Stochastic Models in Circuit Network Growth

John D. Radke
Wilfrid Laurier University

Follow this and additional works at: https://scholars.wlu.ca/etd
Part of the Geographic Information Sciences Commons

Recommended Citation

Radke, John D., "Stochastic Models in Circuit Network Growth" (1977). Theses and Dissertations (Comprehensive). 1450.
https://scholars.wlu.ca/etd/1450

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact scholarscommons@wlu.ca.

STOCHASTIC MODELS IN CIRCUIT NETWORK GROWTH

BY
John D. Radke

Submitted in partial fulfillment
of the requirements for the Master of Arts Degree in Geography

DEPARTMENT OF GEOGRAPHY
WILFRID LAURIER UNIVERSITY
WATERLOO, ONTARIO
1977
Primpery of the Library WILFRID LADAIER UXIVERSLIT

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent on the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI EC56380
Copyright 2012 by ProQuest LLC.
All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Acknowledgements

I acknowledge, with gratitude, the support given to me by my fellow graduate students, in particular Alan Henkleman, Lindsay Nakashima and Steve Creek. I would also like to thank Janet Bauer, Olga Haras, Kenny Mac, the members of the WLU computing centre and last but not least Sigma Seven. In addition, I would like to acknowledge the members of my thesis committee, Dr. R.Muncaster, Dr. A.Hecht and Dr. J.weir, for their constructive criticism and suggestions.

Finally, I would like to thank my thesis advisor and friend, Dr. Barry Boots, for his guidance, encouragement and endless patience throughout all stages of the research.

John D. Radke

Table of Contents

Page
Table of Contents i
List of Figures ii
List of Tables iii
CHAPTER ONE 1
Introduction 2
Definitions of Basic Terms 3
Existing Related Studies 7
Objectives 15
Outline of The Study 17
CHAPTER TWO 18
Scope 19
The Indices 19
Methodology 23
Conclusions 35
CHAPTER THREE 38
Introduction 39
The Analysis 39
Conclusion 53
CHAPTER FOUR 56
Summary of Results 57
Future Research 59
APPENDICES 61
Appendix A 61
Appendix B 64
Appendix C 70
Appendix D 77
References 78

List of Figures

Figure

Page

1.1 Representation of a Network as a Graph 3
1.2 Identification of a Path between two 4
1.3 Measurement of Topologic Distance 4
1.4 Network Classification 6
2.1
2.2
2.3
2.4
2.5
2.6
3.1
3.2
3.3
3.4
3.5

Network Connectivity Classification
Point Pattern Generated by a Poisson Process 26
Determination of Critical Distance 27
Generated Network ($M=1.0$) 29
Generated Network ($M=1.5$) 30
Generated Network ($M=1.5$ to $M=4.5$) 33
Gamma Index (graph of $\overline{\mathbf{V}}$ by \bar{X}) 46
Alpha Index (graph of $\overline{\mathbf{V}}$ by \bar{X}) 48
Diameter Index (graph of \bar{V} by \bar{X}) 49
System Dispersion Index (graph of $\overline{\mathrm{V}}$ by \bar{X}) 50
Redundancy Ratio Index (graph of $\overline{\mathbf{v}}$ by \bar{X}) 52

List of Tables

Table Page
1.1 Representation of a Network as a 5 Connectivity Matrix
2.1 Matrix Representation of Figure 2.5 32
2.2 Index (No. of edges) Represented 36 in Matrix Form
3.1 Summary of Morphometric Indices $42 / 43$
3.2 Analysis of Variance for 54 Morphometric Indices

CHAPTER ONE

INTRODUCTION

To describe the spatial pattern of objects or events, and to explain that pattern by way of the causal mechanisms which have generated it, has been one of the traditional aims of geographical research. (Harvey, 1967) One method that can be employed for such descriptions and explanations is network analysis.

A network is a meshed fabric of intersecting lines. (Kansky, 1963). A more appropriate definition for geographers would be, a set of geographic elements interconnected into a system by a number of relationships.(Kansky, 1963). Network analysis is an examination of a complete network, its elements, and their relationships. Networks can be represented in two major ways. The first is graphically, as a map. However, although such a representation can sumarize many network characteristics, it often proves too inflexible to permit further analysis. For this reason the second form of network representation is often resorted to. This involves representing the network as a matrix in which the rows and columns represent individual elements, and the entries in the body of the matrix represent the relationships between the elements.

Graph theory is a mathematical technique which concentrates on the topological properties of a network, emphasizing the connectivity of its elements rather than its physical properties. Thus, map representations of a network may take the form of graphs.

A graph is composed of vertices, sometimes known as nodes, which are specific points in space, and linkages which are linear routes (direct connection between two points) which join the nodes. An edge is another term frequently used for a link. (see figure l.l)

Figure 1.1
Representation of a Network as a Graph

original map of a network

graph representation of a network

The term path represents a collection of edges linking a series of different vertices. (see figure l.2)

Figure 1.2

Identification of a Path Between Two Points in a Graph


```
the path bet ween
V1 and V5 consists
of 11+12+13+14.
I ength of the path is 4
```

The length of a path is, in topological terms, the number of links within it.

The topological distance between two places is the length of the shortest path joining them. This would be measured in number of links. (see figure 1.3).

Figure 1.3

Measurement of Topologic Distance

> topological distance bet ween $V 1$ and $V 5$
> is $11+14+15=3$

As already stated, a network may also be represented as a matrix. In particular, a connectivity matrix can be constructed which illustrates the degree of linkage each vertex has with the rest of the network. (see table l.l).

Table 1.1

Representation of a Network as a Connectivity Matrix

	V1	V2	V3	V4	V5
V1	1	1	0	0	0
V2	1	1	1	1	0
V3	0	1	1	1	0
V4	0	1	1	1	1
V5	0	0	0	1	1

matrix representation of figure 1.3

The shortest path matrix is the matrix representation which shows the length of the shortest paths between all vertices in a network. It can be obtained by powering the original binary matrix until all the zeros are eliminated.

Networks have been topologically classified into two major categories in the past; i) planar, located in two-dimensional space where links only intersect at vertices, and ii) non-planar networks located in three or more dimensional space where the intersection of links does not always produce vertices. Within each class, subgraphs can be recognized. (see figure 1.4 for an illustration of the categories). Although circuit networks (transportation networks are usually circuits) have been traditionally considered to be part of the planar network category, they

Figure 1.4

Network Classification

Topological Classification of Networks

Graphic Representation of Network Classes

Path

Tree

Circuit

Cell

Source: Modified after Haggett and Chorley (1969)
do exist in non-planar form. For example, airline networks and communication networks exist in three-dimensional space.

It was not until 1936 that the first comprehensive treatment of network topology was published by konig. It dealt mainly with simple elementary structures which were later developed into a more extensive graph theory (Haggett, 1965).

Network analysis has been applied in several disciplines besides geography. For example, it has been applied in sociology where vertices represent people and links represent interpersonal contacts, in communications where vertices represent transmissions and links represent signals, and in business administration where vertices represent departments and links represent transactions. In geography it has become a widely used tool in the description and explanation of spatial patterns. In particular, "the representation of the topological characteristics of any network in graph form has become a widely accepted procedure in the analysis of transportation networks" (Tapiero \& Boots,1974).

Existing Related Studies:

Recent studies of networks in geography have been, for the most part, concerned with the application of graph
theory to existing networks. In particular, two types of studies may be recognized. These are morphometric studies and network growth studies. The former are typically descriptive studies of form, that is to say the structure of a given network. Following Eichenbaum and Gale (1971), form is the visible aspect of a thing, usually taken in the narrow sense of shape or configuration as distinguished from such properties as colour. Form, in the abstract, thus implies something geometrical, detailing the temporally cross-sectional measurable properties of phenomena. For transportation networks analysis is often restricted to just the topologic form of a given network. Consequently, any subsequent evaluation or comparison of the network is by means of norms defined in terms of form (e.g., trees, chains, grids). In contrast, growth studies focus on the processes responsible for the development of the network under study. Again following Eichenbaum and Gale (1971), process can be defined as a continuous or regular action or succession of actions, taking place or carried on in a definite manner, and leading to the accomplishment of some result; a continuous operation or series of operations. Work of this nature concerning eircuit networks in geography has concentrated on creating procedures which replicate specific empirical networks.

Studies of both form and process in transportation networks will be discussed in the literature review
presented below. The studies were selected to include those which introduced pioneering ideas and established new contributions to circuit network study in geography. Rather than offer an exhaustive review of each study, only their innovative contributions will be mentioned.

Turning first to studies which concentrate on network form, William L Garrison in 1960, using graph theory as an analytical technique, measured the structure of a newly developed interstate highway network in the United States. His work dealt mainly with the analysis of the position of particular places on the route system indicating their relative accessibility. Garrison's work was important for two reasons. It introduced graph theory to geography and it also illustrated how this analytical technique allowed examination of the system both as anit and in separate components.

Five years later, Garrison co-authored a paper with Duane F Marble entitled, "Graph Theoretic Concepts". This article can be considered a classic since it has not only become widely referenced, but also contains the basic definitions and explanations of graph theory. The article attempts to reveal the relationships of network structure to the physical and socioeconomic features within the network's delineated area. Dependent variables, which are indices measuring network form, were correlated with independent
variables (features of the area) to determine if a definite relationship existed. The true value of the paper lies in its pioneering attempt to illustrate a network's form by using mathematical indices and correlating those indices (structural features) with other measurements of features of the network's environment.
K.J.Kansky, another frequently quoted author of graph topology, created his most famous work (his doctorial dissertation) in 1963. The "Structure of Transportation Networks" was a paper which stressed that the structure of the transportation network of any area cannot be divorced from the geographic characteristics of that area. As in the study by Garrison and Marble, Kansky demonstrated that aggregate measures (topological indices) could be used to investigate the relationship between the transportation network of an area and the geographic features of the area.

