.0 g!L-1 NaHCO3, followed by a lethal overdose of MS222 (1.5 g!L-1 

MS222 buffered with 3.0 g!L-1 NaHCO3). Blood samples were then collected by making an 

incision through the heart, and collecting drops of blood into a 500uL centrifuge tube, which was 

then centrifuged at 10,000xg for 3 minutes in a microcentrifuge (Eppendorf, Model 5415D, 

Hamburg, Germany), the plasma collected, and frozen in liquid nitrogen. An incision down the 

mid-ventral line exposed the liver, kidney and intestine, which were removed and quickly snap 

frozen in liquid N2. The remaining skin and muscle tissue from the trunk of the animal were 

separated and snap frozen in the same manner. Gill filaments were dissected under slight 
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magnification by an initial anterio-ventral incision, and subsequent excision of the filamentous gill 

tissue with fine tweezers followed by snap freezing. All tissue samples were stored at -80°C, until 

analyzed within 6 months for plasma ammonia and urea concentration, and gill and skin UT and 

Rhcg2 abundance using western blotting. Water samples were frozen at -20°C, and then thawed 

when water ammonia and urea concentration were quantified for the determination of JUrea and 

JAmm by the sea lampreys.  

 

Experiment 2: Feeding in Parasitic Juvenile Sea Lampreys 

 To investigate the plasticity and mechanisms of JAmm and JUrea in juvenile lampreys, a 

feeding study was undertaken to determine how increased ammonia and urea-loads influence the 

abundance of both the UT protein and Rhcg glycoprotein. Accordingly, post-metamorphic juvenile 

lampreys were given access to 100-500 g rainbow trout upon which they were able to feed for 2-3 

weeks, during which time the lamprey grew from approximately 3.0-3.5 g to a mean size of 

approximately 10 g. Following feeding both the trout and the lampreys were anesthetized with 0.5 

g!L-1 MS222 buffered with 1.0 g!L-1 NaHCO3, while the lamprey was still attached to the trout. In 

most cases the lamprey readily detached from the trout on its own volition, but in some instances 

removal required careful manipulation of the oral disc to break the “vacuum seal” holding the 

lamprey to the side of the trout. The lampreys were then either transferred to flux chambers for 

measurement of JAmm and JUrea , or transferred to a lethal dose of MS222  followed by blood and 

tissue collection as described above.  
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Analytical Techniques 

Ammonia and Urea Determination 

Water ammonia concentration was determined spectrophotometrically using the salicylate 

hypochlorite colorimetric assay, which in the presence of ammonia forms a blue indophenol with 

an optimal absorbance at 650nm (Verdouw et al. 1978). Plasma ammonia concentrations were 

determined enzymatically via a glutamate dehydrogenase catalyzed reaction to oxidize NADPH at 

340nm (Procedure AA0100; Sigma Aldrich Chemical Co. St. Louis, MO). Water and plasma urea 

concentrations were determined colorimetrically using ferric chloride, diacetyl monoxime and 

thiosemicarbizide, which produces a pink chromogen in the presence of urea, that is quantified at 

525nm (Rahmatullah and Boyde 1980). Each of these spectrophotometric assays was conducted 

using a Molecular Devices Spectramax190 plate spectrophotometer (Molecular Devices, 

Sunnyvale, CA). To ensure confluence throughout each assay, linearity of standard curves were 

only accepted with an r2 > 95%.  

Antibodies and Western Blot Analysis  

 Affinity purified polyclonal antibodies to Danio rerio (Zebrafish) UT (accession no. 

AY788989.1; amino acids 48-69) were a gift from SF Perry (Department of Biology, University of 

Ottawa, Ottawa, Ontario), and used for western blot analysis to localize and quantify UTs in 

ammocoetes, juveniles and adult lampreys. Antibodies raised against amino acid sequence 

fragments encoding a part of the COOH terminus of Rhcg2 in Takifugu rubripes 

(NM_001027934.1; amino acids 420–481) were attained from S Hirose (Tokyo Institute of 

Technology), courtesy of S. Edwards (Appalachian State University, Boone, NC). 



! """!

 

Snap frozen tissues were homogenized in ice-cold buffer solution containing 50 mmol L-1 

Tris pH 7.5 with protease inhibitor (Roche, Laval, QC) using a hand-held sonicator probe, (~ 10 s 

pulse time per sample) at 80% power (Fisher Scientific, XL2000-350R, Ottawa, ON). 

Homogenized samples were centrifuged at 16,000xg for 3 minutes at 4°C, and the supernatant 

transferred to a clean 1.5 mL centrifuge tube from which protein quantification was determined 

using the bicinchoninic acid (BCA) protein assay (Procedure B9643; Sigma Aldrich, BCA1; Smith 

et al. 1985). For samples that contained excess lipid, a secondary centrifugation period was needed 

to allow form preliminary removal of lipid layer. In all cases, protein from zebrafish gill was used 

as a positive control. Exactly 20 µg of zebra fish gill protein and 40 µg of lamprey tissue protein 

were loaded into each lane of a 12% sodium dodecyl sulfate (SDS) polyacrylamide gel and 

electrophoresed for 40 minutes at 200V (Biorad 165-5052; 165-3301, Hercules, CA). The protein 

size marker used was obtained from GeneDirex (PM007-0500, Las Vegas, NV). Following 

electrophoresis, both gel and nitrocellulose membranes were incubated for 30 minutes in 20% 

methanol transfer buffer. Transfer of protein from the gel to nitrocellulose membrane was achieved 

using a semi-dry unit run at 20V for 27 minutes (BioRad 170-3940, Hercules, CA). Membranes 

were then treated with Ponceau’s stain for 5 minutes to determine transfer efficiency, followed by 

subsequent washing (3 washes, 10 minutes per wash) with 1x Tris-buffered saline containing 0.1% 

