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Abstract 

In this thesis we investigate two pricing models for valuing financial derivatives. Both 
models are diffusion processes with a linear drift and nonlinear diffusion coefficient. The 
forward price process of these models is a martingale under an assumed risk-neutral mea-
sure and the transition probability densities are given in analytically closed form. Specif-
ically, we study and calibrate two different families of models that are constructed based 
on a so-called diffusion canonical transformation. One family follows from the Ornstein-
Uhlenbeck diffusion (the UOU family) and the other - from the Cox-Ingersoll-Ross process 
(the Confluent-U family). 

The first part of the thesis considers single-asset and multi-asset modeling under the 
UOU model. By applying a Gaussian copula, a multivariate UOU model is constructed 
whereby all discounted asset (forward) prices are martingales. We succeed in calibrating the 
UOU model to market call option prices for various companies. Moreover, the multivariate 
UOU model is calibrated to historical return data and captures the correlations for a pool 
of 4 assets. 

In the second part of the thesis we examine the application of the Confluent-U model 
to the credit risk modeling. An equity-based structural first-passage time default model is 
constructed based on the Confluent-U model with efficient closed-form (i.e. spectral expan-
sions) formulas for default probabilities. The model robustness is tested by its calibration to 
the credit default swap (CDS) spreads for companies with various credit ratings. It is shown 
that the model can be accurately calibrated to the credit spreads with a piecewise default 
barrier level. Finally, we investigate the linkage between CDS spreads and out-of-the-money 
put options. 
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Introduction 

Diffusion processes are widely used in financial modeling. The first application of diffusions 
for continuous-time asset pricing dates back to 1900 in the doctoral thesis by French math-
ematician Louis Bachelier [1], who implemented Brownian motion with drift as a model 
for asset price dynamics. To circumvent the problem of negative asset prices, geometric 
Brownian motion (GBM) soon became a standard model for stock price dynamics and 
other financial assets. The GBM model attracted attention in 1965 [2], when economist 
Paul Samuelson rediscovered Bachelier's thesis. The GBM model has a number of advan-
tages. It admits analytically tractable transition probability density functions. Moreover, 
the discounted price process obeys the martingale property in a risk-neutral measure. In 
a arbitrage-free asset pricing framework, these probabilistic properties lead to closed-form 
pricing formulas for various financial derivatives. However, the GBM model fails to ex-
plain certain empirical properties of asset returns and financial derivatives. For instance, 
observed implied volatility surfaces of major stock markets exhibit various volatility smiles 
and skews, while the standard GBM model assumes constant local volatility. Consequently, 
such and other important market observations have led to the development of a variety of 
pricing models based on alternative stochastic processes. 

Numerous model extensions introduced in recent years capture the phenomenon of 
volatility smiles. There exist stochastic volatility models (see [3] and [4]), where the volatility 
of the stock is assumed to be a mean reverting diffusion process, typically correlated with the 
stock process itself. The jump-diffusion models, originally suggested by Merton [5], generate 
volatility skews and smiles by adding discontinuous jumps to the diffusion dynamics (e.g., 
see [6], [7]). Another approach, which has been examined by many authors ([8]- [9]), allows 
the stock volatility to be a function of the stock price, resulting in local or state-dependent 
volatility diffusion models. Nonlinear state dependent models provide a richer and more 
flexible theoretical calibration framework for fitting implied volatility surfaces and option 
values to the observed market data. 

In this thesis, we study and calibrate recently developed multi-parameter state de-
pendent nonlinear volatility models, which are constructed based on a so-called diffusion 
canonical transformation methodology (see [10], [11]). By construction, the underlying asset 
price dynamics is not assumed to follow geometric Brownian motion, but rather we define 
the local volatility to be a nonlinear function of the underlying asset price. 

The diffusion canonical transformation is essentially a combination of a change of prob-
ability measure together with a nonlinear mapping of an underlying diffusion process. While 



the diffusion canonical transformation approach is applicable to a wide variety of underlying 
processes, in this thesis we specialize in two separate sets of applications using subfamilies of 
models that arise from either an underlying Ornstein-Uhlenbeck diffusion (the UOU family) 
or from the Cox-Ingersoil-Ross process (the Confluent-U family). 

