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Abstract 

 Recent studies have shown that the use of bioaccumulation (tissue residues) as a 

predictor for toxic effects for metals is a flawed concept. Adams et al. (2010) suggested a 

novel tissue residue approach (TRA) in which bioaccumulation in resistant organisms is 

related to toxic effects in sensitive organisms. The goal of this thesis was to test these 

assumptions in relation to Cd exposure using the great pond snail, Lymnaea stagnalis by 

developing and improving the understanding of Cd accumulation in aquatic invertebrates.  

 The relationship between Cd bioaccumulation and its toxicity was studied in L. 

stagnalis using acute (96h) and chronic (one month) toxicity tests in moderately hard 

water (140 mg/L as CaCO3).  Two sizes of snails (18 or 25 mm) were tested for acute 

toxicity and the 96 h LC50 for both sizes of snails were 350 µg Cd/L. Soft tissue 

accumulation reached 750 µg Cd/g dry wt. in these exposures while the shell 

accumulation was only 16 µg Cd/g at the highest non-lethal exposures. Three sizes of 

snails were tested for chronic toxicity. The 31 d LC50s for the small (5 mm), medium (10 

mm) and large (15 mm) snails were 13, 50 and 46 µg Cd/L, respectively. In the smaller 

snails, growth was inhibited at exposure concentrations below 10 µg Cd/L.   

In soft water (20 mg/L CaCO3), two chronic (28 d) tests were conducted using 

juvenile snails (5 mm), the first with exposures from 2.3 – 8.3 µg Cd/L and the endpoints 

measured were survival, bioaccumulation and growth. The 28 d LC50 for the first test was 

7.3 µg Cd/L. Cd accumulation within the soft tissue ranged between 7 - 300 µg Cd/g dry 

wt. Exposure concentrations in the second test ranged from 0.3 – 2.3 µg Cd/L and the 

endpoints measured were whole and sub-cellular fractionation of Cd. Cd accumulation 
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within the soft tissue reached levels as high as 117 µg Cd/g dry wt. Cd accumulation was 

dose dependent and reached steady state tissue burden within 14 d. Sub-cellular 

fractionation was measured after 28 d of exposure and increasing amounts of Cd were  

found in the heat stable proteins and organelle fractions as Cd exposure concentration 

increased.   

Finally, to test the novel TRA approach, a side-by-side exposure using a Cd 

sensitive organism (Hyalella azteca; based on studies by T. Straus) and a resistant 

organism (L. stagnalis) was done over 28 d using a toxicologically relevant exposure 

range (0.4 to 2.6 µg Cd/L). Endpoints were survival, growth (dry wt.) and Cd 

accumulation. A relationship between mortality in Hyalella (sensitive organism) and 

accumulation in Lymnaea (resistant organism) was determined for d 28 of exposure. The 

28 d LD20 and LD50 in Hyalella were 0.42 and 0.70 µg Cd/L, respectively. The LD20 and 

LD50 values in Hyalella was associated to 36 and 69 µg Cd/g dry wt. body burden in the 

soft tissue of Lymnaea. Therefore, this novel TRA shows potential but requires more 

validation for it to be used in the field. 
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1.1 Cadmium  

Metals are released to the earth’s surface daily by natural processes (e.g. erosion) 

and from anthropogenic sources (e.g. mining and smelting operations). Canada, one of 

the largest mining nations in the world, produces approximately 60 minerals and metals 

(Pyle et al., 2005) leading to the discharge of contaminants into the environment. Mining 

in Canada has caused elevated concentrations of metals, such as Cd, in surrounding 

aquatic systems (Pyle et al., 2005). Cd is also released from man-made sources such as 

the smelting and refining of sulphide ores of zinc (Zn), lead (Pb) and copper (Cu; Norton 

et al., 1990). The emissions from these anthropogenic processes may enter aquatic 

environments directly as effluents and/or through atmospheric deposition (Boudou and 

Ribeyre, 1997; Canadian Council of Ministers of the Environment (CCME), 1991). Cd is 

also used in commercial substances and therefore can be released during the lifecycle of a 

material or after final disposal.  These sources include pigments, batteries (i.e. Ni-Cd), 

fertilizers, pesticides, PVC stabilizers, metal plating and also alloys (Benin et al., 1999). 

The disposal of Cd-containing products/materials into waste streams accounts for the 

largest release of Cd into the environment (Nordic Council of Ministers, 2003), causing 

levels of Cd to increase dramatically from the naturally occurring background levels 

found in freshwater ecosystems (Hutton, 1983).   

Cd is toxic and not required for any physiological functions of most organisms as 

it is a non-essential metal (Cœurdassier et al., 2003).  Unlike essential metals such as Cu, 

organisms do not have the ability to regulate Cd.  At low levels of Cd exposure, adverse 

effects are seen on many aquatic organisms. For instance Daphnia magna has a lowest-

observable-effect-level (LOEL) of 0.17 µg Cd/L and D. pulex a LOEL of 0.2 µg Cd/L 
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(Biesinger and Christensen, 1972 cited in CCME, 1991; Elnabarawy et al., 1986 cited in 

CCME, 1991).  These and other low-effect levels resulted in the CCME setting an interim 

water quality guideline for freshwater environments of 0.017 µg Cd/L (CCME, 1991).  

 

1.2 Cd Bioavailability  

Metal toxicity to aquatic species depends on the amount of dissolved metal 

available in solution. The free ionic form (Cd
2+

) is the most toxic form of Cd in 

freshwaters, while the soluble complexes (with chloride, sulphate, carbonate or 

hydroxide) are less toxic (U.S. EPA, 2001). The toxicity is dependent on the 

bioavailability of Cd, which can be modified by the amount of dissolved organic carbon 

(DOC), the pH, and the hardness of water. DOCs contain negatively-charged functional 

groups which can bind Cd, decreasing the availability to aquatic organisms. The amount 

of free Cd
2+

 available to an organism is directly correlated to changes in pH and metal 

speciation (U.S. EPA, 2001). Of more importance to this study is water-hardness, 

essentially a measure of the concentration of Ca
2+

 and Mg
2+

 in solution, which has the 

most profound effect on Cd toxicity, with higher hardness values reducing toxic effects 

(U.S. EPA, 2001). Its protective effects are attributed to the competition between the two 

cations, Cd
2+ 

and Ca
2+

, which are similar in radius and charge (Adams and Meador, 

2007). In this project, dissolved-Cd concentrations will be measured rather than total Cd 

concentrations as the former gives a better assessment of the potential risk in the 

ecosystem (Giesy et al., 1977). Since water-hardness has such a profound impact on Cd 
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toxicity, the effects of Cd were monitored in three different water hardness values (20, 90 

and 140 mg/L CaCO3) were conducted in this research project.   

 

1.3 Tissue Residue Approach (TRA)  

The Tissue Residue Approach (TRA) is a complementary but newer approach 

than the Biotic Ligand Model (BLM; Di Toro et al., 2001) for ecological risk assessment 

of metals as both rely on accumulation-effect relationships (as opposed to the traditional 

exposure-effect relationship). The former provides a true measure (internal tissue metal 

concentration) while the latter is a surrogate measure (external water metal concentration) 

of received dose at the site of toxic action. The TRA is based on the relationship between 

internal metal concentrations and toxicological response (Meador, 2006). Meador (2006) 

states there are advantages of TRA for toxicity assessment and conversion. First, critical 

body residues show a lower variability for many contaminants. Second, toxicodynamics 

(toxic potential) is more reliable for characterizing biological responses than uptake. 

Third, the TRA model presents a relationship between tissue residues and adverse 

biological effects to help in generating tissue, water, or sediment guidelines (Meador, 

2006). TRA is also a powerful tool for linking the evidence from laboratory tests to data 

gathered from field data at potentially contaminated field sites. In general, TRA may be 

able to provide an improved and scientifically sound approach to understanding 

contaminant impacts and as a result contribute to biodiversity and ecosystem protection. 

Therefore, it is important to understand the patterns of metal accumulation in animals 

with different sensitivities and to investigate their diverse biological responses to these 
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metals. This will further aid in the development of a TRA model for metal risk 

assessment. Thus, this approach will be used in this project with identifying the toxic 

effects Cd has on organisms. 

 

1.4 Bioaccumulation of Cd 

Bioaccumulation varies greatly amongst freshwater organisms, since an 

organism’s ability to accumulate Cd is based on its uptake and elimination capacity. The 

importance of uptake was demonstrated by Buchwalter and Luoma (2005) who 

conducted an experiment using several aquatic insects, studying their ability to take up 

Cd from the environment. Although there was a great variability amongst the tested 

species with respect to the rate of Cd uptake, Buchwalter and Luoma (2005) determined 

that the number of transporters had a greater influence on Cd uptake rate than the 

transporter’s affinity for the metal, showing that bioaccumulation varies within aquatic 

organisms. Therefore, it is necessary to measure Cd concentrations in an organism’s 

tissue to verify whether or not different concentrations of environmental Cd will have an 

effect on Cd bioaccumulation.  

 

1.5 Sub-cellular Fractionation 

 Sub-cellular fractionation is a useful/highly characterized, widely employed 

technique whereby a tissue homogenate is broken up into many different functionally 

defined fractions (Wang and Rainbow, 2006). This method has recently been applied to 
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understand bioaccumulation patterns as it pertains to mechanisms of toxicity (Wallace et 

al., 2003; Buchwalter et al., 2007). It was used, for example, on two different bivalve 

organisms and effectively separated metal-sensitive cellular components from the 

biologically metal-detoxifying cellular components (Wallace et al., 2003). Five cellular 

fractions were defined with that technique: cellular debris, cellular organelles 

(mitochondria, microsomes and lysosomes), metal-rich granules, cytosolic proteins 

denatured by heat, and heat-stable cytosolic proteins composed primarily of 

metallothionein-like proteins (MTLP; Wallace et al., 2003). The metabolically sensitive 

(active) pools, consisting of the cellular organelles and heat-denatured proteins, are those 

that may be impaired by Cd accumulation, whereas the metabolically detoxified 

(inactive) pools, comprised of the remaining fractions, the granules, heat-stable proteins 

and cellular debris, are those that reduce the freely available Cd in cells (Buchwalter et 

al., 2007; Wallace et al., 2003). Kraemer and colleagues (2005) hypothesized about the 

spill-over hypothesis that proposes that when accumulated metal (i.e. Cd) designated for 

storage in a detoxified form exceeds the detoxified binding capacity (for example, 

MTLP), the metals can subsequently bind to metabolically active forms, with the 

potential to cause toxicity to an organism. This hypothesis predicts metal detoxification 

would be more efficient at low exposure concentrations, whereby metal sensitive 

fractions are protected. If the exposure concentration were to exceed the threshold, the 

binding capacity would be overwhelmed and metals would spill over into the metal 

sensitive fraction (Kraemer et al., 2003). Therefore, sub-cellular fractionation helps in the 

understanding of accumulated metal distribution at a cellular level. This may help in 

linking accumulation to sub-lethal or lethal effects in an organism.  
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1.6 Hyalella azteca 

H. azteca (Crustacea: Amphipoda) is a freshwater amphipod found in bodies of 

water within Canada with a   temperature of 10 °C or greater, which is ideal for breeding 

Canada (Environment Canada, 1997). Adults can range from 6-8 mm in length. They live 

at the sediment-water interface and feed on detritus vegetation.  

Hyalella are easy to culture in lab with the addition of bromide ions in the media, 

as it helps the organism use calcium (Borgmann, 2002). Adults reach maturity in a short 

time (40 d) and can reproduce in the laboratory, producing over 3 – 5 times their 

population. Toxicology testing is usually performed on the most sensitive life stage (2 - 9 

d olds neonates). Hyalella are known to be sensitive to many metals including Cd in a 

range of water chemistries. Cd exposure tests resulted in a 7 d LC50 of 0.57 µg Cd/L for 

soft water (18 mg/L as CaCO3; Borgmann et al., 2005). The LC50 increased with 

increasing water hardness with a 7 d LC50 of 4.41 µg Cd/L in moderately hard water (124 

mg/L as CaCO3; Borgmann et al., 2005).  

 

1.7 Lymnaea stagnalis  

The great pond snail, Lymnaea stagnalis (Pulmonata: Gastropoda), is common in 

the freshwater environments. They are found in slow moving water in the northern 

hemisphere, in many countries such as Canada, United States, England and throughout 

Europe (Boag and Pearlstone, 1979). The great pond snail has a large head with long 

flattened tentacles and a rasping tongue, the radula, to feed on both plant and animal 

matter.  In laboratory conditions, the life cycle of these snails are 14 months and reach 
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reproductive maturity in 4 months when at a constant temperature of 20 ºC (Boag and 

Pearlstone, 1979). In addition, if held at a suitable temperature, these snails can reproduce 

continually all year around in the lab (Boag and Pearlstone, 1979). They lay large 

gelatinous egg-masses between three or four cm in length and that contain as many as 50 

to 120 eggs. The great pond snail often surfaces to take in air into a respiratory cavity, 

however if there is no access to the surface, the snails are able to take in oxygen from the 

water through their skin. Also, their tentacles are covered with cilia which increase their 

surface area, thus increasing the intake of air (Boag and Pearlstone, 1979).  

L. stagnalis are sensitive to many aquatic contaminants. Grosell and colleagues 

(2006) chronically exposed Brachionus calyciflorus, Chironomus tentans and L. stagnalis 

to Pb and the results showed LOEC of 284, 497 and 16 µg Pb/L, respectively. The 

sensitivity of the snails to Pb led to a 20 % effect concentration (EC20) of < 4 µg Pb/L. 

Similarly, early life stages of snails have shown to be sensitive to chronic Pb by resulting 

in an LC50 of 19 µg Pb/L (Borgmann et al., 1978).  

L. stagnalis accumulate many metals such as Co, Cd and Cu (De Schamphelaere 

et al., 2008; Cœurdassier et al., 2003; Croteau et al., 2007). Metal accumulation may 

cause disturbance of ionoregulatory functions and as a result, their survival and 

embryonic development are impacted (Grosell et al., 2006).  Moreover, these snails 

require high levels of Ca for shell formation and growth, and might be sensitive to metal 

exposure especially when the metal interferes with Ca homeostasis (Grosell et al., 2006). 