Tween 20 (1x TTBS). Blocking of the membranes was done using 5% skim milk with 0.05% 

sodium azide in 1x TTBS. Following membrane blocking, a 2h (UT) and overnight (Rhcg2) 

incubation with the primary antibodies was done (1:500 UT; or 1:1000 Rhcg2). Washing with 1x 

TTBS (3 washes, 10 minutes per wash) was then followed by incubation in peroxidase-conjugated 

secondary anti-rabbit Ig (1:3000 dilution; Bio-Rad catalogue number 170-6515; Mississauga, ON) 
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for 1 h. After discarding the secondary antibody, membranes were washed with 1x TTBS (3 

washes, 10 minutes per wash) and detection using enhanced chemiluminescence was performed 

(GE Healthcare, RPN2132, Baie d’Urfe, QC). Following detection of either Rhcg2 or UT, blots 

were washed with 1x TTBS (3 washes, 10 minutes per wash). Each blot was then incubated for 1h 

in the dark using a primary !–actin antibody conjugated with Cy3 fluorescence tag (C5838; Sigma 

Alderich; St. Louis, MO). Relative quantification of protein expression was performed by scanning 

in images of nitrocellulose on Quantity One software (Bio-Rad, Hercules, CA), and size and 

density of the bands were analyzed using GelEval software (FrogDance software, Dundee, UK). 

To control for any variation in banding due to protein loading, densities both Rhcg2 and UT bands 

were normalized to those of !–actin. 

Calculations and Statistics 

Nitrogenous waste excretion rates were calculated using the following equation: 

 

Where JN-waste refers to the rate of ammonia (JAmm) or urea excretion (JUrea) in nmol N!g-1
!h-1, [N-

waste]initial is the concentration of ammonia or urea at the beginning of the flux determination 

period, and [N-waste]final is the concentration of ammonia or urea at the end of the flux 

determination period; V is the volume of water in the flux chamber; M is the mass of each 

lamprey;  "T is the duration of the flux determination period. 

  

Condition factors were calculated using the following equation: 

!"#$%&'()*)+,"#$%&'(-./.0%1)2),"#$%&'(-3/%14+54)

) ) ))))) )+64+784)
)
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CF = (W/L3) X 106 

Where CF refers to condition factor of sea lamprey, W is the weight of each fish in grams, and L 

is the length of each fish in millimeters (Youson et al 1993). 

 

 All data were presented as the mean ±1 standard error of the mean (SEM). Unpaired data 

between different groups of metamorphosing sea lamprey were analyzed using a non-parametric 

ANOVA, followed by a Student Newman-Keuls post-test. It should be noted that metamorphic 

JAmm and JUrea data were logarithmically transformed prior to statistical analysis because the data 

were either not normally distributed or there were significant differences in the standard deviations 

between each group of animals compare. All statistical significance was determined at the P<0.05 

level (GraphPad Instat 3.0 or SPSS ver. 20.0). 
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RESULTS 

Diagnostic Features of Metamorphosis in the Sea Lamprey 

Using the criteria of Youson and Potter (1979), a number of key features were used to identify 

each stage of metamorphosis in the sea lamprey which included  changes in oral disc formation, 

development of the eyes, and changes in colouration (Fig. 3.1, Fig. 3.2). Metamorphosis, likely 

began in mid-late June, earlier than previously reported (Youson and Potter 1979).  As a result, the 

first stage defined was stage 2 when there was a more definitive eyespot (ES) than seen in the 

ammocoetes, and there was the formation of a papilla (P) in the oral hood. As the animals entered 

stage 3, a pupil (P) and iris (I) began to develop, which became more distinct as metamorphosis 

proceeded.  By stage 4, there was a continuous ring of tissue around the presumptive oral disc, 

along with oval-shaped branchiopores (B) compared to the triangular slits that defined the 

ammocoete stage. Stage 5 was characterized by the formation of tooth precursors (TP) and a 

clearly visible piston in the buccal funnel, not seen in the earlier stages. By stage 6, the eyes (E) 

laterally protruded from each side of the head when the animal was viewed ventrally, and a distinct 

lateral line (LL) was visible for the first time. By stage 7, the pupil (P) and iris (I) of the eye were 

clearly defined, and the teeth (TO) of the oral disc had become whitish yellow at their points.  The 

post-metamorphic animals, which had just emerged from their burrows, had characteristic yellow 

teeth bearing sharp tips (TO) and a fully developed eye (E). 

!

Changes in condition factor during metamorphosis  

The condition factor in non-metamorphosing ammocoetes averaged 1.27.  In all animals 

that underwent metamorphosis, the pre-metamorphic CF was greater than 1.5 and was stable near 

this value from stages 2 to 4, but then increased by stage 5, when the average CF was 
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approximately 1.65. This increase in CF was the result of a significant shortening of the animals, 

rather than any gain in body mass.   Thereafter, CF significantly declined to approximately 1.45 by 

stage 6, reaching a minimum of 1.25 at the completion of metamorphosis (Fig. 3.3).   

!

Changes in JAmm and JUrea during metamorphosis  

As the sea lampreys proceeded from ammocoetes, through the initial stages of 

metamorphosis there was a 50% decrease in JAmm, from approximately -100 nmol N!g-1
!h-1 to -50 

nmol N!g-1
!h-1, through to stage 6 (Fig. 3.4A). By early stage 7, however, JAmm began to increase, 

so that by the juvenile stage, it was two-fold higher than rates measured in ammocoetes (Fig. 

3.4A).  

