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Abstract 

 

 Waterborne exposure to 17α-ethinylestradiol (EE2), a synthetic estrogen, has 

previously been shown to decrease reproductive endocrine status in the estuarine killifish 

or mummichog (Fundulus heteroclitus macrolepidotus; northern subspecies). To evaluate 

if variations in salinity or temperature holding conditions modify the effects of EE2 on 

gonad size, plasma reproductive steroid levels, and gonadal steroidogenesis, mummichog 

were exposed in vivo for 14 days to 0, 50 and 250 ng/L EE2 in 0, 16 and 32 ppt salinity at 

18°C and to 0 and 250 ng/L EE2 at 10, 18 and 26°C at 16 ppt salinity. Effects due to 

salinity were limited; however, 250 ng/L EE2 decreased plasma 17β-estradiol (E2) levels 

and in vitro gonadal E2 production and plasma 11-ketotestosterone (11-KT) across all 

salinities. Higher temperatures triggered gonadal growth in both sexes as well as 

increased plasma E2 and gonadal E2 production in females, while 11-KT production was 

decreased in males. EE2 counteracted the effect of temperature as determined by 

depressed gonadal growth in males. In both exposures, the effects of EE2 on testosterone 

(T) production were variable. The use of steroidogenic precursors (25-OH cholesterol, 

and/or pregnenolone and/or testosterone) in the in vitro gonadal incubations indicated 

decreased E2 production in females and 11-KT production in males were predominately 

due to suppression of the terminal conversion step between T and E2 or 11-KT.  Ovarian 

cyp19a gene expression was not affected by 250 ng/L EE2 compared to controls at 16 ppt 

and 18oC (the only treatment combinations tested). The lack of effects of salinity could 

be protective for a species spawning in such a variable environment. Gonadal growth at 

higher temperatures confirms previous work on northern mummichog while EE2 effects 



 iii

on gonadal growth could be due to temperature-related increases in EE2 uptake and/or 

increased susceptibility during gonadal maturation. In conclusion, the present work 

demonstrated that environmental conditions impact effects of EE2, including terminal 

steroid production in the gonads. These results should be considered in designing 

standardized estuarine fish reproductive bioassays and in understanding the potential 

effects of reproductive contaminants in estuarine environments.  
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1.1. Endocrine disrupting substances 

 

Endocrine disrupting substances or chemicals (EDSs or EDCs) are exogenous 

compounds, natural or anthropogenic, which affect the physiology and morphology of 

fish (Länge et al., 2001; Boudreau et al., 2004; Peters et al., 2007). Reproductive EDSs 

mimic, enhance or block the action of endogenous hormones causing changes to the 

reproductive system (Damstra et al., 2002; Denslow & Sepúlveda, 2007) and subsequent 

reproductive effects. Exposure to EDSs, e.g., have produced abnormal gonadal 

morphology, delayed sexual development and altered fish behaviour (Nash et al., 2004; 

Goksoyr, 2006; Della Seta et al., 2008), consequently affecting individuals and their 

progeny (Damstra et al., 2002).  

EDSs can be introduced into aquatic environments via industrial wastes, sewage 

treatment plant (STP) effluents, agricultural runoff, and oil spills (Desbrow et al., 1998; 

Ternes et al., 1999; Rocha-Monteiro et al., 2000). They can persist in the water for hours 

or even days (Jürgens et al., 2002; Palace et al., 2006), and in locations far away from the 

discharge point (Harries et al., 1997).  

 

1.2. Coastal environments and mummichog (Fundulus heteroclitus) 

 

The east coast of North America contains large numbers of estuaries (Day et al., 

1989a). Estuaries are one of the most productive types of ecosystems and they have 

unique geomorphologic and hydrologic characteristics (Day et al., 1989b). Estuaries have 

been modified by urbanization as coastal industries and municipalities discharge 
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increasing amounts of treated and untreated wastes into these aquatic environments. This 

contamination has the potential to affect different fish species since many migrate to 

estuaries to spawn (anadromous) and others live there permanently (Able et al., 2005). 

The mummichog (Fundulus heteroclitus) is the numerically-dominant, small-bodied fish 

species present in salt marshes along the east coast of Canada and the U.S.A. This species 

is mostly sedentary, having small home ranges (Lotrich, 1975). They are adapted to the 

characteristic fluctuations of estuarine ecosystems and are able to survive salinities from 

0.0 to 120.3 ppt (parts per thousand) and temperatures from -1.5ºC to 36.3ºC (Kneib, 

1986). Spawning takes place in salt marshes, in the intertidal zone. Mummichog have a 

key role in the estuarine food network, since they are both predator and prey (Kneib, 

1986). They have been used as a bioindicator species in numerous field studies to 

understand the potential impacts of contaminants (LeBlanc et al., 1997; Fournier et al., 

1998; Couillard & Nellis, 1999). Their size, ability to breed in captivity, and resilience to 

factors such as variations in salinity, dissolved oxygen and temperature, make 

mummichog easy to maintain in laboratories and artificial streams (Burnett et al., 2007). 

In addition, this species has shown sensitivity to EDSs both in the laboratory (MacLatchy 

et al., 2003; Peters et al., 2007; 2010) and in artificial streams (Dubé et al., 2002). 

Selection of this species as a fish model for laboratory and field studies to assess the 

effects of EDSs on estuarine and marine environments has been supported by numerous 

authors (Burnett et al., 2007; Bosker et al., 2010; Greytak et al., 2010; Lister et al., 

2011).  
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1.3. 17α-Ethinylestradiol (EE2): a model EDS 

 

17α-Ethinylestradiol (EE2) (Figure 1.1) is considered to be a representative EDS 

because it is a powerful estrogen agonist (Segner et al., 2003). It competes with the 

naturally-produced 17β-estradiol (E2) (Figure 1.1) for the estrogen receptor (ER) 

(Pelissero et al., 1993, MacLatchy et al., 2003). EE2 has greater affinity for the ER than 

E2 (Segner et al., 2003; Denslow & Sepúlveda, 2007), although its effects depend on the 

relative circulating levels of E2 in the fish (Kime et al., 1999). EE2 is the principal 

pharmaceutical component of birth control pills and hormone replacement therapy, and is 

not broken down by sewage treatment processes (Desbrow et al., 1998; Ternes et al., 

1999; Della Seta et al., 2008). Therefore, it enters aquatic environments in high 

concentrations through STP effluents. Concentrations of EE2 present in British and 

Canadian STP effluents are usually between 0.2 and 7 ng/L EE2 (Desbrow et al., 1998), 

although levels as high as 42 ng/L have been documented (Ternes et al., 1999).  

 EE2 effects on fish reproduction in laboratory studies include a range of 

dysfunctions such as development of ovotestes in male Japanese medaka (Oryzia lapites; 

Balch et al., 2004), reduced fertilization in mummichog (Peters et al., 2007; 2010), and 

decreased egg production in zebrafish (Danio rerio; Nash et al., 2004). In a whole-lake 

experiment, Kidd et al. (2007) found that exposure of a population of fathead minnow 

(Pimephales promelas) to EE2 for two years caused feminization in males, a decreased 

rate of reproduction in the population, and reduced population fitness.  
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1.4. Fish reproductive endocrinology overview 

 

Reproductive function in vertebrate organisms is regulated by the hypothalamic-

pituitary-gonadal (HPG) axis. Each level of the HPG axis synthesizes and releases a 

hormone or number of hormones. The hypothalamus produces gonadotropin releasing 

hormone (GnRH), which is the primary regulator of the reproductive system (Gore, 

2002). In most animals, GnRH is released into the portal system through which it reaches 

the pituitary gland. However, in fish, GnRH neuroterminals project directly into the 

anterior pituitary gland and GnRH is released in the extracellular space (Gore, 2002). 

Consequently, the anterior pituitary secretes the gonadotropins lutenizing hormone (LH) 

and follicle stimulating hormone (FSH). These gonadotropins bind to their receptors in 

the ovaries and testes, to regulate folliculogenesis in females, spermatogenesis in males, 

and steroid biosynthesis in both sexes (Gore, 2002). The sex hormones such as E2 and 

testosterone (T), released into the blood stream, act at their respective receptors in 

different tissues including the brain and the pituitary gland, where they produce feedback 

effects on the HPG (Gore, 2002; Hawkins et al., 2005).  

Interaction of E2 and other steroids, including EDSs, occurs at target cells via two 

distinct mechanisms, one genomic and the other non-genomic (Legler et al., 2002; Filby 

et al., 2007; Vasudevan & Pfaff, 2008). The genomic actions are those where binding to 

ER results in regulation of transcription of steroidogenic genes (Filby et al., 2007). The 

non-genomic response has been identified as a rapid increase (seconds or minutes) in 

cyclic AMP (cAMP), and is initiated at the plasma membrane by an interaction with ERs 

(Thomas & Doughty, 2004; Vasudevan & Pfaff, 2008).  
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1.5. Steroidogenesis  

 

In response to the pituitary gonadotropins FSH and LH, cells in a variety of 

tissues (including the ovary, testis and adrenal or interrenal glands) from many animal 

species secrete steroids such as progestins, estrogens and androgens in a process termed 

steroidogenesis (Ings & Van der Kraak, 2006). Regardless of the cell type, steroids are 

synthesized from a common precursor substrate, cholesterol (Figure 1.1) (Veldhuis et al., 

1985). Cholesterol can be derived from cholesterol esters stored in intracellular lipid 

droplets, through de novo synthesis inside the cell, and from uptake of cholesterol 

contained in low density lipoproteins from the plasma (Miller, 1987). Once inside the 

cell, cholesterol is principally transported across the cytoplasm to the outer membrane of 

the mitochondria by specific carriers (Miller, 2007) and on a smaller scale is trafficked 

between vesicles and the plasma membrane (Maxfield & Wüstner, 2002; Soccio & 

Breslow, 2004; Miller, 2007). Steroidogenesis starts when cholesterol is transported from 

the outer to the inner membrane of mitochondria within steroidogenic cells (Leusch, 

2001) (Figure 1.2). This process is presumed to be the rate-limiting step in mammalian 

steroid synthesis, and a protein called steroidogenic acute regulatory protein (StAR) is at 

least partially responsible for the cholesterol transport (Clark & Stocco, 1997; Arukwe, 

2008). Within the mitochondria, cholesterol is enzymatically cleaved to form the first 

intermediate steroid, pregnenolone (Figure 1.1), by an enzyme called P450 side-chain 

cleavage (P450scc). P450scc is part of the cholesterol side-chain cleavage system 

(CSCC) that resides in the inner membrane of mitochondria. Once pregnenolone is 

synthesized, it may be metabolized to progesterone (Figure 1.1) by 3β-hydroxysteroid 
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dehydrogenase (3β-HSD), or can be transformed to androgens (Figure 1.1) by 

cytochrome P450 17α-hydroxylase/17,20 lyase (P45017α). Testosterone (T) (Figure 1.1), 

one of the main vertebrate androgens, is converted into E2 by cytochrome P450 

aromatase (P450 arom; Arukwe 2008; Leusch, 2001) (Figure 1.2). In male fish T is 

converted into 11-ketotestoterone (11-KT) by 11β-hydroxylase and 11β-hydroxysteroid 

dehydrogenase (11β-HSD) and this androgen is known to be the principal androgen in 

teleost fish (Figure 1.2; Kime, 1993). These reproductive steroids have important roles in 

vertebrates such as regulation of reproductive function and secondary sex characteristics 

in females, and fertility and secondary sex characteristic in males (Stocco, 2001).    