Kansky's research contained a larger sampling of nations and a greater number of structural measurements than had been seen previously in the literature. It was about time, according to Kansky, that a decrease in past ambiguities so common in written language occurred in geography. He thus devoted a complete chapter in his dissertation, one that is most valuable to geographers today, to the explanation of measures of network structure expressed in the symbolic language of graph theory.

In 1968 Howard Gauthier, like his predecessors in network geography, described the structural form of a network; in this case a Brazilian highway network. In his analysis he found a high degree of relationship between the development of highway accessibility and the growth of manufacturing in subsequent time periods. Gauthier used graph theory to abstract the real network into a form in which the connections between the centres (vertices) were weighted according to transport cost per unit distance. These cost values replaced the simple topological measures to provide, after powering and summing the connectivity matrix, accessibility values for individual vertices.

The article "Linkage Importance in Regional Highway Network" by C.C. Kissling (1969) attempts to define, like Gauthier's study, how accessible places are to each other. Kissling goes one step further and tries to define highway linkage importance in Nova Scotia, so that when it is seen in relation to actual link characteristics, the impact of subsequent improvements to the system may be predicted. After his representation of the network in graph form, he concludes that the "analysis of the network structure is thus likely to reveal probable growth points in the system" (Kissling, 1969).

James et al (1970) have suggested that the commonly used measures of graph structure are not adequate. Their main
concern is that some of the indices used by their predecessors to measure graph structure, have been poor discriminators among graphs with different structures. They assert that the indices, because of their origin, fail to discriminate among graphs with identical parameters and dissimilar patterns of linkages.

Turning now to research that deals with network growth, we find that attempts to replicate existing spatial networks, is not a recent procedure and has been occuring since the early 1960's.
K.J.Kansky, besides his graphic description of network form in his doctorial dissertation, created simulation models which generated networks. He presented a workable predictive model of network structure based on empirical evidence obtained via a study of various regions. The model contained a probabilistic concept incorporated as a chance mechanism which allowed a range of possible network forms to be generated from a data base of regional characteristics. Kansky summarized his reasons for model simulation when he concluded that the empirical model was derived "not to demonstrate its validity, but to illustrate its practical applicability".

L.A.Brown (1965) repeated earlier experiments instituted

 by the mathematician Gilbert(1961). Brown produced what hasbeen called a random graph model. In this model Brown used a random number generator to locate 50 vertices in a 50×40 unit rectangular grid, which were then linked into subgraphs using a critical distance procedure. Although Brown did not directly relate his model to any empirical evidence, he did consider it to be a predictive model in epidemiology and compared it to the spread of an infectious disease over space.

Kolars and Malin(1970), on the other hand, developed a post-dictive model which simulated the Turkish Railway System. The network was based upon population and topographic features, of which the former had the greatest impact on route construction. The model identified ridge lines of population between major centres which would identify optimum rail linkages giving greatest benefits to rural farmers. A gravity model was used to compute potential interaction between centres, while taking into consideration physical features. Kolars and Malin expressed the significance of their paper in their statement: "In addition to supporting current theory concerning the growth of transportation networks, this study identifies exogenous political and military conditions as important additional factors".

Utilizing data on the development of the Maine railway network, Black (1971) created a simulation model which
incorporated distance, potential traffic and angle of linkage in the prediction of edge construction. Black calculated discriminant scores consisting of location and population, as well as other prediction variables, of each node to create potential linkages between the largest nodal scores. The greatest value of the paper lay in the fact that the model it proposed did not depend on complete knowledge of an economic system to function, thus making the model operational at a local level.

Leinbach (1974), in an analysis of the already existing transport system in West Malaysia, also implemented a type of diffusion process. The network growth was modelled as a process of contagious diffusion, comparable to Brown's attempt to illustrate infectious diffusion, where predictor variables consist of road network densities. A regression approach was implemented to. provide measures of network orientation over time. The results indicated the importance of the simulation model, incorporating a diffusion process, in transport forecasting.

Mackinnon and Barber (1972) developed a model using a technique somewhat analagous to regression analysis. Their heuristic alogorithm generated a series of line segments, such that the total distance from each of n points to its nearest line segment was minimized. They applied their method to the distribution of fifty-five cities and towns,
in Ontario and Quebec, evaluating line segment representations of point patterns in the light of three criteria: "(1) the goodness of fit measured by the mean of orthogonal deviations from every point to its nearest line segment; (2) the total length of all of the line segments, and (3) the complexity of the network as indexed by the total number of line segments.

Objectives:

From this review of the literature it is apparent that while there have been studies of both form and process, few of them have incorporated both procedures. The only exception is the work of Tinkler (1974,1976).

In this study it is proposed that the morphology of any network cannot be divorced from the generative processes involved. Thus, this study will attempt to contribute to geographical knowledge by determining the relationship of certain selected morphological characteristics to changes in generative processes. It is hoped that this will give futher understanding of the development of existing empirical circuit networks, which, in turn, would enable better prediction of the impact of subsequent growth.

Consequently, the present study neither describes the form of existing networks in space, nor attempts to
replicate empirical networks. Instead, the goal of this research is to incorporate both process and form into a single theoretical, rather than an empirical approach, to simulate aspects of the growth of circuit networks. More specifically, the approach involves the creation and examination of model which produces non-planar circuit networks which are examined to determine the effect of a generative process on the morphology of the resultant networks.

This approach has already been successfully used in other areas of network geography. Werner (1972) used this approach in his evaluation of drainage patterns (tree networks) and Crain and Miles (1976) used a similar method while studying polygons determined by random lines in a plane (cell networks). Elsewhere in geography, this approach has become widely accepted in the study of point and area patterns in spatial analysis (Boots and Getis, 1977).

To summarize, the main contribution of this research is to illustrate how an approach synthesizing both process and form can be implemented in circuit network analysis. In the course of doing this, a model is introduced which provides a good basic structure from which other models can be built. However, it will not be the intention to discuss this model exhaustively.

In addition, the structural characteristics of networks produced by the model will be examined by indices currently in use in transportation geography. This will provide an indication of the usefulness of these indices in explaining network structure, particularily the indices' sensitivity to changes in process.

Qutline of The Study:

Chapter One has reviewed existing related studies and presented the rationale for the thesis. Chapter Two will be devoted to the description of the generation of the simulated networks and analytical processes undertaken in their examination. Chapter Three will analyze the results obtained from the execution of the model and Chapter four will both summarize the study's findings and discuss possible future research in this area.

CHAPTER TWO

Scope:

As indicated in Chapter One, the study examines the use of only one model which will be described below. This is because the intent of the research is not primarily to explore network generative processes, but rather to illustrate an approach which links generative process to resultant network form. The networks produced by the model are examined using summary characteristics of network form. These characteristics are measured using indices developed from the work of Kansky, Garrison and Marble. These are the indices commonly used in transportation geography. (Hurst,1974).

The Indices:

This section begins by describing the indices used. This is followed by a discussion of the model.

The indices which measure network structure are obtained from two different types of information in the graph. The first type is comprised of indices which are all functions of the number of vertices (v), links (l) and subgraphs (p).

The Mean Local Degree (β) is the average number of links leading to each node ($\beta=2 \ell / v$). The larger the value of β the more developed or complex the network. (expression 2.1

$$
0 \leq \beta \leq(v-1)
$$

(Kansky,1963) (2.1)

The Cyclomatic or first Betti number (μ) repesents the number of circuits or fundamental loops within a graph $(\mu=\ell-v+p)$. A large value of μ corresponds to a highly connected or "Delta" network, while a small value (approaching $u=0$) would reflect a less developed or "Spinal" network (Taaffe \& Gauthier, 1973). For a graphic representation of these two extremes see figure 2.1. (expression 2.2 represents the range of the Cyclomatic Number)

$$
0 \leqslant \mu \leqslant(v-1)(v-2) / 2
$$

(Kansky, 1963) (2.2)

The Alpha Index (\propto) is the ratio of the cyclomatic number to the maximum number of fundamental circuits possible in the network $(\alpha=2 \mu /((v-1)(v-2)))$. The result indicates the redundancy or repetitiveness of the graph (the duplication of paths). (expression 2.3 represents the range of Alpha)

$$
0 \leq \alpha \leq 1
$$

The Gamma Index (γ) illustrates the graph's degree of connectivity and is described as the ratio of actual number of links to the maxımum possible lınks. $(\gamma=2 \ell /(v(-1)))$.

Figure 2.1

Network Connectivity Classification

"spinal network"

Source: Modified after Taaffe and Gauthier (1973)
(expression 2.4 represents the range of Gamma).

$$
\begin{equation*}
0 \leq \gamma \leq 1 \tag{Kansky,1963}
\end{equation*}
$$

The second category or set of measures is related to information concerning path lengths (measured in terms of number of linkages) in the graph.

Although the cyclomatic number, alpha and gamma indices have had a widespread usage in the literature as measures of connectivity, a Redundancy Ratio was introduced by Alfonso Shimbel in 1953. This was an alternative measure of connectivity. The Redundancy Ratio is defined as the number of elements in the shortest path matrix over the sum of the elements in the shortest path matrix. It is given in expression 2.5 .
\qquad

$$
\sum_{i=1}^{V} \sum_{j=1}^{V} d i j
$$

(Marble,1960) (2.5)
(where dij is the topological distance between two points (i,j) in the matrix)

The Diameter (δ) of a graph is a measure of connectivity and is also referred to as the Maximum Associated Number. The Associated Number of a network is the maximum shortest path distance between any pair of points (ij) in the
matrix for all i and j (topological distance being measured in links). (eẍpression 2.6 illustrates the diameter).

$$
\delta=\max d i j
$$

(Kansky,1963) (2.6)

The System Dispersion Index, a measure of dispersion of a network ($D(N E T)$), is defined as the sum of all the links between all pairs of nodes in the system. (expression 2.7 represents the System Dispersion index).

$$
\begin{equation*}
D(N E T)=\sum_{i=1}^{V} \sum_{j=1}^{V} \text { dij } \quad \text { (Shimbel, l953) } \tag{2.7}
\end{equation*}
$$

Although these are not all the indices used in graph theory, they do represent the measures most commonly used to describe basic graph structure.