De Schamphelaere et al. (2008) chronically exposed the snails to Co, which led to a 

reduction in growth at 79 µg Co/L and higher concentrations. At the end of the exposure, 

reduction of Ca levels in the haemolymph was seen. The metal accumulation 
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characteristics and sub-lethal effects (such as growth and shell development) of metals to 

this snail make this species an ideal model for ecological risk assessment.  

 

1.8 Objectives  

The goal of the project is to enhance our knowledge on the effects of Cd to the 

great pond snail, L. stagnalis. Studies are focused on developing and improving the 

understanding of Cd accumulation in these organisms and identifying how water 

chemistry influences the impacts of Cd. Finally, the overall goal is to determine the 

viability of bioaccumulation as an indicator of Cd effects in aquatic invertebrates. To 

accomplish these goals, the following objectives have been identified:  

1) To establish the toxicological endpoints of acute and chronic waterborne Cd on L. 

stagnalis;  

2) To compare toxicological endpoints at three water hardness values (21, 90, and 

140 mg/L CaCO3);  

3) To determine Cd bioaccumulation patterns at whole organism and sub-cellular 

levels in L. stagnalis;  

4) To test a novel approach for bioaccumulation, using bioaccumulation in a Cd 

resistant organism (L. stagnalis) and link it to impacts encountered in a sensitive 

organism (H. azteca). 
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1.10 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.Procedure for determining the sub-cellular fractionation of metal within 

invertebrates. Tissues were homogenized and centrifugation and digestion techniques 

were used to obtain the following sub-cellular fractions: metal rich granules, cellular 

debris, organelles, heat denaturable proteins and metallothionein-like proteins. The metal 

sensitive fractions (MSF) are in grey or black boxes, and the detoxified fractions (DF) are 

in purple. This schematic is adapted from Wallace et al., 2003. 
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2.1 Abstract  

The overall goal of this study is to improve the understanding of Cd accumulation in L. 

stagnalis. Objectives of this study were to understand the relationship between 

bioaccumulation in an exposure and impacts of Cd exposure on the freshwater snail, L. 

stagnalis. Acute toxicity tests (96 h, static-renewal with no feeding) were conducted in 

moderately hard water (140 mg/L as CaCO3) using two sizes of snails (18 or 25 mm). 

The 96 h LC50 for both sizes of snails were similar (350 µg Cd/L, 95 % CI: 148 - 590 µg 

Cd/L) and far above environmentally relevant concentrations. Bioaccumulation in the 

two sizes of snails were similar and showed to be dose dependent and accumulated 

linearly. However, the tissue bioaccumulation was 50 – fold higher than the shell 

accumulation. Ca and Na levels in the soft tissue of snails were not significantly altered 

compared to the controls. Subsequent chronic toxicity testing (31 d, static with daily 

renewal) was performed using three sizes of snails (initial shell lengths of 5, 10 or 15 

mm).  In these tests, growth and survival were assessed and feeding was characterized at 

regular intervals. Exposures of > 30 µg Cd/L resulted in 100 % mortalities in the smaller 

snails while medium and large snails were more resilient. Growth was inhibited at 

exposure concentrations greater than 10 µg Cd/L and this resulted from reduced food 

consumption.  
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2.1 Introduction  

Pulmonate freshwater snails such as L. stagnalis are found in lentic systems 

where they play an important role in the consumption and decomposition of aquatic 

plants (Barnes, 1987). Lymnaea have not been used extensively as an aquatic test 

organism, and there is no standard method for testing this invertebrate. However, it has 

been found that L. stagnalis are sensitive to aquatic contaminants, such as Pb and Cu, and 

therefore can serve as a good model for understanding the potential for environmental 

impacts. L. stagnalis accumulate many metals such as Co, Pb, Cd and Cu (De 

Schamphelaere et al., 2008; Cœurdassier et al., 2003; Croteau et al., 2007). Moreover, 

these snails require high levels of Ca for shell formation and growth, and might be 

sensitive to metal exposure especially when the metal interferes with Ca homeostasis 

(Grosell et al., 2006).  

In a comparison of the sensitivity of three species (Brachionus calyciflorus, 

Chironomus tentans and L. stagnalis) to chronic Pb exposure Grosell et al. (2006) 

showed that Lymnaea were much more sensitive.  The EC20 was less than 4 µg Pb/L. 

Newly hatched snails exhibited reduced growth and physiological evidence has 

demonstrated that Ca influx in the snails was inhibited (Grosell and Brix, 2009), resulting 

in lower soft tissue Ca concentrations that may in turn lead to reduced CaCO3 

precipitation and reduced shell formation. The high Ca uptake by the snails likely 

explains their hypersensitivity to Pb.  This sensitivity to Pb was also been shown by 

Borgmann et al. (1978). However, Lymnaea do not seem to be as sensitive to cadmium, 

often considered to be another calcium antagonist, although high concentrations can 

inhibit their growth (Cd 31 d EC50 of 142 µg Cd/L; Cœurdassier et al., 2003).  
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The accumulation of many metals has been demonstrated with Lymnaea, for 

example Co, Cd and Cu (De Schamphelaere et al., 2008; Cœurdassier et al., 2003; 

Croteau et al., 2007).  As with Pb, metal accumulation may cause disturbance of 

ionoregulatory functions and as a result, their survival and embryonic development are 

impacted.  These snails’ high Cd requirement for shell formation and growth likely 

explains their sensitivity to metals that are known to disrupt Ca homeostasis such as Pb 

and Cd (Grosell et al., 2006). De Schamphelaere et al. (2008) chronically exposed the 

snails to Co, which led to a reduced growth rate at exposure concentrations at and above 

79 µg Co/L.  This reduced growth was associated with reduced Ca in the haemolymph. 

The goal of this study was to improve the understanding of waterborne Cd 

toxicity and accumulation in L. stagnalis.  Acute (96 h) and chronic (31 d) static renewal 

toxicity tests were done in moderately hard water with survival, Cd accumulation, tissue 

Na and Ca content, weight and shell length as endpoints.  These parameters were 

assessed in three different sizes of snails to determine the influence of size (age) on Cd 

sensitivity.    

 

2.3 Materials and Method 

2.3.1 Snail Culture 

Adult L. stagnalis were very generously provided by Dr. D. Spafford of the 

University of Waterloo.  Adults are maintained in 10 L aquaria that were in an aerated, 

re-circulating system (Aquatic Habitats, Apopka, FL), while the juvenile were placed in 

static 10 L aquaria. They were maintained in a mixture of dechlorinated Waterloo city tap 
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water and reverse osmosis water that gave concentrations of Na
+
 at 840 ± 36 µM, Ca

2+
 at 

1560 ± 122 µM, Mg
2+

 at 560 ± 23 µM with a pH  of 7.3 ± 0.1 and temperature of 20 ± 1 

o
C (mean ± SEM; n = 45).  They were kept under a photoperiod of 16 h light: 8 h dark 

and fed locally purchased romaine lettuce and Nutrafin
TM

 Max pellets ad libitum. 

Aquaria with adults were cleaned with a siphon to remove excess feces and filters were 

rinsed from debris re-entering the circulating system. Once a month, egg masses were 

removed from adult aquaria and placed in static aquaria. To minimize the disturbance to 

the animals the water flow was suspended and 50 % of the culture medium renewed 

weekly.  This produced groups of snails of similar age and size (i.e. 5 ± 0.02 mm, 10 ± 

0.1 mm or 15 ± 0.2 mm) and these were subsequently used for toxicity tests.  

2.3.2 General Experimental Procedure 

 The exposure media was made with CaSO4, MgSO4, NaHCO3 and KCl (Sigma – 

Aldrich, Mississauga, ON) with a final concentration of Na
+
 733 ± 13 µM, Ca

2+
 995 ± 45 

µM, Mg
2+

 341 ± 26 µM, pH 7.3 ± 0.05, 21 ± 0.3 
o
C (mean ± SEM, n = 45), a hardness of 

130 mg CaCO3/L and this was designed to mimic Lake Ontario water. Snails were 

transferred to test conditions (without added Cd) 48 h prior to beginning tests for 

acclimation period and were fasted to avoid the accumulation of feces in the test waters. 

This was to prevent the binding of Cd to the particles. Polyethylene 1-L beakers were 

acid-washed in 20 % nitric acid and rinsed with deionized water and ultrapure water 

(18.2 MΩ, Milli-Q) multiple times before use. A control beaker was prepared with 1L of 

media and was left to equilibrate for 24 h. For each concentration, a primary Cd stock 

solution (0.1g Cd/L as CdCl2:2½H2O; ≥ 98 % purity, VWR International, Mississauga, 
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ON) was diluted to 1 L with exposure media, then left in the beaker for 1 d to attain 

equilibrium.  

To begin a test, individual snails were gently blotted with a kimwipe to remove 

excess moisture, weighed and then placed into exposure beakers (d 0).  Exposure waters 

were renewed every 48 h and water samples (10 mL) were collected prior to and after 

renewal. Both total (non-filtered) and dissolved (0.45 µm filtered; Acrodisc HT Tuffryn, 

Pall, Ann Arbor, MI) samples were collected and acidified to 1 % with HNO3 (Trace 

metals grade, Fisher Scientific, Nepean, ON) for subsequent Cd, Ca, Mg, and Na 

measurements. Survival was monitored by touching the foot of the snails with a blunt 

dissecting probe and the lethality endpoint was defined by a lack of response to this 

stimulus (Ng et al., 2011; Croteau et al., 2007).  All surviving snails at the end of time-

point were rinsed with ultrapure water for 10 minutes, gently blotted with a kimwipe to 

remove excess moisture and then stored at – 80 
o
C. Later, they were separated from shell 

and were digested separately for measurements of Cd-bioaccumulation and Ca, Na 

concentrations in the soft tissues.  

Acute (96 h) tests were conducted with two sizes of snails, 18 ± 0.1 and 25 ± 0.2 

mm (mean ± SEM; n = 20) shell length. Two chronic (31 d and 28 d) tests were 

conducted. The first chronic test was used to determine an LC50 for survival and growth 

using 3 different snail sizes (initial shell lengths of 5 ± 0.2, 10 ± 0.1 and 15 ± 0.2 mm; 

mean ± SEM, n = 20).  The second test was used to monitor the time course of Cd 

bioaccumulation throughout a chronic exposure and this was done using only 5 ± 0.02 

mm shell length snails.    
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2.3.3 Acute Test (AT)  

 An AT was run for L. stagnalis (96 h LC50 test). This study was to determine a 96 

h LC50 for Cd in the snails and to understand if sensitivity varies with size (or age).  The 

nominal concentrations of Cd used for this test were 0, 50, 100, 200, 400, 800 and 1600 

µg Cd/L. Ten juvenile snails with a shell length of either 18 ± 0.1 mm or 25 ± 0.2 mm 

(mean ± SEM, n = 20) were exposed to each concentration. The snails were not fed 

during the experiment and survival was monitored every d as tissue samples were 

collected after 96 h as described above. 

2.3.4 Chronic Test (CT)   

The first chronic test was done with 10 snails (initial shell length either 5, 10, 15 

mm) per exposure concentration (nominal: 0, 3, 10, 30, 100 µg Cd/L) for 31 d. The 

artificial Lake Ontario water was made by mixing well water and reverse osmosis water 

to establish a water hardness of 140 mg/L of CaCO3. Snails were fed lettuce ad libitum in 

each beaker every 48 h when the Cd solution was renewed.  On d 10, 17, 24 and 31 d the 

wet wt. and length of each snail was measured. Tissues were collected from surviving 

snails and analyzed for Na, Ca and Cd concentrations (See below).  In the second chronic 

exposure snails with a 5 ± 0.02 mm shell length were exposed for 28 d to determine the 

time-course of Cd accumulation.        

2.3.5 Analysis 

Exposed snails were thawed and soft tissue was separated from shell. Samples 

were dried at 80 °C for 48 h (previously determined to result in a constant dry wt.), 
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weighed and placed in 2.0 mL eppendorf tubes. Concentrated nitric acid (trace metals 

grade, Fisher Scientific, Whitby, ON) was added (1: 5, wt.:v; Janes and Playle, 1995) and 

samples were digested at 65 °C for 48 h.  Shells were similarly digested in concentrated 

nitric acid (1:3, wt.: v). Samples were mixed by vortexing and then centrifuged at 5000 g 

for 10 min and the supernatant was subsequently collected followed by appropriate 

dilution in 1 % HNO3 before measurement for Cd by means of atomic absorption 

spectrophotometry (AAS, SpectAA-880 with GTA100 graphite furnace (GF), Varian 

Inc., Palo Alto, CA).  Water samples were also characterized for Cd content using 

GFAAS.  Tissues and water samples were quantified for Ca, Na and Mg using AAS in 

flame mode. Certified reference materials (TM 28.3 and TM 26.5 National Water 

Research Institute, Environment Canada) were used for internal quality checks and 

recovery was always within 15 % of certified values.  

2.3.6 Statistical Analysis and LC50 Calculation 

Data have been presented as means ± 1 standard error of the mean. For the AT 

and the CT the 96 h LC50 and the 31 d LC50 values with 95 % confidence intervals were 

calculated using the measured dissolved Cd concentrations and the Comprehensive 

Environmental Toxicity Information System (CETIS v1.6.1. rev C Tidepool Scientific 

Software, McKinleyville, U.S.A.) software.  One-Way ANOVA was used to test effects 

of Cd to Lymnaea. Following the significant result, the Fisher LSD post hoc test was used 

to identify group differences. Linear regression analyses were performed to describe 

relationships between survival or length and Cd burden. Significance of all tests was 

taken at p < 0.05.  



23 

 

2.4 Results 

2.4.1 AT 

 Total and dissolved Cd concentrations were measured and there was no 

significant difference between paired samples (Table 2.1). In moderately hard water 

(hardness = 140 mg/L CaCO3) the patterns of mortality were established (Fig 2.1 A & B). 