In steroidogenic cells, pituitary gonadotrophins regulate synthesis of different 

steroids via regulation of expression and activity of the steroidogenic enzymes and 

proteins. Once gonadotrophin binds to its receptors on the cell membrane, the cAMP 

second messenger system is activated (Taskén & Aandahl, 2004). As a consequence, 

cAMP is synthesized and activates protein kinase A (PKA), generating two types of 

responses: acute and chronic. In the acute response, PKA phosphorylates and activates 

cholesteryl esterase. These esterases hydrolyze cholesteryl esters contained in lipid 

droplets to free cholesterol (Azhar et al., 2003). Although there is a debate on how it 

happens, several carriers such as sterol carrier protein 2 (SCP2) or StAR-D4, StAR-D5, 

StAR-D6 appear to be mainly responsible for the transport of cholesterol from the cytosol 

to the outer membrane of the mitochondria (Seedorf et al., 2000; Azhar et al., 2003; 

Miller, 2007). In the chronic response, PKA is involved in the activation of the 

expression of specific genes required for estrogen, androgen and progesterone synthesis 

in steroidogenic cells, including genes responsible for the biosynthesis of the involved 
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proteins and enzymes: StAR, P450scc, 3β-HSD and P450arom (Taskén & Aandahl, 

2004).  Cyclic AMP can also be negatively regulated inside the cells by another group of 

proteins called phosphodiesterases (PDEs) that degrade cAMP when it is no longer 

needed, consequently limiting gene expression of the enzymes involved in 

steroidogenesis (Jin et al.,1999).  

 

1.6 Effects of environmental factors on steroidogenesis 

 

 Environmental factors such as salinity and temperature have been shown to affect 

fish reproductive endocrine status. For example, waigieu sea perch (Psammoperca 

waigiensis) had a gradual increase of female plasma E2 with increasing salinity during 

pre-spawning and spawning periods for fish kept at 10, 20 and 32 ppt. Plasma T also 

differed among the salinity groups. Plasma T was higher in the pre-spawning period 

when females were kept in 32 ppt compared to females kept at 10 and 20 ppt and 

significantly lower after spawning than the 20 and 10 ppt groups (Quoc Pham et al., 

2010). Male black bream (Acanthopagrus butcheri) kept through a natural reproductive 

cycle at 35 ppt had higher plasma levels of 17,20β-dihydroxy-4-pregnen-3-one (17,20βP) 

and 11-KT than those kept at 5 ppt and 20 ppt (Haddy & Pankhurst, 2000).  

 A variation in temperature also produces effects on fish reproductive 

endocrinology. Wolffish (Anarhichas lupus L.) had a delay of four weeks in the normal 

reproductive cycle, resulting in delayed ovulation, due to exposure to elevated 

temperatures (Tveiten & Johnsen, 2001). During summer, female Atlantic salmon (Salmo 

salar L.) kept at 22ºC had lower E2 and higher T than females kept at 14 or 18ºC, with the 
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lowest E2 levels at 18ºC (King et al., 2003). Elevated temperatures affected pejerrey 

(Odontesthes bonariensis) reproductive endocrine function as T in males and E2 in 

females were significantly decreased with increased  temperature (Soria et al., 2008). 

 

1.7. Effects of EE2 on steroidogenesis 

 

The most common estrogenic compounds found in aquatic environments close to 

STPs are EE2 and E2 (Desbrow et al., 1998). EE2 mimics the biologically-synthesized E2 

and produces strong effects on steroidogenesis in different fish species. For example, sea 

bream (Sparus aurata) exposed to 25 mg/kg of EE2 in their diet, followed by in vitro 

incubations of their gonads with androstenedione as a precursor, showed increased 

production of E2 (37 to 112 d of exposure) and T (112 d of exposure) than the control 

group (Condeça & Canario, 1999). In mummichog, waterborne exposure to  

concentrations of 1-100 ng/L of EE2 altered gonadal steroid production in females and 

caused completion of spawning cycles earlier compared to females exposed to lower EE2 

concentrations (0-0.1 ng/L) (MacLatchy et al., 2003; Peters et al., 2007). In vitro 

incubation of Atlantic croaker (Micropogonias undulatus) testes with 36.7 μM of E2 in 

the presence of the precursors pregnenolone, 17-hydroxyprogesterone, and 

androstenedione inhibited 17α-hydroxylase, 17, 20-desmolase (CYP17A1), or 17β-

dehydrogenase (17β-HSD) activity (Loomis & Thomas, 2000). Sea bream exposed for 14 

d to 2 and 15 mg/kg of E2 in the diet resulted in a significant increase in enzymatic 

activity of 3β-HSD during the first week, whereas 11β-HSD and 17β-HSD were 

substantially lower than the control group in the highest concentration of E2. Exposure to 
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E2 also caused greater T synthesis than the control group in the 14-d exposure (Condeça 

& Canario, 2001). When rainbow trout (Oncorhynchus mykiss) males were treated with 

E2 an inhibition of the activity of 3β-HSD and 11β-hydroxylase occurred (Baron et al., 

2005; Govoroun et al., 2001). Male mummichog exposed to 250 ng/L of EE2 showed a 

significant reduction in the production of T in basal and 25-OH cholesterol-stimulated 

gonadal incubations, demonstrating that while StAR and P450scc may be affected by 

EE2, an effect downstream in the steroidogenic pathway could also be present (Hogan et 

al., 2010) 

EE2 has also been shown to alter gene expression in various fish species. For 

instance, rainbow trout males exposed for 16 d to EE2 showed an inhibition of the 

expression of the mRNA for 3β-HSD and P45017α after the first day, and an inhibition of 

P450scc and 11β-hydroxylase after the eighth day (Baron et al., 2005). Fathead minnow 

treated with EE2 showed a significant increase in the mRNA expression of aromatase A 

(CYP19a) in male, and aromatase B (CYP19b) in female gonads, a significant reduction 

in 17β-HSD and StAR mRNA, and an increase in 17β-HSD in the mRNA extracted from 

female gonads (Filby et al., 2007). StAR and major steroidogenic enzyme genes such as 

CYP19a and 3β-HSD were significantly decreased in one-year-old females of the same 

species exposed to E2 (Nakamura et al., 2009).   

 

1.8. Gaps in knowledge 

 

To date, most of the research done on the effects of estrogenic compounds on fish 

steroidogenesis has been done on stenohaline freshwater species (e.g., zebrafish and 
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fathead minnow). Understanding how estrogenic compounds affect reproductive 

endocrine status necessarily includes determining effects on production and circulating 

levels of the terminal steroid concentrations as the terminal steroids regulate 

development, growth, and reproduction by interacting with receptors in other organs, 

including the brain, liver and gonads. However, less work has been done to understand 

the effects of estrogenic compounds on steroidogenesis and circulating steroid levels in 

saltwater or estuarine species. Although inferences can be made from studies on 

freshwater species, because environmental factors (e.g., salinity and temperature) affect 

reproductive endocrine status in fish, more focused studies in estuarine fish are 

warranted. This work is unique in that it is the first study to consider the possible 

interaction between varying environmental conditions and the effects of EE2 on 

steroidogenesis.  

 

1.9. Integrative approach  

 

 This project used an integrative approach to elucidate the potential interaction of 

environmental parameters with EE2, a model endocrine disruptor, and the effects of EE2 

on physiological function at the biochemical and molecular levels. 

  Analyzing the effects of EE2 on the circulating steroid levels allowed us to 

determine how the general physiology of mummichog, a model estuarine species, is 

affected. Investigating more deeply by determining EE2 effects on gonadal 

steroidogenesis let us postulate a mechanism by which circulating steroid levels are 

altered by EE2. Finally, working at the molecular level allowed us to begin determining 
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whether the effect of EE2 on steroidogenesis is via genomic and/or non genomic 

mechanisms. The approach of studying multiple levels of biological organization (whole 

organism to tissue to molecular level) combined with effects of potentially interactive 

environmental stressors (salinity and temperature, and a contaminant), is clearly highly 

integrative.  

 

1.10. Objective and hypotheses 

 

 The objective of this study is to evaluate if variations in salinity or temperature 

conditions of EE2-exposed mummichog modify the effect on whole-organism 

reproductive endocrine status and gonadal steroid biosynthesis. 

The null hypotheses are: 

 

 Level 1: Organ weight and somatic indices  

 

 Ho1A: EE2 does not affect organ weight and somatic indices 

 Ho1B: Salinity (or temperature) does not affect organ weight and somatic 

indices 

 Ho1C: There is no interaction of EE2 and salinity (or temperature) on organ 

weight and somatic indices 
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 Level 2: Circulating Steroids 

 

 Ho2A: EE2 does not affect circulating steroid levels 

 Ho2B: Salinity (or temperature) does not affect circulating steroid levels 

 Ho2C: There is no interaction of EE2 and salinity (or temperature) on 

circulating steroid levels 

 

 Level 3: Gonadal Biosynthesis 

 

 Ho3A: EE2 does not affect biosynthesis of gonadal terminal steroids 

 Ho3B: Salinity (or temperature) does not affect biosynthesis of gonadal 

terminal steroids 

 Ho3C: There is no interaction of EE2 and salinity (or temperature) on 

biosynthesis of gonadal terminal steroids 

 

 Level 4: Gene Expression 

 

 Ho4:  EE2 does not affect P450 aromatase A gene expression 
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Androstenedione Testosterone 

11-Ketotestosterone 17β-Estradiol (E2) 

17α-Ethinylestradiol (EE2) 

 

Figure 1.1: Chemical structures of the intermediate and final products of the gonadal steroidogenic 
pathway in fish and the synthetic 17α-ethinylestradiol. http://pubchem.ncbi.nlm.nih.gov/  
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 Figure 1.2: Gonadal steroidogenesis in fish. The protein and enzymes involved in the 
steroidogenic pathways are: steroidogenic acute regulatory protein (StAR); P450 side-chain 
cleavage (P450scc); 3β-hydroxysteroid dehydrogenase (3β-HSD); 17α-hydroxylase; C17,20-lyase; 
17β-hydroxysteroid dehydrogenase (17β-HSD); P450 aromatase; 11β-hydroxylase and 11β-
hydroxysteroid dehydrogenase (11β-HSD). Dehydroepiandrosterone (DHEA) is an intermediate 
steroid in the pathway. Modified from McMaster et al., 1995 and Leusch, 2001.  
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2.1 Abstract 

 

Exposure to 17α-ethinylestradiol (EE2), a synthetic estrogen, has previously been shown 

to decrease reproductive endocrine status and egg production in northern mummichog 

(Fundulus heteroclitus macrolepidotus). The objective of this study was to evaluate if 

variations in salinity or temperature conditions of EE2-exposed mummichog modify the 

effect on whole-organism reproductive endocrine status and gonadal steroidogenesis. 

Mummichog were exposed in vivo for 14 days to 0, 50 and 250 ng/L EE2 in 0, 16 and 32 

ppt salinity at 18ºC and to 0 and 250 ng/L EE2 at 10, 18 and 26°C at 16 ppt. In the 

salinity exposure, 250 ng/L EE2-exposed females had significantly reduced 17β-estradiol 

(E2) levels. Increased temperature triggered gonadal growth in both sexes and increased 

plasma E2 and E2 production and decreased 11-KT (11-ketotestosterone) production. EE2 

counteracted the effect of temperature by depressing gonadal growth in males. In both 

exposures, EE2 effects on testosterone (T) production were variable. The use of 

steroidogenic precursors (25-OH cholesterol, and/or pregnenolone and/or testosterone) in 

the in vitro gonadal incubations indicated decreased E2 production in females and 11-KT 

production in males were predominately due to suppression of the terminal conversion 

step between T and E2 or 11-KT. Ovarian cyp19a gene expression at 16 ppt and 18ºC was 

not affected by 250 ng/L EE2 (the only treatment combinations tested). Overall, 

temperature is a factor regulating northern mummichog reproduction; EE2 overrides its 

effects and disrupts the terminal step of steroidogenesis. Our results should be considered 

in designing future estuarine fish bioassays and in understanding effects of estrogenic 

endocrine disruptors in estuaries.  
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2.2 Introduction 

 

A significant body of literature has been developed that demonstrates the effects 

of environmental endocrine disrupting substances (EDSs) on fish reproductive 

physiology (Damstra et al., 2002, Ankley & Johnson, 2004; Tarrant et al., 2005; Hecker 

et al., 2006; Sharpe et al., 2007; Lister et al., 2011). EDSs are introduced into aquatic 

environments through sewage treatment plant (STP) effluents (Desbrow et al., 1998; 

Ternes et al., 1999), agricultural run off (Colucci & Top., 2001; Burnison et al., 2003), 

industrial waste (Castillo & Barceló, 1997; Hewitt et al. 2008) and oil spills (Rocha-

Monteiro et al., 2000; Martin-Skilton et al., 2008). Among EDSs, estrogenic compounds 

are of major interest because they alter reproductive behaviour (Balch et al., 2004; Larsen 

et al., 2008; Salierno & Kane, 2009), fecundity (Nash et al., 2004; Thorpe et al., 2009) 

and the biosynthesis of terminal steroids (Loomis & Thomas, 2000; Baron et al., 2005).   