In particular, pricing and calibration of European-style options is considered under a 
new multivariate UOU model. The model was recently introduced by Campolieti, Makarov 
and Vasilyev in [12]. Each (univariate) stock price process is modeled as a UOU diffusion 
with four positive freely adjustable parameters, as well as with the drift parameter. For all 
choices of model parameters, the discounted UOU process is a martingale. Each choice gives 
a risk-neutral measure with the transition probability density function given in analytically 
closed form. The multivariate UOU process is then constructed by using a Gaussian copula 
function, where independent Ornstein-Uhlenbeck processes are coupled by employing a 
bridge copula method. The model is calibrated to a finite set of observed option prices via 
nonlinear least squares with a regularization method based on relative entropy with respect 
to a historical prior measure. 

The second part of the thesis considers the so-called Confluent-U model. In partic-
ular, we examine its applicability to credit default and to pricing credit derivatives. The 
structural first-passage time default model is constructed based on the Confluent-U model 
with efficient closed-form formulas for default probabilities. We demonstrate how to con-
struct an intensity based default model and also derive pricing formulas for bond spreads 
and credit default swap (CDS) spreads. The model robustness is tested by calibrating it to 
CDS spreads for companies with various credit ratings. Finally, we attempt to identify the 
linkage between CDS spread and out of the money put options as source of protection from 
credit default. 

This thesis is organized as follows. In Chapter 1, we present the diffusion canonical 
transformation technique for generating transformed diffusions. In Chapter 2, we construct 
the multivariate UOU model and apply it to option pricing. Also, we present a step-by-step 
algorithm for calibrating the model to single-asset equity option market prices, as well as, 
a calibration algorithm of the multi-asset price correlation matrix to the historical asset 
prices. In Chapter 3 we construct a structural first-passage time default model based on 
the Confluent-U family. We also demonstrate how to price and calibrate the model to credit 
derivatives. We end with a concluding discussion. 



1 Nonlinear Diffusion Pricing Models 

1.1 Diffusion Canonical Transformat ion 

Consider a diffusion process (<St)t>o, started at So, with linear drift coefficient rS and nonlin-

ear state dependent diffusion coefficient a(S), defined by the time-homogeneous stochastic 

differential equation (SDE) 

where (Wt)t>o is a standard Brownian motion. Considering applications to financial mod-

eling, St may refer to the stock or asset price at calendar time t. St can also represent other 

processes such as a forward or instantaneous short interest rate. Throughout this thesis, 

St is defined on the real interval T> — (0, oo) and represents a stock price. As is shown 

originally for the zero drift case in [10], the diffusion canonical transformation methodology 

allows us to construct analytically solvable S-diffusions with state dependent volatility from 

simpler underlying X-diffusion processes by applying a combination of a monotonic map 

and a change of measure. The more general method which includes the case of affine drift 

is discussed in [13], [14]. 

Consider a one-dimensional time-homogeneous diffusion (Xt^)t>o 6 I C IR, with in-

finitesimal generator 

u'p(x) = dup(x)/dx, with up defined in (1.6), where p > 0 is a positive constant, X(x) 

d St = rStdt + a{St)dWt (1.1) 

G < » / ( * ) : = \ u { x f n x ) + (A(X) + A x ) ^ ) / ' O O 
2 V «p(®)/ 

(1.2) 



and v(x) > 0, with continuous derivatives A'(.x), v'(x), u"{x) on 2, are drift and diffusion 

coefficients. Such an -diffusion can be viewed as arising from an underlying X-diffusion 

defined below by the application of a measure change, or a Doob /(-transform with h = up 

(e.g. see [15], [10]). 

The X-diffusion is started at xq and has SDE 

dXt = \(Xt)dt + v(Xt)dWt, (1.3) 

with transition PDF px{t\xQ,X). The regular diffusion (XT)T>O can also be defined by the 

respective scale and speed density functions [16]: 

B(x) = exp J dz ) and m(x) = ^ ^ , (1.4) 

with generator 

g f { x ) = ±v2(x)f"(x) + \(x)f'{x). (1.5) 

The generating function up(x) in (1.2) is a linear combination of the two fundamental pv 

solutions ip^ of the the ordinary differential equation Qtp^ = pip^, where 

up(x) = qi<p+(x) + q2<pp (x) , (1.6) 

with parameters qi,q2 > 0 and at least one of them being strictly positive: qi + q2 > 0. For 

p > 0, and are then respectively strictly increasing and decreasing convex functions 

on X. The transition PDF p^ of the transformed process xj:p> is related to the PDF px of 