A 96 h LC50 values for the medium snails (18 ± 0.1 mm) and large snails (25 ± 0.2 mm) 

were 357 (95 % CI: 159 - 590) and 347 (148 - 503) µg Cd/L, respectively. The lowest 

observable effect concentration (LOEC) and the no observable effect concentration 

(NOEC) were not significantly different for both medium and large snails (LOECs of 638 

and 618 µg Cd/L and NOECs at 321 and 308 µg Cd/L, respectively). In both size snails, 

the two highest treatments (628 and 1301 µg Cd/L) showed 90 - 100% mortality by the 

end of the exposure.  

 At the end of 96 h, the surviving snails were measured for Cd burden. Increased 

levels of waterborne Cd corresponded to an increase in Cd burden in soft tissue (Fig 2.2 

A). Similar increase in Cd burden was seen in both medium and large snails. Cd burden 

in the shells were also measured and similar patterns to the soft tissue burden were seen, 

however, not to the same magnitude. In similar treatments, while soft tissue Cd burdens 

reached as high as 750 µg Cd/g dry wt., Cd burden in shells only reached 10 µg Cd/g dry 

wt. (Fig 2.2 B). Further analysis of the soft tissue was conducted to evaluate ion levels in 

the snail (Fig 2.3 A & B). Both Ca and Na levels in the soft tissue were measured and 

showed no significant differences between control and exposed snails in either medium 

or large snails.  
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2.4.2 CT 

 Total and dissolved Cd concentrations were measured. For dissolved, before 

renewal (snails exposed for 48 h) and after renewal (not exposed to snails) measurements 

were taken. There were no significant differences between total and dissolved (Table 

2.2). Also, no significant differences between before and after measurements, with < 20 

% decrease within 48 h. In moderately hard water, the 31 d LC50 values and confidence 

intervals (CI) for the small snails (5 ± 0.02 mm), medium snails (10 ± 0.1 mm) and large 

snails (15 ± 0.2 mm) were 12.8 (CI: 5 – 34), 49.7 (CI: 35 – 74) and 45.7 µg Cd/L (CI: 38 

– 54), respectively (Fig 2.4 A, B & C). This is much lower than the acute tests. For the 

small snails, 100% mortality was seen within 17 d of treatment in the highest 

concentration, however, not seen in the other two size snails until d 24, this lead to a 

much higher LC50 for the medium and large snails.  

 Growth in both length and wt. was also measured during the exposure for all three 

size snails. With the small snails, length (Fig 2.5 A) and wt. (Fig 2.6 A) were similar to 

the control in the lower treatments. However, in 30 µg Cd/L treatments, both length and 

wt. stayed relatively the same as when the exposure started, showing no growth during 

the 31 d. However, this trend was not seen in either of the medium (Fig 2.5 & 2.6 B) 

and/or large snails (Fig 2.5 & 2.6 C) treatments. The controls and the exposed 

concentrations increased in both length and wt. at the same rate in these treatments. 

Moreover, at the end of 31 d, the surviving snails were measured for Cd burden. 

Increased levels of waterborne Cd corresponded to an increase in Cd burden in soft tissue 

(Fig 2.7). Shell analysis for Cd indicated an increase in Cd burden in the shells with 
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increasing concentrations. Similar to the 96 h test, the shell Cd burden was 10 folds less 

compared to that of tissue Cd burden (Fig 2.8). Furthermore, Ca and Na ion levels were 

also measured in the soft tissue and showed no significant change at the varying 

concentrations compared to the controls (Fig 2.9 A & B).  

 

2.5 Discussion  

2.5.1 AT 

The Cd 96 h LC50 was seen as 356.6 (95 % CI: 159 – 590) and 346.5 µg Cd/L 

(CI: 148 – 503) in medium and big snails, respectively. These LC50s were not 

significantly different from each other, showing little difference between these two sizes 

in snails. Also, it demonstrates that adult pond snails are not particularly sensitive to Cd. 

Das and Khangarot (2010) tested the waterborne Cd effect on similar sized pond snails of 

the same genus, Lymnaea. Using the Indian pond snail L. luteola, the researchers found 

the 7 d LC50 was 496 µg Cd/L, when the underlying exposed medium had a hardness of 

230 mg/L CaCO3. This illustrates that the genus Lymnaea are resistant to the toxic effects 

of waterborne Cd. 

The Cd burden in the soft tissue was seen as dose-dependent and there was no 

difference among the two sizes of snails. In both groups, the controls showed 7 µg Cd/g 

dry wt. of Cd, however, Cd burden reached as high as 750 – 800 µg Cd/g dry wt. in the 

soft tissue of the snails exposed to 628 µg Cd/L. Ca levels in the soft tissue of the 

exposed snails were not significantly different in the medium or large snails compared to 
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the controls, even though Cd is a Ca antagonist. This similar trend was seen in whole 

body Na concentration as well. Therefore, Cd burden in the soft tissue accumulated but 

did not appear to have an effect on ion homeostasis levels in the soft tissue. 

The Cd burden in the shell accumulated in a similar pattern to the soft tissue 

burden in the snail. It increased in a dose dependent manner, however, the highest 

exposure concentration did not elicit as high of a Cd burden in the shell as seen in the soft 

tissue of the snails. The highest exposure concentration (628 µg Cd/L) showed a 10 – 12 

µg Cd/g dry wt. of Cd in the shells, while the soft tissue Cd burden reached 800 µg Cd/g 

dry wt. at the same concentration.    

2.5.2 CT 

The Cd 31 d chronic test resulted in a LC50 of 12.8 (95 % CI: 4.8 – 32), 49.7 (33 – 

75) and 45.7 µg Cd/L (39 – 53) in small (5 ± 0.02 mm), medium (10 ± 0.1 mm) and big 

snails (15 ± 0.2 mm), respectively. The small snails displayed 100 % mortality within 17 

d of exposure at the highest exposure concentration and the LC50 was 4 folds lower than 

the medium and large snails. The medium snails had a NOEC (survival endpoint) of 30 

µg Cd/L; however had 100 % mortality at the next highest exposure (100 µg Cd/L). This 

resulted in a similar LC50 compared to the large snails. This shows that the small 

(younger) snails are significantly more sensitivity to Cd compared to the older ones.  

In the small snails, a growth effect was seen as a reduction in shell length and 

body wet wt. at 30 µg Cd/L. At 17 d, there was a significant increase in growth in the 

small snails. The shell length increased from 5 to 15 mm, while the body wt. increased 

from 0.04 g to 0.3 g seen in the controls and exposed snails > 30 µg Cd/L. At the end of 
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the exposure, control snails were 15 ± 0.2 mm in length and 0.3 ± 0.04 g. However snails 

exposed to 30 µg Cd/L, were much smaller at 7 ± 0.1 mm in length and with a wt. of 0.04 

± 0.02 g. In the medium snails, all the exposed snails grew at the same rate as the 

controls, reaching a shell length of 20 ± 0.5 mm (initial shell length 10 ± 0.1 mm). The 

wt. also increased similar in the exposed snails to 0.6 ± 0.09 g. The large snails showed a 

similar trend, where controls and exposed snails both reached similar length and wt., 24 ± 

0.4 mm and 1.0 ± 0.07 g, respectively.  

The results of this experiment demonstrated that adult snails (medium and large) 

are resistant to waterborne Cd exposure at the concentrations used in this study.  Chronic 

LC50 values were much lower than acute values with a ratio of 7.4.  The sensitivity of 

Lymnaea increases dramatically in small snails. This increased sensitivity in small snails 

may be due to the mechanisms of toxicity for Cd in snail, possibly influencing growth 

and development rather than processes such as reproduction.  Energy is primarily focused 

on growth for the smaller snails while in the medium and large snails, where sexual 

maturity is approaching, the focus for energy is directed towards reproduction and 

(apparently) detoxification.  These mechanisms of Cd toxicity in Lymnaea are unknown 

but would be interesting to study but do not appear to be related to disruption of ionic 

balance (e.g. Ca and Na).  This is contrary to expectation for Cd, a known disruptor of Ca 

homeostasis (Grosell et al., 2006). Only small snails showed a disruption of ion balance 

in soft tissue however it was an increase rather than a decrease in concentrations.  This is 

opposite to expectations and awaits future studies for explanation.   
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2.7 Figures 

 

 

 
 

 

Figure 2.1. The effect of waterborne Cd on survival of L. stagnalis over 96 h of exposure 

to either 65, 174, 315, 628, 1301 µg Cd/L. Panel (A) show snails of 18 ± 0.1 mm length 

(mean ± SEM, n = 10) and (B) shows 25 ± 0.2 mm length (n = 10). A group of 

unexposed snails (controls) are also included. The 96 h LC50 values were 357 (95 % CI: 

159 – 590) and 347 (148 – 503) µg Cd/L for 18 mm (A) and 25 mm (B) snails, 

respectively.  
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Figure 2.2. Mean soft tissue (A) concentrations (µg Cd/g dry wt. ± SEM) and mean shell 

(B) concentration (µg Cd/g dry wt. ± SEM) for Cd in L. stagnalis after 96 h of exposure 

to waterborne Cd.  Exposure concentrations were 67, 174, 315 or 628 µg Cd/L (with 

unexposed controls) and two groups of snails are shown, 18 mm in length (filled circles 

with solid line, 18 ± 0.1 mm (mean ± SEM)) and 25 mm in length (inverted triangles with 

dashed line, 25 ± 0.2 mm).  Lines show the best fit linear regression (see text for details) 

and for each mean n = 6 – 9 except for the 315 µg Cd/L exposed groups where for both 

18 and 25 mm snails n = 5.    
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Figure 2.3. The acute effects of waterborne Cd on soft tissue Ca
2+

 (A) and Na
+
 (B) 

concentrations in Lymnaea at 96 h. Control groups are represented by a solid black bar 

and exposed Cd groups are shown with hatching gray bars. Values are mean ± SEM 

(µmol/g dry wt.; No SEM value for Cd concentration 628 µg Cd/L is provided because 

only 1 survivor). For medium and large snails, the n values were Control n = 7, 9; 67 µg 

Cd/L n = 9, 8; 174 µg Cd/L n = 6, 8; 315 µg Cd/L n = 5, 5; 628 µg Cd/L n = 0, 1, 

respectively.  
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Figure 2.4. The effect of chronic exposure to waterborne Cd on the survival of L. 

stagnalis exposed to 2, 8, 26 or 94 µg Cd/L over 31 d.  Three groups of snails are shown, 

panel (A) are snails with an initial length of 5 ± 0.02 mm (mean ± SEM, n = 10), (B) 

length was 10 ± 0.1 mm (n = 10) and (C) length was 15 ± 0.2 mm (n = 10). In panel (B), 

Controls – 26 µg Cd/L had 100 % survival and had overlapping lines. A group of 

unexposed snails (controls) are also shown and the 31 d LC50 values were 13 (95% CI 

4.8 – 32), 50 (33 – 75), and 46 (39 – 53) µg Cd/L for snails with initial starting shell 

lengths of 5, 10 and 15 mm respectively.  
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Figure 2.5. The chronic effects of waterborne Cd on the mean shell length (mm) of 

Lymnaea exposed to 2, 8, 26 or 94 µg Cd/L over 31 d for small snails (5 ± 0.02 mm; 

mean ± SEM; n = 10) (A), medium snails (10 ± 0.1 mm; mean ± SEM; n = 10) (B) and 

large snails (15 ± 0.2 mm; mean ± SEM; n = 10) (C). Only surviving snails were 

measured and therefore, the n value of the exposed snails decreased from 10 to as low as 

2 individuals at higher Cd treatments. A group of unexposed snails (controls) are also 

included and are represented as circles with a black solid line. An * indicates significant 

differences from controls (p = 0.05; Two-way ANOVA, Fisher LSD). 
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Figure 2.6. The chronic effects of waterborne Cd on the wt. (g) of Lymnaea exposed to 2, 

8, 26 or 94 µg Cd/L over 31 d for small snails (0.02 ± 0.004 g; mean ± SEM; n = 10) (A), 

medium snails (0.14 ± 0.008 g; mean ± SEM; n = 10) (B) and large snails (0.6 ± 0.09 g; 

mean ± SEM; n = 10) (C). Only surviving snails were measured and therefore, the n 

value of the exposed snails decreased from 10 to as low as 2 individuals at higher Cd 

treatments. A group of unexposed snails (controls) are also included and are represented 

as circles with a black solid line. An * indicates significant difference from controls (p = 

0.05; Two-way ANOVA, Fisher LSD). 
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Figure 2.7. Soft tissue Cd accumulation of small, medium and large snails at d 31 

exposed to waterborne Cd. Small snails are represented with a circle, medium snails with 

a triangle and large snails with a square. A linear solid line for Cd accumulation for small 

snails is y = - 214 + 112 x (r
2
 = 0.96), a linear dash line for medium snails is y = - 5 + 23 

x (r
2
 = 0.99) and a linear dotted line for large snails is y = 3 + 19 x (r

2
 = 1). Values are 

mean ± SEM (µg Cd/g dry wt.) For small, medium and large snails, the n values were for 

the control n = 10, 10, 7; for 2 µg Cd/L n = 7, 10, 6 for 8 µg Cd/L n = 4, 10, 6 and for 26 

µg Cd/L n = 6, 10, 8, respectively.  
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Figure 2.8. Shell Cd accumulation of small, medium and large snails at d 31 exposed to 

waterborne Cd. Small snails are represented with a circle, medium snails with a triangle 

and large snails with a square. A linear solid line for Cd accumulation for small snails is y 

= - 0.9 + 0.8 x (r
2
 = 0.97), a linear dash line for medium snails is y = - 0.4 + 0.4 x (r

2
 = 

0.98) and a linear dotted line for large snails is y = - 0.2 + 0.4 x (r
2
 = 1). Values are mean 

± SEM (µg Cd/g dry wt.) For small, medium and large snails, the n values were for the 

control n = 10, 10, 7; 2 µg Cd/L n = 7, 10, 6; 8 µg Cd/L n = 4, 10, 6; 26 µg Cd/L n = 6, 

10, 8, respectively.  
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Figure 2.9. The chronic effects of waterborne Cd on soft tissue Ca
2+

 (A) and Na
+
 (B) 

concentrations in Lymnaea at d 31. Control groups are represented by a solid black bar 

and exposed Cd groups are shown with hatching gray bars. Values are mean ± SEM (µg 

Cd/g dry wt.). For small, medium and large snails, the n values were for the Control n = 

10, 10, 7; 2 µg Cd/L n = 7, 10, 6; 8 µg Cd/L n = 4, 10, 6; 26 µg Cd/L n = 6, 10, 8, 

respectively. An * indicates significant differences from controls (p = 0.05). (One-way 

ANOVA, Fisher LSD). 
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2.9 Tables  

Table 2.1: Measured concentrations of total (unfiltered) and dissolved (0.45 µm filtered) 

Cd during the acute exposure. Temperature of exposure water ranged from 20 – 21.2 °C.  