One of the most common estrogenic compounds found in the aquatic environment 

near STP discharging points is 17α-ethinylestradiol (EE2; Desbrow et al., 1998). EE2 is a 

synthetic estrogen used in birth control pills and hormone replacement therapy. It is not 

fully removed by wastewater treatment and thus persists in treated effluents (Kuch & 

Bullschmiter, 2001; Jürgens et al., 2002). EE2 mimics the biologically-synthesized 17β-

estradiol (E2), exhibiting higher affinity for the estrogen receptor (ER) in many species 

(Condeça & Canario, 1999; Segner et al., 2003; Hogan et al., 2010). This interaction 

triggers genomic and non-genomic responses, potentially affecting fish reproductive 

endocrine systems (Legler et al., 2002; Thomas & Doughty, 2004; Filby et al., 2007; 

Vasudevan & Pfaff, 2008). 
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  The effects of EE2 on circulating steroid levels have been well documented in 

fish. After exposure, E2 was depressed in male goldfish (Carassius auratus) exposed to 

29.6 and 296 ng/L EE2 for 15 d (Martinyuk et al., 2006) and in mummichog (Fundulus 

heteroclitus) exposed to 500 ng/L EE2 for 7 d (MacLatchy et al., 2003) and to 100 ng/L-

EE2 for 21 d and 10 and 100 ng/L EE2 for 28 d (Peters et al., 2007). Also, testosterone 

(T) was depressed in male goldfish (Martinyuk et al., 2006) and female mummichog 

exposed to 100 ng/L EE2 for 21 d (Peters et al., 2007). Decreased circulating 11-

ketotestosterone (11-KT) occurred in male rainbow trout (Oncorhynchus mykiss) exposed 

to 100 ng/L of EE2 for 62 d (Schultz et al., 2003), as well as in mummichog exposed to 1, 

10 and 100 ng/L EE2 for 21 d (Peters et al., 2007) and in juvenile turbot (Psetta maxima) 

when exposed to 3.5 and 75 ng/L EE2 for 15 d (Labadie & Budzinski, 2006). EE2 has also 

been shown to increase circulating 17,20β-dihydroxy-4-pregnen-3-one (17,20βP) levels 

in male rainbow trout (Schultz et al., 2003). Variations in response patterns may be due 

the timing of exposure in relation to the reproductive endocrine cycle and when the fish 

were sampled. 

Gonadal incubations have been useful tools for elucidating effects and 

mechanisms of action of EDSs on steroidogenesis. After exposure to EE2, there was a 

significant decrease in gonadal production of 11-KT in male juvenile turbot (3.5 and 75 

ng/L EE2 for 15 d, Labadie & Budzinski, 2006), and a significant depression of E2 

production in mummichog ovaries (500 ng/L EE2 for 7 d, MacLatchy et al., 2003; 10 

ng/L EE2 for 28 d, Peters et al., 2007). In addition, steroidogenic precursors used in 

gonadal incubations have helped to determine the mechanistic effects of EE2. 

Androstenedione (Figure 1.2) used in sea bream (Sparus aurata) gonadal incubations 
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demonstrated that exposure in vivo to EE2 (15 mg of EE2/kg of diet for 14 weeks) 

produces an increase in T and E2 production after 14 weeks of exposure. It was also 

demonstrated that the effect of EE2 was downstream of the conversion of 

androstenedione to T (Condeça & Canario, 1999).  Forskolin, which activates adenylate 

cyclase, thus increase levels of cellular cAMP, was used in female pearl dace 

(Margariscus margarita) gonadal incubations, and indicated that an increase in T and a 

decrease in E2 was downstream of cAMP activation, when fish were previously exposed 

to EE2 (4-8 ng/L; 21 weeks; Palace et al., 2006). The addition of 25-OH cholesterol 

(analogue to cholesterol which can pass through the mitochondrial membrane) to male 

gonadal incubations demonstrated that exposure of mummichog to EE2 (250 ng/L for 14 

d) resulted in a reduction in T production downstream of cholesterol mobilization (Hogan 

et al., 2010).  

 Fish living in estuaries experience daily fluctuations in salinity and temperature 

as well as potential exposure to estrogenic contaminants from coastal discharges. Both 

salinity and temperature affect fish steroidogenesis. An increase in salinity from 0 ppt to 

32 ppt produced an increase in plasma E2 in pre-spawning and spawning waigieu sea 

perch (Psammoperca waigiensis) females and an increase in T levels during the pre-

spawning period (Quoc Pham et al., 2010). Higher plasma 11-KT and 17,20βP were 

observed in black bream (Acanthopagrus butcheri) exposed to 35 ppt compared to 5 ppt 

salinity, when analyzed through a natural cycle (Haddy & Pankhurst, 2000). An increase 

in temperature from 12-15 to 18ºC caused a decrease in E2 and T in female rainbow trout 

follicles (Pankhurst et al., 1996). Similarly, in pejerrey (Odontesthes bonaeriensis) an 
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increase in water temperature from 19 to 27ºC caused a decrease in plasma T and E2 

(Soria et al., 2008). 

To date, the majority of studies on the effects of EDSs and their mechanisms of 

action have used standardized laboratory conditions (e.g., a fixed salinity and 

temperature). Studies on the interactions of environmental variables and EDSs on 

reproductive responses are warranted, both from the perspective of understanding the 

applicability of standardized conditions in fish reproductive tests, as well as determining 

the potential impact of changing environmental parameters on EDS responses in 

estuarine fish in the wild. Mummichog is an ideal species to investigate the effects of 

environmental conditions on responses to EDSs, as this species has shown reproductive 

endocrine sensitivity to EDSs, particularly to EE2 (MacLatchy et al., 2003; Peters et al., 

2007; 2010; Hogan et al., 2010). Additionally, mummichog experience daily variations in 

salinity and temperature and are adapted to the characteristic fluctuations of estuarine 

ecosystems, surviving in salinities between 0.0 to 120.3 ppt and temperatures from -1.5ºC 

to 36.3ºC (Kneib, 1986; Burnett et al., 2007).  

The objective of this study was to evaluate if variations in salinity or temperature 

modified the effect of EE2 exposure on reproductive endocrine endpoints in mummichog. 

Male and female fish were exposed for 14 d to 50 and 250 ng/L of EE2 and gonad size, 

plasma steroid levels, gonadal steroid production and ovarian aromatase expression were 

assessed. The results indicate that environmental conditions do cause modifications of 

EE2 responses in mummichog.  
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2.3. Materials and Methods  

 

 2.3.1 Chemicals and supplies 

 

17α-Ethinylestradiol (EE2), testosterone (T) and 17β-estradiol (E2) standards, 3-

isobutyl-1-methylxanthine (IBMX) and the steroidogenic precursors (see details in 2.3.5) 

were purchased from Sigma-Aldrich (Oakville, ON, Canada). Concentrated stocks of EE2 

were prepared in 100% ethanol at a concentration of 1000 ng/L and 5000 ng/L of EE2 and 

stored in glass bottles at -20ºC. All remaining supplies were purchased from Fisher 

Scientific (Ottawa, ON) or as otherwise described in the methodology. 

 

2.3.2 Animal holding  

 

Adult mummichog were collected from the Shediac area, New Brunswick, 

Canada (46º 16’N; 64º 30’W). Fish were kept at the University of New Brunswick, Saint 

John, NB at 16 ppt of salinity in 250L fiberglass tanks, at room temperature, 16 h light:8 

h dark and >80% dissolved oxygen (DO). Fish were fed ad libitum daily with commercial 

pellets (Corey Feed Mills, Fredericton, NB) and mortality was less than 5%. Prior to the 

exposures, temperature and salinity were adjusted by increasing or decreasing daily 

temperature and salinity by 2ºC and/or 3 ppt progressively until the desired temperature 

or salinity was reached. The source of fresh water was dechlorinated Saint John city 

water, while sea water was filtered from the Bay of Fundy (32 ppt). Brackish water (16 

ppt) was made by combining sea and fresh water. 
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2.3.3 Exposures 

 

For the salinity exposure, three females and three males were randomly chosen 

from the stock tanks and put into 20L glass tanks (four replicates per treatment) at 

salinities of 0 (fresh water), 16 (brackish water) and 32 (full sea water) ppt at 18ºC for 

one week prior to start of the exposures. Fish were exposed for 14 d (August 24 to 

September 7, 2010) to EE2 under static conditions, with daily water renewal. EE2 

treatments were 0, 50 and 250 ng/L (nominal) delivered in 1 mL of ethanol following the 

daily water exchange. Photoperiod, DO and feeding regimen were maintained as during 

the holding period. 

For the temperature exposure, the experimental set up was as previously described 

for the salinity exposure. However, temperatures were set at 10, 18 and 26ºC, with 

salinity maintained at 16ppt in all treatments, and EE2 concentrations were 0 and 250 

ng/L.  

 

2.3.4 Sampling  

 

On day 14, all fish were randomly (by tank) anaesthetized with buffered 0.05% 

tricaine methane sulfonate (Syndel Laboratories, Vancouver, BC, Canada), bled from the 

caudal vasculature using heparinized 26 3/8 gauge needles on 1 mL syringes, and killed 

by spinal severance (in accordance with the guidelines of the Canadian Council on 

Animal Care and the Local Animal Care Committee at the University of New 

Brunswick). Fish were weighed (±0.01g) and measured for length (±mm), and the gonads 
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and liver were dissected and weighed (±0.001g). Gonad weight relative to body weight 

(expressed as gonadal somatic index [GSI; 100×gonad wt/body wt]) and liver weight 

relative to body weight (expressed as liver somatic index [LSI: 100×liver wt/body wt]) 

were calculated. The blood was centrifuged (3000×g at 4oC, Sorvall Legend RT 

Centrifuge; Thermo Scientific, Nepean, ON) for 20 min to isolate plasma (MacLatchy et 

al., 2005). Plasma was stored at -20oC for later steroid measurement by 

radioimmunoassay (RIA) or enzymatic immunoassay (EIA). The dissected gonads were 

placed into fresh Medium 199, prepared according to McMaster et al. (1995) (pH = 7.4) 

and supplemented as suggested by MacLatchy et al. (2005) with IBMX at a final 

concentration of 1 mM at the start of the incubation.   