Xthy 

p{£){t-x0,x) = e-Pt^\px(t-,x0,x), x,x0e!,t>Q. (1.7) 
Up{x oj 

The second part of the diffusion canonical transformation gives the S-process, with 

SDE (1.1), by applying a strictly monotonic real-valued map F : 2 —> V to an X^ -process: 

St = F(XT
(P)), where 

|F'(s)| = ^ . (1.8) 



The transition PDF for an 5-diffusion is related to the transition PDFs of the X and X^ 

diffusions as follows: 

Ps(t-,S0,S) = ) = iM (t 0 ) (L9) a(S) * a(S) Up(x0) 

where x — X(,S'). Xq = X(SB), and X : = F - 1 is the unique inverse of the mapping function 

F. The mapping function F has the following general quotient form [14]: 

= (x) + c2y; (x) = ^ 

qitpp{x) +q2(pp{x) up[x) 

where c\, c2, q\, qi 6 R, p, p + r > 0 are real parameters such that 

W[up, vp+r] {x) := Upv'p+r - u'pVp+r ^ 0 . (1.11) 

Various choices of underlying X-diffusions lead to several families of S'-diffusions. such as 

Bessel, Ornstein-Uhlenbeck, Confluent hypergeometric models that are studied in [15] -

[12]. 

As was mentioned earlier, the diffusion canonical transformation generates nonlinear 

state dependent volatility diffusion models. From equation (1.8) the volatility function has 

the following general representation (with x = X(S)): 

a(S) = <r(F{x)) = u(x)\F'(x)\ = v[x) 

= u{x) 

v!
pJrr{x)up(x) - u'p{x)vp+r(x) 

uj(x) 
\W[Up,Vp+r\<yX)\ 

(1.12) 

uj(x) 

where W denotes the Wronskian and given by (1.11). 

1.2 Pr ic ing European Vanilla Options 

Consider an asset (i.e., a stock) price process (St)t>o modeled as a diffusion according to 

(1.1). We note that for stocks that pay a dividend q then r —• r — q in (1.1). As is shown in 

[13] and [14], for specific choices of the underlying process (Xt) and parameters ci, c2, qi, q2-

by applying the diffusion canonical transformation one can obtain 5-diffusion families with 



discounted process (e~TtSt)t>o obeying the martingale property for every choice of model 

parameters. Hence, under the risk neutral valuation, choosing the money-market account 

as numeraire, the value of a European-style option is given by the conditional expectation 

under a risk-neutral probability measure Q: 

V(S0,T) = e - r T E Q [ A ( 5 r ) | So] = e - r r E ^ [ A ( F ( X ^ ) ) | X™ = X(S0)], (1-13) 

where A (ST) is a payoff function. The option price of a standard European contract with 

payoff A can be written in terms of a one-dimensional integral as follows: 
roc 

V(S0,T) = e-rT / ps(T;S0,S)A(S) 
Jo 

d S 

g - ( r + p ) T 

Up(x o) 
J Up(x)px(T; xo,z)A(F(a;))da;. 

(1.14) 

As an example, let us consider a European call option that gives the holder the right to 

buy the underlying asset with current spot price Sq at a certain date T for a certain strike 

price K. The payoff from a long position in a European call option is A (ST) — (ST ~ K)+•, 

where ST is the asset price at expiration time T. Then according to equation (1.14), the 

European call option has value 

V(S0,T) = e~rTE® [A(St)] = e " r T E Q U(F(X^p))) 

= e " r T E Q 

= e-^E* 

p-(r+p)T 

X{
0

P) = zo ( F ( 4 P ) ) - ^ ) l { 4 p ) > x ( J 0 } l ^ d 
oo 

J up(x)px(T-x0,x)(F(x) - K)dx, 

X(K) 
Up(xo) 

(1.15) 

assuming that T is of the form (I, oo) and F is an increasing map. 