Methodology:

The design of the study is organized into two phases: i) the simulation of a number of circuit networks, and ii) the analysis of the resultant networks. Although understanding can be ascertained, only upon the examination of the entire study, it is imperative that these two phases of analysis be elaborated upon.
i) The Model (nodes \& linkages):

Following the work of Gilbert (1961) and Brown (1965), the model used in this study is termed a random plane model. The process described by the model is a two step one. In the first step a set of vertices (or nodes, or settlements) are generated. The second step involves the creation of edges (or linkages, or routes) between these points.

In step one a planar Poisson process was used to generate the points in a square grid. The Poisson process was chosen because many empirical settlement patterns can be considered the realization of a Poisson process. (King, 1962 ; Dacey, 1962). In addition, this process forms the building block for many more complex processes used in geography (Getis and Boots, 1977). The assumptions of the Poisson process are:

1) Each possible location in a sample space has an equal chance of being chosen as a location for a point.
2) The location of each point chosen is independent of the location of any other point, (Getis and Boots, 1977, Chapter 2, Section 2.1).

To select the coordinates of the vertices, via a Poisson process, a random number generator consisting of a computer
program, in this case, was used. (see Appendix A) As in Browns model (1965), a fixed number of vertices, n, are located in a plane. In each run of the model $n=50$, as this was believed to be the size which is reflective of many empirical networks (e.g. Gauthier, l968) and which is of sufficient size to minimize boundary constraints. (Dacey, 1975). A 100 by 100 grid was used as the region in which the point pattern would be born, producing a constant density of 0.005 . (see figure 2.2).

In the second step of the model a critical distance procedure is used to create the linkages between the points. Under this procedure two points become linked if the distance separating them is less than or equal to a critical distance (Dc). The use of a critical distance procedure to generate the linkages was thought to be realistic in network development as one would expect the closer points in a network to have a greater likelihood of becoming linked. It has also been shown empirically that distance decay plays an important role in network growth. (Black, 1971 ; Mackinnon and Barber, 1972).

In each case, Dc was determined by using the maximum first-order nearest neighbour distance between any pair of points in the network. Figure 2.3 is an illustration of how the maximum nearest neighbour was determined. The maximum distance was employed as a critical distance so that each

Figure 2.2
Point Pattern Created by a Poisson Process

Fiqure 2.3

Determination of Critical Distance

Distance Matrix

	1	2	3	4	5	6
1	0	1	4	3.5	4.5	4
2	1	0	3	3	4	4.5
ints 3	4	3	0	2	3	7
points 4	3.5	3	2	0	1	5
5	4.5	4	3	1	0	5
6	4	4.5	7	5	5	0
		cri	ic	1 d	stan	

point in the distribution would be connected to at least one other point. The advantage of a critical distance generated by this method $1 s$ that its value varies directly as scale and inversely as density changes. In this way the technique $1 s$ relatively independent of both the number of points generated and the size of the grid.

Thas use of the maximum nearest neighbour distance as DC does not mean that a connected network, where $p=1$ (one subgraph exists), will always be produced. It $1 s$ possible to get two points connected to each other because therr nearest neighbour distance was less than Dc, yet remaining isolated from the other points of the network. (see figure 2.4). This problem was solved by incorporating a multiple of the critical distance to create a greater critical distance, thus allowing more points to be connected.

A multiple (M) of the critical distance ($D C$) was used to determine a new distance (contact distance between points), which would produce a connected network with $p=1$ (see figure 2.5). The lowest multiple of Dc, which consistently generated a connected network, was found to be $M=1.5$ (after fifty tests of the model). At the other end of this range, $M=4.5$ produced a critical distance (R) which generated a network approaching maximal connectivity.

Figure 2.4

Generated Network ($M=1.0$)

Figure 2.5

Gennerated Network ($M=1.5$)

The generation process was simulated thirty times (a sample of thirty is the minimum size useful in parametric tests employed subsequently) for each value of M to produce a representative sample. Seven different values of M were chosen (M ancreasing by .5 within a range of 1.5 to 4.5) so that structural changes could be observed as the network's complexity changed in response to change in the critical distance (see figure 2.6).

1i) Evaluation of Model Generated Patterns:

For analytical purposes, the graphs that were generated were represented as binary matrices. In these binary matrices, $1 f$ a pair of vertices (ı and j) are directly linked, their corresponding cell (Cıj) is given a value of 1. Otherwise, a value of 0 is entered. (see table 2.1 for a matrix representation of figure 2.5). Conventionally, a point is considered to be connected to itself, therefore a 1 rather than a 0 is entered in the diagonal of the matrix. The matrix $1 s$ symmetrical because it is considered that the route between two nodes may be travelled in both directions.

The summation of the rows and columns produces the number of points which can be reached directly (with one link) from the node represented by that row or column. However, this measure of connectivity only measures connections of one link length. Therefore, the matrix cells

10001T00001000000100100000000000000010000100000000 OTTIOOOOOOOTOOT0000TOOOT00000000000000T0T0T000T000 OITIOOOOOOOOOOTT0000000T000000000000000000T000T000 OTITT000000000TIT00T000T00I0000T000000TIOOTOOOTOTI T00ITIOOOOOOOOOTTOOTTOOOOOTOOTOTODOOOOTIDOOOOTOOTO T000 T0000โ000000 T00100000000T000000T0000 00000100 00000010010000000000000000000010010000000000000000 0000000โ000000000T000โ000000T0000000000T000TITOOTO 00000000โ0000000000000โ0000000T0TOTIOTOOOOOOOOOOOO 000000 0010000000000000000000010010000000000000000 โ000010000 00 T0000000000000โ00000000 0000100000100 OT000000000TT000000T0000TITOOTTOOTOOOOTOTOTOOOOOOO 00000000000TT00000T000IOITOODTOOITITOITOOTOOOOOTOD 0000000000T00T0000T00000000T0000000000000T00000T00 OTTI0000000000 TT000000T00T0000T0000000000โ000T000 00ITI000000000TIT000000T00T0000 T0000000T00000T00tt OOOTTOODOOOOOOTTIOOTOOOTOOTOOTOTOOODOOTTOOOOOTOOTI T0000โ0T0000000001001T000000T0000000100100000T0000 000000000000TT0000T000T0000T000000TTOTOOOT00000T00 OTOTTOOOOOOTOOOOTOOTDOOTITEOTOTOTOOOOTOTOTOOOOOOO T000TIODOOOOQ0000T00IT000000T0000000T00T00000I00T0 0000000T000000000T00TT000000T0000000T00T000tITOOTO 00000000T000T00000T000T000000000T0TT0T000000000T00
 00000000000TT000000T0000TITOOTTOTTIOOTTOT000000000 00000000000TT000000T0000TT000TTOTTTOOOTOTOT0000000
 0000000000T00T0000T0000000010000000000000000000T00 0000000T000000000T00TT000000T0000000000T000TtT00T0 0000TI00000TIOOOTOOTOOOOTITOOTOOOTTOOTTOTTOOOOOOOO 000000IOTIOTOOOOOOOODOOTIOOOOTOITIT00000000000000 000TI000000000TITOOTOOOTOOTOOOOT000000TIOOOOOTOOTT 00000000T000T000000000TOTI0000TOITITOT000000000000 00000UT00T0TT000000T0000TTOOOTTOTTTOOOTOTOOOOOODOO 00000000T000T00000T000TOTT000TTOITTTOTOOOTOOOOOTOO 00000000T000100000100010000000T0TOTIOTOODT00000T00 โ0000 0000 T000000 T001 $100000000000000 โ 0000100000000$ 00000000T000T00000TOOOTOTOOOOTOOTOTTOTOOOTOOOOOTOO OTOTTOOOOOOTIOOOTOOTOOOITITOOTOTOTOOOOTOTOTOOOOOOO OOOTIOOTOOOOOOOTTEOTTOOOOTOTOOTODOOOODTOOOTITOOTI OT000000000T0000000T000TTTOOOTOOOTOOOOTOTOT0000000 I0000T0000I0TI0000I0000000000T0000TITIOOOT00000I00 OTITOOOOOOOTOOTOOOOTOOOTOTIOOOODODOOOOTOTOTOOOTOOO 0000000T0000000000000T000000T0000000000T000TIT00TT 0000000 T0000000000000T000000T0000000000T000TTT00TT 0000T00T0000000TIT00TT000000T00T0000000T000IITOOTI 0TIT0000000000T00000000T000000000000000000T000T000 00000T0000T0TIODOOTOOOT0000T000000TIOTOOOT00000T00 000TIOOTDOOOOOOTTOOOTTOOOOTOTODTOOOOOOOTOOOTITOOTI 000โ00000000000TI000000T00T0000T0000000T000TITOOTI

05
67
87
L
97
5ワ
カワ
をワ
てゅ
「ワ
ロャ
6ε
8乏
L ε
9ε
S乏
† ε
$\varepsilon \varepsilon$
て乏
T ε
0 \＆
62
82
LZ
92
ऽ
ャて
とて
てて
Tて
02
6 I
8 T
LI
91
ςT
†
εI
ZI
IT
OI
6
8
L
9
5
7
ε
Z
I

Figure 2.6
Generated Network ($M=1.5$ to $M=4.5$)

with a zero value only specify that no direct link is present. They do not suggest whether or not a linkage through a neighbouring node is possible.