Values are expressed as means ± SEM (n = 5, for each concentration).    

 

 

 

Nominal (µg Cd/L) Total (µg Cd/L) Dissolved  (µg Cd/L) 

Control 0.03 ± 0.002 0.03 ± 0.001 

100 68.1 ± 0.9 66.6 ± 1.4 

200 175 ± 0.6 174 ± 2.4 

400 318 ± 8.4 315 ± 6.3 

800 629 ± 12 628 ± 10 

1600 1305 ± 13 1301 ± 13 

 

 

 

Table 2.2: Measured concentrations of total (unfiltered) and dissolved (0.45 µm filtered) 

during the chronic exposure of Lymnaea. Values are expressed as means ± SEM (n = 45, 

for each concentration). Dissolved Cd concentrations were measured before (fresh 

solutions) and after (measured at 48 h prior to solutions renewal).  

 

 

 

Nominal  

(µg Cd/L) 
Total (µg Cd/L) 

Dissolved  (µg Cd/L) 

Before After 

Control 0.00 ± 0.01 0.01 ± 0.001 0.00 ± 0.01 

3 2.50 ± 0.1 2.27 ± 0.1 1.83 ± 0.1 

10 9.43 ± 0.2 8.46 ± 0.3 6.78 ± 0.2 

30 28.3 ± 0.3 26.1 ± 0.8 21.7 ± 0.6 

100 94.3 ± 3 85.9 ± 1.4 72.7 ± 3 

A 
B C A B C 
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Cadmium in Lymnaea 

stagnalis during Chronic 

Exposure in Soft Water 

  



41 

 

3.1 Abstract  

The relationship between cadmium (Cd) bioaccumulation and toxic effects were 

examined in a freshwater gastropod, L. stagnalis, in soft water (20 mg/L CaCO3). Two 

chronic (28 d) tests were conducted using waterborne Cd concentration with juvenile 

snails. The exposures in the first chronic test ranged from 2.3 – 8.3 µg Cd/L and the 

endpoints measured were survival, bioaccumulation and growth of the snail. The LC50 

was 7.3 µg Cd/L. Cd accumulation within the soft tissue reached as high as 300 µg Cd/g 

dry wt. at exposure concentration 8.3 µg Cd/ L compared to the control at 7 µg Cd/g dry 

wt. Shell length was effected with higher Cd concentrations. The control shell length was 

15 mm at the end of the exposure, but at the highest concentration, the shell length only 

reached 11 mm. A negative correlation between total Cd burden in soft tissue and 

survival or shell length was seen (r
2
 = 0.95 and 0.96, respectively). The second test was 

conducted using environmentally relevant Cd concentrations (0.3 – 2.3 µg Cd/L) and the 

endpoint measured was bioaccumulation (whole and sub-cellular fractionation). Due to 

the low Cd concentrations, no survival effects were seen. Cd accumulation within the soft 

tissue ranged between 6.2 - 117 µg Cd/g dry wt., from the control to the highest 

concentration. Cd accumulation within the soft tissue of the snail was dose dependent and 

reached steady state within 14 d of exposure. Sub-cellular fractionation was performed on 

snails after 28 d of exposure. Proportionally, Cd burden within the heat stable proteins 

and organelles increased with increasing Cd exposure. On the other hand, Cd burden 

within the heat denaturable proteins and metal rich granules stayed relatively similar at 

all concentrations. Therefore, sub-cellular fractionation displays Cd disruption that may 

be a more sensitive endpoint to measure when determining toxicity within an organism.  
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3.2 Introduction 

Bioaccumulation of metals can be used to assess the potential of toxic effects in 

an organism (Adams et al., 2010). Aquatic organisms such as gastropods, when 

confronted with exposure to anthropological loadings of metals such as Cd will 

accumulate it in the soft tissues (Berger and Dallinger, 1989). These accumulations, if 

retained in the tissues, can serve as a useful tool for monitoring Cd in the environment. 

Among gastropods, L. stagnalis are widely used to investigate the effects of various toxic 

substances due to its size, ability to accumulate metals reliability and their wide 

geographical distribution (Desouky, 2006; Cœurdassier et al., 2003). In addition to their 

wide distribution, these gastropods occur in aquatic systems with a variety of different 

geochemical compositions such as hardness, pH and dissolved organic carbon (DOC). 

These geochemical factors alter the bioavailability, and therefore the toxicity, of metals 

such as Cd (Di Toro et al., 2001).  Differences in bioavailability may also be reflected in 

accumulated tissue burden. 

When monitoring metal bioavailability in the environment, a whole organism or 

various organs are usually used to measure accumulation. Toxic effects will generally 

occur as a result of physiological disruptions at the cellular level (Shi and Wang, 2004) 

but not all of the metal internalized will be associated with toxic effects (Rainbow, 2007).  

Accumulated metal can be separated into two classifications; the metabolically active 

pool and the detoxified pool (Wang and Rainbow, 2006). The metabolically active pool 

or metal sensitive fractions (MSF) consists of elements such as organelles (ORG) and 

heat denaturable proteins (HDP), which are sensitive; they damage as a result of bound 

bioaccumulated metal. The detoxified pools or detoxified fractions (DF) consists of the 
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metal rich granules (MRG) and the heat stable proteins such as metallothionein protein 

(MT) or metallothionein like proteins (MTLP), which are induced by metal exposure and 

bind to metals to prevent toxic effects (Wang and Rainbow, 2006; Wallace et al., 2003). 

MTs and MTLPs can be occur in many aquatic invertebrates including Lymnaea, have 

important roles in the homeostasis of essential metals and also help in the detoxification 

of non-essential metals and excess levels of essential metals (Leung et al., 2003). 

Measurements of the sub-cellular distribution of metals have the potential to provide a 

better indication of fraction of the bioaccumulated metal that can cause toxicity compared 

to total metal burden (Desouky, 2006).  

Sub-cellular distribution of cadmium (Cd) in aquatic organisms has been shown 

to provide an improved understanding of the linkages among bioaccumulation and 

impacts. Wallace et al. (2003) used two marine bivalve species (Macoma balthica and 

Poltamocorbula amurensis) that were exposed to 3.5 µg Cd/L or 20.5 µg Zn/L. They 

were both found to have a greater portion of Cd than Zn in the detoxified pool, showing 

the greater necessity to detoxify Cd. The two species differed in the partitioning of Cd in 

this detoxified pool, with M. balthica having a larger portion in MRG and P. amurensis 

in MTLP. This shows different detoxification strategies among these two species. On the 

other hand, in the sensitive fractions both species had a higher portion of Cd in the HDP 

compared to the ORG fraction. In a dietary Cd exposure, predatory gastropods (Thais 

clavigera) were fed snails exposed to 30 or 150 µg Cd/L Cd resulting in increased Cd in 

the MT fraction with decreases in the MRG fractions (Cheung et al., 2006).  These results 

and others confirm the induction of MTLP in the snails; however the rate of Cd-induced 

MT in much slower in lower concentrations compared to higher concentrations.   
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L. stagnalis are known to accumulate high concentrations of a variety of metals 

such as Pb, Co, Cd and Cu (Cœurdassier et al., 2003; Croteau et al., 2007). Grosell et al. 

(2006) found that Pb accumulation can cause ionoregulatory disturbances and further 

resulted in deleterious hatching development. With the requirement of high levels of Ca 

for shell formation and growth, metals interfering with Ca homeostasis can be the more 

toxic to L. stagnalis (Grosell et al., 2006). However, Cœurdassier et al. (2003) found that 

L. stagnalis were not as sensitive to Cd, compared to other Ca antagonists. High 

concentrations inhibited growth, fecundity and fertility in the snails, which resulted in a 

range of EC50 of 60 – 142 µg Cd/L. Leung et al. (2003) discovered adult L. stagnalis 

exposed to 0.01 µg Cd/L accumulated Cd levels similar to their controls. On the other 

hand, exposure to high levels (1000 µg Cd/L) resulted in accumulation of 350 µg Cd/g 

dry wt. of Cd in the soft tissue within 10 d in hard water of 250 mg/L of CaCO3. 

Although, there have been studies conducted on Cd toxicity using Lymnaea, more 

chronic studies are needed on sub-cellular distribution to broaden the knowledge of 

chronic waterborne Cd distribution in the metabolically active fraction and the detoxified 

fractions of gastropods, and how these organisms are able to accumulate large amounts of 

Cd.   

This study involves two experiments with L. stagnalis exposed to waterborne Cd 

test for 28 d. In the first exposure, the endpoints measured were survival, 

bioaccumulation and growth (length and wt.). The second test was conducted using 

environmentally relevant Cd concentrations and the endpoint measured was 

bioaccumulation throughout the exposure. The goals of the study were to find linkages 
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between bioaccumulation in whole-body and sub-cellular distribution in soft tissue with 

both lethal and sub-lethal effects.  

 

3.3 Materials and Methods 

3.3.1 Snail Culture 

Adult L. stagnalis were provided by Dr. D. Spafford of the University of 

Waterloo.  Adults are maintained in 10 L aquaria that were in an aerated, re-circulating 

system (Aquatic Habitats, Apopka, FL), while the juvenile were placed in static 10 L 

aquaria. The media they were maintained in was a mixture of dechlorinated Waterloo city 

tap water and reverse osmosis water that delivered water with concentrations of Na
+
  = 

840 ± 36 µM, Ca
2+

 = 1560 ± 122 µM, Mg
2+

 = 560 ± 23  µM a pH that ranged from 7.2 to 

7.4 and a temperature of  20 ± 1 ºC (mean ± SEM, n = 45). They were kept under a 

photoperiod of 16:8, light: dark and fed locally purchased romaine lettuce ad libitum. 

Aquaria with adult snails were cleaned with a siphon to remove excess feces and filters 

were rinsed from debris re-entering the circulating system. Aquaria with juvenile snails 

had 50 % water renewal weekly. Once a month, egg masses were removed from adult 

aquaria and placed in static aquaria. The snails would hatch within 10 – 14 d and result in 

snails of similar age (4 ± 2 weeks) and size (i.e. 5 mm) for testing. Before testing, a 

screening test for similar size was performed and snails at the two extremes were 

removed (< 3 or > 7 mm).  
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3.3.2 General Experimental Procedure  

Exposures were conducted as static renewal (48 h) using an aquatic media made 

by mixing reverse osmosis and dechlorinated city water to establish a water hardness of 

21 mg/L of CaCO3 (Mg = 74 ± 12  µM, Ca = 140 ± 26 µM and Na = 283 ± 21 µM) and 

pH 7.3 ± 0.1 (mean ± SEM, n = 45). Snails were placed in this medium to acclimate for 

48 h. For each concentration, a concentrated Cd stock solution (as CdCl2:2½H2O; ≥ 98 % 

purity, VWR International, Mississauga, ON) was diluted to achieve the target 

concentration and then left to equilibrate for 24 h, while the control beaker only had 1L 

of media and was left to equilibrate for 24 h. The snails were removed from the 

acclimation aquaria and blotted dry with a paper towel, to remove excess water, and then 

were weighed to the nearest 0.001 g. Snails were then placed into each beaker to initiate 

the test. Prior to and after every water renewal, both filtered (0.45 µm filters with a 3 mL 

syringe) and unfiltered samples (no filter) were taken. Water samples were acidified for 

Cd, Ca, Mg, and Na measurements. Endpoints that were examined were survival, 

bioaccumulation (whole and sub-cellular distribution) and growth. After 28 d of 

exposure, the surviving snails were placed into deionized water for 10 min., excess water 

was removed by blotting with a paper towel and then they were stored at - 80 
o
C. Later, 

the shell and soft tissue were separated and each digested separately for measurements of 

Cd bioaccumulation. Two chronic (28 d) tests were run using ~ 5 mm snails. The first 

chronic test (CT I) was used to determine an LC50 for survival and growth. The second 

test (CT II) was used to monitor Cd bioaccumulation throughout the exposure to compare 

with other experiments conducted in the lab. Sub-cellular fractionation was conducted on 

d 28 to determine Cd concentrations in separate fractions.    
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3.3.3 Chronic Test I (CT I) 

 A chronic test was run for L. stagnalis (28 d LC50 test). This study was to 

determine a 28 d LC50 for Cd in the snails and to understand sensitivity in soft water. The 

chronic toxicity calculated endpoint was the LC50 value and this was based on the 

measured endpoint of survival.  Snails were considered to have expired when a blunt 

dissecting probe touching the foot of the snail had no response to the stimulus. The 

bioaccumulation of Cd was also measured after 28 d of exposure and body burdens were 

calculated on a wt. adjusted basis. Also, growth was monitored during the exposure on d 

7, 14, 21 and 28 by measuring the wet wt. of individuals and length of shells. A range of 

Cd concentrations (nominal concentrations: 0, 2.5, 5 and 10 µg Cd/L) were tested. Ten 

juvenile (7 mm) per concentration were placed into the containers. The snails were given 

fresh food every 48 h, during water renewal throughout the experiment.  