2 Multi-Asset Option Pricing under the 

Ornstein—Uhlenbeck Family of Models 

2.1 T h e U0U Family of Models 

Consider the well-known Ornstein-Uhlenbeck (OU) process (Xt)t>o £ I e (—00,00) having 

linear SDE 

dXt = (A0 - XXt)dt + vdWt, t> 0, (2.1) 

where Ao, A, u are positive constants and (Wt)t>o is a standard Brownian motion. Both left 

and right boundaries I — — 00 and r — 00 of the state space X are non-attracting natural 

for all choices of parameters. For simplicity, we set Ao = 0. The original process can be 

obtained by a linear shift x —• x — ^ and xq —> xq — The speed and scale densities are 

s(z) = e ^ 2 / 2 a n d m ( x ) = 2 (2.2) 
v 

where k := The transition PDF of the regular OU process on R is given by 

\ I K ( K(X -x0e-xt)2\ 
Px(t-,xo,x) = exp 2 ( 1 _ e - 2 A t ) ) • (2-3) 

Applying the diffusion canonical transformation framework of Section 1.1 to the underlying 

process (Xt)t>0 with the choice of q\ — 0, q2 — l ,ci = ao > 0, one obtains the unbounded 

Ornstein-Uhlenbeck (UOU) family of models. The generating function up(x) in this case is 

taken to be 

up{x) = (2.4) 



where v = ^ > 0 and T>-V(x) is Whittacker's parabolic cylinder function which is given in 

terms of confluent hypergeometric functions, see [17] for details. The fundamental solutions 

are now: 

and , • < * ) - „ ; < - , ) . (2.5) 

Then according to equation (1.10) the mapping function is 

T>_„_R/X(-XY/K) 
F(x) = a0- (2.6) V-.v(Xy/K) 

The above construction leads to an S-diffusion with volatility function (1.12) of the form: 

a (S) = aoV^v (v + - ) 
r T>-v-l-L(-y/Kx) V_v_r(-y/Kx)V-.v-1(y/Kx) 

+ v- (2.7) 

where x — X(S) = F - 1 (S) . The volatility function (j(S') depends on various adjustable 

positive parameters £ = {ao, A, n, p} and drift rate r. It is important to notice that for the 

driftless case with r — 0, formula (2.7) reduces to 

aovwpS(x) dQVWp 
<r(S) = a(F(x)) u2Jx) KX) 

(2.8) 

where wp = is a Wronskian constant. As seen in Figure 2.1, the curves for the local 

volatility function a(S)/S generated by formula (2.7) have a pronounced smile-like pattern. 

Local volatility 

0.7 r 

0.6 

0.5 

^0.4 
S2. 

e 0.3 

0.2 

0.1 

0 50 100 150 200 250 300 350 
S 

Figure 2.1: Local volatility function cr(S)/S for the UOU family. The curves are plotted us-
ing model parameters £ = {150,0.125,0.5,0.01} (the thinnest line), £ = {150,0.07,0.5,0.01} (the 
moderate line), £ = {150,0.04,0.5,0.01} (the thickest line) and r = 0.02. 



As is shown in [11], [14] the discounted UOU process (e~rtSt)t>o is a martingale for 

every choice of model parameters The transition density of the UOU process can be 

obtained from equation (1.9) and has the following representation: 

e-pt+K(x2-xl)/4 X>^v(xyfH) 
Ps{t\ So, S) — — — -=-px{t,xo,x), (2.9) a0W(x) T>-v(xoy/K) 

where x = X(S), x0 = X(S*0), W(x) = W[V-v(x^),V_v_r/x(-x^)} > 0. For the X^-

diffusion, the transition PDF is given by substituting (2.3) into (1.7): 

p<£\t;xo,x) = e-^-'S)/* £-jX^Px(t-,x0,x) 
V-v(XQ Vk) 

= -pt+K(x*-xZ)/4 V-v(Xy/K) I K ~ / k(X - x0e~xt)2 

V - v { x 0 ^ ) V 2tt (1 - e~2Xt) P V 2 ( 1 - e~2^) 

(2 .10) 

2.2 Simulation of a Mult i -Asset Price Process 

2.2.1 Coupling UOU Processes 

Consider a multi-asset price process (St)t>o with St = (Sj,..., S";). where each individual 

asset price process (Sk)t>o, k — 1,2,... ,n, is modeled using a UOU diffusion model with 

SDE following (1.1) with common drift parameter r and diffusion function a — ak. Hence, 

each of the n univariate processes is described by its own set of positive parameters ^ = 

{A/j, v>k, ao,k,Pk} , k = 1,2,... ,n. Let the kth asset price process be described by the risk-

neutral transition PDF of the form (2.9) with diffusion coefficient given by (2.7). 