 The changes in JAmm were matched by similar reductions in JUrea during metamorphosis. By 

stage 2, JUrea was 50% lower than JUrea in ammocoetes, falling from approximately -45 nmol N!g-

1
!h-1 to -20 nmol N!g-1

!h-1 (Figure 3.5A). By stage 5, JUrea was approximately 75% lower than 

measured in ammocoetes, at -15 nmol N!g-1
!h-1, where it remained until early stage 7 (Fig. 3.5A).  

In late stage 7, however, JUrea increased markedly, reaching -70 nmol N!g-1
!h-1, exceeding the rates 

of JAmm, indicating that the fish were ureotelic at this time (Fig. 3.5A).  By the end of 

metamorphosis, JAmm again exceeded JUrea, but JUrea still accounted for approximately 35% of total 

JN-waste (Fig. 3.4A, 3.5A).  

 Plasma ammonia concentrations fluctuated throughout metamorphosis, peaking during 

stage 5 at approximately 325 µmol N!L-1 (Fig. 3.6A). Due to the variability in the data set, there 

were no significant differences from the ammonia concentrations found in ammocoetes.   

 Plasma urea concentrations were relatively low during the early stages of metamorphosis at 

300-400 µmol N!L-1 (Fig. 3.6B). By stage 5, however, plasma urea concentrations were about two-
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fold greater, and remained higher through to the completion of metamorphosis, fluctuating 

between 600-900 µmol N!L-1   (Fig. 3.6B). 

!

Abundance of Rhcg2 and UT in gill tissue during metamorphosis 

Western blot analysis using the Rhcg2 antibody specific to Takifugu rubripes yielded a 

single band at approximately 50 kDa in the gill tissue of sea lamprey (Fig. 3.4C). During 

metamorphosis, Rhcg2 abundance gradually increased, peaking at stage 4, where it was 

approximately 3.5-fold greater than observed in stage 2 (Fig. 3.4B). Thereafter, Rhcg2 abundance 

in the gill declined to levels not significantly different from amounts observed in stage 2 (Fig. 

3.4B). 

Western blot analysis of metamorphosing sea lamprey (stages 2-7) with UT antibody 

specific to Danio rerio yielded a single band at approximately 38 kDa for gill tissue in sea lamprey 

(Fig. 3.5C).  As metamorphosis progressed, gill UT protein abundance also peaked at stage 4, 

before decreasing to levels that were 75% below those measured in the early stages of 

metamorphosis and approximately 80 % lower than measured in ammocoetes (Fig. 3.5B).  

 There was little UT or Rhcg2 protein found in the skin of metamorphosing sea lampreys in 

stages 2-7 (data not shown).  

!

Relationship between postprandial ammonia and urea excretion and Rhcg2 and UT abundance in 

the gills    

After ingesting trout blood, JAmm increased by approximately 5-fold, from -185 nmol N!g-

1
!h-1 to -1080 nmol N!g-1

!h-1 (Fig. 3.7A). This increase in JAmm was related to 3-fold greater plasma 

ammonia concentrations, which averaged 316 !mol N!L-1 in the unfed juveniles, but 943 !mol 
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N!L-1 in the feeding juvenile lampreys, 4 h after they were removed from the trout (Fig. 3.7B). 

These changes were associated with 3-fold greater Rhcg2 abundance in the gill of the fed 

compared to the unfed juvenile and adult sea lampreys (Fig. 3.7C, D). Feeding had no significant 

effect on expression of Rhcg2 in the skin of juvenile, parasitic and adult lampreys (data not 

shown). 

 A similar 5-fold greater JUrea from 56 nmol N!g-1
!h-1 to 256 nmol N!g-1

!h-1 was observed in 

the fed compared to the non-fed juvenile lampreys (Figure 3. 8A) and accompanied by a 2–fold 

greater plasma urea to 1900 !mol N!L-1  (Fig. 3.8B). Despite this increase, however, there was no 

effect on UT abundance in the gill (Fig.3.8C, D).  
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FIGURES 
!
Fig. 3.1.  Lateral view showing the anterior region of an ammocoete (Amm), metamorphic stages 2 to 7, and a juvenile (Juv) 

anadromous P. marinus.  Abbreviations are as follows: B, branchiopore; E, developed eye; H, domed oral hood; ES, eye spot; F, 

furrow; I, iris; L, lateral lip of oral hood; LL, Lateral line; NN, non-existent notch; OB, ovoid branchiopore; P, pupil; T, transverse lip 

of oral hood; B, triangular branchiopore. From ammocoete to stage 2, the eye-spot (ES) of the animals becomes more pronounced. By 

stage 3, a distinct pupil (P) and iris (I) can be seen, which is well-defined by stage 5.  In addition, there is a loss of the transverse notch 

in the oral hood (NN) and the branchiopores become ovoid in shape as the animals proceed from stage 3 to 4.  Stage 5 is also 

characterized by “silvering” of the latero-ventral portions of the body.  By stage 6, the lateral line (LL) is evident for the first time and 

development and differentiation of the eye continues into young adult hood.  

!
!
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Fig. 3.2. Ventral view of the anterior regions of ammocoete (Amm), metamorphic stages 2 to 7, and juvenile (Juv) P. marinus. 

Abbreviations are as follows: E, eye; I, infraoral lamina; NL, notched lip; NP, no papilla; PA, papilla; PC, posterior oral cirrhi; PD, 

premature or disc; TO, teeth of oral disc; TP, tooth precursor. As animals begin transformation, the presences of papilla (PA) in the 

early stages are found within the oral hood. There is a loss of the notched lip (NL) from stages 3 to 4 and the formation of a premature 

oral disc (PD). Tooth precursors (TP) are prevalent in stage 5, and the eyes (E) can be seen protruding laterally from the body in stage 

6. Through stage 7 the teeth of the oral disc (TO) have now been formed, and by young adulthood these sharp teeth are now bright 

yellow in color (TO).
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Fig. 3.3. Changes in the condition factor of sea lampreys before (ammocoete phase), during and after metamorphosis (juvenile phase). 