 

2.3.5 In vitro incubation protocol 

 

The incubation protocol was based on McMaster et al. (1995) and MacLatchy et 

al. (2005). A minor variation to the protocol was implemented as follows: one piece of 

ovary/testes from each fish was pooled with tissue from the other fish of the same sex 

within the same treatment tank. The combined tissue samples were placed in the same 

treatment well in a 24-well incubation plate (18-23 mg of tissue per well). There were 

four replicates per treatment. Gonads were incubated for a period of 18 h at 18ºC in both 

basal medium and media with steroidogenic precursors. The basal medium was 

composed of Medium 199 and IBMX. Steroidogenic precursor media were prepared with 

basal medium plus the addition of the precursors. The precursors and their concentrations 

were chosen according to McMaster et al. (1995) and were as follows: in the ovarian 



 33

incubation 25-OH cholesterol (5 μg/mL) to identify effects downstream of cholesterol 

mobilization into mitochondria; pregnenolone (100 ng/mL) to identify effects 

downstream of pregnenolone/P450scc; and testosterone (100 ng/mL) to identify effects 

downstream of testosterone/aromatase. The testes were only incubated with 25-OH 

cholesterol (5 μg/mL) due to limited tissue availability. After 18 h of incubation, the 

medium from each well was drawn into 1.5 mL eppendorf tubes. The tissue was 

discarded and the tubes were kept frozen at -20°C until RIA or EIA analysis.  

 

2.3.6 Radioimmunoassay and enzymatic immunoassay 

 

Plasma samples were prepared for RIA and EIA by extracting the steroids and 

reconstituting them in a phosgel assay buffer (MacLatchy et al., 2005). The extraction 

process was repeated three times prior to reconstitution. RIA (MacLatchy et al., 2005) 

was used to determine the T and E2 concentrations in female plasma and gonadal 

incubation media and T in male plasma and gonadal incubation media. Antibodies for T 

and E2 were purchased from Medicorp (Montreal, QC, Canada) and radiolabelled T and 

E2 from Perkin-Elmer (Waltham, MA, USA). EIA kits were used to measure 11-KT in 

male plasma and male gonadal incubation media. Kits were obtained from Cayman 

Chemical Co. (Ann Arbour, MI, USA) and the manufacturer’s protocol 

(http://www.caymanchem.com/) was followed with the exception that 25 μL of sample 

and 25 μL of EIA buffer were used instead of 50 μL of sample and buffer. EIA plates 

were read in a Spectramax M2 spectrophotometer (Molecular Devices, Sunnyvale, CA) 

Model at 412 nm after 60, 90 and 120 min to determine the optimum incubation time. All 
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inter- and intra-assay variations were within acceptable limits (<10% for intra-assay and 

<15% for inter-assay). 

 

2.3.7 Ovarian P450 Aromatase A (cyp19a) gene expression  

  

Ovarian P450 aromatase A gene expression was analyzed in ovarian tissue of fish 

held at 16 ppt and in 18°C, at 0, 50 and 250 ng/L EE2, to investigate a possible 

mechanism of action of EE2. The analysis methods are described as follows.  

    

 2.3.7.1. RNA extraction and quantification 

 

Total RNA extraction, quantification and reverse transcription reactions were 

conducted similarly to Ings & Van Der Kraak (2006) and Nelson & Van Der Kraak 

(2010). Total RNA was extracted from ovarian follicles using TRIzol reagent according 

to the manufacturer’s protocol (Invitrogen, Burlington, ON). Following the extraction, 

total RNA was pelleted by centrifugation, rinsed with 75% ethanol, then reconstituted in 

20-30 µL RNase-free water (Invitrogen) and incubated at 60ºC for 10 min to fully 

dissolve the RNA pellet. Absorbance of RNA was measured at wavelengths of 260 nm 

and 280 nm using a NanoDrop 8000 spectrophotometer (Thermo Scientific, Waltham, 

MA).  All samples had an A260/A280 ratio between 1.8 and 2.2.  
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2.3.7.2. Reverse transcription 

 

RNA was diluted in RNase-free water to a concentration of 1 µg/µL and 2 µg was 

used in reverse transcription (RT) reactions to generate cDNA. Each sample was treated 

with 1 µL DNase 1 (AMP-D1, Sigma-Aldrich) according to the manufacturer’s protocol.  

Random primers (0.01 ng, Promega, Madison, WI, USA) were added to each sample then 

incubated for 5 min at 70°C. A cocktail consisting of 5x RT buffer (50 mM Tris–HCl, 75 

mM KCl, 3 mM MgCl2, Invitrogen), RNase-free water, dNTPs (0.5 mM, Roche 

Molecular Biochemicals, Laval, QC), DTT (10 mM, Invitrogen) and M-MLV reverse 

transcriptase (200 U, Invitrogen) was added to each sample to obtain a final volume of 25 

µL. The reverse transcription reactions were completed in an Eppendorf Mastercycler 

Gradient thermocycler (Eppendorf, Hamburg, Germany) for 1 h at 37ºC, followed by 5 

min at 90ºC, then diluted 5-fold and stored at -20ºC until qPCR amplification.                              

 

2.3.7.3. Quantitative PCR 

 

cDNA was amplified using the SYBR method and StepOnePlus Real-Time PCR 

System (Applied Biosystems, CA, USA). The reaction contained 3.75 µL of cDNA 

template, 7.5 µl PerfeCTa SYBR Green FastMix (Quanta Biosciences, Gaithersburg, 

MD, USA), and 1.875 µL of forward and reverse primers (1.6 µM, Sigma-Aldrich). 

Primer sequences are shown in Table 2.1.  

The cycle consisted of 5 min at 95°C, then 40 cycles of 1 s at 95°C, followed by 

30 s at 60°C. The expression levels of elongation factor-1α (ef1α) remained unchanged 
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across treatments and were used as an endogenous control gene to normalize the gene of 

interest. A four-point standard curve was run for each gene in order to quantify gene 

expression.  

 

Table 2.1: Primer sequences analyzed (FWD means forward primer and REV means 
reverse primer).  

 

  

Gene  Sequence 5’-3’   Accession Number 
FWD Aromatase A 

(cyp19a) REV 
TGCCCCTCGACGAGAAAG 

GTAGATGTCGGGTTTGATCAGCA AY713118.1 

Elongation 
factor-1α 

(ef1a) 

FWD 
REV 

ACCAGAAAGTACTACGTGACCATC 
TCAGCCTGGAGGTACCG AY430091 

 
2.3.8. Statistics  

 

Statistical analysis was conducted using SPSS 17.0 (IBM Canada Ltd., Markham, 

ON) or Sigma Plot (Systat Software INC, Chicago, IL, USA). Two-way analysis of 

variance (ANOVA) was performed to assess the effect of salinity or temperature (factor 

1) and EE2 (factor 2) on the measured endpoints. The effect of the two main factors on 

body weight, liver weight, gonad weight, plasma steroid levels and gonadal steroid levels 

were analyzed by two-way ANOVA. When there was no factor interaction or no effect of 

salinity or temperature, data were pooled to analyze the effect of EE2 by one- or two-way 

ANOVA, as required. When interaction or a salinity/temperature effect on the basal 

incubation media was present, the effect of EE2 on steroidogenesis was analyzed 

separately in each salinity or temperature. Liver weight and gonad weight relative to body 

weight were analyzed by two-way analysis of covariance (ANCOVA) with body weight 
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as covariant. Assumptions of normality and homogeneity of variance were checked using 

Shapiro-Wilk’s W test and Levene’s test, respectively. If there was no normal distribution 

of the data, log transformations were conducted and normality was tested for a second 

time. In case of normality failure after the statistical transformations in the two-way 

ANOVA, due to the robustness of the ANOVA test, the post hoc tests were analyzed 

without considering the normality failure of the ANOVA. For the one-way ANOVA, the 

non-parametric Kruskal-Wallis test was performed if normality was not met following 

log transformation. Tests in which post hoc tests were used even if there was a failure of 

normality of the two-way ANOVA are indicated as NP and tests in which the Kruskal-

Wallis test was used as the non parametric alternate to the one-way ANOVA are 

indicated as KW in section 2.4. The parametric Tukey’s test was performed as post hoc 

analysis, for pair wise comparisons. In all cases, an alpha value of 0.05 was chosen. 

Gene expression data were analyzed using one-way ANOVA. Normality and 

homogeneity of variance were tested as previously described. A Dunnett’s test was 

conducted as a post hoc test. Data were log transformed since they did not initially meet 

the normality assumption. 
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2.4. Results 

 

2.4.1. Effects of EE2 under differing saline conditions 

 

2.4.1.1. Organ weights and somatic indices 

 

There was no interaction between salinity and EE2 (p=0.240), nor effect of 

salinity (p=0.163) or EE2 (p=0.536) on female weight (Table 2.2). In males, there was no 

interaction between salinity and EE2 (p=0.133), but there was a significant effect of 

salinity on male weight. Body weight of fish in 32 ppt was higher than in 16 (p<0.001) or 

0 (p<0.001) ppt. There was no effect of EE2 on male weight (p=0.406). There was no 

significant effect of salinity (p=0.086) nor EE2 (p=0.717) on female liver weight. There 

was no interaction (p=0.291), but there was a significant increase for male liver weight 

with the increase in salinity (p<0.001). There was no significant effect of EE2 on male 

liver weight (p=0.515; Table 2.2). No interaction between salinity and EE2 (p=0.820), nor 

significant effect of salinity (p=0.695), nor effect of EE2 (p=0.647) was found when 

female gonad weight was analyzed. In addition, there was no interaction between the two 

main factors for male gonad weight (p=0.816), but there was a significant increase in 

male gonad weight with the increase in salinity (p<0.001). There was no effect of EE2 on 

male gonad weight (p=0.076; Table 2.2). 

For female LSI, there was interaction between salinity and EE2 (p=0.044), but the 

post hoc tests were not able to distinguish between treatments. In males, there was no 

interaction between the two main factors (p=0.654, data not shown), but there was a 
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significant effect of salinity on LSI (p<0.001). Males in 32 ppt had higher LSI than males 

in 16 ppt. There was no effect of EE2 on LSI on males (p=0.480; Table 2.2).  

In females, there was no interaction between the two main factors (p=0.940) or 

effect of salinity (p=0.218) on female GSI. There was no effect of EE2 on female GSI 

(p=0.269). In males there was no interaction between salinity and EE2 (p=0.813), but 

there was a significant effect of salinity on male GSI (p<0.001) as in 32 ppt male GSI 

was higher than in 0 and 16 ppt. There was no effect of EE2 on male GSI (p=0.269; Table 

2.2).  

 

2.4.1.2. Plasma steroid analysis in females 

 

There was no significant interaction of salinity and EE2 on female plasma T or E2 

(p=0.601, p=0.186; data not shown). Neither salinity (p=0.387) nor EE2 (p=0.837) 

affected female plasma testosterone levels (Figure 2.1A). There was no effect of salinity 

on plasma E2 levels (p=0.902; Figure 2.1B); however, 250 ng/L EE2 caused a significant 

reduction of female plasma E2 levels (p=0.045) at 16 ppt (Figure 2.1B; Table 2.3). 

 

2.4.1.3. Gonadal steroid production in females 

 

In the ovarian incubations, there was interaction between salinity and EE2 when 

female T was analyzed (p<0.001; data not shown). At 0 ppt, there was a significant 

increase in T production in the basal medium of 250 ng/L EE2-exposed fish (p=0.036; 

Figure 2.2A (NP)). There was no change in female basal T production (p=0.649; Figure 
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2.2B). There was a significant decrease in 25-OH cholesterol stimulated T incubations in 

the 250 compared to the 50 ng/L exposure (p=0.044; Figure 2.2B (NP)) in females 

exposed to EE2 in 16 ppt. Females kept at 32 ppt had a significant reduction in the basal 

production of T at 50 ng/L and 250 ng/L of EE2 (p<0.001; p=0.005, respectively; Figure 

2.2C). There was no interaction between salinity and EE2 on basal E2 production 

(p=0.436; data not shown), and no effect of salinity on biosynthesis of E2 in basal media 

(p=0.680; data not shown). When salinity data were combined, females exposed to 250 

ng/L EE2 showed a significant reduction in E2 production in the basal (p<0.001), 25-OH 

cholesterol (p=0.004), pregnenolone (p<0.001) and testosterone (p=0.029) incubated 

ovaries (Figure 2.2D; Table 2.3).  