Following that notation, Ffc and Xfc will respectively denote the mapping function and its 

inverse function for the k-th asset. The transition PDFs pk
x and p{pk'k) are obtained from the 

kth underlying diffusion (Xk)t>o and the transformed diffusion , respectively, 

for each k = 1,... ,n. Then the processes (Sk)t>o, k = 1, 2, . . . ,n, are defined by 

Sk = Fk(X{
t
Pk'k]), (2.11) 



with the mapping FFC given by (2.6) and where (x\Pk'k^)t>i) has transition PDF (2.10) with 

parameters A = Afc, u = i/f., and p = pk- The vector process x [ p ' = (XjPl 'X\ . . . , x[pn'ny) 

denotes the n-variate process, and (St)t>o is obtained by applying the respective mapping 

function to each univariate diffusion: — fk (^xjPk"k^ , k = 1, . . . ,n. To specify a joint 

transition distribution function with given marginal distributions and a correlation structure 

we employ a copula function in what follows. 

2.2.2 Copula Function 

A copula C(ui,u2, • • •, un), u^ 6 [0,1], k = 1 , . . . , n, is a multivariate CDF that links uni-

variate marginal CDFs to their full multivariate distribution (for a more detailed definition 

see [18]). Let ... ,xn) be a joint multivariate distribution function with univariate 

marginal distribution functions . . . , e.g. 
X 

$k(x)= j fk(y)dy, fc = l , . . . , n , (2.12) 

—oo 

where is the fcth respective univariate transition PDF. Then, according to Sklar's theorem 

there exists a unique copula function C(u\,..., un) such that 

. . . , * „ ) = C($i(zi) , . . -, $„(**))• (2.13) 

The multivariate joint density function f is then obtained by differentiating equation (2.13): 

«*„. . . ,*„)= 8 -*(*-- -*«>- 8 T ; ( x ; ) ' - 3 ^r ( x r ) ) / 1 (x , ) . . . / .« . p.M) dxi---dxn d$i(xi) • • • d®n(xn) 

Suppose that fk(x), k = 1 , . . . , n, be given by the transition PDFs of the processes 

(Xj.pk'k^)t>o, i.e., fk(x) = Pxk'k\t;xo^,x) where x0^ = XQPk'k\ The univariate marginal 

distributions are each defined by 

X 

<(t,x o , f c , x ) := J p{pk>k)(t;x0,k,y)dy = P(X(
t
pk'k) <x\x^k), k = l,...,n. (2.15) 



Then the joint multivariate CDF of the process (X^)t>o started at xo = (xo,i,... , xo,n) is 

given by the copula: 

* W ( x l 5 . . . ,Xn) := P(XJ*A < x i , . . . , Xf"'n < xn | x0) 

= C ( P ( X f 1 1 < X! | Xo,!), . . . , P(X[n,n < Xn j X0,n)) (2"1 6) 

= x0)i, x i ) , . . . , x0,„, xn)) . 

One important example of copula functions often used for modeling in finance is the 

Gaussian copula. This copula is constructed from the multivariate normal distribution: 

C<£AUSS(U!, ...,UN)=TFR ( A T V i ) , • • • M~L{UN)) , (2.17) 

where Mr is the standard n-variate normal CDF with correlation matrix R (i.e., 

R — RT > 0, Vi, j € [—1 : 1] and {R}i,i = 1) and zero mean vector. jV - 1 stands for 

the inverse of a standard univariate normal CDF, i.e., 
X 

M{x) = -^= [ e~y2'2dy. 
v27r J —oo 

The multivariate density function f in (2.14) has the following form (using uk — <E'k(xk), 

zk=N~1{uk))-. 

= dnMR(Zl ,...,Zn) A dM'^Uk) 

dzi--- dzn A1 duk
 k k 

(2.18) 

= ^ n 

~ m ^ m x i ) ) ) • • • w - H * n M ) ) h [ x i ) ' ' ' I n [ X n ) ' 

where <f> is the PDF of the standard normal distribution and (pn denotes the joint PDF of 

the n-variate normal distribution with mean vector zero and covariance matrix R: 
e~ x 2 / 2 



2.2.3 Sequential P a t h Construction 

Consider the problem of sampling a multivariate process (St) conditionally on So = (Sq, . . . , Sft ). 