Bars sharing the same letter are not significantly different from one another (P<0.05). All values are shown as the mean ± 1 SEM, N = 

6-10 per life stage.  
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Fig. 3.4. Changes in (A) JAmm, and (B,C) relative quantity of Rhcg2 in the gills of ammocoetes, metamorphosing and unfed 

juvenile sea lampreys.   The quantity of Rhcg2 in the gill (B) was based on the relative density of bands normalized to !-actin 

in western blots of Rhcg2 protein in the gills (C). The stages of metamorphosis are as follow; S2: stage 2, S3: stage 3, S4: stage 

4, S5: stage 5, S6: Stage 6, and S7: stage 7. Values shown are the mean ± 1 SEM, and N= 9 for measurements of JAmm, and N = 

4 for the relative quantify of Rhcg2 present in the gill at each stage of metamorphosis.  Bars sharing the same letter are not 

significantly different from one another (P<0.05). Asterisks denote significant differences from measurements made in 

ammocoetes (P<0.05). Antibody used was that of Takifugu rubripes (accession no. NM_001027934.1; amino acids 420–481; 

1:1000 dilution).
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Fig. 3.5. Changes in (A) JUrea and (B,C) relative quantity of UT in the gills of 

ammocoetes, metamorphosing and unfed juvenile sea lampreys. The quantity of UT in 

the gill (B) was based on the relative density bands normalized to !-actin in western blots 

of UT protein in the gills (C).   Stages are as follows; S2: stage 2, S3: stage 3, S4: stage 4, 

S5: stage 5, S6: Stage 6, and S7: stage 7. Values shown are mean ± 1SE, and N= 9 for 

measurements of JUrea and N = 4 for the relative quantify of UT present in the gill at each 

stage of metamorphosis.  Bars sharing the same letter are not significantly different from 

one another (P<0.05). Asterisks denote significant differences from ammocoetes 

(P<0.05). Antibody used was that of Danio rerio (accession no. AY788989.1; amino 

acids 48-69; 1:500 dilution). 

!
!
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Fig. 3.6. Changes in (A) plasma ammonia and (B) urea concentrations in 

metamorphosing sea lampreys. Values are shown as the mean ± 1 SEM, and N =10 per 

group. Bars sharing the same letter are not significantly different from one another 

(P<0.05). 
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Fig. 3.7. Differences in (A) JAmm, (B) plasma ammonia, and (C,D) the relative quantity of Rhcg2 in the gills of  unfed juvenile, fed 

parasitic juvenile, and adult sea lampreys.  The quantity of Rhcg2 in the gill (C) was based on the relative density of bands normalized 

to !-actin in western blots of Rhcg2 protein in the gills (D). Values shown represent the mean ± 1 SEM, and N= 6-8 for measurements 

of JAmm, N > 6 depending on blood availability for plasma ammonia concentration, and N = 4 for the relative quantify of Rhcg2 

present in the gill at each stage of metamorphosis. Bars with the same letter are not significantly different from one another (P<0.05). 

Antibody used was that of Takifugu rubripes (accession no. NM_001027934.1; amino acids 420–481; 1:1000 dilution). 

!
!



! "#"!

 

  

!"#$$%

!"&$$%

!"$$$%

!'$$%

!($$%

!#$$%

!&$$%

$%
)*+,-%./0,*12,% 3454617,% 8-/27%

$%

&$$%

#$$%

($$%

'$$%

"$$$%

"&$$%

)*+,-%./0,*12,% 3454617,% 8-/27%

9:;%

98;%

$<$&%

$<$=%

$<$#%

$<$>%

$<$(%

$<$?%

$<$'%

)*+,-%./0,*12,% @,-%3454617,% )A675,4B%C1D54*7%

9E;%

F
G5
B
42
1H
,-

%I
,*

61
7J

%
%%%%%%)%%%%%%3%%%%%8%%%%

#'%K-4%

9I;%

L!4MN*%

*B
G2
%F

!D
-1
!h
-1
%

/B
G2
%F

!O
!"
%

.8BB%

3246B4%
8BBG*14%

P%

4%
4%

4%

P%

4%

P%

4%
4%



! "#$!

 

Fig. 3.8. Differences in (A) JUrea, (B) plasma urea, and (C,D) the relative quantity of UT in the gills of  unfed juvenile, fed parasitic 

juvenile, and adult sea lampreys.  The quantity of UT in the gill (C) was based on the relative density of bands normalized to !-actin in 

western blots of UT protein in the gills (D). Values shown represent the mean ± 1 SEM, and N= 6-8 for measurements of JUrea, N > 6 

depending on blood availability for plasma urea concentration, and N = 4 for the relative quantify of UT present in the gill at each 

stage of metamorphosis. Bars with the same letter are not significantly different from one another (P<0.05). Antibody used was that of 

Danio rerio (accession no. AY788989.1; amino acids 48-69; 1:500 dilution).
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DISCUSSION 

Relationship between JAmm and JUrea in metamorphosing sea lampreys  

 In the months preceding metamorphosis, pre-metamorphic ammocoetes 

accumulate the large reserves of lipid needed to sustain the animals through this 3-4 

month non-trophic period (Hardisty and Potter 1971b; O’Boyle and Beamish 1977). This 

reliance on lipid metabolism likely explains the 50-60 % reduction on in JAmm observed 

during stages 2 to 6 of metamorphosis (Fig. 3.4A). It is unlikely that lower basal 

metabolic demands accounted for the reduced rates of JAmm because oxygen consumption 

rates have been found to be stable or increase slightly during this period of 

metamorphosis (Lewis and Potter 1977).  Further evidence can be seen in the changes in 

CF as the animals progressed through metamorphosis. Initially,body mass decreased but 

CF was relatively stable due to progressive shortening of the body with metamorphosis 

due to the development of the oral disc in stages 1-4. Indeed, by stage 5 CF had actually 

increased. Kao et al. (1997b) reported that, metamorphosing sea lampreys upregulated 

enzymes associated with lipolysis such as triaglycerol lipase, but decreased the activity of 

lipogenic enzymes such as acetyl-CoA carboxylase and diacylglycerol acyltransferase. 