When a matrix is multiplied by itself, it is raised to the second power and referred to as a "powered matrix". If a column in a "powered matrix" $1 s$ summed, $1 t$ represents the number of different ways in which that node can be reached from all other nodes by using two link moves (travelling over two links before reaching a desired node). By raising the matrix (MAT) to the power of the graph's diameter (δ), 1t $1 s$ possible to produce a matrix, (MAT) ${ }^{\delta}$, where all cells contain a value greater than zero. From this is revealed an association between all nodes allowing the connectivity, within the graph, to be determined. This matrix is called the Shortest Path Matrix. (Shimbel, 1953) (see page 5).

In order to determine the structural characteristics of the graph, a number of indices were calculated through the use of a computer program (NODAC) originally developed by Duane F Marble. A number of minor modifications to the original program were necessary to make it compatable with the Xerox Sigma 7 computer at Wilfrid Laurier University. Appendix B contains the modified version of this program as it was employed in this thesis.

The results from NODAC are represented as data matrices, each matrix representing a particular index which measured network structure. Table 2.2 represents one of these matrices. The rows of the matrix represent the thirty different networks generated for each value of M, while the columns represent the different values of M (changing criticaldistance) used in the model.

To analyze variations in resultant networks that were generated using an identical process, descriptive statistical tests were performed on each column in each data matrix. The mean and the standard deviation of each column in each data matrix would reflect the variation and consistency of a given index at different levels of the critical distance multiplier (M).

Lastly, a one-way analysis of variance was run to examine simultaneously the behaviour of the indices both withan the levels of the critical distance multiplier M and between M.

Conclusions:

In this chapter, the approach of the study, the creation and examination of computer models to determine the effect of a generative process on the morphology of the resultant networks, were presented. The limitations of the research, along with a discussion of both the generatave process and

Data Matrix of The Number of Edges Index

	1.5	M values					
		2.0	2.5	3.0	3.5	4.0	4.5
1	341	294	615	683	899	1003	1174
2	147	345	538	934	988	819	863
3	211	304	499	782	788	1179	1186
4	181	681	445	857	815	1173	1115
5	310	445	484	535	976	876	1193
6	192	363	409	507	670	983	1221
7	318	379	729	292	825	915	1072
8	273	694	586	530	805	811	1159
9	288	286	222	677	815	1048	1011
10	231	419	775	783	838	700	1151
11	584	747	333	1070	1079	1056	1182
12	204	627	304	505	1013	859	1160
13	179	366	572	523	905	1156	1036
No. of 14	227	490	505	841	1068	477	856
Cases 15	218	358	426	744	667	1060	1220
16	207	409	898	510	588	1150	1176
17	159	631	821	841	1077	1195	1199
18	244	466	802	671	1031	1191	1009
19	320	399	723	561	882	807	1222
20	218	336	504	1210	912	1188	795
21	402	691	571	793	720	1082	1140
22	238	383	470	482	1065	1195	937
23	270	493	632	1121	896	784	1153
24	232	502	968	866	940	1078	1198
25	186	318	423	797	1068	1153	1064
26	479	496	696	775	889	816	897
27	495	247	492	700	883	1140	1174
28	160	494	478	506	928	874	1016
29	148	477	395	932	908	856	1046
30	236	554	790	573	754	1206	1166

analytical procedures, constitute the remaining sections of the thesis.

CHAPTER THAEE

The last chapter concermed the development of the model and described the analytical procedures which were necessary to determine the relationship between the network's structure and the process which generated it. This chapter reports the results of running the model and implementing the analytical procedures.

The Analysis:

After each network had been generated and expressed as a binary matrix, NODAC was used to determine the values of the indices describing the network's form.

The values of the indices, as previously explained, were set up in matrix form and statistically analyzed to determine consistency and sensitivity amongst them. Table 2.2 represents the first matrix with values obtained from the index "the number of edges". The remaining values for the seven remaining indices, stored in matrix form, can be found in Appendix C. Again, each value in this matrix was obtained from a completely different network, although the processes involved in their generation were similar.

The columns of each matrix were analyzed first, to determine the homogeneity of the thirty values of which they
were composed. If consistency exists within a column (that is to say the index values are not statistically significantly different), then at least two assertions can be made. Either the generative process had a direct affect on that characteristic of the morphology of the network; or the index used to describe structure may have just been insensitive, regardless of process. Similarily, the greater the diversity within each column, the weaker the relationship between the network's structure and its propogation. In addition, a good index is considered to be one which minimizes variation within each column (the same generative process produces similar network form) and maximizes variation between the columns (different generative processes or different parameters of the same process produce dissimilar network form).

The homogeneity of the index values were assessed by obtaining a coefficient, \bar{V}, of variation. This coefficient measures the size of the standard deviation, s.d. , relative to that of the mean, \bar{X}. A measure of the relative variability can thus be calculated by dividing the standard deviation by the mean of the sample. Expression 3.1 represents coefficient of variation.

$$
\bar{v}=s . d . / \bar{x}
$$

(Blalock,1972,p88) (3.1)

If the standard deviation of the sample $1 s$ small, relative to the mean, then the homogenerty of the index values (in the columns) is high, resulting in a value of \bar{v} approaching zero. Conversely, if the standard deviation $1 s$ large, relative to the mean, then a lack of consistency exists and the value of \bar{V} is large.

The coefficient of variation $1 s$ thus be very useful in comparing the relative homogeneity of groups which have differing means such as the index values in this study. One would expect that with a very large mean, one would find a fairly large standard deviation. The primary interest was therefore in the size of the standard deviation relative to that of the mean. (Blalock,l972). When evaluating the differences between the columns (the index values at different values of M, to determine the sensitivity of each index toward a change in critical distance, a coefficient of variation was again implemented.

The columns of the matrices yielded values of \bar{v} which ranged from 0.09 to 0.50 (see table 3.1). A level of \bar{v}, which 15 approximately equal to 0.75 would indicate that the values in question could have been the result of some random process and little consistency in the data would exist (Boots, 1977). On the other hand, a level of $\bar{V} \simeq 0.35$, is considered to be a level at which little variation in the values (data within each column) exist.

Table 3.1

Summary of Morphometric Indices

Index		M Value			
		1.5	2.0	2.5	3.0
Number	Mean	263.27	456.47	570.17	720.20
of	Variance	11368.75	18503.63	32874.79	44504.12
Edges	$\overline{\mathrm{v}}$	0.41	0.30	0.32	0.29
Mean	Mean	10.45	18.26	22.81	28.81
local	Variance	18.18	29.61	52.61	71.26
Degrae	\bar{v}	0.41	0.30	0.32	0.29
Gamma	Mean	0.21	0.37	0.47	0.59
	Variance	0.01	0.01	0.02	0.03
	\bar{v}	0.41	0.30	0.32	0.29
Cyclomalic	Man	212.27	407.47	521.17	671.20
Number	Variance	11400. 22	18521.84	32894.05	44418.43
	$\overline{\mathrm{v}}$	0.51	0.33	0.35	0.13
Alpria	Mean	0.18	0.35	0.44	0.57
	Vatiance	0.01	0.01	0.02	0.03
	$\bar{\nabla}$	0.50	0.33	0.35	0.31
Sysichir	Mean	6749.07	4648.27	4132.33	3605.80
Dispersion	Varaance	2347143.16	602581.28	767470.54	430671.41
	$\bar{\nabla}$	0.23	0.17	0.21	0.18
Redundancy	Mena	0.39	0.55	0.63	0.71
Ratio	Veriance	0.01	0.01	0.01	0.01
	\bar{v}	0.25	0.17	0.18	0.18
Diameter	Mean	6.33	4.10	3.40	2.87
	Variance	3.12	0.70	0.73	0.47
	$\overline{\mathrm{v}}$	0.28	0.21	0.25	0.24

Table 3.1 continued

Summary of Morphometric Indices

Index		M Value		
		3.5	4.0	4.5
Number of Edges	Mean	889.73	994.33	1093.03
	Variance	17106.11	34204.79	14720.08
	$\overline{\mathrm{v}}$	0.15	0.19	0.11
Mean Local	Mean	35.59	39.77	43.72
Degree	Variance	27.37	54.72	23.55
	\bar{v}	0.15	0.19	0.11
Camma	Moan	0.73	0.81	0.89
	Variance	0.01	0.02	0.01
	$\bar{\nabla}$	0.15	0.19	0.11
Cyclomatic Number	Mean	840.73	945.33	1093.03
	Variance	16981.52	34330.41	16076.08
	$\overline{\mathrm{v}}$	0.16	0.20	0.12
Alpha	Mean	0.71	0.80	0.89
	Variance	0.01	0.02	0.01
	$\overline{\mathrm{v}}$	0.16	0.20	0.12
System	Mean	3130.20	2927.07	2714.33
Dispersion	Variance	77611.16	175201.64	59677.46
	$\overline{\mathrm{v}}$	0.09	0.14	0.09
Redundancy Ratio	Mean	0.80	0.87	0.93
	Variance	0.01	0.01	0.01
	∇	0.09	0.13	0.09
Diameter	Mean	2.40	2.20	2.03
	Variance	0.25	0.23	0.03
	$\overline{\mathbf{v}}$	0.21	0.22	0.09

Although there were values as high as 0.50 and 0.41 , which would indicate considerable variation, the majority of the values of \bar{v}, for all eight indices, were in a range of approximately 0.35 and lower. It should be noted that the larger values ($0.50-0.41$) existed only when the multiple M was equal to 1.5 , indicating a diversity in network structure when the networks, which were generated, lacked complexity.

The columns of each matrix were examined secondly to determine the variation in the measures over different values of M (between the columns). The reason for this was the belief that structural measures, if they were good measures, would minimize variation for similar generative processes (within each M), but maximize variation for different processes (between M).