 

2.4.1.4. Plasma steroid analysis in males 

 

 In males, there was no significant interaction between salinity and EE2 (p=0.152; 

p=0.475; data not shown) and no significant effect of the salinity (p=0.269; Figure 2.1C; 

p=0.678; Figure 2.1D) on the plasma T and 11-KT concentrations, respectively. There 

was no effect of EE2 (p=0.584; Figure 2.1C) on the plasma T level, but there was a 

significant reduction of plasma 11-KT level in 250 ng/L-exposed males at all the 

salinities (p=0.004) when compared to the control group (Figure 2.1D; Table 2.4).  
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2.4.1.5. Gonadal steroid production in males 

 

 There was a significant interaction of salinity and EE2 when the testes were 

incubated in basal medium (p<0.001; data not shown). At 0 ppt, 50 ng/L of EE2 produced 

a significant reduction in the basal production of gonadal T in males (p=0.01; Figure 

2.3A) and there was a significantly greater T production in 250 ng/L-exposed males than 

in the 50 ng/L group in 25-OH cholesterol stimulated incubations (p=0.002; Figure 

2.3A). At 16 ppt, there was a significant decrease in the production of T in 50 (p<0.001) 

and 250 ng/L (p<0.001) EE2-exposed males compared to the controls when the gonads 

were incubated with 25-OH cholesterol (Figure 2.3B). At 32 ppt, there was a significant 

effect of EE2 on the production of T in the testes (p=0.01); however, as a result of high 

variability, the Tukey’s test could not discriminate which group(s) differ (Figure 2.3C; 

Table 2.4). 

There was no interaction between salinity and EE2 when production of 11-KT by 

pieces of testes was analyzed (p=0.944; data not shown), but there was a strong decrease 

in gonadal 11-KT caused by an increase of salinity (p=0.016; data not shown). There was 

no significant effect of EE2 on 11-KT production at any salinity (0 ppt, p=0.082, Figure 

2.3D; 16 ppt, p=0.096, Figure 2.3E; 32 ppt, p=0.407, Figure 2.3F; Table 2.4).  
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2.4.2. Effects of EE2 under differing temperature conditions 

 

2.4.2.1. Organ weights and somatic indices  

 

There was no interaction between temperature and EE2 (p=0.399), and no effect 

of temperature (p=0.489) or EE2 (p=0.522) on female weight. In males, there was no 

interaction between the two main factors (p=0.431) and no effect of temperature 

(p=0.943) nor EE2 (0.839) on body weight. There was no significant effect of temperature 

(p=0.958), nor effect of EE2 (p=0.341), on female liver weight. Temperature significantly 

decreased male liver weight (p=0.043) and when males were kept at 26°C EE2 

significantly decreased liver weight (p=0.013). When female gonad weight was analyzed, 

there was no significant interaction between the two main factors (p=0.122), but there 

was a change in gonad weight with temperature increase (p<0.001). There was no 

interaction between the main factors (p=0.068), but temperature increment significantly 

increased male gonad weight with temperature, when males were kept at 18 (p=0.029) 

and 26°C (p=0.001), compared to 10°C (Table 2.2).  

In females there was no interaction between temperature and EE2 (p=0.364), but 

there was a significant decrease of LSI with the temperature increase (p<0.001). There 

was no effect of EE2 on female LSI (p=0.473). There was no interaction between the two 

main factors when male LSI was analyzed (p=0.614). There was no significant effect of 

temperature on male LSI (p=0.069). EE2 significantly affected male LSI (p=0.024), but 

as a result of high variability the post hoc test could not distinguish between exposure 

levels (Table 2.2).  
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There was no interaction between temperature and EE2 (p=0.072) on female GSI, 

and no effect of EE2 (p=0.440). Female GSI increased with temperature; at 26ºC female 

GSI was higher in the control group than at 18 or 10ºC (p<0.001). In males, there was 

significant interaction between the two main factors (p=0.035), and an increase in 

temperature significantly increased male GSI (p=0.04). EE2 significantly decreased GSI 

(p=0.01) when males were exposed to 250 ng/L and were held at 26ºC (Table 2.2). 

 

2.4.2.2. Plasma steroid analysis in females 

 

There was neither an interaction between temperature and EE2 (p=0.694; data not 

shown), nor an effect of temperature (p=0.293; Figure 2.4A), on female plasma T 

circulating levels. There was no effect of EE2 (p=0.463) on female T plasma levels 

(Figure 2.4A). There was no interaction between temperature and EE2 on plasma 

estradiol (p=0.129; data not shown). There was a strong effect of temperature on E2 levels 

in plasma in the control group held at 18 and 26ºC compared to the control group at 10ºC 

(p<0.001; Figure 2.4B). At 18ºC and 26ºC there were 4- and 3-fold higher plasma E2 

levels, respectively, than E2 levels in females kept at 10ºC (Figure 2.4B). There was a 

significant reduction in plasma E2 when females were exposed to 250 ng/L of EE2 at 

18ºC (p=0.015; Figure 2.4B) (Table 2.5).  
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2.4.2.3. Gonadal steroid production in females 

 

When analyzing the gonadal T production in ovaries, it was shown that there was 

a significant interaction between temperature and EE2 (p=0.036; data not shown). At 

10ºC, EE2 caused a significant reduction of basal (p<0.001; Figure 2.5A), 25-OH 

cholesterol- (p=0.001; Figure 2.5A) and pregnenolone-stimulated ovarian T production 

(p=0.004; Figure 2.5A). At 18ºC, EE2 did not affect production of T in the ovaries 

(p=0.327; Figure 2.5B). When females were kept at 26ºC, there was a significant 

reduction of female gonadal T when exposed to 250 ng/L of EE2 but only when the 

gonads were incubated in the presence of 25-OH cholesterol (p=0.004; Figure 2.5C; 

Table 2.5).   

There was no interaction between temperature and EE2 for ovarian E2 production 

(p=0.537; data not shown). There was a significant effect of temperature on the E2 

production (p=0.002; data not shown) in basal-incubated ovaries. Females maintained at 

10ºC showed a reduction of E2 production only in the presence of testosterone (p=0.018; 

Figure 2.5D). Mummichog females kept at 18ºC and exposed to 250 ng/L of EE2 showed 

a significant reduction in ovarian E2 production when the gonads were incubated with 25-

OH cholesterol (p=0.002; Figure 2.5E); pregnenolone (p<0.001; Figure 2.5E) and 

testosterone (p=0.006; Figure 2.5E). At 26ºC, when pregnenolone and testosterone were 

present in the incubation media, there was a significant reduction in ovarian E2 

production in those fish exposed to 250 ng/L (p=0.021 and p<0.001, respectively; Figure 

2.5F; Table 2.5). 
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2.4.2.4. Plasma steroid analysis in males 

 

For male plasma T there was no interaction between temperature and EE2 

(p=0.606; data not shown) nor a significant effect of temperature on T levels (p=0.172). 

There was no significant effect of EE2 on the plasma T (p=0.334; Figure 2.4C).  There 

was no interaction between temperature and EE2 (p=0.986; data not shown) nor effects of 

temperature on the plasma 11-KT levels (p=0.362). There was no effect of EE2 on plasma 

11-KT (p=0.109; Figure 2.4D; Table 2.6). 

 

2.4.2.5. Gonadal steroid production in males 

 

For male gonadal testosterone production, there was no interaction between 

temperature and EE2 (p=0.052; data not shown) and no significant effect of temperature 

(p=0.170; data not shown). No significant effect of EE2 on male testosterone production 

was found (p=0.107) when all the temperatures were combined (Figure 2.6A). There was 

no interaction between temperature and EE2 for 11-KT production in males, (p=0.417; 

data not shown). However, there was a strong effect of temperature on 11-KT production 

in males (p<0.001, data not shown). At 10ºC EE2 did not significantly affect 11-KT 

production (p=0.395; Figure 2.6B). At 18ºC there was a significant reduction in 11-KT 

production when fish were exposed to 250 ng/L of EE2 and the testes were incubated in 

basal or 25-OH cholesterol media (p=0.015; Figure 2.6C). At 26ºC, there was no 

significant effect of EE2 on 11-KT production in males (p=0.945; Figure 2.6D; Table 

2.6). 
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2.4.3 Effects of EE2 on P450 aromatase A (cyp 19a) gene expression 

 

 There was no significant effect of EE2 on P450 aromatase expression on those 

fish kept at 16 ppt and at 18ºC (p=0.979; Figure 2.7).  
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Table 2.2: Mean + (SEM) weight, liver weight, liver somatic index (LSI) and gonadosomatic index 
(GSI) for adult female and male Fundulus heteroclitus exposed to EE2 in differing salinities and differing 
temperature conditions. Differing lower case letters indicate significant differences for the EE2 factor. 
Upper case letters indicate significant differences for the salinity or temperature factor. 
 

Salinity EE2 Weight 
Liver 

Weight 
Gonad 
Weight LSI  GSI 

  

(ppt) (ng/L) 
N 

(g) (g) (g) (%) (%) 

0 12 10.71+1.08 0.38+0.04 0.59+0.13 3.55+0.23 4.96+0.81 
50 12 9.27+0.70 0.42+0.05 0.59+0.10 4.45+0.34 6.32+1.09 0 

250 11 8.77+0.61 0.34+0.03 0.46+0.12 3.89+0.31 4.92+1.00 
0 12 9.24+0.85 0.30+0.03 0.54+0.12 3.35+0.22 5.56+0.99 

50 12 7.72+0.59 0.33+0.02 0.47+0.09 4.55+0.41 6.58+1.39 16 

250 12 8.60+0.65 0.29+0.02 0.40+0.08 3.43+0.20 4.36+0.7 
0 12 7.97+ 0.51 0.35+0.03 0.39+0.08 4.45+1.08 5.08+1.09 

50 12 8.68+0.60 0.34+0.04 0.52+0.08 3.92+0.34 5.98+0.86 

Females 

32 

250 12 9.24+0.52 0.37+0.02 0.45+0.09 4.16+0.27 4.64+0.82 

0 12 5.82+0.37A 0.22+0.02A 0.07+0.01A 3.83+0.34A,B 1.20+0.17A 
50 12 5.82+0.42A 0.19+0.01A 0.09+0.01A 3.37+0.23A 1.67+0.22A 0 

250 11 4.86+0.39A 0.16+0.01A 0.05+0.01A 3.47+0.33A 1.07+0.12A 
0 12 6.09+0.34A 0.19+0.02A 0.11+0.02A 3.16+0.35A 1.76+0.23A 

50 12 6.47+0.71A 0.19+0.02A 0.13+0.03A 3.03+0.22A 1.89+0.25A 16 
250 12 5.3+0.34A 0.07+0.009A 0.18+0.01A 3.42+0.22A 1.30+0.18A 

0 12 8.68+0.60B 0.35+0.03B 0.40+0.09B 4.45+0.18B 5.08+1.09B 
50 12 8.68+0.60B 0.34+0.04B 0.52+0.08B 3.92+0.35B 5.98+0.85B 

Males 

32 

250 12 9.24+0.51B 0.37+0.20B 0.45+0.09B 4.16+0.27B 4.64+0.82B 

EE2 Weight 
Liver 

Weight 
Gonad 
Weight LSI  GSI 

  

Temp 
(ºC) 

N (ng/L) (g) (g) (g) (%) (%) 

0 12 8.41+0.64 0.40+0.03A 0.3+0.07A 4.79+0.2A 3.40+0.68A 10 
250 12 9.67+0.56 0.42+0.22A 0.68+0.21A 4.43+0.23A 6.21+1.62A 