Sheridan and Kao (1998) reported that rates of lipolysis increase and lipogenesis 

decreases in the liver of metamorphosing sea lampreys from stages 3 to stage 6 renal and 

hepatic rates of lypolytic activities have been found to increase, whereas lipogenesis 

simultaneously declined in these same tissues. However in the intestine, the opposite was 

found, with an increase in triacylglycerols and total lipid content, which suggests that the 

reallocation of lipids during this metamorphic period is likely need to  aid in the digestion 
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and the absorption of protein in the blood meals following metamorphosis (Sheridan and 

Kao 1998).  

The precipitous decline in CF that occurs in the late stages of metamorphosis was 

likely related to an increase in basal metabolic demands as reflected by increases in 

oxygen consumption (Lewis and Potter 1977) and greater reliance on protein catabolism 

as lipid reserves were lowered. As a result, there was an increase in JAmm and JUrea that 

was likely due to greater reliance on proteolysis. Indeed, Youson et al. (1979) provided 

evidence of muscle wasting as the total volume of muscle is reduced in juvenile lampreys 

and that lipid comprised only 1% of whole animal wet weight in post-metamorphic 

juvenile lampreys.  Moreover, most of this was phospholipid, rather than neutral lipids 

such as triacylglycerols (Youson et al. 1979), which are the preferred substrate for fatty 

oxidation (Metcalf and Gemmel 2005). Wilkie et al. (2006) also observed an up-

regulation of enzymes associated with amino acid transamination and deamination 

following metamorphosis in sea lampreys, further illustrating the likelihood that lampreys 

are primarily relying on on-board protein reserves to satisfy their energetic needs prior to 

the parasitic phase.  This switch to protein catabolism may in fact, be permanent because 

the vast bulk of the sea lampreys diet following metamorphosis will be protein-rich 

blood, which is ingested during the juvenile parasitic phase.  Indeed, the amount of 

protein ingested by lampreys is 2-16% dry weight, which is approximately 5 times more 

than ingested by an intensively feeding salmon (Wood 2001; Wilkie et al. 2006).  

 As with JAmm, there were significant changes in JUrea throughout the 

transformation period in sea lamprey (Fig. 3.5A). Animals excreted relatively low levels 

of urea from stages 2 to early stage 7, which then spiked in early stage 7, and remained 
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elevated through to the juvenile phase. One free amino acid generated by proteolysis of 

white muscle is arginine (Mommsen et al. 1980), which yields urea when it is hydrolyzed 

via arginase. Although sea lampreys do not likely produce physiologically relevant 

amounts of urea using the ornithine urea cycle, sea lampreys do have significant amounts 

of arginase, suggesting that a major source of urea in post-metamorphic sea lampreys is 

arginine (Read, 1968; Wilkie et al. 2006). 

 Along with the changes in metabolism occurring throughout metamorphosis, there 

is also a drastic restructuring of the gills allowing for transition from fresh to saltwater 

(Peek and Youson, 1976). An up-regulation in several gill proteins (notably Na+/K+-

ATPase) occurs in metamorphosing sea lamprey, and there is improved saltwater 

ionoregulatory capacity during the latter stages of metamorphosis (Reis-Santos et al. 

2008). The up-regulation of Na+/K+-ATPase activity in the saltwater MRC begins in 

stages 3-5, and the animals are able to tolerate full seawater by stage 6 (Reis-Santos et al. 

2008). Since multiple ion transport proteins are implicated in both Rh and UT 

performance in gill cells (Braun and Perry 2010), the increased abundance of ion 

transporters associated with downstream migration to marine environments may play a 

role in the facilitation of N-waste excretion using Rh and UT proteins.  

 A notable observation was that metamorphosing sea lamprey briefly exhibited 

ureotely (JUrea > JAmm) during the late stage 7 of metamorphosis.  We propose that the sea 

lamprey may have up-regulated urea production at this time to detoxify ammonia, which 

was being generated at high rates due to proteolysis of the muscle. Another intriguing 

possibility is that the lamprey used urea as a cloaking agent to mask ammonia excretion 

in order to decrease the likelihood of predation during this vulnerable period when the 
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starved, relatively emaciated animals first emerge from the substrate in the initial phases 

of their open water phase. Indeed, Barimo and Walsh (2006) provided convincing 

evidence that the gulf toadfish (Opsanus beta) produces urea for this purpose to avoid 

detection by predators in shallow marine waters. 

Rhcg2 and UT protein expression in metamorphosing seal lamprey 

The patterns of Rhcg2 expression closely followed those of plasma ammonia 

concentration, suggesting that Rhcg2 expression was a direct result of internal ammonia 

concentration in the metamorphosing sea lampreys (Fig. 3.4B). Braun et al. (2009) 

reported that increased external ammonia concentrations and associated build-ups of 

plasma ammonia increased the mRNA expression of Rhcg2 in zebrafish larvae. It was 

also notable that JAmm was lowest during stages 4 and 5, suggesting that that the 

restructuring of the gills at this time in preparation for the FW-SW transition impaired 

ammonia excretion, and necessitated an increase Rhcg2 abundance to prevent greater 

reductions in the excretion of ammonia. 