Further evaluation of table 3.1 at this time, reveals that some indices possess similar values of \bar{V}. The eight measures of network structure used can at this time be reduced to five categories, since the variance behaviours of the Number of Edges and Mean Local Degree are identical to that of Gamma, and similarily, the variance behaviours of the Cyclomatic Number and Alpha are the same. These results are expected, as the indices in common are composed of the same basic characteristics. The System Dispersion index and Redundancy Ratio, although they too have similar variance
behaviours, will be examined separately because of their slight differences in \bar{V}.

To amplify the findings above, the variance behaviour for each index, values of $\overline{\mathrm{V}}$, were plotted, on a graph, against the means of their respective columns for each of the five remaining structural measures. For comparison purposes, all the values were converted to a standardized scale with values between 0 and 1 . Appendix D contains the method of conversion for each index.

The first of the five indices examined graphically is the Gamma index, which also represented the Number of Edges and Mean Local Degree at this time. Figure 3.1 represents the coefficients of variation plotted against the means for each value of M. Although $\bar{V}=0.41$ questions the consistency of the data in the first column, it can clearly be seen that the other values of \bar{V} indicate little variation within the columns. However, when comparing the values of $\overline{\mathrm{V}}$ between the columns, one discovers that a variation does exist. Such an observation signifies that the parameter in question is sensitive to the generative process and any change in this process would definitely be noted by this measurement of the network's structure.

Further observation of figure 3.1 reveals a plateau or "leveling off" of \bar{V} (when $M=2.0$ to $M=3.0$) and then a sharp

Figure 3.1

Gamma Index

decline in \bar{V} between $M=3.0$ and $M=3.5$. It seems at this point that as the network's complexity increases, as shown by this parameter, the consistency within the columns also ıncreases.

The Alpha index, also representing the Cyclomatic Number, contains the greatest range of coefficient of variation values. (see figure 3.2). The high value of coefficient variation for $M=1.5$, along with the drop to the plateau for $M=2.0$ to $M=3.0$ and the final decrease in \bar{V}, were all previously exemplified by Gamma. As before, a sensitivity to structural alterations in the networks can be detected, along with the move toward increased consistency within the columns as complexaty increased.

The Diameter of the networks was the next index examined. Unlike the first two parameters, all the values of \bar{V} fell far below $\bar{V}=0.35$, which indicated a great amount of consistency within the columns. (see figure 3.3) However, it was observed that little variation existed when the values of \bar{V} between the columns were compared.

Like the Diameter, the System Dispersion Index generated coefficient of variation values which fell within a range of 0.0 to 0.35 . (Figure 3.4 illustrates this). The consistency wathin the columns is even greater than that in figure 3.3 , which illustrates an even stronger relationship between the

Alpha Index

Figure 3.3

Diameter Index

Figure 3.4

System Dispersion Index

generative process and the resultant structure. Unlike the diameter, however, this index reveals a smaller range of $\overline{\mathbf{v}}$ for the different values of M. Although the trend is not as dominant as that found in the three previous graphs, there seems to be a movement toward greater consistency in the columns as M increased.

Figure 3.5 illustrates the Redundancy Ratio which, as previously revealed, closely resembles the System Dispersion index. Even though the coefficient variations are numerically similar, they do present distinct variations. From a high of 0.25 the values of \bar{V} dropped to a plateau of approximately 0.17 (when M equaled 2.0 to 3.0), and then dropped further to a low of 0.09 .

The variation of \bar{V} between the columns (for each value of M) is much less pronounced for the Diameter, the System Dispersion index, and the Redundancy Ratio. As with the variation within columns such consistency could arise for one of two reasons; the behaviour of the index is strongly related to the process, or the index is simply a weak measure of structure. To pursue this question, further statistical analysis of each index is undertaken. A one-way analysis of variance is used because this enables the researcher to simultaneously examine the behaviour, both within and between the columns, of the indices. Keeping in mind the criterion that a good index is one which minimizes

Figure 3.5

Redundancy Ratio Index

within column variance and maximizes between column variance, the best indices will be those with the highest F-ratios (since in every instance the degrees of freedom are same).

Table 3.2 contains the results of these analysis of variance procedures. The 95 percent significance level for values of F with 6 and 203 degress of freedom is $F=2.10$. This means, if there was no significant difference between the columns, the f-ratio would be less than or equal to 2.10. However, the resultant F-ratios, in table 3.2 , indicate that in all cases there was a significant difference in structural measures obtained from different generative processes (changing values of M). Since the F-ratios were all similar in value, ranging from the Diameter at 86.089 to the Redundancy Ratio at llo.695, a considerable amount of difference in the behaviour of the indices is not suggested. The Gamma, Alpha, and Redundancy Ratio, however, seem to be the most sensitive of the indices examined.

Conclusion:

The aim of this chapter was to investigate and determine the sensitivity of the morphological characteristics to changes in the parameters of generative process. Two relationships were examined; one to determine if a

Analysis of Variance for Morphometric Indices

Index	Source	Degrees of Freedom	F-Ratio
GAMMA	Between	6	110.129
	Wathin	203	
ALPHA	Between	6	110.127
	Within	203	
SYSTEM DISPERSION	Between	6	91.841
	Within	203	
REDUNDANCY RATIO	Between	6	110.695
	Within	203	
DIAMETER	Between	6	86.089
	Within	203	

relationship did exist between the generative process and the network's structure, and another to reveal if the indices used to detect structural change were sensitive to a change in the values of the parameters used to generate the network.

Analysis of the "data matrices" revealed strong relationships between generative process and resultant morphological structures. This was demonstrated by the behaviour of coeffients of variation which measure the consistency of the structural measures.

The second part of the analysis, determining index sensitivity, revealed that all the indices were sensitive to a change in the parameters of the generative process. This suggested that they were all good measures of network structure, at least for the particular generative process used in this study.

CHAPTER FOUR

The primary objective of this research was to demonstrate an approach to transportation network study which links process and form. The secondary objective was to provide information about the sensitivity and behaviour of selected structural measures in current use in network geography. Through the development and analysis of a stochastic model, both objectives were completed.

The model, although simple in form, generated a circuit network in two steps. The first step generated points or vertices in a plane using a Poisson process. The second step of the model linked these points to finalize the generating operation and complete the network. The output of the model was conveniently stored in binary matrix form which allowed easy access to obtain structural measures of the network through mathematical calculations.

Through the use of coefficients of variation, derived from the means and standard deviations of the structural indices, it was determined that some of the measures were duplicated. This duplication was a result of the similarity of basic characteristics used to derive the indices, particularly the fact that in this study the number of vertices was a constant. The variance behaviours of the Number of Edges and the Mean Local Degree are identical to
that of Gamma, and similarily, the variance behaviours of the Cyclomatic Number and Alpha are the same. This suggests that the joint use of these structural measures has been redundant in the past since they reveal similar information concerning network structure.

The coefficient of variation also illustrated the variation of measures within a particular process and allowed for a comparison of \bar{V} values between different generative processes. Within a given process it was shown that networks with similar structural measures were generated. The coefficients of variability did indacate that, in general, the internal variation (within a given process) was an inverse function of the value of M (the critical distance multiplier). This was expected because as M increased, the networks that were produced approached an upper morphological limit, that of a fully connected network usually known as a "Delta" network. This relationship was much less pronounced for the Diameter, System Dispersion index and the Redundancy Ratio indicating their weakness as a structural measure or their strong relationship to the generative process (cratıcal distance).

A one-way analysis of variance suggested that all the indices were fairly good measures of structure. The Redundancy Ratio having the highest F-ratio value, indicates that it is a good structural measurement and suggests that
it is related to the process of generation. Both the Diameter and System Dispersion index, although their F-ratios are the lowest and they appear to be the weakest measures of structure, are also suggested as being related to the process.

Future Research:

In this study, this approach (process model approach) has been shown to be a valuable approach to circuit networks. Obviously more work is needed along these lines before any definitive statements can be made. The author believes that the basic model presented here offers one means of developing this additional work since the model provides an appropriate base from which to develop more sophisticated models. This is because the model is a two step one in which the first step creates the points and the second creates the linkages. For example, modification of the first step can lead to the examination of different patterns of vertices or the points can be weighted in some appropriate manner or even born to the pattern at different time intervals. The second step can also be modified to change the linkage procedure. For example a nearest neighbour technique could be instituted where, instead of multiples of a critical distance as used in this study, first, second and third nearest neighbours could be implimented. Such proposals, to make the model one which
more closely resembles empirical models, have already been suggested by Haggett and Chorley (1969:298-301).

Finally, since the present model produces non-planar circuit networks. Another modification would be to produce planar circuit networks. This would make the model more representative of many empirical railway, road and shipping networks.

APPENDIX A

THIS IS A COMPUTER MODEL WHICH GENERATES A CIRCUIT NETWORK WITHIN A 100 BY 100 GRID. THE NETWORK CONSISTS OF FIFTY NODES GENERATED USING A POISSON PROCESS. THE LINKAGES CONNECTING THE NODES, ARE GENERATED USING A CRITICAL DISTANCE TECHNIQUE. THE FINAL OUTPUT OF THE NETWORK IS STORED IN BINARY MATRIX FORM. ORIGINALLY PROGRAMMED BY JOHN D. RADKE , WILFRID LAURIER UNIVERSITY.