0 12 9.24+0.85 0.30+0.03A 0.54+0.12A 3.35+0.22B 5.52+0.99A 18 
250 12 8.62+0.65 0.28+0.02B 0.4+0.08A 3.44+0.2A 4.37+0.7A 

0 12 9.15+0.82 0.30+0.02A 1.13+0.17B 3.43+0.22B 11.95+1.05B 

Females 

26 
250 12 9.64+0.65 0.40+0.08A 0.91+0.16A 4.25+0.9A 9.02+1.59A 

0 12 5.72+0.46 0.21+0.02A 0.06+0.01A,a 3.80+0.23 1.11+0.12A,a 10 
250 12 5.86+0.38 0.26+0.02A 0.06+0.01A,a 4.57+0.30 1.05+0.12A,a 

0 12 6.09+0.34 0.19+0.02A,B 0.11+0.02B,a 3.16+0.35 1.76+0.24A,B,a 18 
250 12 5.31+0.34 0.18+0.01B 0.07+0.01A,b 3.42+0.22 1.30+0.18A,a 

0 12 5.43+0.56 0.13+0.01B 0.13+0.01B,a 2.56+0.23 2.20+0.21B,a 

Males 

26 
11 5.82+0.70 0.22+0.07A,B 0.07+0.01A,b 3.80+1.04 1.22+0.22A,b 250 
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Figure 2.1: Effects of EE2 (50 and 250 ng/L) on plasma steroid levels in mummichog 

(Fundulus heteroclitus) kept in differing saline conditions (0, 16 and 32 ppt). Bars 

represent means + SEM. Differing letters indicate significant differences. N = 4 tanks per 

treatment. A: Effects of EE2 on female plasma testosterone (p=0.837). B: Effects of EE2 

on female plasma estradiol (p=0.045). C: Effects of EE2 on male plasma testosterone 

(p=0.584). D: Effects of EE2 on male plasma 11-ketotestosterone (11-KT) with salinity 

data combined (p=0.004). FW = fresh water (0 ppt); BW = brackish water (16 ppt); SW = 

salt water (32 ppt). LOG = data log transformed prior to statistical analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A B

C D

49

♂

♀♀

♂

LOG



 50

Figure 2.2: Effects of EE2 (50 and 250 ng/L) on steroid production in ovarian pieces 

incubated from mummichog (Fundulus heteroclitus) held in differing saline conditions 

(0, 16 and 32 ppt). Bars represent means + SEM. Differing letters indicate significant 

differences. N = 4 tanks per treatment. Ba = basal medium; 25-OH C = 25-OH 

cholesterol-stimulated medium; P = pregnenolone-stimulated medium; and T = 

testosterone-stimulated medium. A: Effects of EE2 on ovarian testosterone production in 

females kept at 0 ppt (p=0.036). B: Effects of EE2 on ovarian testosterone production in 

females kept at 16 ppt (p=0.649). C: Effects of EE2 on ovarian testosterone production in 

females kept at 32 ppt (p<0.001 for 50ng/L of EE2; p=0.005 for 250ng/L of EE2). D: 

Effects of EE2 on ovarian estradiol production with salinity data combined (p<0.001 for 

Ba; p=0.004 for 25-OH C; p<0.001 for P and p=0.029 for T). FW = fresh water (0 ppt); 

BW = brackish water (16 ppt); SW = salt water (32 ppt). 
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Figure 2.3: Effects of EE2 (50 and 250 ng/L) on steroid production in pieces of testes 

incubated from mummichog (Fundulus heteroclitus) held in differing saline conditions 

(0, 16 and 32 ppt). Bars represent means + SEM. Differing letters indicate significant 

differences. N = 4 tanks per treatment. Ba = basal medium; 25-OH C = 25-OH 

cholesterol-stimulated medium. A: Effects of EE2 on testosterone production in males 

kept at 0 ppt (p=0.01). B: Effects of EE2 on testosterone production in males kept at 16 

ppt (p<0.001 when exposed to 50 and 250 ng/L of EE2). C: Effects of EE2 on testosterone 

production in males kept at 32 ppt (p=0.01). D: Effects of EE2 on 11-ketotestosterone 

(11-KT) production in fish kept at 0 ppt (p=0.082). E: Effects of EE2 on 11-KT 

production in males kept at 16 ppt (p=0.096). F: Effects of EE2 on 11-KT production in 

males kept at 32 ppt (p=0.407). LOG = data log transformed prior to statistical analysis. 
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Figure 2.4: Effects of 250 ng/L of EE2 on plasma steroid levels in mummichog 

(Fundulus heteroclitus) kept in differing temperature conditions (10, 18 and 26ºC).  Bars 

represent means + SEM. Differing lower case letters indicate significant differences for 

the EE2 factor. N = 4 tanks per treatment. Upper case letters indicate the effects of 

temperature on plasma steroid levels. A: Effects of EE2 on female plasma testosterone 

(p=0.463). B: Effects of EE2 on female plasma estradiol (p=0.015). C: Effects of EE2 on 

male plasma testosterone (p=0.334). D: Effects of EE2 on male plasma 11-

ketotestosterone (p=0.109). LOG = data log transformed prior to statistical analysis. 
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Figure 2.5: Effects of 250 ng/L of EE2 on steroid production in ovarian pieces incubated 

from mummichog (Fundulus heteroclitus) held in differing temperature conditions (10, 

18 and 26ºC). Bars represent means + SEM. Differing letters indicate significant 

differences. N = 4 tanks per treatment. Ba = basal medium; 25-OH C = 25-OH 

cholesterol-stimulated medium; P = pregnenolone-stimulated medium; and T = 

testosterone-stimulated medium. A: Effects of EE2 on ovarian testosterone production in 

females kept at 10ºC (p<0.001). B: Effects of EE2 on ovarian testosterone production in 

females kept at 18ºC (p=0.327). C: Effects of EE2 on ovarian testosterone production in 

females kept at 26ºC (p=0.004). D: Effects of EE2 on ovarian estradiol production in 

females kept at 10ºC (p=0.018). E: Effects of EE2 on ovarian estradiol production in 

females kept at 18ºC (p=0.002 for 25-OH C; p<0.001 for P and p=0.006 for T). F: Effects 

of EE2 on ovarian estradiol production in females kept at 26ºC (p=0.021 for P and 

p<0.001 for T). LOG = data log transformed prior to statistical analysis. 

 

 

 

 

 

 

 

 

 

 



A B

C D

E F

♀

♀

♀

♀

♀

♀

57

LOG LOG

LOG LOG



 58

Figure 2.6: Effects of 250 ng/L of EE2 on steroid production in pieces of testes incubated 

from mummichog (Fundulus heteroclitus) held in differing temperature conditions (10, 

18 and 26ºC). Bars represent means + SEM. Differing letters indicate significant 

differences. N = 4 tanks per treatment. Ba = basal medium; 25-OH C = 25-OH 

cholesterol-stimulated medium. A: Effects of EE2 on testosterone production in males 

(p=0.107). B: Effects of EE2 on 11-ketotestosterone production in males kept at 10ºC 

(p=0.395). C: Effects of EE2 on 11-ketotestosterone production in males kept at 18ºC 

(p=0.015). D: Effects of EE2 on 11-ketotestosterone production in fish kept at 26ºC 

(p=0.945). LOG = data log transformed prior to statistical analysis. 
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Table 2.3: Summary of effects of EE2 (50 and 250 ng/L) on plasma steroids and gonadal 
biosynthesis of steroids in female mummichog (Fundulus heteroclitus) held in differing 
saline conditions (0, 16 and 32 ppt). Ba = basal; 25C = 25-OH cholesterol-stimulated 
medium; P = pregnenolone-stimulated medium and T = testosterone-stimulated medium; 
Sa = salinity. ↑ indicates significant increase; ↓ indicates significant decrease; = indicates 
no difference. 
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Table 2.4: Summary of effects of EE2 (50 and 250 ng/L) on plasma steroids and 
gonadal biosynthesis of steroids in male mummichog (Fundulus heteroclitus) held in 
differing saline conditions (0, 16 and 32 ppt). Ba = basal; 25C = 25-OH cholesterol-
stimulated medium; Sa = salinity. ↑ indicates significant increase; ↓ indicates 
significant decrease; = indicates no difference. 
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Table 2.5: Summary of effects of EE2 (250 ng/L) on plasma steroids and gonadal 
biosynthesis of steroids in female mummichog (Fundulus heteroclitus) held in differing 
temperature conditions (10, 18 and 26ºC). Ba = basal; 25C = 25-OH cholesterol-
stimulated medium; P = pregnenolone-stimulated medium and T = testosterone-
stimulated medium. ↓ indicates significant decrease; = indicates no difference. 
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Table 2.6: Summary of effects of EE2 (250 ng/L) on plasma steroids and gonadal 
biosynthesis of steroids in male mummichog (Fundulus heteroclitus) held in differing 
temperature conditions (10, 18 and 26ºC). Ba = basal; 25C = 25-OH cholesterol-
stimulated medium; P = pregnenolone-stimulated medium and T = testosterone-
stimulated medium. ↓ indicates significant decrease; = indicates no difference. 
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Figure 2.7: Effects of EE2 on ovarian aromatase gene expression of mummichog 

(Fundulus heteroclitus) at 16ppt and 18ºC. Bars represent means + SEM. (p=0.979) 
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2.5. Discussion 

 

This study advances our understanding of effects of EE2 and environmental 

parameters on reproductive endocrine status in fish. While salinity alone had limited 

impact, effects of EE2 at 250 ng/L confirmed that EE2 depresses reproductive endocrine 

endpoints in fish (MacLatchy et al., 2003; Martyniuk et al., 2006; Hogan et al., 2010).  

These depressions occurred across all salinities as indicated by decreased plasma E2 and 

E2 production in females and decreased plasma 11-KT in males. Temperature was further 

established as a significant environmental factor regulating northern mummichog 

(Fundulus heteroclitus macrolepidotus) reproduction (McMullin et al., 2009). Increased 

temperature triggered gonadal growth and maturation in both females and males. In 

addition, plasma E2 levels and E2 production in females increased with temperature, 

whereas 11-KT production in males decreased with temperature. Most notably, EE2 

counteracted temperature-related effects, depressing the temperature-induced increases in 

gonad size in males. The lack of effects of salinity in general could be protective in a 

species that reproduces in a highly-variable saline environment. The responses to EE2 at 

higher temperatures could be due to temperature-related increases in uptake of EE2 

(Blewett, 2011) and/or increased susceptibility during temperature-induced gonadal 

maturation.   
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2.5.1. Exposure concentrations 

 

The EE2 concentrations used in our work were chosen for two reasons.  Firstly, 50 

ng/L of EE2 in a static exposure is close to the environmentally-relevant concentrations 

found in Canadian and American aquatic environments (EE2 concentrations as high as 42 

ng/L and averaging 0.2 and 7 ng/L EE2; Desbrow et al., 1998; Ternes et al., 1999). As 

EE2 is very hydrophobic (Log Kow= 4.15; Teske & Arnold, 2008) and tends to get 

attached to the airline tubing and the glass walls of the tank, we assumed the 50 ng/L 

nominal concentration would decrease to a final concentration of EE2 in the exposure 

tanks close to environmental relevance. This has been shown in earlier studies, in which 

EE2 final concentrations were 58% to 84% of the original concentration of 0.2, 1, 4, 16 

and 64 ng/L (Länge et al., 2001); 10-20% of the original nominal 100 ng/L (Peters et al., 

2007); 60% of 20 ng/L (Björkblom et al., 2009); and 70% and 50% of 100 and 500 ng/L, 

respectively (Hogan et al. 2010). Secondly, 250 ng/L of EE2 has been demonstrated to 

provide mechanistic information on the effects of EE2 on steroidogenesis in mummichog 

(Hogan et al., 2010).  While water samples were taken to quantify actual EE2 exposure 

levels in the present study, issues with the quality assurance/quality control in the 

analyzing laboratory meant no values are available for reporting purposes. 