In terms of UT expression in gill during metamorphosis, it was again seen that the 

mid to late stages of metamorphosis (stages 4 and 6) had the greatest abundance of UT 

(Fig. 3.5B). Much the same as found in the changes occurring with plasma ammonia, 

plasma urea was elevated from stages 5 onward (Fig. 3.6B). It was also during this time 

when JUrea was at its lowest point, until late stage 7 where it increased markedly. This 

suggests that gill UT expression may directly reflect plasma urea concentration, as could 

occur if JUrea were hindered during the gill-restructuring that takes place in late 

metamorphosis. McDonald et al. (2009) observed that increased urea concentrations in 

Opansus beta (Gulf Toadfish) caused a subsequent increase in tUT mRNA transcription. 
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However, the authors were unable to equivocally state if this transcriptional response was 

due to an increase in urea or an increase in cortisol levels, or both.  

 Sea lampreys are the earliest known vertebrate to use corticosteroid hormone 

control (Close et al. 2010). Rather than cortisol, lampreys use 11-deoxycortisol (11-

DOC), a precursor to cortisol and corticosterone in higher vertebrations. Like cortisol in 

other fishes, 11-DOC serves as a glucocortoid (GC) and mineralcortoid (MC), showing 

high specificity to corticosteroid receptors (CR). Released in response to stress, 11-DOC 

has been linked to ion transport (Na+/K+-ATPase) activity in the gills of sea lamprey. 

Activation of Na+/K+-ATPase is important in metamorphosing sea lamprey and the 

osmoregulatory challenges they face during migration to seawater. Moreover, 

corticosteroids are lipolytic, and have been observed to play a crucial role in lipid 

metabolism and kinetics in aquatic species that metamorphose (Sheridan, 1986; Gunesch, 

1974). Since high circulating cortisol results in decreased lipogenesis and increased 

lipolysis (Sheridan and Kao 1998), it seems likely that 11-DOC plays a role in the 

metamorphosis of sea lamprey, Na+/K+-ATPase abundance, and lipid metabolism. 

However, it should be noted that  increased circulating corticosteroid levels have been 

known to decrease Rh glycoprotein and UT expression in Opsanus beta (Rodela et al. 

2009; Rodela et al. 2012). Thus, even though total lipids and triaglycerol content decrease 

following stage 3 (Kao et al. 1998), and 11-DOC is likely rising, why too is Rhcg2 and 

UT protein expression at its peak (Rodela et al. 2009; Rodela et al. 2012)? Further 

investigation into the dynamics of 11-DOC and corticosteroid receptor abundance and 

distribution is clearly needed to establish the relationships between nitrogen excretion, 

and Rhcg and UT function in metamorphosing sea lampreys.  
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The onset of feeding and its effects on JAmm and JUrea along with Rhcg2 and UT 

abundance 

 As sea lampreys complete metamorphosis and become juveniles they travel 

downstream to open waters where they begin feeding (Beamish and Potter 1975; Farmer 

1980; Bergstedt and Swink 1995). In the present study, feeding led to 5-fold increases in 

JAmm and a marked 3-fold upregulation of Rchg2 in the gills.  The very high scope for 

JAmm in parasitic juvenile lampreys is related to their high capacity to deaminate amino 

acids from their protein-rich blood meals (Wilkie et al. 2004; Wilkie et al. 2006). In 

addition to increased activities of the transaminases alanine aminotransferase and 

aspartate aminotransferase, the activity of the glutamate dehydrogenase (GDH), increases 

6-fold following sea lamprey parasitism on teleosts (Wilkie et al. 2006). The greater 

Rhcg2 abundance in gills was likely driven by postprandial increases in plasma ammonia, 

which was 3-fold higher immediately following feeding (Fig. 3.7C). In rainbow trout, 

Rhcg2 mRNA expression is increased in response to increased plasma ammonia 

following feeding (Zimmer et al., 2010) and after ammonia infusion (Nawata and Wood 

2009).  

The Rhcg proteins may work in conjunction with branchial H+-ATPase proteins 

as part of an ammonia transport metabolon (Wright and Wood 2009). However, H+-

ATPase was actually down-regulated in anadromous lampreys preparing for sea water 

entry (Reis-Santos et al. 2008). For this reason, and because the gill is likely more 

permeable to NH4
+ in marine waters (Wilkie 2002; Evans et al. 2005), it is quite possible 

that any feeding-induced increase in Rhcg2 would be less than in landlocked sea 
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lampreys. Future studies will be needed to address how the Rhcg2-H+-ATPase-Na+/H+-

exchange metabolon functions in both the landlocked and anadromous populations of sea 

lampreys.  

As with JAmm, JUrea increased markedly following feeding in anadromous sea 

lampreys (Fig. 3.8A), but there was no difference observed in branchial UT abundance 

(Fig. 3.8C). As with some other fishes, UT abundance in sea lamprey was greatest in the 

larval stages of development, and to a lesser extent in adults (Wright et al. 1995; 

Chadwick and Wright, 1999; Braun et al. 2009; Chapter 2). A greater reliance on renal 

excretion of urea in the later stages of the sea lamprey lifecycle could also explain the 

relatively low abundance of gill UT in post-metamorphic sea lamprey.  

 

Perspectives  

The dramatic metamorphosis of the anadromous sea lamprey as it prepares for an 

active lifestyle in seawater occurs over a 3-4 month non-trophic period where lampreys 

rely on internal body reserves to meet their energy demands (Youson et al. 1980). During 

this period N-waste production and excretion change in response to the switch from a diet 

of primarily detritus in ammocoetes, to starvation during metamorphosis, and then to 

protein-rich blood following metamorphosis. Restructuring of gills during metamorphosis 

could affect the sea lamprey’s ability to excrete ammonia and urea during metamorphosis 

and it is proposed that corresponding changes in internal N-waste products led to 

increases in Rhcg2 and UT abundance during this period. Research to determine the exact 

location of these proteins within the gill tissue, along with their transport properties is 

needed to fully understand how Rh and UT proteins function in sea lamprey.  
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Nevertheless, the present study clearly shows that the patterns of ammonia and urea 

excretion during metamorphosis are dynamic, and reflected by changes in Rh 

glycoprotein and UT protein abundance in the gills of sea lampreys.  Further 

investigations into other factors that may be modulated during metamorphosis, such as 

corticosteroids, should prove useful in building a complete picture of metamorphosis and 

metabolism in this ancient vertebrate. 