3.3.4 Chronic Test II (CT II) 

Snails were exposed to one of the following Cd concentrations (nominal: 0, 0.4, 

0.8, 1.6 or 3.2 µg Cd/L) and had 3 replicates per concentration for 28 d. Twelve snails 

were placed in each replicate beaker and were fed lettuce ad libitum and replaced every 

48 h, when the Cd solutions were renewed. Juvenile snails (10, 4 – 5 mm) were sampled 

on d 0, followed by 6 snails being sampled on d 1, 4, 7, 21 and 28 from each 

concentration (2 snails per replicate beaker). Only the snails collected on d 28 was used 

for sub-cellular distribution.  
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3.3.5 Analysis 

Water and Whole Tissue Samples 

 The sampled snails from exposures were thawed and soft tissue was separated 

from shell. Samples were dried at 80 ºC until constant wt. was obtained and placed in 2.0 

mL eppendorf tubes. Concentrated (70 %) trace metal grade nitric acid (HNO3; Fisher 

Scientific, Nepean ON) was added for digestion. Acid was added in a 1:5 (wt.: v) ratio 

and placed in the oven at 65 ºC in sealed eppendorf tubes. After 48 h, samples were 

mixed by the vortex and then centrifuged at 5000 g for 10 min. and the supernatant was 

subsequently collected followed by dilution in 1 % HNO3 before measurement by means 

of atomic absorption spectrophotometry (AAS, SpectAA-880, Varian Inc., Palo Alto, 

CA). Water samples were measured for Ca, Mg and Na concentrations by flame AAS, 

and Cd was measured using graphite furnace (GTA 100) AAS. Certified reference 

materials (TM 28.3 and TM 26.5, National Water Research Institute, Environment 

Canada) were used to assess recovery of metals in water and recovery was within 15 %. 

Lobster hepatopancreas reference material (TORT-2, National Research Council Canada) 

was used to assess the recovery of metals in tissue for tissue quality checks and recovery 

was never less than 85 % (85 – 92.3 %).  

Sub-cellular Fractionation 

Sub-cellular distribution protocol was adapted from Wallace et al. (2003) and 

conducted on d 28 snails in the CT II. In short, 1:5 (wet wt.: v) buffer solution was added. 

The buffer was a 20 mM Tris-Base (pH = 8.6 with 2 mM 2-mercaptoethanol and 0.2 mM 

phenylmethanesulfonylfluoride). The tissue was homogenized with the buffer on ice for 7 
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seconds using the Omni THq digital tissue homogenizer (Omni International, Marietta, 

GA) at 20 RPM. One-third of the homogenate was taken for Cd metal recovery. The 

remaining homogenate (2/3) was centrifuged at 1450 g for 15 min. at 4 
o
C. The pellet 

(P1) was placed back in the - 80 
o
C freezer for later analysis. The supernatant was then 

decanted and re-centrifuged at 100,000 g for 1 h at 4 
o
C, and the pellet formed was the 

organelles (ORG) consisting of mitochondria, microsomes and lysosomes. The 

supernatant was then placed on a hot plate for 10 min at 80 
o
C. Then cooled for 1 h at 4

o
C 

and centrifuged at 30,000 g for 10 min at room temperature. This process separates heat 

denaturable proteins (HDP; pellet) and heat stable proteins such as metallothionein-like 

proteins (MTLP; supernatant). P1 was removed from the freezer and thawed on ice. Prior 

to placing on a hot plate for 1 h at 80 
o
C, 1 mL of 1N NaOH was added. It was left on 

bench top to reach room temperature (approximately 10 min.), and then was centrifuged 

at 5000 g for 10 min at 20
o
C. This separated the cellular debris and nuclei (CD; 

supernatant) from metal rich granules (MRG; pellet).    

3.3.6 Statistical Analysis and LC50 Calculation 

Data have been presented as means ± standard error of the mean, unless otherwise 

stated. For CT I, the 28 d LC50 values with 95 % confidence intervals were calculated 

from observed mortality responses and the measured dissolved Cd concentrations using 

CETIS (Comprehensive Environmental Toxicity Information System Software v1.6.1. 

rev C Tidepool Scientific Software, McKinleyville, U.S.A.).  Two-Way ANOVA was 

used to test effects of Cd and exposure time. Following the significant result, the Fisher 

LSD post hoc test was used to identify differences among means. Linear and exponential 

analyses were performed to describe relationships between survival or length and Cd 
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burden, as well as between Cd burdens at different concentrations through-out an 

exposure. Significance of all tests was taken at p < 0.05.  

 

3.4 Results 

3.4.1 CT I 

Survival and Growth 

The nominal concentrations of 2.5, 5 and 10 µg Cd/L corresponded to 2.27 ± 0.1, 

4.51 ± 0.3, and 8.24 ± 0.8 µg Cd/L respectively (n = 45; Table 1.1). Survival decreased 

with increasing Cd exposure which resulted in a LC50 value of 7.3 (95 % CI: 4.7 to 11.3) 

µg Cd/L (Fig 3.1 A). Length and wt. were reduced by the increase in Cd exposure 

however, only the two higher Cd concentrations (4.5 & 8.2 µg Cd/L) showed significant 

differences in length compared to the control (Fig 3.1 B and C).  

Bioaccumulation 

Accumulation in Lymnaea was found to increase with higher Cd concentrations, 

reaching 298 ± 36 µg Cd/g dry wt. at Cd concentration of 8.3 µg Cd/L, compared to the 

control (6.6 ± 0.3 µg Cd/g dry wt.; Table 3.2). The Cd burden was compared with 

survival and length on d 28 and a negative correlation was shown (Fig 3.2). With 

increased Cd accumulation in the soft tissue, there was a decrease in survival with a 

linear line of y = 99 – 0.2 x (r
2
 = 0.95, p = 0.02; Fig 3.2 A).  Similarly, a reduction in 
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length was seen with an increase in soft tissue body burden with a linear line of y = 15 – 

0.01 x (r
2
 = 0.96, p = 0.02; Fig 3.2 B).  

3.4.2 CT II  

Bioaccumulation and Steady State  

The nominal concentrations of 0.4, 0.8, 1.6 and 3.2 µg Cd/L corresponded to 

measured concentrations of 0.3 ± 0.02, 0.5 ± 0.03, 1.3 ± 0.08 and 2.3 ± 0.04 µg Cd/L 

respectively (n = 45; Table 3.3). Accumulation in L. stagnalis was dose dependent and all 

concentrations reached steady state tissue burden by d 14 of exposure (Fig 3.3). The 

accumulation had significantly increased throughout the exposure until d 14 where it 

begins level off or stay constant. The body burdens from exposed individuals were 

significantly higher than controls (n = 6, p < 0.05). The exponential curves are displayed 

in Table 4 with r
2
 values.  

Sub-cellular Fractionation 

Sub-cellular distribution was conducted on the soft tissue of snails at d 28.  Cd 

burden increased in all parts of the cell. (Fig 3.4 A) Proportionally, compared to the total 

body burden, metallothionein-like proteins are the only fraction that increased in burden 

(Fig 3.4 B).  However, the metal rich granules and organelles stayed relatively similar to 

the control. The cellular debris and heat denaturable proteins, decreased in Cd burden in 

the soft tissue. Therefore, in the control, the order of Cd burden was seen as ORG > HDP 

> MRG > CD > MTLP. However, at the highest Cd exposure (2.3 µg Cd/L), the Cd 

burden changed and is better seen as ORG > MTLP > MRG > HDP > CD.  
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Comparing only the metabolically active pool or metal sensitive fraction (MSF) 

(consisting of ORG and HDP) and detoxified fraction (DF; consisting of MRG and 

MTLP), the DF shows an increase in Cd burden with increasing Cd exposure (Fig 3.5 A). 

Additionally, if you look at it proportionally comparing to total soft tissue burden, the 

control snails have a much smaller burden in the DF than the MSF (Fig 3.5 B). However, 

with increasing Cd exposure concentration, there was an increase in Cd burden seen in 

the DF, reaching equal levels to the MSF at the highest concentration.     

 

3.5 Discussion 

3.5.1 CT I 

Survival and Growth  

 The 28 d LC50 value was 7.3 µg Cd/L (95 % CI: 4.7 – 11.3) in soft water of 20 

mg/L as CaCO3. Therefore, this demonstrates that the juvenile snails are moderately 

resistant to Cd, compared to salmonids and amphipods, even though it may compete with 

Ca
2+

 ion. However, L. stagnalis are sensitive to other metals, such as Cu (Na
+
 ion 

antagonist), Co and Pb (Ca
2+

 ion antagonists) as indicated by other studies (Ng et al. 

2011; De Schamphelaere et al., 2008; Grosell et al., 2006).  Unlike other invertebrates, 

such as the Daphnia magna which are much more sensitive and experienced a 16 % 

decrease in reproduction within 21 d of exposure to 0.17 µg Cd/L at a water hardness of 

49 mg/L (as CaCO3; Biesinger and Christensen, 1972). H. azteca were also more 
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sensitive to Cd, with a 42 d LC50 of 0.53 µg Cd/L in water with a hardness value of in 130 

mg/L as CaCO3 (Borgmann et al., 1991). 
 

In the current study, a 27 % deduction in shell length was seen on d 28 at the 

highest exposure concentration compared to the control.  This again demonstrates that 

Lymnaea are less sensitive as sub-lethal growth effects (11 % reduction in body wt.) were 

observed over 46 d in Atlantic salmon (Salmo salar) exposed to waterborne Cd 

concentrations of 0.47 µg Cd/L (Rombough and Garside, 1982). Lymnaea have 

demonstrated a reduction in growth when exposed to Pb concentrations, associated with a 

reduction of Ca influx (Grosell and Brix, 2009). Similarly, Ng et al. (2011) found that in 

chronic waterborne Cu exposures, Lymnaea resulted in a reduction in growth but this was 

not associated with a decrease in feeding or internal Ca balance. They hypothesized it 

may be due to a re-allocation of energy to detoxification of Cu toxicity. A similar theory 

may be used to describe the reduction in growth caused by Cd exposure as detoxification 

may be a priority for survival.     

Bioaccumulation 

 There was an increase in Cd accumulation in the soft tissue as waterborne Cd 

concentrations increased, showing a dose dependent response in this study.  Hoang et al. 

(2008) found bioaccumulation of Cu in whole body (soft tissue + shell) of Florida apple 

snail, Pomacea paludosa, to be dose dependent as well. With Cu body burden 30, 50 and 

60 µg Cu/g dry wt. exposed to Cu concentrations (6, 8.2 and 12.2 µg Cu/L, respectively) 

for 28 d at water hardness of 54 mg/L as CaCO3. Ng et al. (2011) showed similar results, 

reaching accumulation of 9.3 ± 1.3 µg Cu/g wet wt. at the highest Cu concentration 

exposed (18.2 µg Cu/L). Cd burden within the soft tissue of the snails to toxic effects 
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were shown to be correlated. Increased Cd burden in the soft tissue was correlated to a 

decreased survival as well as decreased shell length.   

 

3.5.2 CT II 

Bioaccumulation and Steady State 

 At low (and environmentally relevant) concentrations, there was no mortality or 

reduction in shell length seen by the exposed snails, compared to the controls. The snails 

showed an increase in Cd burden concentration through the exposure at all concentrations 

until reaching a plateau after d 14 of approximately, 6, 25, 30, 60 and 120 µg Cd/g at 

concentrations of control, 0.3, 0.5, 1.3 and 2.3 µg Cd/L. This corresponds with the theory 

where initially, uptake increases tissue Cd concentration because of the rate of 

elimination is exceeded by uptake. With exposure concentrations remaining constant, the 

uptake and elimination will eventually balance, finally reaching steady state (Campbell et 

al., 2008). Steady state tissue burden was also seen in the Florida apple snail, P. 

paludosa, when Hoang et al. (2008) exposed juvenile apple snails to Cu. The whole body 

(shell + soft tissue) Cu burden increased rapidly from the start of the exposure, eventually 

slowing down, until reaching steady state tissue burden after 14 d of exposure. However 

in this study, Cd burden on d 28 from the first test is significantly different from the 

second test, which may be caused by the different size of the juvenile snails at the start of 

the exposure. The snails in CT II were younger (4 – 5 mm), however the controls reached 

similar sizes at the end of exposure, as in CT I, and maybe the snails had to increase 

uptake of Ca
2+

 ion, and perhaps increasing the Cd
2+

 ion as well. 
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Sub-cellular Fractionation   

In the present study, although, the first test was able to compare Cd body burden 

with toxic effects seen in the snails, the Cd concentrations used were not environmentally 

relevant concentrations. However, when using more relevant concentrations, no toxic 

effects were seen on a whole body level, such as mortality or growth reduction. To try to 

assess whether toxic effects were related to sub-cellular fractions, analysis of distribution 

to pools within the cells was conducted. Sub-cellular distribution was conducted on the 

soft tissue of snails at d 28. Cd burden increased in all pools.  There was evidence of MT 

or MTLP induction to detoxify accumulated Cd however the sensitive fractions also 

increased and only at the second highest concentration (1.3 µg Cd/L), exposure was there 

evidence of a protection against accumulation in sensitive fractions (Fig 3.4 and 3.5). 

Wallace et al. (2003) found similar results in a marine bivalve P. amurensis, exposed to 

3.5 µg Cd/L, where an increase in burden of Cd in the MTLP fraction was seen as a 

strategy for detoxifying Cd. Similarly, Leung et al. (2003) exposed L. stagnalis to 

waterborne Cd of 0.01 and 1000 µg Cd/L, for 10 d. Snails exposed to 1000 µg Cd/L 

contained significantly higher concentrations of Cd compared to controls, a 3-fold 

increase of MTLP was seen in the highest concentrations of Cd. However, at the lower 

concentration, no significant increase in Cd burden within the MTLP fraction was seen 

(Leung et al., 2003). With dietary Cd, the marine snail, T. clavigera also was found to 

have an increase of Cd in the MTLP fraction, with increasing time (Cheung et al., 2006). 

MTLP increase in metal burden is seen in other metals such as Cu. For example, Ng et al. 

(2011) reported a significant increase of Cu burden within the MTLP proportion, with 

increased Cu exposure concentrations.  
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When comparing the burden of Cd seen in each proportion, in the current study, 

organelle and MTLP had the highest fraction, with MRG, then HDP and finally CD. 

However, this is not seen in Lymnaea exposed to other metals. For example, when 

Lymnaea are exposed to Cu, organelles have 32 – 43 % of the Cu burden with MTLP and 

CD in second with (20 – 33 % and 16 – 33 %, respectively; Ng et al., 2011).  HDP are 

between 2 – 6 %, and finally, the MRG with only 2 - 6 %. Although, the two highest 

fractions did stay similar with HDP and MTLP be approximately 30 – 45 % of the Cd 

(Ng et al., 2011).    