DIMENSION IX2 (100), $\operatorname{IY2}(100), D(50,50), \operatorname{ICON}(50,50)$
COMMON RAND
RAND $=$ RND (X)
CALL RANDOM(IX,IY,N,IX2,IY2)
CALL CRITDIST(IX,IY,N,IX2,IY2)
STOP
END

SUBROUTINE RANDOM

SUBROUTINE RANDOM(IX,IY,NNUC,IX2,IY2)
DIMENSION IX2(100),IY2(100)
NNUC=50
NL $=100$
$N W=100$
DO $6 I=1$, NNUC
RAN $=$ RND (1)
INT $=$ NL *NW*RAN +1
IX $=(I N T-1) / N W+1$
$I Y=I N T-N W^{*}(I X-1)$
IX2 (I) $=I X$
IY2(I) $=I Y$
6 CONTINUE
RETURN
END

```
    SUBROUTINE CRITDIST(IX,IY,N,IX2,IY2)
    DIMENSION IX2(100),IY2(100),D(50,50),ICON (50,50)
    REAL MAX,MIN,MAX2
    WRITE (6,5)N
    DO 10 I=1,N
    WRITE(6,4)I,IX2(I) ,IY2(I)
    10 CONTINUE
    DO 20 I=1,N
    DO 30 J=1,N
    D(I,J)=SQRT((IX2(I)-IX2(J))**2+(IY2(I)-IY2(J))**2)
    30 CONTINUE
    20 CONTINUE
    DO 40 I=1,N
    DO 50 J=1,N
    IF(I.EQ.J)D(I , J =9999.
    50 CONTINUE
    40 CONTINUE
    4 FORMAT(I5,2F 10.5)
    5 FORMAT(' NO. OF DATA POINTS = ',I5)
```

 DETERMINE CRITICAL DISTANCE
 MAX=0.0
 DO \(96 \mathrm{I}=1, \mathrm{~N}\)
 MIN \(=D(I, 1)\)
 DO \(97 \mathrm{~J}=2, \mathrm{~N}\)
 \(97 \operatorname{IF}(D(I, J) . L T . M I N) M I N=D(I, J)\)
 IF (MIN.GT.MAX) MAX=MIN
 WRITE \((6,777)\) MAX
 777 FORMAT('MAX=',F10.5)
96 CONTINUE
WRITE $(6,657)$ MAX
657 FORMAT('MAXIMUM VALUE=',F10.5)

CRITICAL DISTANCE ROUTINE

MAX2=MAX*4. 5
DO $22 I=1, N$
DO $32 \mathrm{~J}=1, \mathrm{~N}$
IF (D (I, J).GT.MAX2)GO TO 222
$\operatorname{IF}(D(I, J) . L E \cdot M A X 2) D(I, J)=1.0$
GO TO 32

```
222 IF(D(I,J).EQ.9999.) GO TO 223
    D(I,J)=0.0
    GO TO 32
223 D(I,J)=1.0
    32 CONTINUE
    22 CONTINUE
    PREPARE INPUT FOR NODAC
    DO 42 I=1,N
    PREPARE FOR NODAC
    WRITE(6,155)
155 FORMAT('1 1.00 50 1'///'(50F1.0)')
    WRITE (6,156)
156 FORMAT(' A B C D D E F F G H I I J J K L L M N
    e0 P Q R'/' S T U V W X X Y F Z AA BB CC DD E
    @E FF GG HH II JJ'/' KK LL MM NN OO PP QQ RR SS TT U
    @U VV WW XX')
WRITE OUT NODAC VALUES
    DO 62 I=1,N
    WRITE(6,99)(ICON(I,J),J=1,N)
    6 2 \text { CONTINUE}
    99 FORMAT(50I1)
    PREPARE FOR NODAC
    WRITE (6,157)
157 FORMAT(' 00')
    RETURN
    END
```

APPENDIX B

```
C*************************************************************
C THIS IS NODAC**A PROGRAM TO COMPUTE CERTAIN NODE
C ACCESSIBILITY INDICES. ORIGINALLY PROGRAMMED BY
C DUANE F. MARBLE, NORTHWESTERN UNIVERSITY, LATER
C MODIFIED BY JOHN D RADKE, WILFRID LAURIER UNIVERSITY,
C TO RUN ON THE CENTRES XEROX SIGMA }7
C**************************************************************
DIMENSION C(64,64), TEMP(64,64), CP(64,64), CTRA(64,64), CTRB(64,
    14), TITLE(19), NAME(64), FMT(18), DEG(64), ROW(64), COL(64), IROK
    264), ICOL(64), RPERCN(64), CPERCN(64)
    INTEGER DEG,CTRB,SOLTM,SAFETY
    EQUIVALENCE (CTRA,CTRB), (ROW,IROW), (COL,ICOL)
C READ CONTROL AND TITLE CARDS.
    10 READ (5,650) SWITCH, A,N,NCOPY
    READ (5,660) TITLE
    READ (5,670) FMT
C CLEAR AND SET SYSTEM.
    DO 20 I=1,N
    DO 20 J=1,N
    C(I,J)=+0.
    CP(I,J)=0.
    TEMP(I,J)=0.
    20 CTRA(I,J)=0.
    DO 30 I=1,N
    DEG(I)=0
    ROW (I)=0.
    30
    COL(I)=0.
    ITOTAL=0
    TOTAL=0.
    SUMDEG=0.
    SOLTM=1
    REALN=N
    IF (REALN.GT.25.) SAFETY=REALN/1.4
    IF (REALN.LE.25.) SAFETY=N
C READ DATA CARDS AND DUPLICATE ORIGINAL MATRIX.
    READ (5,670) (NAME(I), I= 1,N)
    READ (5, FMT, END=640) ((C(I,J),J=1,N),I=1,N)
    WRITE (6,FMT)((C(I,J),J=1,N),I=1,N)
    40 DO 70 I=1,N
    DO 70 J=1,N
    IF (SWITCH) 60,60,50
    50 CTRB(I,J)=2.-C(I,J)
    60 TEMP(I,J)=C(I,J)
    70 CONTINUE
```

```
C DO MATRIX MULTIPLICATION UNTIL SOLUTION TIME IS REACHED.
    IF (SWITCH) 80,80,100
    80 DO 90 I=1,N
    DO }90\textrm{J}=1,\textrm{N
    90 CTRA(I,J)=A*C(I,J)
    100 DO 110 I=1,N
    DO 110 K=1,N
    DO 110 J=1,N
    110 CP(I,K)=(C(I,J)*TEMP(J,K))+CP(I,K)
    SOLTM=SOLTM+1
    IF (SOLTM.GE.SAFETY) GO TO 630
    IF (SWITCH) 140,140,120
    120 IT=0
    DO 130 I=1,N
    DO 130 J=1,N
    IF (CP(I,J).GT.0.0005) GO TO 130
    IT=IT+1
    CTRB(I,J)=CTRB(I,J)+1
    130 CONTINUE
    IF (IT) 190,190,170
    140 DO 150 I=1,N
    DO 150 J=1,N
    150 CTRA(I,J)=(A**SOLTM)*CP(I,J)+CTRA(I,J)
    DO 160 I=1,N
    DO 160 J=1,N
    IF (CP(I,J).LT.0.05) GO TO 170
    160 CONTINUE
    GO TO 190
    170 DO 180 I=1,N
    DO 180 J=1,N
    TEMP(I,J)=CP(I,J)
    180 CP(I,J)=0.
    GO TO 100
C COMPUTE INDICES.
    190 DO 200 I=1,N
    CTRB(I,I)=0
    200 C(I,I)=0.
    DO 210 I=1,N
    DO 210 J=1,N
    IF (C(I,J).GT.0.005) ROW(I)=ROW(I)+1.
    210 CONTINUE
    DO 220 I=1,N
    SUMDEG=SUMDEG+ROW(I)
    DEG(I)=ROW(I )+. }
    220 ROW(I)=0.
    AVEDEG=SUMDEG/REALN
    SUMDEG=SUMDEG/2.
    MUTT=SUMDEG
    CYLNO=SUMDEG-REALN+1.
    ALPHA=(CYLNO/((REALN*REALN-REALN)/2.-REALN+1.))*100.
    GAMMA=(SUMDEG/(REALN*(REALN-1.)))*100.
    TF (SWITCH) 260,260,230
```

```
    230 DO 240 I=1,N
    DO 240 J=1,N
    ITOTAL=ITOTAL+CTRB(I,J)
    IROW(I)=IROW(I)+CTRB(I,J)
    240 ICOL(I)=ICOL(I)+CTRB(J,I)
    TOTAL=ITOTAL
    REDUN = (REALN*REALN)/TOTAL
    DO 250 I=1,N
    TEX=IROW(I)
    TEXC=ICOL(I)
    RPERCN(I)=(TEX/TOTAL)*100.
    250 CPERCN(I)=(TEXC/TOTAL)*100.
    GO TO 290
    2 6 0 \text { DO 270 I=1,N}
    DO 270 J=1,N
    TOTAL=TOTAL+CTRA(I, J)
    ROW(I) =ROW(I)+CTRA(I,J)
    270 COL(I)=COL(I)+CTRA(J,I)
    DO 280 I=1,N
    RPERCN(I)=(ROW(I)/TOTAL)*100.
    280 CPERCN(I)=(COL(I)/TOTAL)*100.
C OUTPUT SEQUENCES.
290 IF (N.GT.60) KK=4
    IF (N.GT.40.AND.N.LE.60) KK=3
    IF (N.GT.20.AND.N.LE.40) KK=2
    IF (N.LE.20) KK=1
    DO 620 NO=1,NCOPY
    WRITE (6,680) TITLE
    IF (SWITCH) 310,310,300
300 WRITE (6,690)
    GO TO }32
    310 WRITE (6,700) A
    320 WRITE (6,720) N,MUTT
    WRITE (6,880) SOLTM
    IF (SWITCH) 340,340,330
330 WRITE (6,770) ITOTAL
    WRITE (6,890) REDUN
    340 WRITE (6,710) AVEDEG,CYLNO,ALPHA,GAMMA
    WRITE (6,680) TITLE
    WRITE (6,730)
    GO TO (350, 370, 390,410), KK
350 WRITE (6,740) (I,I=1,N)
    D0 360 I=1,N
360 WRITE (6,750) (I,NAME(I),(C(I,J),J=1,N))
    GO TO 430
370 WRITE (6,740) (I,I=1,20)
    WRITE (6,750) (I,NAME(I),(C(I,J),J=1,20),I=1,N)
    WRITE (6,680) TITLE
    WRITE (6,740) (I, I=21,N)
    DO }380\textrm{I}=1,\textrm{N
380 WRITE (6,750) (I,NAME(I),(C(I,J),J=21,N))
    GO TO 430
```

```
390 WRITE (6,740) (I,I=1,20)
    WRITE (6,750) (I,NAME(I ),(C(I ,J),J=1,20),I=1,N)
    WRITE (6,680) TITLE
    WRITE (6,740) (I, I=21,40)
    WRITE (6,750) (I,NAME(I),(C(I,J),J=21,40),I=1,N)
    WRITE (6,680) TITLE
    WRITE (6,740) (I,I=41,N)
    DO 400 I=1,N
400 WRITE (6,750) (I,NAME(I),(C(I,J),J=41,N))
    GO TO 430
410 WRITE (6,740) (I, I=1,20)
    WRITE (6,750) (I,NAME(I),(C(I,J),J=1,20),I=1,N)
    WRITE (6,680) TITLE
    WRITE (6,740) ( I, I=21,40)
    WRITE (6,750) (I,NAME(I),(C(I,J),J=21,40),I=1,N)
    WRITE (6,680) TITLE
    WRITE (6,740) (I, I=41,60)
    WRITE (6,750) (I,NAME(I) ,(C(I,J),J=41,60),I=1,N)
    WRITE (6,680) TITLE
    WRITE (6,740) (I, I=61,N)
    DO 420 I=1,N
4 2 0 ~ W R I T E ~ ( 6 , 7 5 0 ) ~ ( I , N A M E ( I ) , ( C ( I , J ) , J = 6 1 , N ) )
430 WRITE (6,680) TITLE
    IF (SWITCH) 530,530,440
440 WRITE (6,780)
    GO TO (450,470,490,510), KK
450 WRITE (6,740) ( I, I=1,N)
    DO 460 I=1,N
460 WRITE (6,760) (I,NAME(I),(CTRB(I,J),J=1,N))
    GO TO 550
470 WRITE (6,740) ( I, I=1,20)
    WRITE (6,760) (I,NAME(I),(CTRB(I,J),J=1,20),I=1,N)
    WRITE (6,680) TITLE
    WRITE (6,740) (I,I=21,N)
    DO 480 I=1,N
480 WRITE (6,760) (I,NAME(I),(CTRB(I,J),J=21,N))
    GO TO 550
490 WRITE (6,740) (I, I=1,20)
    WRITE (6,760) (I,NAME(I),(CTRB(I,J), J=1,20),I=1,N)
    WRITE (6,680) TITLE
    WRITE (6,740) (I,I=21,40)
    WRITE (6,760) (I,NAME(I),(CTRB(I,J),J=21,40),I=1,N)
    WRITE (6,680) TITLE
    WRITE (6,740) (I,I=41,N)
    DO 500 I=1,N
500 WRITE (6,760) (I,NAME(I),(CTRB(I,J),J=41,N))
    GO TO 550
510 WRITE (6,740) (I, I=1,20)
    WRITE (6,760) (I,NAME(I),(CTRB(I,J),J=1,20),I=1,N)
    WRITE (6,680) TITLE
```

```
    WRITE (6,740) (I,I=21,40)
    WRITE (6,760) (I,NAME(I),(CTRB(I,J),J=21,40),I=1,N)
    WRITE (6,680) TITLE
    WRITE (6,740) (I,I=41,60)
    WRITE (6,760) (I,NAME(I),(CTRB(I,J),J=41,60),I=1,N)
    WRITE (6,680) TITLE
    WRITE (6,740) ( I, I=61,N)
    DO 520 I=1,N
    520 WRITE (6,760) (I,NAME(I),(CTRB(I,J),J=61,N))
    GO TO 550
    530 WRITE (6,790) SOLTM
    WRITE (6,800)
    WRITE (6,810) (I, I=1,N)
    DO 540 I=1,N
    540 WRITE (6,820) (I,NAME(I),(CTRA(I,J),J=1,N))
    GO TO 590
    550 NN=N-1
    DO 580 M=1,N
    DO 570 I=1,N
    K=I+1
    DO 570 J=K,N
    IF (CTRB(M,I)-CTRB(M,J)) 560,570,570
    560 T=CTRB(M,I)
    CTRB(M,I)=CTRB(M,J)
    CTRB(M,J)=T
    570 CONTINUE
    50 CONTINUE
    590 WRITE (6,680) TITLE
    WRITE (6,830)
    IF (SWITCH) 600,600,610
    600 WRITE (6,840)
    WRITE (6,850) (I,NAME(I),DEG(I),ROW(I),RPERCN(I),COL(I),CPERCN(I),
    II=1,N)
    GO TO 620
    610 WRITE (6,860)
    WRITE (6,870) (I,NAME(I),DEG(I),IROW(I),RPERCN(I),ICOL(I),CPERCN(I
    1),}\operatorname{CTRB}(I,1),I=1,N
    6 2 0 ~ C O N T I N U E ~
    WRITE (6,910)
    GO TO 10
C ERROR RETURN.
    630 WRITE (6,900) TITLE
    GO TO 10
C FORMAT STATEMENTS.
6 4 0 ~ P R I N T ~ 9 2 0 ~
```