! !
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Chapter 4 

General Discussion and Integration 
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There were 4 overarching goals to the present thesis; I) Determine the 

mechanisms by which N-wastes are excreted (JAmm and JUrea) at different stages of the sea 

lamprey life cycle, II) Ascertain how the ammonia and urea excretion capacity changes 

during the life cycle of the sea lamprey, III) Quantify the role that Rh glycoproteins and 

UT proteins play in the excretion of N-wastes during different stages of the sea lamprey 

life cycle, and IV) Relate how changes in metabolism during the non-trophic period of 

metamorphosis influences patterns of N-waste excretion in sea lampreys.  

Beginning on a larger scale with whole fish experiments, JAmm and JUrea were 

investigated in both ammocoete and adult sea lamprey in the presence of environmental 

stressors such as highly alkaline water and high external ammonia (HEA). Unfortunately 

fish were unable to survive the increased pH for greater than 24 h, however the HEA 

experiments did uncover life stage differences in N-waste excretion patterns in the 

presence of external ammonia. In both ammocoete and adult sea lampreys, HEA 

exposures resulted in a complete reversal of JAmm and a net uptake of ammonia from the 

environment for the first 24 h of the experiment (Fig. 2.1A, 2.2A). However, during the 

later time periods of the exposure, ammocoetes were observed to exhibit JAmm indicating 

that ammonia excretion in this stage may be more efficient than that of the migratory 

adults. Conversely, JUrea for ammocoetes was found to remain unchanged throughout the 

duration of the HEA exposure, whereas JUrea for adult lamprey significantly increased 

approximately 4-fold or greater at all time periods (Fig. 2.1B, 2.2B). It was postulated 

that this increase in JUrea is a function of environmental ammonia stimulating the 

uricolytic pathway in adults, resulting in an increased concentration of urea produced and 

excreted by this life stage. Further examination of HEA tissues (such as gill, skin, 
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intestine and kidney) may reveal differential patterns of expression and abundances of 

mRNA and protein (Rh and UT) associated with N-waste excretion. 

For the first time, amplification of an albeit small, but conserved fragment (109 

bp) of UT like sea lamprey cDNA is a strong indicator that these transport proteins are 

present in this phylogenetically ancient jawless vertebrate (Fig. 2.5). Subsequent western 

blot analysis, using a well-characterized antibody to the zebrafish (Danio rerio) UT, 

resulted in banding at 38 kDa in several tissues of adult sea lamprey tissue (gill, skin, 

muscle, kidney, intestine, liver; Fig. 2.6). Elongation of the fragment found in the 

lamprey genome would prove useful in determining where exactly sea lamprey UT fits 

from an evolutionary standpoint, expanding upon the current phylogenetic tree of 

Anderson et al. (2011). 

 The research presented above aimed to investigate the effects of active parasitism 

on N-waste metabolism, capacity, and excretion mechanisms (UT and Rh) when 

compared to filter-feeding ammocoetes and non-trophic intermediates (unfed juveniles 

and adults; Fig. 4.1). Parasites excreted far greater amounts of urea and ammonia 

(approximately 5-fold) than did both unfed juvenile and adult lampreys (Fig. 3.7A, 3.8A). 

However, western blot analysis (Fig. 2.7A) of four distinct life stages revealed that the 

gill tissue of ammocoetes had significantly higher amounts of UT protein compared to 

both fed parasitic juvenile and adult sea lampreys (Fig. 2.7B). It is possible that branchial 

urea excretion in burrow-dwelling ammocoetes favored, with renal excretion becoming 

more important in post-metamorphic individuals (M.P. Wilkie, unpublished findings). 

Since the ammocoete is a burrow-dwelling animal, and the majority of water replacement 

in the burrow occurs around the gills, it is therefore much more likely that if ammocoetes 
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excreted large quantities of urea as urine their burrows would become fouled with urea. 

Through branchial excretion, the animals expel the majority of urea out of their burrows 

and into the surrounding water column.  

Investigation of Rhcg2 abundance in unfed juveniles, parasites and adults on the 

other hand revealed that there was a much greater preponderance of this protein in the gill 

tissues of parasitic sea lamprey (Fig. 3.7A), indicating the importance of branchial 

ammonia excretion in these individuals. Since greater quantities of protein are ingested in 

the parasitic stage, the NH3 produced through deamination drastically increases plasma 

ammonia concentrations (Fig. 3.7B). This increase results in greater Rhcg2 abundances 

and therefore increases the ability for JAmm. Furthermore, divided chamber studies 

confirmed that branchial excretion of ammonia is the preferred route for other stages of 

the sea lamprey life cycle (M.P. Wilkie, unpublished observations). On model that 

attempts to explain this life stage dependent transition in excretion patterns, Fig. 4.1, 

outlines the switch from N-waste excretion that is almost exclusively gill-based in 

ammocoete individuals, to a combination of gill (ammonia) and renally (urea) driven 

excretion. As the animals mature, and switch their dietary intake, it seems that filtration 

and subsequent removal of urea in the form of urine is paramount to JUrea. An in depth 

looking into the changes of the ultrastructure of the kidneys as the animals mature, as 

well as pre- and post-feeding, would go a long way in determining the exact mechanism 

by which the sea lamprey produce the concentrated urine as they mature. On the flip side, 

despite the changes in breathing patterns in the gills following metamorphosis, sea 

lamprey, like many other fishes, remain using the gills are the primary site of JAmm.  
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 Another major goal of this thesis was to investigate the changes in N-waste 

production and excretion during the 7 distinct stages of metamorphosis. Six of the 7 

stages of metamorphosis were identified, during which the CF of the animals sharply 

declined following stage 4 of metamorphosis likely due to the reorganization and 

depletion of lipid stores utilized to fuel this non-trophic 3-4 month transformation period 

(Fig. 3.3). Measurements of JAmm and JUrea revealed that both decrease upon initiation of 

metamorphosis and remain relatively low until late stage 7, where there is a sharp 

increase in JAmm and JUrea through into the juvenile stage (Fig. 3.4A; 3.5A).  