There was a transfer of Cd burden from the MSF to the DF. This was seen when 

the snails were exposed to increasing Cd concentration, showed an increase in the DF, 

while a decrease of burden in MSF while at the same time an increase in a DF.  Wallace 

et al. (2003) hypothesized that there was a redistribution of Cd burden from MSF into DF 

in the bivalve P. amurensis with no decrease in Cd burden seen in the snails, similarly 

exposed, but rather a change in location of Cd burden.   

In the present study, MRG did not show an increase in Cd burden. Similarly, 

Cheung et al. (2006) discovered a negative correlation between Cd proportioned in the 

MRG faction and accumulation of total body burden. However, MRG is known to 

increase as a result of toxic effects from metals. For example, Ng et al. (2011) showed a 

significant increase in Cu levels in the MRG fraction. This may be because of different 

contaminants are able to induce different detoxification strategies to maintain 

homeostasis within an organism.   

Therefore, although, toxic effects can be linked to soft tissue Cd burden, they are 

only seen in high concentrations. These concentrations needed to be higher than natural 
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occurrences because of the tolerance of Lymnaea to Cd, which will lead to adverse effect 

(lethal and sub-lethal). However, for more environmentally relevant concentrations, 

induction of MTLP was seen, however MTLP was not measured. However, future studies 

should measure the levels of MTLP induced due to Cd toxicity. Moreover, the 

biologically detoxified fraction was shown to increase in Cd burden while metal sensitive 

fraction was shown to decrease in the burden, possibly re-location of Cd burden as a 

detoxification mechanism. 
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3.7 Figures 
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Figure 3.1. Chronic Test 1 (CTI):The chronic effects of waterborne Cd on the survival 

(A) as well as mean length (B) and mean dry wt. (C) of L. stagnalis over 28 d of 

exposure. Cd exposure concentrations are given in the legend of the graph and a group of 

unexposed snails (controls) are also included.  In panels (A), (B) and (C), the error bars 

indicate SEM (for each mean n = 14 – 20 except for 8.2 µg Cd/L exposed group where n 

= 9) and an * indicates a significant difference from controls on that d (p < 0.05). The 

LC50 value was 7.3 (95 % CI: 4.7 to 11.3) µg Cd/L. (Two-way ANOVA, Fisher LSD). 
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Figure 3.2. CTI: Relationship between mean Cd soft tissue burden (µg Cd/g dry wt. ± 

SEM) and survival (A) and mean length (B)  of L. stagnalis exposed to waterborne Cd 

(either 2.3, 4.5, or 8.2 µg Cd/L) at d 31. Survival and tissue burden (A) shows a line y = 

99 – 0.2 x (r
2
 = 0.95, p = 0.02) representing the correlation. Length and tissue burden (B) 

show a correlation where y = 15 – 0.01 x (r
2
 = 0.96, p = 0.02).  
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Figure 3.3. Chronic Test 2 (CTII): Mean concentration of Cd in soft tissues of L. 

stagnalis exposed to 0.3, 0.5, 1.3 or 2.3 µg Cd/L over 28 d. Concentrations in an 

unexposed control group are also included and are represented by a circle. Means are 

shown with SEM, n= 6 for each d and lines show the best fit of an exponential model [y 

= a * (1 – e (-b * x)], see table 4 for details. An * indicates significant differences from 

the control on d 28. (Two-way ANOVA, Fisher LSD). 
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Figure 3.4. CTII: Sub-cellular fractionation of soft tissue L. stagnalis exposed to 0.3, 0.5, 

1.3 or 2.3 µg Cd/L at d 28. A control group is also included. The fractions are stacked 

and show ORG: organelles, HDP: heat denatured proteins, CD: cellular debris, MTLP: 

metallothionein-like proteins and MRG: metal rich granules. Panel (A) is the Cd burden 

displayed as (µg Cd/g dry wt.), whereas panel (B) shows the Cd burden in percentage at 

the various fractions. Detoxified fractions are shown in purple with hatch lines. Values 

are mean (µg Cd/g dry wt.), n = 6.   
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Figure 3.5. CTII: Sub-cellular fractionation of soft tissue L. stagnalis exposed to 0.3, 0.5, 

1.3 or 2.3 µg Cd/L at d 28. A control group is also included. The fractions are grouped 

and show MSF: metal sensitive fraction, which includes, organelles and heat denatured 

proteins and DF: detoxified fraction, which includes metallothionein-like proteins and 

metal rich granules. The MSF is shown in black, and the DF in purple. CD values are not 

included. Panel (A) is the Cd burden displayed as (µg Cd/g dry wt.), whereas panel (B) 

shows the Cd burden in percentage at the various fractions. Values are mean (µg Cd/g 

dry wt.), n = 6.     
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3.9 Tables  

 

 

Table 3.1: Measured concentrations of total (unfiltered) and dissolved (0.45 µm filtered) 

Cd during chronic test 1 (CT I). Temperature of exposure water ranged from 21 – 21.9 

°C.  Values are expressed as means ± SEM (n = 45, for each concentration). Dissolved 

Cd concentrations were measured before (fresh solutions) and after (measured at 48 h 

prior to solutions renewal). 

 

 

 

Nominal  

(µg Cd/L) 
Total (µg Cd/L) 

Dissolved  (µg Cd/L) 

Before After 

Control 0.00 ± 0.01 0.01 ± 0.001 0.00 ± 0.01 

2.5 2.47 ± 0.1 2.27 ± 0.1 2.05 ± 0.1 

5 4.76 ± 0.2 4.51 ± 0.3 4.02 ± 1.5 

10 9.37 ± 0.3 8.24 ± 0.8 8.07 ± 0.6 

 

 

 

 

Table 3.2: Cd burden in the soft tissue of Lymnaea at d 28 of CT I. Cd concentrations 

displayed with the burden associated (µg/g dry wt.) ± SEM with n values. An * indicates 

significance from controls. (One-way ANOVA, Fisher LSD). 

 

 

 

Concentration 

 (µg Cd/L) 

Cd burden (µg Cd/g dry wt.) 

± SEM (n value) 

Control 6.6 ± 0.3 (20) 

2.3 35.2 ± 3 (19) * 

4.5 114 ± 8 (14) * 

8.2 298 ± 36 (9) * 
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Table 3.3: Measured concentrations of total and dissolved Cd during chronic test 2 (CT 

II). Temperature of exposure water was 20 – 20.3 °C.  Values are expressed as means ± 

SEM (n = 45, for each concentration). Dissolved Cd concentrations were measured 

before (fresh solutions) and after (measured at 48 h prior to solutions renewal).  

 

 

 

Nominal  

(µg Cd/L) 
Total (µg Cd/L) 

Dissolved  (µg Cd/L) 

Before After 

Control 0.00 ± 0.01 0.02 ± 0.001 0.01 ± 0.01 

0.4 0.35 ± 0.01 0.31 ± 0.02 0.30 ± 0.04 

0.8 0.53 ± 0.02 0.52 ± 0.03 0.51 ± 0.01 

1.6 1.41 ± 0.07 1.34 ± 0.08 1.29 ± 0.06 

3.2 2.51 ± 0.06 2.31 ± 0.04 2.21 ± 0.02 

 

 

 

 

Table 3.4: The parameters for the exponential curve fitting from chronic exposure II (Fig 

3.3).  The exponential curve model was y = Cmax * (1 – e 
-ax

) and the r
2 

values.   

 

 

 

Concentration  

(µg Cd/L) 

Cmax 

Exponential 

Curves 

a r
2
 

Control 6.2  ± 2 0.13  ± 0.1 0 

0.3 25  ± 3 0.15  ± 0.05 0.89 

0.5 30 ± 3 0.24  ± 0.08 0.9 

1.3 61 ± 5 0.21  ± 0.06 0.93 

2.3 117 ± 12 0.13  ± 0.04 0.93 
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4.1 Abstract 

Chronic cadmium toxicity research has gaps due to minimal studies focusing on chronic 

work. Bioaccumulation is one method of measuring Cd toxicity in an organism. The TRA 

uses bioaccumulation to find a potential linkage to toxic effects in an organism. Although 

this is an ideal method, organisms are complicated. Some organisms have the ability to 

prevent toxic effects from occurring, while other organisms are too sensitive and cannot 

tolerate accumulation of metals. Therefore, a novel TRA is suggested, where a resistant 

organism with the ability to accumulate Cd reliably and dose dependently is compared to 

a more sensitive organism that shows toxic effects at lower Cd concentrations. 

Accumulation-effect relationships using Cd was the goal of this study. Two chronic 

experiments using Hyalella and Lymnaea were conducted simultaneously. For Hyalella, 

endpoints that were monitored were survival, growth (dry wt.) and accumulation 

throughout the exposure. For Lymnaea, the endpoint measured was bioaccumulation.   

The relationship in Hyalella between Cd body burden and survival was 58.3 µg Cd/g dry 

wt. associated with a 50 % decrease in survival. Due to low levels of Cd, no relationship 

between accumulation and toxic effects were conducted in Lymnaea. Finally, a 

relationship between mortality in Hyalella (sensitive organism) and accumulation in 

Lymnaea (resistant organism) was determined for d 28 of exposure. An LD20 and LD50 in 

Hyalella was associated with a 36 and 69 µg Cd/g dry wt. Cd body burden in the soft 

tissue of Lymnaea. Therefore, this novel TRA shows potential but requires more 

validation for it to be used in the field.       
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4.2 Introduction 

Cadmium occurs naturally in the environment, but can be elevated in aquatic 

environments due to anthropogenic sources such as mining or smelting of metals (Zn, Cu, 

Pb) (Pan et al., 2010). Cd is a known Ca antagonist and is taken up across a respiratory 

surface of an aquatic organism through Ca channels (Verbost et al., 1988). While there 

are many studies documenting the acute effects of Cd, there are fewer that assess the 

chronic toxicity of Cd.  

 The traditional parameter used for affects assessment in aquatic organisms is the 

concentration in the environmental surroundings (the aquatic medium). While measures 

of total, dissolved (or more recently) free ion concentrations of metal are used to express 

effects these are surrogates for the concentration acting at the site of toxicity. An internal 

measure of Cd toxicity may be a better indication because it comes closer to 

approximating the concentration at the site of toxic action. For relatively small 

invertebrates whole organism Cd bioaccumulation is one way to assess toxic effects in an 

organism (Adams et al., 2010).  

 Bioaccumulation usually occurs in two stages. The initial stage is characterized by 

increases in tissue concentration as the rate of uptake exceeds rate of elimination of Cd 

into the organism. The second stage occurs when a steady state develops when 

elimination and uptake rates balance and tissue burden become constant (Campbell et al., 

2008).  It is worth noting that there are exceptions to this two stage scenario for 

bioaccumulation as some organisms form and store metals into granules and thus never 

really reaches a steady state condition (Croteau and Luoma, 2008). Borgmann et al. 

(1991) examined Cd bioaccumulation in H. azteca and found a relationship with EC50, 
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where a  0.53 ± 0.2 µg Cd/L exposure was associated with Cd burden of 38 µg Cd/g dry 

wt. Hoang et al. (2008) showed steady state reached by the Florida apple snail, P. 

paludosa, exposed to waterborne Cu. The whole body Cu burden rapidly increased until 

d 14 after which a steady state tissue burden was reached. In my studies (Chapter 3) 

steady state tissue burden was shown in Lymnaea after 14 d of exposure.  

 The tissue residue approach (TRA) relies on an 

 unambiguous burden to effect relationship in an organism. Toxic effects occur when 

internal Cd concentrations reach and exceed a threshold at a specific site of toxic action 

(Campbell et al., 2008). However organisms have the ability to detoxify internalized Cd, 

preventing it from inducing toxicity (Adams et al., 2010; Wang and Rainbow, 2006; 

Desouky, 2006). When measuring whole organism or tissue burdens, detoxified pools of 

metal cannot be distinguished from concentrations that might be interacting at the site of 

toxic action and therefore clear burden-to-effect relationships cannot be established. In 

the case mentioned above, Borgmann et al. (1991) exposed Hyalella to Cd and was able 

to link a tissue burden to toxicity. However this was only done in one exposure condition 

and under other conditions (e.g. altered water hardness) may result in the accumulation 

associated with toxicity being very different. 

 Adams et al. (2010) suggested a novel TRA that could be applied to metals. The 

modified TRA concept is based on the same approach, in other words, finding 

relationships between bioaccumulation and toxic effects; however this is not measured in 

the same organism. Accumulations are assessed in a Cd resistant organism, which can 

accumulate Cd reliability, in a dose dependent manner and reach steady state tissue 

burden. While, toxic effects are measured in a Cd sensitive organism, which may not 
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reliably and consistently accumulate Cd but shows toxicity at low levels of Cd. 

Therefore, an accumulation-effect relationship was established between two organisms 

sharing similar freshwater environments, and the resistant organism acts as a bio-

indicator of toxicity in the sensitive organisms.  

 L. stagnalis is a freshwater gastropod, known to reliability accumulate high 

concentrations of a variety of metals such as Pb, Co, Cd and Cu (Cœurdassier et al., 

2003; Croteau et al., 2007;  Ng et al., 2011). In a study conducted by Cœurdassier et al. 

(2003), they found that L. stagnalis were not sensitive to Cd, compared to other 

organisms. If concentrations were sufficiently elevated inhibited growth, fecundity and 

fertility can occur and the EC50 values ranged from 60 to 142 µg Cd/L. Leung et al. 

(2003) discovered adult L. stagnalis exposed to 0.01 µg Cd/L did not accumulate 

significant amounts of Cd as tissue concentrations were similar to controls. On the other 

hand, exposure to high levels (1000 µg Cd/L) resulted in accumulation of 350 µg Cd/g 

dry wt. of Cd in the soft tissue within 10 d in hard water of 250 mg/L of CaCO3. More 

studies on chronic Cd toxicity are needed with environmentally relevant concentrations to 

understand accumulation-effect relationship in Lymnaea.  