Suppose that the underlying process (x[p ' ) has a multivariate distribution given by a Gaus-

sian copula (2.17) with the marginal transition PDFs p^k'k^ (f; xo:k, x) 5 k = 1,2, . . . , n . 

(Recall fk{x) = p^'^ (t; X) and <&fc(x) = f fk(y)dy.) Then one should apply the 
—oo 

following sampling algorithm: 

1. Apply the inverse mapping functions to obtain the initial values of the n-dimensional 

X^)-diffusion: 

x0>k=X^"k) =Xfe(S0
fc), fc = l , 2 , . . . , n . 

2. Sample a normal vector (zi,..., zn) from the n-variate normal distribution function 

MR with zero mean vector and correlation matrix R. 

3. Obtain uniform variates uk — Af(zk), k = 1 , . . . , n. 

4. For each k = 1 , . . . , n obtain Xf° = (^k)~1(uk) by employing numerical inversion of 

the CDFs 

xt
k 

uk = $k(Xk) = j p{pk'k)(t-x0,k,x)dx, fc = 1 ,2 , . . . ,n. 
—oo 

2.2.4 Bridge Path Construct ion 

Suppose that the process conditional on given x j ^ is to be sampled at a set of 

times 0 — to < ti < <•••< tjy — T. One natural way to generate a trajectory is by 

applying sequential sampling by generating xj.^ conditional on x j ^ for each i — 1 , . . . , n. 

An alternative approach to generate (x[p^) is by the bridge path construction. The bridge 

density bs(t',S) = bs(ti,t2,t\S1: S2, S) for St = S, t\ < t < t2, conditional on Stl = Si and 



St2 — is given by (using the measure change in (1.9)): 

ps{t-tr,Sl,S)ps{t2-t-S,S2) bs(t-, S) = 
Ps(t2 -h;Si,S2) 

v # [t - ti; X(5i), X ( S ) ) # (t2 - i ; X(S), X(S2)) 
a(S) P^(t2-t i ;X (S 1 ) ,X (S2 ) ) 

( 2 . 2 0 ) 

!/ PA:(t-ti;X(5i),X(5))pA:(t2-t;X(S),X(S2)) _ * 
-M*;X(S)), PA:(i2-t i ;X(51) ,X(52)) ~ a(S) 

where bx(t;x) = bx(h,t2,t;xi,x2,x) is the bridge PDF of the underlying X-diffusion 

conditional on the endpoint path values x\ — Xtl — X(5i) and x2 = Xf,2 = X(S2). As was 

shown in [12] the bridge PDF bx of the Ornstein-Uhlenbeck diffusion is a normal density 

with mean a and variance b2 given by 

x i e
A A i (e 2 A A 2 - l )+z 2 e A A 2 ( e 2 A A l - 1) 

? 

( 2 . 2 1 ) 

a = 

b2 = 

e 2 A ( A ! + A 2 ) _ 1 

(e2AAi _ !)(e2AA2 _ ^ 
K ( e 2 A ( A 1 + A 2 ) _ ' 

where Ai = t — t\, A2 = i2 — t, and Ai + A2 = i2 — t\. A construction of the sequence of 

time points in a bridge algorithm is depicted on Figure 2.2. 

Figure 2.2: Bridge sampling. 

2.2.5 P a t h S a m p l i n g w i t h a Br idge Normal Copula 

Let bk
x (t; x) be a bridge PDF conditional on endpoint values X(

(fk'k^ and xjPk'k>. then bk
x is 

a normal density function with mean and variance b2, with values given by (2.21) where 

A = Afc, k = Kfc, Ai = t — to, and A2 = i/v — t. Thus each marginal CDF 3>fc(:r) is a normal 



CDF Ny^j^J, which allows us to obtain the multivariate CDF $ = .. ,xn) — 

M"R . • • • , XRI)~°'N ^ that corresponds to a multivariate normal distribution with mean 

vector (oi , . . . , a„)T and covariance matrix DRD, where D — diag(6i,.... bn). To sample 

the multivariate process (x j p ) ) conditionally on endpoints values XqP^ and x j p ' for time 

t, 0 < t < tjv, we apply the following algorithm: 

1. Sample a normal vector (z\,..., zn) from MR. 

2. For each k — 1 , . . . , n, set Xk = ak + 

To obtain the vector of values of the multivariate asset price process (St), map the resulting 

values of (xj p )) : 

i—• = Vk(Xt), k = 1,2,... ,n. 