 Analysis of Rhcg2 and UT protein abundances in the gills of metamorphic sea 

lampreys stages 2-7 showed that of the amount of Rhcg2 and UT was greatest during mid 

metamorphosis (Stage 4; Fig 3.4B, 3.5B), and it was postulated that these heightened 

abundances may be a combination of an inability to excrete N-wastes due to extensive 

gill restructuring during this time and corresponding internal buildups of ammonia and 

urea respectively (Fig. 3.6A, B). Interestingly, corticosteroid hormones, which have been 

implicated in the modulation of Rh and UT expression (Rodela et al. 2009; Rodela et al. 

2012), would likely be increased in animals undergoing metamorphosis (Fig. 4.2).  This 

model may explain the decrease occurring with Rhcg2 and UT abundance following 

stage 4, and may explain the decreases observed in JAmm and JUrea along with the 

corresponding decreases in lipid content of these animals (Kao et al. 1998), along with 

the increases in reported in Na+/K+-ATPase activity (Reis-Santos et al. 2008).  

Further research is needed to determine the exact location and distribution of both 

Rh and UT proteins within the excretory organs of sea lamprey. Immunohistochemical 

analysis of tissues such as gill, skin and kidney may also reveal differences in N-waste 
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associated proteins, and their relationships to excretion and the possibility of accessory 

functions these proteins may have. For example, urea is an important osmolyte in several 

marine species (Hammerschlag 2006), therefore, modulation in UT abundances could 

play a role in urea retention, like in elasmobranchs (Fines et al. 2001) possibly aiding in 

ion balance while sea lamprey are at sea. Likewise, Rh proteins have been postulated to 

be involved in a dual role as CO2 carriers (Endeword et al. 2006; Kusta et al. 2006). 

Therefore, under conditions of hypercapnia (increased arterial CO2), Rh expression may 

increase, which was the case with Rhag in rainbow trout exposed to high CO2 (Nawata 

and Wood 2008).  

 On a larger scale, sea lamprey research can aid in both the control of and 

protection of this species, along with other lamprey species. In the Great Lakes, lampreys 

are invasive predators that have had, and continue to have, pronounced ecological and 

economic impacts through their parasitism/predation of several game fishes.  Indeed, sea 

lampreys decimated Great Lakes’ fish populations in the early 20th century (Smith and 

Tibbles 1980), affecting both commercial fishing and sport fishing. Due the sea 

lampreys’ economic and social impact, an ongoing sea lamprey control program was 

initiated in the Great Lakes systems. Through a partnership between Canada and the 

United States, the Great Lakes Fishery Commission (GLFC) now oversees a wide range 

of strategies to control sea lampreys. For example, treatment of entire streams with 

chemical compounds such as 3-triflouromethyl-4-nitrophenol (TFM) is one of the most 

widely used methods of sea lamprey control.  More recently, however, new avenues of 

treatment, such as the use of lamprey pheromones are being tested (Johnson et al. 2009).  

Other strategies, such as barriers to prevent migration of adults (Lavis et al. 2003), and 
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the release of sterile male-adults (Twohey et al. 2003) have also been used to help control 

sea lamprey populations.. 

 However, sea lampreys, and closely related species are threatened or endangered 

in other parts of the world where they have been part of the ecosystem for millions of 

years. Species such as the brook lamprey (Lampetra planeri) and river lampreys 

(Lampetra fluviatilis) are becoming endangered and even extinct in some parts of Europe, 

especially where they are considered a delicacy (Kelly and King 2001). Moreover, 

pollution, and the construction of dams/weirs have been a large contributor to the 

declining populations of the last 30 years (Thiel et al. 2009). Implementation of 

conservation programs is needed to protect these ancient species from only being found 

in the fossil record. Therefore, in both circumstances outlined above, control and 

protection of lamprey species, the need for integrative approach to researching all aspects 

of their natural history such as their environment, physiology, biochemistry and 

molecular makeup is essential in attaining solutions.   
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FIGURES 
 

Fig. 4.1 Detailed look at (A) the differences in diet, lifestyle, habitat, and environment in 

ammocoete, unfed juvenile, parasitic, and adult sea lampreys. (B) Relative abundances of 

Rhcg2 and corresponding JAmm in ammocoete, unfed juvenile, parasitic, and adult sea 

lampreys. (C) Relative abundances of UT and corresponding JUrea in ammocoete, unfed 

juvenile, parasitic, and adult sea lampreys. In panels B and C, the hatched dashed lines 

represent to protein abundances whereas the solid lines refer to excretion rates. 
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Fig. 4.2. Relative abundances of (A) Rhcg2 and (B) UT along with corresponding JAmm 

and JUrea in metamorphosing sea lampreys stages 2-7. (C) Condition factor and proposed 

timing in which 11-DOC could play a role in lipid metabolism and Na+/K+-ATPase 

regulation in lampreys readying for sea.  In panels A and B, dashed lines represent to 

protein abundances, whereas solid lines refer to excretion rates. 
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