C

650 FORMAT (I1, 1X,F4.2, 1X,I2, 1X,I3)
660 FORMAT (12A6/7A6)
670 FORMAT (18A4)
680 FORMAT (1H1,19A6)
690 FORMAT ($1 \mathrm{HO}, / 1 \mathrm{HO}, 74 \mathrm{HTHE}$ OPTION INVOLVING COMPUTATION OF THE SHORTE 1ST PATH MATRIX WAS SELECTED.)
700 FORMAT ($1 \mathrm{HO} / 1 \mathrm{HO} 0,59 \mathrm{HTHE}$ OPTION INVOLVING WEIGHTED MATRIX POWERING W 1AS SELECTED. $/ 1 \mathrm{HO}, 31 \mathrm{HTHE}$ VALUE OF A WAS SET EQUAL TO,F6.2)
710 FORMAT ($1 \mathrm{HO}, 30 \mathrm{X}, 23 \mathrm{HTHE}$ MEAN LOCAL DEGREE $=, \mathrm{F} 6.2 / 1 \mathrm{HO}, 30 \mathrm{X}, 23 \mathrm{HTHE} \mathrm{CYC}$ 1LOMATIC NUMBER $=$,F6.2/1HO, 30X, 17HTHE ALPHA INDEX $=, \mathrm{F} 6.2 / 1 \mathrm{HO}, 30 \mathrm{X}, 17$ 2HTHE GAMMA INDEX =,F6.2)
720 FORMAT ($1 \mathrm{HO}, 30 \mathrm{X}, 21 \mathrm{HTHE}$ NUMBER OF NODES $=, \mathrm{I} 3 / 1 \mathrm{HO}, 30 \mathrm{X}, 21 \mathrm{HTHE}$ NUMBER 10F EDGES $=, 14$)
730 FORMAT ($1 \mathrm{HO}, 50 \mathrm{X}, 17 \mathrm{HCONNECTION} \mathrm{MATRIX)}$
740 FORMAT (1H0,11X,20I5)
750 FORMAT (1HO,I2,1H., 1A6, $2 \mathrm{X}, 20 \mathrm{~F} 5.0$)
760 FORMAT (1HO, 12, 1H., 1X, 1A6, 1X, 20I5)
770 FORMAT ($1 \mathrm{HO}, 30 \mathrm{X}, 29 \mathrm{HTHE}$ SYSTEM DISPERSION INDEX $=$,I8)
780 FORMAT (1HO, 49X, 2OHSHORTEST PATH MATRIX)
790 FORMAT (1HO,52X, 14HPOWERED MATRIX, 30X, 1OHDIAMETER $=$, I3)
800 FORMAT (1HO,11HELEMENT MAP)
810 FORMAT (1HO,11X,7I 15/10(12X,7I 15/))
820 FORMAT (1HO,I2,1H.,1X,1A6,1X,7E15.7/10(12X,7E15.7/))
830 FORMAT ($1 \mathrm{HO}, 43 \mathrm{X}, 35 \mathrm{HTABLE}$ OF NODE ACCESSIBILITY INDICES)
840 FORMAT (1HO, 10X , 4HNAME, 10X ,6HDEGREE, $6 \mathrm{X}, 13$ HPOWER ROW SUM, 6X ,7HPERCE 1NT, 6X, 16HPOWER COLUMN SUM,6X,7HPERCENT)
850 FORMAT (1HO, 3X , I2, 1H. , 2X , 1A6, 11X , I2, 7X , E15.7,6X , F5.2,7X, E15.7, 8X,F 15.2)