H. azteca are freshwater amphipods that are found in North American freshwaters 

(Environment Canada, 1997). They are easily cultured in laboratory conditions and are 

known to be sensitive to a variety of metals, including Cd (Borgmann et al., 1991; 

Borgmann et al., 2005). Borgmann et al. (2005) found 7 d LC50s were 0.57 and 4.41 µg 

Cd/L for soft and hard water, respectively (18 and 124 mg/L as CaCO3, respectively). A 

previous study by Borgmann et al. (1991) found an EC50 for Cd accumulation as 38 µg 

Cd/g dry wt., in hard water (130 mg/L as CaCO3).     
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The goal of this study was to develop a TRA using the model suggest by Adams 

et al. (2010) where potential relationships between accumulation and toxic effects are 

determined in two different organisms. This study involved side by side experiments with 

L. stagnalis and H. azteca exposed to the same concentrations of waterborne Cd for 28 d, 

in similar water chemistry. In the H. azteca exposure, the endpoints measured were 

survival, bioaccumulation throughout the exposure and growth (dry wt.). Relationships 

between Cd body burden and toxic effects were determined in Hyalella. In the Lymnaea 

exposure, the endpoint measured was bioaccumulation at d 28 of exposure. Due to low 

levels of Cd exposure and the relative resistance of Lymnaea, no toxic effects were 

anticipated in Lymnaea. The goal was to establish a relationship between toxic effects in 

Hyalella (sensitive organism) and accumulation in Lymnaea (resistant organism) 

determined over 28 d of exposure.   

 

4.3 Materials and Methods 

4.3.1 Snail Culture 

 L. stagnalis were generously provided by Dr. D. Spafford of the University of 

Waterloo.  Adult and juvenile snails were maintained in a mixture of dechlorinated 

Waterloo city tap water and reverse osmosis water (see Chapter 2 for details) at 20 ± 1 ºC 

in 10 L aquaria within an Aquatic Habitats (Fisher Scientific, Whitby, ON) recirculating 

system where approximately 10 % of the water was renewed every second d. When 

adults in an aquarium laid egg masses, they were moved into new aquaria, water flow 
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was suspended as eggs hatched.  The snails were fed romaine lettuce ad libitium and 

further culture details are provided in Chapter 2.   

4.3.2 Hyalella Culture 

 H. azteca were purchased from Aquatic Research Organisms (Hampton NH), and 

cultured in 1L polyethylene beakers. Cultures were maintained in artificial media 

containing 1.0 mM Ca
2+

, 1.0 mM Na
+
, 0.05 mM K

+
, 0.25 mM Mg 

2+
 and 0.01 mM Br

- 

(Sigma-Aldrich, Nepean, ON). A 5x5 cm piece of sterile cotton gauze was added to each 

beaker for use as a substrate (Environment Canada, 1997). Temperatures in lab cultures 

were maintained at 20 ± 2
 o

C.  Each beaker held approximate 20 organisms and received 

5 mg of ground Tetramin® flakes (Tetra Werke, Blacksburg, VA, U.S.A.) 3 times a 

week. Culture water was replaced and neonates were separated from the adults weekly. 

4.3.3 General Experimental Procedure 

Exposure media was made using reverse osmosis water and dechlorinated 

Waterloo water to establish a water hardness of 90 mg/L as CaCO3 (Na = 719 ± 46 µM, 

Mg = 351 ± 21 µM and Ca = 557 ± 31 µM) and a pH of 7.3 ± 0.1 (mean ± SEM, n = 45). 

Nominal Cd exposure concentrations were 0, 0.8, 1.6, 3.2, 6.4 µg Cd/L. Cd exposure 

solutions were made in batches of 20 L 48 h prior to test and placed in polypropylene 

beakers for 24 h to  equilibrate. Prior to the exposure snails were blotted to remove 

excess water and then Hyalella were placed in separate exposure containers beside each 

other to ensure similar conditions. Water was renewed every 48 h and 10 mL samples 

were taken prior to and after renewal. Samples were collected for total metal (no 

filtration) and dissolved metal (0.45 µm filtered) as described in Chapter 2.   
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4.3.4 Chronic Test (CT) using H. azteca    

 Exposures followed standard method EPS 1/RM/33 (Environment Canada, 1997) 

and were conducted using ten 2 - 9 d old neonates in 500 mL beakers with 400 mL of 

exposure media.  Four replicates were done, a substrate (5 x 5 cm
 
piece of cotton gauze) 

was provided for each beaker and 5 mg of ground Tetramin® flakes were fed every water 

renewal (every 48 h). Surviving individuals were placed back in the exposure at each 

water renewal and dead individuals were removed using a disposable pipette. To monitor 

Cd bioaccumulation during the exposure, 6 individual organisms were sampled on d 0, 1, 

4, 7, 14, 21 and 28.  Each Hyalella was given 6 h the control medium to allow for 

clearance of gut contents before further being weighed and digested (see below).  

4.3.5 Chronic Test (CT) using L. stagnalis  

 The test was conducted using 10 snails with a shell length of approximately 5 mm 

snails, in each beaker. Lettuce was placed in each beaker after water renewal. Every week 

(on d 7, 14, 21 and 28 of exposure) survival was assessed and shell length of snails was 

measured. At the end of the exposure soft tissues were collected for Cd accumulation was 

characterization by removing snails from the exposure, placing them in ultrapure water 

for 10 min and then storing in the freezer at - 80 ºC.  

4.3.4 Analysis 

 Sample analysis was as described in Chapter 2 for Lymnaea tissues and water 

samples.  In brief, snails were sampled on d 28 for soft tissue Cd burden. The soft tissue 

was separated from the shell, weighted and then placed into 2.0 mL centrifuge tubes and 
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dried at 80 
o
C for 48 h. Following drying, individuals were weighed and then digested in 

300 µL of 70 % trace-metal grade HNO3 for 2 d at 65 
o
C. Individual amphipods were 

blotted dry, placed in the oven in open 0.6 mL centrifuge tubes for 48 h at 80 
o
C, weighed 

using a Sartorius SE2 Ultra Micro Balance (Sartorius Mechatronics Corp., Bohemia, NY, 

U.S.A) and then digested in 25 µL of concentrated nitric acid (trace-metal grade, Fisher 

Scientific, Whitby, ON) for 6 d, after which 20 µL of 30 % H2O2 was added for an 

additional 24 h (Borgmann and Norwood, 1997).   

 Following digestion of soft tissue (snails) and whole organism (amphipods), 

samples were mixed by vortex and centrifuged (Spectrafuge 16M; Labnet International, 

Edison, NJ, USA) at 5000 g for 10 min and the supernatant was measured after 

appropriate diluted with 1 % HNO3 (trace metal grade).  Cd characterization (tissue and 

water samples) was done by graphite furnace atomic absorption spectrophotometry (GF-

AAS, GTA 100 with SpectAA-880, Varian Inc., Palo Alto, CA). Water samples for Ca, 

Na and Mg were measured using AAS in flame mode. Certified reference materials (TM 

28.3 and TM 26.5, National Water Research Institute, Environment Canada) were used to 

assess recovery of metals in water and recovery was within 15 %. Lobster hepatopancreas 

reference material (TORT-2, National Research Council Canada) was used to assess the 

recovery of metals in tissue for tissue quality checks and recovery was never less than 85 

% (85 – 92.3 %).  

4.3.5 Statistical Analysis and LC50 Calculation 

Data have been presented as means ± 1 standard error of the mean, unless 

otherwise stated. For Hyalella test, the 7, 14, 21 and 28 d LC50 values with 95 % 



77 

 

confidence intervals were calculated from observed mortality responses and the measured 

dissolved Cd concentrations using CETIS (Comprehensive Environmental Toxicity 

Information System Software v1.6.1. rev C Tidepool Scientific Software, McKinleyville, 

U.S.A.).  One-Way ANOVA was used to test effects of Cd accumulation and exposure 

concentration in Lymnaea. Two-Way ANOVA was used to test effects of Cd toxicity and 

growth over the course of the exposure. Following the significant result, the Fisher LSD 

post hoc test was used to identify differences among means. Linear and exponential 

analyses were performed to describe relationships between survival or growth and Cd 

burden in Hyalella. Significance of all tests was taken at p < 0.05.  

 

4.4 Results  

4.4.1 CT using Hyalella  

Survival and Growth  

 Cd content of water samples from the Hyalella and the Lymnaea exposures were 

not significantly different and at each exposure concentration there was no significant 

difference between total Cd concentration and dissolved Cd concentration (Table 4.1). 

The measured Cd concentration in exposures (0.6, 1.3, 2.6 and 5.1 µg Cd/L) were lower 

than the nominal target values. In the intermediate hard water (hardness = 87 mg/L 

CaCO3), the Hyalella showed a decrease in survival with increasing Cd concentration 

(Fig 4.1). The 7, 14, 21 and 28 d LC50 values for the Hyalella were 4.6 µg Cd/L (95% CI: 

3.0 to 7.0 µg Cd/L), 1.6 µg Cd/L (1.1 – 2.2 µg Cd/L), 0.75 µg Cd/L (0.51 – 1.1 µg Cd/L) 
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and 0.70 µg Cd/L (0.53 – 0.9 µg Cd/L), respectively. This shows that Hyalella are 

sensitive to Cd, where 100% mortality was seen at d 14 at the highest (5.1 µg Cd/L) 

exposure concentration. Dry wt. of individuals also decreased with increasing Cd 

concentrations, showing similar significant reduction in dry weight to all exposed 

individuals at d 28.   

Bioaccumulation 

The bioaccumulation of Cd was also measured during the exposure. 

Bioaccumulation patterns showed that Hyalella can accumulate Cd and reach steady state 

by d 7, leading once again to higher Cd accumulation at the higher Cd exposure 

concentrations (Table 4.2). However on d 28, there were no significant differences in 

accumulation at the higher concentrations, a 1.3 µg Cd/L exposure gave 110 ± 64 µg 

Cd/g dry wt. while exposure to 2.6 µg Cd/L resulted in 145 µg Cd/g dry wt. (Table 4.2). 

The Cd burden was compared with survival and length on d 28 and a negative correlation 

was evident (Fig 4.3 A, linear regression y = 85 – 0.6 x (r
2
 = 0.8). Similarly, a reduction 

in dry weight of Hyalella was seen with an increase in tissue body burden (Fig 4.3 B, 

linear regression y = 0.1 – 0.0002 x (r
2
 = 0.1).  

4.4.2 CT using Lymnaea  

Bioaccumulation and Linkages 

The Lymnaea were exposed to the same water chemistry and Cd concentrations as 

the Hyalella but showed no mortality effect (100 % survival in all exposures). Similarly 

shell length and tissue weight at the end of the exposure did not vary significantly among 
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exposure groups (Table 4.2).  At the end of the 28 d exposure, the surviving snails were 

analyzed for Cd burden. Increased exposure to waterborne Cd corresponded to an 

increase in Cd burden in soft tissue (Fig 4.5). The lowest Cd concentration resulted in 

accumulation of 74.4 ± 16.9 µg Cd/g at d 28.  

Accumulation (in Lymnaea) vs. effect (in Hyalella) model is presented in Fig 4.5 

by plotting survival of H. azteca, and body burden at steady state of L. stagnalis along the 

same x-axis (Cd exposure concentration). The lines show a 20 % (purple line) and 50 % 

(red line) survival effect in Hyalella was linked to tissue burden in Lymnaea. The tissue 

concentrations in Lymnaea associated with impacts in Hyalella were 36 and 69 µg Cd/g 

dry wt., respectively.  

 

4.5 Discussion 

4.5.1 CT using Hyalella  

Survival and Growth  

The concentration range was chosen due to the sensitivity of Hyalella and was 

confirmed when Hyalella mortality increased with both increasing Cd concentration and 

test duration through 28 d of exposure, leading to 28 d LC50 value at 0.7 µg Cd/L (95 % 

CI: 0.6 – 0.9 µg Cd/L). This concentration confirms the sensitivity of Hyalella because it 

is an environmentally relevant concentration (McGeer et al., 2011). Test duration of only 

21 d may be required to accurately assess toxicity as LC50 values for d 21 and 28 were 

similar (Fig 4.1). More acute toxicity studies have been conducted compared to chronic 
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toxicity of Cd using Hyalella therefore it is difficult to confirm the correct range of the 

LC50. Collyard et al. (1994) reported a 96 h LC50 value of 6 – 13 µg Cd/L in water 

hardness values similar to the present study, showing similar toxicity range as in the 

present study. However, toxicity data reported in the present study showed higher toxicity 

effects than data reported by other studies. Borgmann et al. (1991) found a similar LC50 

value as the current test (0.72 µg Cd/L), in a 6 week exposure of water hardness at 13 

mg/L as CaCO3, although lower water hardness values are supposed to increase Hyalella 

sensitivity to Cd (Borgmann et al., 2005). Seudel et al. (1997) found a 14 d LC50 value of 

0.65 µg Cd/L (95 % CI: 0.38 – 0.92 µg Cd/L) in soft water (6 - 28 mg/L as CaCO3). All 

the differences in LC50 values may be due to the variation in exposure condition (e.g. 

duration, water hardness, pH and DOC levels), therefore, may contribute to the observed 

differences in cadmium toxicity. In conclusion, Hyalella are one of the most sensitive 

organisms to waterborne Cd exposure.     

In control beakers, the average size of Hyalella on d 28 was 0.38 ± 0.04 mg wet  

wt. Borgmann et al. (1991) showed Hyalella at 1.3 ± 0.012 mg wet wt. (± SD) after 6 

weeks at water hardness value of 130 mg/L as CaCO3. Once again, this dissimilarity may 

be due to water chemistry differences as well as exposure duration. Growth was a more 

sensitive measure of Cd toxic effect as all the exposed Hyalella, even at the lowest 

concentration (0.6 µg Cd/L), had a significant reduction in dry wt. compared to the 

controls (Fig 4.2). However, it has been reported that survival is a more sensitive measure 

than growth (Seudel et al., 1997; Borgmann et al. 1989). Seudel et al. (1997) conducted a 

14 d test which showed no significant difference in wt. and similarly, the current study 

showed no differences in dry wt. of Cd exposed Hyalella and controls on d 14.  
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Bioaccumulation 

Cd bioaccumulation in H. azteca was seen to increase rapidly at the start of the 

exposure (Table 4.2). However, over time, accumulation seemed to equilibrate at which 

point, it is assumed that elimination and uptake are equal, reaching steady state tissue 

burden between d 7 and 14 of exposure (Table 4.2). Significant differences in tissue body 

burden were seen in the surviving Hyalella at the two highest Cd concentrations (1.3 and 

2.6 µg Cd/L) compared to the control on d 28, reaching levels of 110 – 145 µg Cd/g dry 

wt. However, due to the high variability of Cd burden in the whole body, no significant 

differences are seen amongst the exposed Hyalella. Borgmann et al. (1991) discovered 

that hardness of water plays a minor effect on bioaccumulation. At water hardness of 13 

and 130 mg/L as CaCO3, body burdens were approximately 100 and 90 µg Cd/g dry wt., 

respectively, at the highest concentration (1 µg Cd/L), with the lower hardness value 

slightly higher in burden. The body burdens are slightly lower than the ones presented in 

the current study, which may be a result of higher exposure concentrations in the current 

study.  