Previous studies have indicated that higher concentrations of EE2 are needed to 

produce endocrine effects in the estuarine sheepshead minnow (Cyprinodon variegatus 

Lacépède; Zillioux et al., 2001) and mummichog (MacLatchy et al., 2003; Peters et al., 

2007, Hogan et al., 2010) than in freshwater species. In mummichog, the requirement for 

higher EE2 exposure concentrations to cause reproductive endocrine effects could be due 
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to one or more factors, including differences in EE2 availability, uptake, tissue 

distribution, metabolism or receptor affinity. Recent studies have indicated that EE2 

availability is the same in 0 or 16 ppt salinity (Nadon, 2010). Gill uptake of EE2 is greater 

in mummichog at 16 ppt rather than 0 or 32 ppt; this has been hypothesized to be due to 

the expanded diffusion distance for EE2 across mummichog gills in brackish water 

(Blewett, 2011). At 16 ppt the diffusion distance is small due to the presence of apical 

pores on the outer lamellae, whereas at 0 ppt there is a predominance of thick cuboidal 

cells mixed with pavement cells and inactive seawater chlorine cells (SWCC) (Marshall 

et al., 1997; Katoh et al., 2001; Laurent et al., 2006). At 32 ppt there is an increased 

number of SWCC to cope with the ionic balance. An increase in gill thickness in both 

fresh and saltwater conditions slows the diffusion rate (Philpott & Copeland, 1963; 

Laurent et al., 2006). As EE2 uptake rates correspond with O2 uptake (Blewett, 2011), the 

rates of uptake being greater at 16 ppt than 0 ppt and 32 ppt due to gill structure is further 

supported.  

In regard to tissue distribution and metabolism, EE2 is distributed very quickly to 

the liver, gall bladder and gut in mummichog following uptake (Blewett, 2011). The 

distribution pattern indicates a high rate of metabolism and potentially low effective 

concentrations in target tissues. This distribution pattern differs between mummichog and 

rainbow trout held at 0 and 16 ppt (Blewett, 2011), demonstrating species differences in 

EE2 tissue distribution and elimination rates. Mummichog are known to have high 

tolerance for various contaminants (Burnett et al., 2007; Lister et al., 2011) and high rates 

of metabolism and elimination could account for some of this tolerance and low 

comparative sensitivity to EE2. 
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EE2 has high affinity for the estrogen receptor (Segner et al., 2003) and stimulates 

ER-mediated effects, such as vitellogenin gene expression (Björkblom, et al., 2009) and 

protein production (Osborne et al., 2007). ER gene structure varies among fish species. 

Phylogenetic analysis of ER gene structure by Orlando et al. (2006) showed that ERα 

and ERβ of mummichog is closer to that of Japanese medaka and mangrove killifish 

(Kryptolebias marmoratus) than to goldfish or rainbow trout. One could then hypothesize 

that Japanese medaka will also need a higher concentration of EE2 to produce an 

endocrine response. Indeed, previous studies have demonstrated that  higher 

concentrations of EE2 (50-488 ng/L) are needed to affect the reproductive endocrinology 

of Japanese medaka (Seki et al, 2002; Ma et al., 2005; Kashiwada et al., 2007). 

Therefore, it would be interesting for future experiments to analyze the effects of EE2 on 

species close and distant phylogenetically to mummichog, focusing in the interaction 

between EE2 and the ER, to determine whether ER gene structure, and ultimately ER 

structure, has roles in determining the effective concentration of EE2 required to stimulate 

reproductive endocrine responses in fish. 

 

2.5.2. Salinity exposure 

 

According to our results, salinity is not a major factor affecting mummichog 

reproductive endocrine status since there are not marked correlations between salinity 

and somatic indices, plasma steroids or steroid production. Higher salinity levels 

increased male body weight, liver weight, gonad weight, LSI and GSI. The increases in 

male mummichog somatic indices when salinity was raised could be related to increased 



 70

food intake or improved energy conversion for osmoregulation (Tseng & Hwang, 2008). 

However, similar changes were not observed in female somatic endpoints, perhaps due to 

the amount of energy diverted at any salinity to reproduction. Food was not limiting in 

the exposures, therefore eliminating food availability as a factor in the results.  

Overall, salinity did not affect the endocrine response of mummichog to EE2, as 

250 ng/L of EE2 in the three salinities tested decreased female E2 production and male 

circulating 11-KT levels equally at all salinities. There was a significant interaction 

between salinity and EE2 when we analyzed female gonadal T and male gonadal T 

production. Comparison of female T production between 0 ppt and 16 ppt, and 0 ppt and 

32 ppt, showed 1.64- and 2-fold increases, respectively, with increasing salinity, but no 

change in male T production. Additionally, a salinity variation between 0 ppt and 32 ppt 

caused a 1.6-fold depression in 11-KT production in males. Nadon (2010) has recently 

demonstrated greater induction of vitellogenin 1 and 2 gene expression in mummichog at 

16 ppt compared to 0 ppt of salinity. Coupled with increased uptake of EE2 at 16 ppt of 

salinity compared to 0 ppt and 32 ppt (Blewett, 2011), increased effects of EE2
 at 16 ppt 

might have been expected. A greater endocrine response at 16 ppt was detected for 

plasma E2 in females, as levels at 16 ppt were significantly decreased compared to levels 

at 0 and 32 ppt. However, this effect was minor when all the results are considered. The 

limited responses in reproductive endocrine endpoints at different salinities, however, 

reinforces the hypothesis that tissue distribution in mummichog to the liver, gall bladder 

and gut at all salinities, as demonstrated by Blewett (2011), diminishes non-hepatic tissue 

distribution (including gonads) even if uptake is higher at particular salinities. 
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2.5.3. Temperature exposure 

 

In the present study, we found that temperature is a major environmental factor 

regulating mummichog reproductive physiology at different levels of biological 

organization. An increase in temperature triggered gonadal growth and maturation in both 

females and males. GSI increased in both females and males with increases in 

temperature, perhaps initiating a spawning cycle, and confirming the importance of 

temperature as a factor controlling reproduction in northern mummichog. Our results 

support the findings of McMullin et al. (2009), who also found in a field study that the 

reproductive cycle of northern mummichog is chiefly regulated by temperature and that 

females are more responsive to temperature than males during the spawning season. 

Increasing temperature decreased LSI in mummichog females and decreased liver weight 

in males. The variation in LSI and liver weight is possibly due to the use of stored energy 

in the liver. Several fish species use stored liver fat as an energy source during spawning 

periods (Kott, 1971; Overton & Van der Avyle, 2005; McMullin et al., 2009).  

Plasma E2 levels and E2 production in females increased with temperature, 

whereas male 11-KT production decreased with temperature. Females in 0 ng/L of EE2 

kept at 18 and 26ºC had 4- and 3-fold higher plasma E2 levels than females at 10ºC. 

There was a significant depression on the production of E2 at 10ºC only when 

testosterone was present in the incubation media. Our results indicate that females are 

more responsive to a temperature variation than males, since temperature regulated their 

reproductive status at several levels, whereas in males temperature modified the 

production of 11-KT but not the plasma levels.  
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EE2 at 250 ng/L significantly increased male liver weight in fish held at 26°C. 

Estrogen exposure has previously been shown to increase liver weight and gonad weight 

in fish (Andersson et al., 2007). Liver weight increases are presumably due to increased 

metabolic activity required by the liver tissue to clear the estrogen and/or produce large 

quantities of the ER-mediated hepatic lipoprotein vitellogenin. Male GSI were depressed 

when exposed to 250 ng/L of EE2 and held at 26°C. Male mummichog GSI was also 

significantly decreased by exposure to 250 ng/L of EE2 when held at 18°C for 14 days 

(Hogan et al., 2010) confirming studies with other fish species (e.g., three-spined 

stickleback, Gasterosteus aculeatus; Andersson et al., 2007).   

In our temperature exposure, plasma E2 was depressed when fish held at 18ºC 

were exposed to 250 ng/L of EE2. Effects of EE2 have been shown to depend on the 

levels of circulating E2 (Kime et al., 1999); because plasma E2 was lower at 10ºC than at 

18 or 26ºC, this could alter EE2’s effects. EE2 depressed the production of E2 when the 

ovaries were incubated in 25-OH cholesterol-, pregnenolone-, and testosterone-stimulated 

media at 18ºC, and when the ovaries were incubated in pregnenolone- and testosterone-

stimulated medium at 26ºC. These results corroborate what we found in females in the 

salinity exposure experiments; that is, that EE2’s effects are downstream of cholesterol 

mobilization, and downstream of T to E2 conversion.  Increased uptake of EE2 at higher 

temperatures (Blewett, 2011) could account for increased effects on steroidogenesis at 

higher temperatures. 
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2.5.4. Interpretation of effects of EE2 on steroidogenesis and plasma steroids 

levels  

 

In the present salinity and temperature exposures, the effect of EE2 on female and 

male gonadal T production was highly variable. However, 250 ng/L of EE2 markedly 

depressed E2 production in females and 11-KT in males. Previous studies conducted in 

different species support our findings and corroborate EE2’s disruptive effects on fish 

reproductive endocrine status by affecting terminal steroid production. When Condeça & 

Canario (1999) exposed sea bream to 15 mg of EE2/kg of diet for 37 and 112 d, they 

found that there was a significant increase in the production of both T and E2. Juvenile 

turbot exposed to 3.5 and 75 ng/L of EE2 for 15 d had a significant decrease in the 

production of 11-KT in males (Labadie & Budzinski, 2006). Previous studies with 

mummichog have shown that 500 ng/L of EE2 reduced female T and E2 production and 

male T and 11-KT production (MacLatchy et al., 2003). As well, 100 ng/L of EE2 

depressed T and E2 production in females (Peters et al., 2007). These latter two works 

indicate that terminal steroid biosynthesis in mummichog is affected by EE2.  

Similar to many other studies in mummichog (MacLatchy et al., 2003; Sharpe et 

al., 2004; Peters et al., 2007; Hogan et al., 2010), plasma T and gonadal T production 

were not parallel in females and males, and neither were plasma and gonadal 11-KT in 

males. At 0 and 16 ppt the depressions caused by EE2 on male 11-KT production were 

altered but at p<0.1 rather than p<0.05 (p0ppt = 0.082; p16ppt = 0.096). A parallelism 

between plasma steroids and gonadal steroid production indicates a potential mechanistic 

linkage between effects of EE2 on gonadal steroidogenesis and circulating steroid levels. 
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An alteration in plasma steroids indicates a true endocrine effect, whereas if the 

disruptive effect is only on the gonadal production, the overall endocrine status of the 

animal may not be affected (Thomas, 1988; Munkittrick et al., 1991; Munkittrick et al., 

1992; Hecker et al., 2002; Coe et al. 2008). The differences observed between the plasma 

and the gonadal T and 11-KT may be due to homeostatic mechanisms that regulate the T 

and 11-KT levels in the plasma. It has been demonstrated that the adrenal and the 

interrenal gland under the influence of gonadotrophins are able to produce T and 11-KT 

to compensate for a reduction in production by the gonads (Idler & McNab, 1967; 

Vermeulen et al., 1994; Gazolla & Borella, 1997). As well, alterations in clearance rates 

of plasma steroids can be altered to maintain plasma steroid in homeostatic ranges 

(MacLatchy et al., 1997). The effect of EE2 on female plasma E2 and gonadal production 

demonstrates a synchronization of effects at the plasma and gonadal level. The 

parallelism observed for female E2 was previously reported in mummichog by 

MacLatchy et al. (2003) and Peters et al. (2007).  