860 FORMAT ($1 \mathrm{HO}, 4 \mathrm{X}, 4 \mathrm{HNAME}, 8 \mathrm{X}, 6 \mathrm{HDEGREE}, 10 \mathrm{X}, 11 \mathrm{HSHIMBEL}$ ONE, $6 \mathrm{X}, 7 \mathrm{HPERCENT}$, 110X, 11HSHIMBEL TWO, 6X,7HPERCENT, $5 \mathrm{X}, 17 \mathrm{HASSOCIATED}$ NUMBER)
870 FORMAT ($1 \mathrm{HO}, \mathrm{I} 2,1 \mathrm{H} ., 1 \mathrm{X}, 1 \mathrm{~A} 6,8 \mathrm{X}, \mathrm{I} 2,14 \mathrm{X}, \mathrm{I} 6,10 \mathrm{X}, \mathrm{F5} .2,14 \mathrm{X}, \mathrm{I} 6,10 \mathrm{X}, \mathrm{F} 5.2,11$ 1X,I4)
880 FORMAT ($1 \mathrm{HO}, 30 \mathrm{X}, 10 \mathrm{HDIAMETER}=, 14$)
890 FORMAT ($1 \mathrm{HO}, 30 \mathrm{X}, 22 \mathrm{HTHE}$ REDUNDANCY RATIO $=$, F7.4)
900 FORMAT ($1 \mathrm{H} 1,3 \mathrm{X}, 19 \mathrm{~A} 6 / 1 \mathrm{H} 3,35 \mathrm{X}, 48 \mathrm{HWARNING} * * *$ THIS NETWORK IS NOT FUL 1LY CONNECTED./1H-,35X,50HPROBLEM SKIPPED ** PROCEEDING TO NEXT PRO 2BLEM SET./1H1)
910 FORMAT ($1 \mathrm{H} 1 / 1 \mathrm{H} 3,33 \mathrm{X}, 49 \mathrm{HTHERE}$ IS SOMETHING FASCINATING ABOUT SCIENC 1E. ONE/1HO,28X,55HGETS SUCH WHOLESALE RETURNS OF CONJECTURE OUT OF 2 SUCH A/1H0, 28X, 28HTRIFLING INVESTMENT OF FACT. $11 \mathrm{H}, 60 \mathrm{X}, 13 \mathrm{H}-\mathrm{-}$ MARK 3 TWAIN/1H1)
920 FORMAT (1H1,'ENCOUNTERED END OF FILE--PROGRAM TERMINATED') END

Data Matrix of Diameter Index

					va			
		1.5	2.0	2.5	3.0	3.5	4.0	4.5
	1	4	5	3	3	3	2	2
	2	9	5	3	2	2	2	2
	3	7	5	3	3	3	2	2
	4	10	3	4	3	2	2	2
	5	5	4	4	3	2	2	2
	6	10	4	4	4	3	2	2
	7	5	4	3	5	3	2	2
	8	5	3	3	3	3	2	2
	9	7	5	6	3	3	2	2
	10	6	4	3	3	3	3	2
	11	3	3	5	2	2	2	2
	12	7	3	5	3	2	3	2
	13	8	5	3	3	2	2	2
No. of	14	6	4	3	2	2	4	2
cases	15	6	4	4	3	3	2	2
	16	7	4	3	3	3	2	2
	17	8	3	2	3	2	2	2
	18	6	4	3	3	2	2	2
	19	5	5	3	3	3	3	2
	20	7	5	3	2	2	2	3
	21	5	3	3	3	3	2	2
	22	6	5	3	4	2	2	2
	23	5	3	3	2	2	2	2
	24	6	4	2	2	2	2	2
	25	8	5	4	3	2	2	2
	26	4	4	3	2	2	3	2
	27	4	6	3	3	2	2	2
	28	8	4	4	3	2	2	2
	29	8	4	4	2	2	2	2
	30	5	3	3	3	3	2	2

Data Matrix of Redundancy Ratio Index

		M values						
		1.5	2.0	2.5	3.0	3.5	4.0	4.5
	1	4815	4464	6582	7038	8054	8639	9796
	2	2657	4647	6219	8245	8550	7664	7876
	3	3611	4322	5969	7490	7517	9835	9889
	4	2744	6921	5578	7842	7645	9789	9363
	5	4467	5475	5811	6207	8480	7942	9944
	6	2815	4927	5335	5981	6929	8521	10171
	7	4567	4927	7217	4263	7683	8143	9071
	8	4222	. 7078	6494	6161	7580	7627	9682
	9	3362	4374	3358	7011	7617	8916	8687
	10	3735	5306	7454	7472	7745	7070	9623
	11	6427	7242	4708	9058	9117	8967	9858
	12	3520	6775	4652	5855	8699	7847	9690
	13	3109	4923	6427	6030	8091	9660	8840
No. of	14	3917	5893	5984	7769	9045	5734	7842
cases	15	3617	4915	5353	7310	6918	8993	10163
	16	3507	5263	8044	6086	6477	9615	9812
	17	2818	6728	7673	7754	9104	9960	9992
	18	3843	5695	7580	6952	8809	9929	8675
	19	4575	5185	7205	6170	7967	7599	10179
	20	3697	4601	5978	10081	8127	9905	7526
	21	5131	6972	6339	7557	7200	9137	9542
	22	3922	5150	5782	5849	9025	9960	8262
	23	4161	5938	6706	9406	8044	7503	9638
	24	3803	5902	8435	7891	8278	9111	9984
	25	2985	4675	5451	7553	9045	9638	9019
	26	5787	5941	7106	7463	8008	7617	8049
	27	5874	3805	5969	7078	7977	9542	9796
	28	2976	5830	5771	6001	8213	7931	8717
	29	2713	5713	5279	8235	8106	7842	8903
	30	3918	6155	7526	6336	7344	10048	9735

Data Matrix of Mean Local Degree Index

Data Matrix of Cyclomatic Number Index

Data Matrix of Alpha Index
M values

M values

$\begin{array}{lllllll}1.5 & 2.0 & 2.5 & 3.0 & 3.5 & 4.0 & 4.5\end{array}$

1392	1200	2510	2788	3669	4094	4792
600	1408	2196	3812	4033	3343	3522
861	1241	2037	3192	3216	4812	4841
739	2780	1816	3498	3327	4788	4551
1265	1816	1976	2184	3984	3576	4869
784	1482	1669	2069	2735	4012	4984
1298	1547	2976	1192	3367	3735	4376
1114	2833	2392	2163	3286	3310	4731
931	1167	906	2763	3327	4278	4127
943	1710	3163	3196	3420	2857	4698
2384	3049	1359	4367	4404	4310	4824
833	2559	1241	2061	4135	3506	4735
731	1494	2335	2135	3694	4718	4229
927	2000	2061	3433	4359	1947	3494
890	1461	1739	3037	2722	4327	4980
845	1669	3665	2082	2400	4694	4800
649	2576	3351	3433	4396	4878	4894
996	1902	3273	2739	4208	4861	4118
1306	1629	2951	2290	3600	3294	4988
890	1371	2057	4939	3722	4849	3245
1641	2820	2331	3257	2939	4416	4653
971	1563	1918	1967	4347	4878	3824
1102	2012	2580	4576	3657	3200	4706
947	2049	3951	3535	3837	4400	4890
759	1298	1727	3253	4359	4706	4343
1955	2024	2841	3163	3629	3331	3661
2020	1008	2008	2857	3604	4653	4792
653	2016	1951	2065	3788	3567	4147
604	1947	1612	3804	3706	3494	4269
963	2261	3224	2339	3078	4922	4759

References

Black, W.R. (1971).
An iterative model for generating transportation networks. Geographical Analysis, 3, 283-288.

Blalock, Hubert M. (1972).
Social Statistics (Second Edition), Toronto: McGraw-Hill Book Co.

Boots, B.N. (1977).
Personal communication.
Boots, B.N. and A. Getis (1977).
Pattern analysis approached by way of
probability models. Progress $2 n$
Human Geography, 1 , (in press).
Brown, L.A. (1965).
Models for spatial diffusion research. Office of
Naval Reasearch, Geography Branch, Task 389-140, Technical Report, 3 .

Crain, I.K. and R.E. Miles (1976).
Monte Carlo estimates of the distributions of the random polygons determined by random lines in a plane. Journal of Statistical Computation and Simulation, 4, 293-325.

Dacey, M.F.(1962).
Analysis of central place and point patterns by a nearest neighbour method. Lund Studies in Geography, Series B, Human Geography. 24 , 55-75.

Dacey, M.F. (1975).
Evaluation of the Poisson approximation to measures of the random pattern in the square. Geographical Analysis, 7, 351-367.

Eichenbaum, J. and S. Gale (1971).
Form, function, and process: A methodological
inquiry. Economic Geography, 47(4), 525-544.
Garrison, W.L. (1960).
Connectivity of the interstste highway system.
Papers and Proceedings of the Regional Science Association, 6, 121-137.

W.L. and D.F. Marble (1965). A prolegomenon to the forecasting of transportation development. Transportation Center, Northwestern University, Research Report.
Gauthier, H. (1968). Transportation and the growth of the Sao Paulo economy. Journal of Regional Science, 8, 77-94.
Getis, A. and B.N. Boots (1977). Models of spatial processes, Cambridge: Cambridge University Press (in press).
Gilbert, E.N. (1961). Random plane networks. SIAM Journal of Applied Mathematics, 9, 533-543.
```Haggett, P. (1965). Locational Analysis in Human Geography, Toronto:```
Haggett, P. and R. Chorley (1969). $\frac{\text { Network Analysis } 10 \text { Geography, London: Edward }}{\text { Arnold (publishers) Ltd. }}$
Harvey, D.W. (1967). $\frac{\text { Explanation } 1 n \text { Geography, London: Edward Arnold }}{(\text { publishers }) \text { Ltd. }}$
urst, M.E., ed. (1974).   $\frac{\text { Transportation Geography, Toronto: McGraw-Hıll }}{\text { Book Co. }}$
James, G.A., A.D. Cliff, P. Haggett and J.K. Ord (1970). Some discrete distributions for graphs with applications to regional transport networks Geografiska Annaler, 52, 14-21.
```Kansky, K.J. (1963). Structures of transportation networks. University of Chicago, Dept. of Geography, Research Papers, No. 84.```
King, L.J. (1962). A quantitative expression of the pattern of urban settlements in selected areas of the United States $\frac{\text { Ti jdschrift Voor Economischen en Sociale Geografie }}{53, \frac{1-7}{}}$
Kıssling, C.C. (1969). Linkage importance in a regional highway network. Canadian Geographer, 13, 113-129.