Survival and dry wt. of Hyalella were plotted against Cd accumulation to find a 

relationship curve (Fig 4.3). The linkage between survival and Cd burden was a strong 

linear relationship with an r
2
 value of 0.8 (Fig. 4.3 A).  It was defined that 8.3 and 58.3 

µg Cd/g dry wt. body burdens would cause 20 or 50 % decline in survival of Hyalella. 

Borgmann et al. (1991) defined their body burden EC50 for water hardness values of 130 

and 13 mg/L as CaCO3 to be 38 and 79 µg Cd/g dry wt. The current study showed similar 

range in results falling in between the hard and soft water results presented by Borgmann 

et al. (1991).  However, when comparing dry wt. of the Hyalella against Cd 
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bioaccumulation, a very weak relationship was seen with an r
2
 value of 0.1 (Fig 4.3 B). 

Other studies have shown growth to be a weaker endpoint to monitor compared to 

survival (Borgmann et al., 1991; Borgmann et al., 2005; Seudel et al., 1997).    

4.5.2 CT using Lymnaea   

Bioaccumulation 

 Lymnaea did not show any survival or growth effect in relation to the Cd 

concentrations exposed. The shell lengths were not significantly different from highest 

exposure concentration to the control (Table 4.3). The bioaccumulation of Cd showed to 

accumulation in a dose dependent pattern with higher Cd exposure concentrations, 

showing greater burden in the soft tissue of the Lymnaea (Fig 4.4). This resulted in a 

strong linear relationship between Cd exposure concentrations to Cd body burden with r
2
 

value of 0.99. This linear relationship with accumulation and exposure concentration is 

seen in other metals as well with this species, such as Cu, Co and Pb (Ng et al., 2011; De 

Schamphelaere et al., 2008; Grosell et al., 2006).   

4.5.3 Hyalella and Lymnaea 

Accumulation-effect Relationship  

 Due to the high variability of bioaccumulation of Hyalella, it is difficult to 

accurately and reliably compare bioaccumulation and toxic effects (i.e. survival, growth) 

seen in Hyalella (Table 4.2). Moreover, although Lymnaea are more reliable with Cd 

accumulation, at environmentally relevant concentrations, it is difficult to identify toxic 

effects because they are moderately resistant to Cd (Fig. 4.4). Also, Lymnaea are known 
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to reach steady state tissue burden in metal exposures in a short time frame (See Chapter 

3 above, Fig 3.3; Hoang et al., 2008). Therefore, comparing an organism that can reliably 

accumulate Cd and reach steady state tissue burden (Lymnaea) to an organism with toxic 

effects seen in environmentally relevant concentrations (Hyalella) can be beneficial for 

identifying an accumulation-effect relationship. The use of identical water chemistries 

and concentrations, as well as side by side exposures allow for linking of these two 

exposures. Plotting 28 d survival in Hyalella and body burden at steady state tissue 

burden in Lymnaea against the same x-axis (Cd concentrations), accurate predictions of 

specific body burdens can correspond to specific effect concentrations. Fig 4.5 accurately 

depicts the novel TRA approach Adams et al. (2010) hypothesized for an accumulation-

effect linkage. In the figure, H. azteca LD20 and LD50 values are 0.42 and 0.70 µg Cd/L, 

linked to body burdens of 36 and 69 µg Cd/g dry wt. in L. stagnalis. 

 L. stagnalis are the ideal organisms to be used as a resistant organism for this 

approach. They accumulate metals reliability and in a dose dependent manner and reach 

steady state tissue burden in a relatively short time (14 d; Ng et al., 2011; Chapter 3 of 

thesis, Fig. 3.3, Hoang et al., 2008). They are known to be resistant to Cd compared to 

most organisms (Cœurdassier et al., 2003) and have a wide geographical distribution 

(Desouky, 2006; Cœurdassier et al., 2003). Their relative size is ideal for multiple 

measurements on an individual organism. On the other hand, H. azteca is an ideal 

organism to be used in laboratory as a sensitive organism because they are known to be 

the most sensitive organism to Cd (Borgmann et al., 1991; Seudel et al., 1997). They 

show toxic effects of Cd at environmentally relevant concentrations and this response is 

exposure concentration dependent. 
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In conclusion, H. azteca had a 28 d LC50 value of 0.7 µg Cd/L and exposed 

individuals had a reduction in dry wt. compared to the control. Hyalella accumulated Cd 

at the two higher concentrations between 110 to 145 µg Cd/g dry wt. Accumulation-

effect relationships were plotted for Hyalella on d 28 and a strong correlation between 

survival and accumulation was seen with 50 % reduction in survival was linked to 58.3 

µg Cd/g body burden. However, due to the variability of body burden in Hyalella, this 

relationship may vary. Lymnaea did not show any toxic effect with Cd exposure. 

Lymnaea did accumulate Cd exposure dependently and reliably. However, no 

accumulation-effect relationship was established using only Lymnaea. Therefore, a novel 

TRA was predicted using Hyalella survival and Lymnaea accumulation, plotted on the 

same x-axis, Cd concentration. This helped determine an LD50 of Hyalella (0.7 µg Cd/L) 

associated with a body burden in Lymnaea of 69 µg Cd/g dry wt. Therefore, this novel 

TRA holds promise in determining accumulation-effect relationships and requires further 

validation.      

4.5.4 Integration   

Cadmium is present in the aquatic environment, and at elevated levels can cause 

detrimental effects to organisms. Invertebrate organisms are abundant in the aquatic 

ecosystem and can be the first to be effected by metal contamination. Hyalella and 

Daphnia are among the most sensitive organisms to waterborne Cd. However, there are 

many invertebrates with the ability to detoxify and store Cd, without causing detrimental 

effects. For example, Lymnaea and Lumbriculus use MTLP which binds Cd, rendering it 

biologically unavailable for further toxic effects. As biologists’ one aspect of a problem/ 

project is focused on and tends to separate the “big picture,” losing focus of the main 
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goal. However, this project tries to integrate multiple solutions to assess environmental 

disturbances in an ecosystem.   

In the present thesis, the main focus of the research was to determine if 

bioaccumulation can be used as an effective measure of toxicity. The focus was on one 

organism, Lymnaea, an abundant freshwater snail, seen in a variety of aquatic 

environments throughout the northern hemisphere. Low Cd concentrations 

(environmentally relevant) were shown to have no toxicological effects seen in the whole 

body of Lymnaea due to their moderate resistance to Cd. A molecular technique focusing 

on the Cd distribution within a cell was used to potentially link toxic effects with 

accumulation. However, more work on sub-cellular fractionation needs to be completed 

to fully understand the patterns observed. Since one organism was not able to link 

accumulation with effect, a boarder picture was used. Two organisms that inhabit a 

common ecosystem were exposed separately to similar treatments (i.e. water chemistry, 

exposure concentrations). This novel approach linked toxic effects seen in one organism 

(sensitive to Cd) to accumulation in another organism (moderately resistant to Cd). The 

survival effect seen in Hyalella was associated to the Cd accumulation seen in Lymnaea. 

This integrates the project and unifies its goal to use bioaccumulation as a toxicological 

measure for assessing the environment.     

Furthermore, this project integrates research performed by multiple labs, both at 

McMaster University as well as Wilfrid Laurier University. This project will help 

establish multiple accumulation-to-effect relationships for Cd, Cu and Ni using Lymnaea, 

Hyalella, Daphnia, rainbow trout and round gobies; all organisms that share a freshwater 

environment.   
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4.7 Figures 
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Figure 4.1. The chronic effects of waterborne Cd on the survival of H. azteca exposed to 

0.6, 1.3, 2.6 or 5.1 µg Cd/L over 28 d. A group of unexposed Hyalella (controls) was also 

included. Values are in mean with n = 10. The 7, 14, 21 and 28 d LC50 values were 

calculated as 4.6 (95 % CI: 3.0 - 7.0), 1.6 (1.1 – 2.2), 0.75 (0.51 – 0.9) and 0.70 (0.53 – 

0.9) µg Cd/L respectively.  
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Figure 4.2. Mean (± SEM) dry wt. of exposed H. azteca to 0.6, 1.3, 2.6 or 5.1 µg Cd/L 

over 28 d. A group of unexposed (control) Hyalella were included, data is shown on a 

whole organism basis with n = 6 for each mean and an * indicates a significant difference 

from control at that d (p < 0.05; Two-way ANOVA, Fisher LSD). 
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Figure 4.3.  Correlation between survival (A) and dry wt. (B) and whole body Cd burden 

in the Hyalella at d 28. Values are in mean ± SEM. Linear lines depicting correlations for 

panel (A) y = 85 – 0.6 x (r
2
 = 0.8, p = 0.05) and panel (B) y = 0.1 – 0.0002 x (r

2
 = 0.1, p = 

0.6). The n values are, for the control n = 20, 0.6 µg Cd/L n = 12, 1.3 µg Cd/L n = 2 and 

2.6 µg Cd/L n = 1.  
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Figure 4.4. Soft tissue Cd accumulation of Lymnaea at d 28 exposed to waterborne Cd. A 

linear solid line for Cd accumulation is shown (y = -14 + 119 x; r
2
 = 0.99, p = 0.0006). 

Values are mean ± SEM (µg Cd/g dry wt.), n = 10.  
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Figure 4.5. Linkages between the chronic impact of Cd on in H. azteca and accumulation 

in L. stagnalis. The top part of the figure shows the exposure-response relationship in 

Hyalella, a sigmoidal curve (y = 106.9/ (1+e (-(x-0.7)/-0.26), while the bottom half 

shows the matching exposure accumulation relationship (both after 28 d of exposure). 

Soft tissue Cd concentrations in Lymnaea are given as mean ± SEM (µg Cd/g dry wt. n = 

10) and the line show the best fit linear regression (y = -14 + 119 x (r
2
 = 0.99, p = 

0.0006)). The purple and red lines indicates the 20 % and 50 % survival effect levels in 

Hyalella,  corresponding to 0.42 and 0.7 µg Cd/L, respectively. The body burdens in 

Lymnaea associated with these effects in Hyalella were 36 and 69 µg Cd/g d wt., 

respectively. Values are mean ± SEM (µg Cd/g dry wt.). 
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4.9 Tables 

 

 

 

 

 

 

 

Table 4.1: Measured concentrations of total and dissolved Cd during both Hyalella and 

Lymnaea chronic tests. Temperature of exposure water was 21 – 21.7 °C.  Values are 

expressed as means ± SEM (n = 90, for each concentration). Dissolved Cd concentrations 

were measured before (fresh solutions) and after (measured at 48 h prior to solutions 

renewal).  

 

 

 

Nominal  

(µg Cd/L) 
Total (µg Cd/L) 

Dissolved  (µg Cd/L) 

Before After 

Control 0.01 ± 0.001 0.01 ± 0.001 0.01 ± 0.004 

0.8 0.64 ± 0.02 0.61 ± 0.02 0.59 ± 0.02 

1.6 1.38 ± 0.04 1.29 ± 0.04 1.23 ± 0.03 

3.2 2.65 ± 0.07 2.60 ± 0.07 2.35 ± 0.09 

6.4 5.20 ± 0.08 5.12 ± 0.08 4.39 ± 0.15 
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Table 4.2: Cd burden in the whole body of Hyalella throughout chronic exposure. Cd 

concentrations displayed with the burden associated (µg/g dry wt.) ± SEM with (n 

values). An * indicates significance from controls. (Two-way ANOVA, Fisher LSD).    

 

 

 

Conc.  
(µg Cd/L) 

Cd burden (µg Cd/g dry wt.) ± SEM (n value) 

Days 0 1 4 7 14 21 28 

Control 

1.7 ± 0.6 

(15) 

1.4 ± 0.3 

(6) 

2.4 ± 0.3 

(6) 

1.5 ± 0.3 

(6) 

1.0 ± 0.4 

(6) 

1.6 ± 0.9 

(6) 

1.9 ± 0.3 

(20) 

0.6 
2.8 ± 0.6 

(6) 

4.6 ± 2 

(6) 

50 ± 27 

(6) 

32 ± 4 

(6) 

43 ± 3 

(3) 

15 ± 2 

(12)* 

1.3 
6.1 ± 2.0 

(6) 

28 ± 5 

(6) 

50 ± 5 

(6) 

45 ± 19 

(6) 

56 ± 6 

(2) 

110 ± 64 

(2)* 

2.6 
13 ± 2  

(6) 

100 ± 11 

(6) 

120 ± 17 

(6) 

154 ± 64 

(6) 

114 

(1) 

145 

(1)* 

5.1 
53 ± 13 

(6) 

157 ± 25 

(6) 

80 ± 33 

(6) 

217 ± 71 

(6) 
N/A N/A 

 

 

 

 

Table 4.3: Shell length of Lymnaea at d 28 of exposure. Shell lengths displayed as mean 

(mm) ± SEM with (n values).   

 

 

 

Concentration  

(µg Cd/L) 

Shell length  

(mean ± SEM, mm) 

Control 9.45 ± 1.2 (6) 

0.6 8.80 ± 0.7 (6) 

1.3 8.65 ± 0.6 (6) 

2.6 8.50 ± 1.2 (6) 

5.1 7.6 ± 0.6 (6) 
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