 

2.5.5. Steroidogenic precursors as a useful experimental tool 

 

Using steroidogenic precursors in the in vitro incubations helped us to determine 

that the effect of EE2 in females is at the T to E2 and in males at the T to 11-KT 

conversion steps of steroidogenesis. As previously demonstrated, the use of intermediates 

is a useful tool to determine the mechanistic effects of EE2 or other contaminants 

(McMaster et al., 1995; Hogan et al., 2010). We have definitively demonstrated that in 

female mummichog, EE2 alters steroidogenesis as far downstream as aromatase. This 
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supports and furthers the previous work of Hogan et al. (2010), in which exposure of EE2 

(250 ng/L nominal concentration) resulted in depressed gonadal T downstream of 

cholesterol mobilization. Sea bream gonads incubated with androstenedione, after in vivo 

exposure to 15 mg of EE2/kg of diet, increased significantly the production of E2 and T, 

demonstrating that the effect of EE2 in sea bream was downstream of androstenedione to 

T conversion (Condeça & Canario, 1999). The value of this experimental design is that it 

pinpoints where further efforts to determine modes of action of EE2 on steroidogenesis 

should be focused; for example, whether the effects are mediated by genomic or non 

genomic effects (Garcia-Reyero et al., 2009). In mummichog, a limited but growing 

range of molecular tools exists, such as primer sequences for gonadal steroidogenic 

enzymes (Burnett et al., 2007; Lister et al., 2011). 

 

2.5.6. Ovarian P450 aromatase A (cyp 19a) gene expression 

 

EE2 interacts with the ER (Condeça & Canario, 1999; Segner et al., 2003), 

triggering genomic (Filby et al., 2007) and non-genomic responses (Legler et al., 2002; 

Thomas & Doughty, 2004; Vasudevan & Pfaff, 2008) in fish. In our study, EE2 depressed 

ovarian T to E2 production without altering aromatase A gene expression. A possible 

explanation could be that the effect of EE2 is post-transcriptional. These potential 

mechanisms include regulation of mRNA half-life, control of translation, protein half-

life, regulation of protein activity and post-translational modifications (Denslow et al., 

2001), none of which were analyzed in this study. In the future, more research should be 
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done to investigate these potential mechanisms and to develop the tools necessary to do 

so. 

2.5.7. Conclusions  

 

In conclusion, our work is the first to demonstrate, by using steroidogenic 

precursors, that the effect of EE2 in mummichog is most pronounced on final conversion 

of T to the terminal steroids (E2 and 11-KT) in female and male mummichog. We were 

also able to demonstrate that temperature plays an important role in mummichog 

reproductive endocrine regulation, confirming the role of temperature in northern 

mummichog reproduction (MacLatchy et al., 2005; McMullin et al., 2009). EE2 was 

demonstrated to be a potent endocrine disruptor since it is a strong antagonist to the 

effects of temperature. In estuaries, initiation of reproductive development in northern 

mummichog is linked with increases in water temperature (McMullin et al., 2009). 

Reproductive endpoints assessed in this study appear to be generally robust when 

challenged by different salinities but not EE2. There was minor evidence that 

reproductive endocrine endpoints are affected to a greater degree by EE2 exposure at 16 

ppt as previously demonstrated for direct receptor-mediated responses (vitellogenin 1 and 

2 gene expression; Nadon, 2010). Overall, EE2 retards reproductive development and 

reproductive endocrine status with the potential for population-level effects in wild fish, 

including during sensitive periods of gonadal recrudescence. Our study also indicates that 

experimental designs of standardized tests for screening EDSs need to be carefully 

chosen to ensure that interactions between environmental factors and the EDSs are being 

considered. 
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3.1. Relevant findings 

 

 This work corroborates the findings of McMullin et al. (2009) that temperature 

regulates northern mummichog (Fundulus heteroclitus macrolepidotus) reproductive 

status. Increasing temperature stimulates gonadal growth and steroidogenesis; females are 

more responsive than males. Of importance is our novel finding that 250 ng/L of 17α-

ethinylestradiol (EE2) depresses temperature-induced gonadal growth in males.  

 We also analyzed the effect of salinity and EE2 on steroidogenesis. Salinity did 

not affect mummichog reproductive endocrine status, although EE2 had a more prominent 

effect on female circulating 17β-estradiol (E2) at 16 ppt than 32 ppt or 0 ppt salinity. As 

explained by Blewett (2011), EE2 uptake varies with salinity as uptake is higher at 16 ppt, 

than at 0 ppt or 32 ppt, due to variations in gill thickness. At 16 ppt the diffusion distance 

is smaller than at 0 ppt or 32 ppt due to the presence of apical pores on the outer lamellae. 

At 0 ppt there is a predominance of thick cuboidal cells intermingled with pavement cells 

and dormant seawater chlorine cells, while at 32 ppt there is an increased number of 

seawater chloride cells.  

EE2 at 250 ng/L depressed E2 production in females and 11-ketotestosterone (11-

KT) production in males. Using steroidogenic precursors, we demonstrated that the effect 

of EE2 is as far downstream as testosterone (T) to E2 conversion in females and T to 11-

KT in males, corroborating and furthering the work of Hogan et al. (2010). However, we 

were not able to demonstrate an effect of EE2 on aromatase A gene expression. In 

summary, while some hypotheses were accepted, others were rejected (Table 3.1).  
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Table 3.1: Summary of the acceptance or rejection of the hypotheses postulated for this study.  E2 

= 17β-Estradiol; 11-KT = 11-ketotestoterone; T = Testosterone; EE2 = 17α-Ethinylestradiol; GSI 
= Gonadosomatic indices; LSI = Liver somatic indices    

 

Null Hypothesis 

Accepted 
(A) or 

Rejected 
(R) 

Reasons for Rejection 

EE2 does not affect organ weight and somatic indices R ↓ in ♂ GSI when held at 26°C 

(Salinity)  
R 

↑ in ♂ organ weight and somatic indices  
 Salinity (or temperature) does not affect organ 

weight and somatic indices (Temp.) 
R ↑ in ♀ and ♂ GSI and gonad weight  

(Salinity) 
R 

Interaction between salinity and EE2 for ♀ 
LSI  There is no interaction of EE2 and salinity (or 

temperature) on organ weight and somatic indices (Temp.) 
R 

Interaction between temperature and EE2 
for ♂ GSI 

EE2 does not affect circulating steroid levels R 
↓ in ♀ plasma E2  
 
↓ in ♂ plasma 11-KT 

(Salinity) 
A 

  
Salinity (or temperature) does not affect circulating 
steroid levels  (Temp) 

R  
 

↑ in ♀ plasma E2  
 
↓ in ♂ plasma 11-KT 

There is no interaction of EE2 and salinity (or 
temperature) on circulating steroid levels A  

EE2 does not affect biosynthesis of gonadal terminal 
steroids R 

↓ in ♀ E2 production 
 
↓ in ♂ 11-KT production 

(Salinity) 
R ↓ in ♂ 11-KT production  

Salinity (or temperature) does not affect biosynthesis 
of gonadal terminal steroids (Temp.) 

R 

↓ in ♂ 11-KT production 
 
↑ in ♀ E2 production 

(Salinity) 
R 

Interaction between salinity and EE2 ♀ and 
♂ T production   There is no interaction of EE2 and salinity (or 

temperature) on biosynthesis of gonadal terminal 
steroids (Temp.) 

R 
Interaction between temperature and EE2 ♀ 
and ♂ T production   

EE2 does not affect P450 aromatase A (Cyp19a) gene 
expression A  
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3.2. Future directions 

 

  It is presumed that the 50 ng/L exposure was in the range of environmental 

relevance as EE2 concentration downstream of sewage treatment plants range from 0.2 to 

42 ng/L (Desbrow et al., 1998; Ternes et al., 1999). The 250 ng/L is considered to be a 

pharmacological concentration and was used as a tool to help determine potential 

mechanisms of action. The lack of effect of EE2 on aromatase A mRNA expression 

suggests that the effect of EE2 are non-genomic and/or possibly post transcriptional. In 

the future it would be interesting to do further studies at the molecular level and to 

compare genomic and non genomic mechanisms of EE2 action. EE2 interacts with the 

estrogen receptor (ER) causing endocrine disruption by mimicking the action of the 

endogenous E2 at the receptor (Segner et al., 2003). Orlando et al. (2006) found that the 

ER gene structure varies between species. Consequently, it would be interesting to add an 

inter-specific analysis to determine if EE2 interaction with the ER differs among species.  

EE2 is a potent estrogenic chemical, which has gained attention from researchers 

and society, because of its environmental relevance and its disruptive action.  Effects of 

EE2 as a model estrogen can be compared to other estrogenic, anti-estrogenic, androgenic 

and anti-androgenic EDSs (MacLatchy et al., 2003; Sharpe et al., 2004). For instance, 

Atlantic cod (Gadus morhua) previtellogenic oocytes exposed to 50 and 100 μM of 

nonylphenol had reduced steroidogenic acute regulatory protein and P450 side-chain 

cleavage expression and plasma E2 and 11-KT after 14 d of exposure (Kortner & 

Arukwe, 2007). Flounder (Platichthys flesus. L) ovarian vitellogenic tissue exposed to 15 

μM of phenanthrene, benzo[a]pyrene or chrysene for 24 h, had inhibited on 17,20-lyase, 
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17β-hydroxysteroid dehydrogenase and aromatase activity (Rocha-Monteiro et al., 

2000a). Additionally, flounder showed a significant decrease in circulating E2, when 

exposed in vivo to 0.5, 2.5 and 12.5 nmol of phenanthrene/g of food for 12 weeks 

(Rocha-Monteiro et al., 2000b). Rutherford (2011) found that mummichog exposed to 

100 and 1000 ng/L of the androgen 17α-methyl testosterone or 10 and 100 μg/L of 

dihydrotestosterone caused decreased circulating E2 and 100 μg/L of dihydrotestosterone 

produced a depression of in vitro ovarian E2 production. The effects of these estrogenic, 

antiestrogenic and androgenic compounds are comparable to EE2’s estrogenic effects, 

however, differences do exist, including among estrogens. Legler et al. (2002) compared 

EE2’s effect with those of E2, estrone, nonylphenol and di(2-ethylhexyl)phthalate by 

exposing zebrafish (Danio rerio). They found that EE2 had 100 times more estrogenic 

potency than E2 and nonylphenol. Our work and these previous studies encourage 

focusing efforts on understanding the effects of endocrine disrupting substances (EDSs) 

on steroidogenesis and comparing different EDSs to elucidate the mechanisms of their 

toxicological effects.  

 

3.3 Integrative approach 

 

By analyzing the effects of EE2 at different levels of biological organization we 

were able to demonstrate that EE2 affects general reproductive endocrine status in 

mummichog. EE2 effects on gonadal steroidogenesis may have consequent effects on 

circulating levels of terminal steroids in female and in male mummichog (Figure 3.1). 

Although population-level effects were not directly studied, links between reproductive 
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status and population impacts have been demonstrated elsewhere (Kidd et al., 2007). By 

evaluating the effect of environmental factors and EE2 on mummichog reproductive 

physiology, we were able to give to our study a relevant environmental perspective 

missing from many laboratory studies.  

Our work may be of interest in regard to sewage treatment plant (STP) 

management, as it indicates that EE2 present in STP effluents is potentially disruptive for 

reproductive endocrine status in fish, in particular mummichog. Our results suggest that, 

in addition to developing improved STP treatment for estrogenic contaminants, temporal 

and spatial release of sewage should be studied in association with environmental 

parameters and fish reproductive cycles so as to reduce the impact on estuarine fish 

species. 
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on mummichog (Fundulus heteroclitus) reproductive endocrine status. Steroidogenic pathway 
modified from McMaster et al., 1995 & Leusch, 2001. EE2 uptake is via the gills (Blewett, 2011). 
E2 = 17β-Estradiol; 11-KT = 11-Ketotestosterone; LSI = Liver somatic index; GSI= 
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