Applying the same technique recursively, one can sample all values of the asset price process 

(St) between to and tjy. 

The exact bridge simulation method provides a powerful tool to improve the effec-

tiveness of quasi-Monte Carlo (QMC) methods by reducing the effective dimension of the 

problem. The idea is that the first few random numbers that are generated have larger 

impact on the trajectory under this technique than with the sequential sampling. 

2.3 Cal ibrat ion of t h e UOU Model to Market Da t a 

2.3.1 Univariate Case 

It is very important from the practical point of view to develop a reliable and reasonably 

quick calibration scheme for the UOU diffusion family. Our objective is to obtain a cali-

bration scheme that provides two levels of calibration: first, an initial full calibration of all 

parameters of the model and, second, a much faster recalibration that can be used as soon 

as new data have arrived. The second calibration scheme may be used throughout daily 



trading or even for longer periods, while the full calibration only needs to be executed if 

markets move considerably. 

Non-linear Least Squares 

To estimate a best-fitted parameter set £ = {A, i>, ao, (>} of the UOU model based on (ob-

served) market option price data, the least squares method is employed. Suppose that a 

standard call option with strike Ki and maturity Tt has an observed price (){. while the 

model produces a price of Cj = C(Ki,Tf,£) for the same option, where i — 1 ,2 , . . . , iV. 

The goal of the calibration process is to minimize the least squares error for the N options 

considered: 
N 

F ( 0 = I > i IC(Ki,Ti-,0 - Oi\2 min, (2.22) 
i=l 5 

where Wi is a weight that reflects the relative importance of reproducing the zth option price 

precisely. 

The suitable choice of the weight factors Wj, i — 1 ,2 , . . . , N, is crucial for good cali-

bration results. The confidence in individual data points is determined by the liquidity of 

the option. The weights can be evaluated from the bid-ask spreads: Wi = |0,fsk — 

Alternatively, as it was suggested by [7], we use the Black-Scholes (BS) "Vegas" evalu-

ated at the implied volatilities of the market option prices to compute the weights: w-i = 

' , where dCBS/da denotes the derivative of the BS option pricing for-

mula with respect to the volatility a, and crfs = CTbs(0,;. Kj,Tj) is the BS implied volatility 

for the observed market price Oi. 

Regularization 

In general, the calibration of a pricing model is an inverse problem, whose solution depends 

discontinuously on the data. To achieve uniqueness and stability of the solution, a penalty 



function is added to the least squares term: 

N 

Fa(0 = £ > » \C(Ki,Tf,0 -Oi\2 + aH(P, P 0 ) mm, (2.23) 

where the penalty function H is chosen such that the problem becomes well-posed. 

As is examined in [7], the relative entropy method may be applied for solving ill-posed 

calibration problems. The relative entropy of a probability measure P on sample space Q 

with respect to some primal measure Pq is defined as follows: 

where T — 1 corresponds to 1 year time interval. 

The regularization parameter a in (2.23) is used to adjust the trade-off between the 

accuracy of calibration and the numerical stability of results with respect to the input option 

data. The right choice of a is based on the Morozov discrepancy principle [19], which is 

described by the following algorithm: 

1. Compute parameters of £o of the primal measure Po by solving the nonlinear least 

squares problem (2.22) in low precision. Alternatively, one may compute £o by fitting 

the model to historical asset price returns. 

2. Fix 6 6 (1,1.5) and numerically solve equation Fa(£0) = o) for the regularization 

parameter a, where Fa(go) is defined in (2.23). 

2.3.2 Numerical Resul ts for the Univariate Case 

The data set used consists of 79 European call option prices with maturities ranging from 

less than one month up to 1.56 years. These market prices were obtained from Yahoo for 

IBM having the spot share value of 101.34 on July 7th, 2009. For the sake of simplicity, 

the risk-free interest is assumed to be constant and equal to r = 0.25%, and the dividend 

a (2.24) 



rate is set to zero. The calibration routine was developed using Matlab with Optimization 

Toolbox, running on an Intel Core 2 CPU 2.14GHz with 2 GB of main memory. 

Figure 2.3: Market option call price surface for IBM, July 7th, 2009 (left plot). Comparison 
of quoted option mid prices and option prices calculated using the UOU model with the optimal 
parameter set (right plot). 

To obtain the set of parameters for the primal probability measure, the UOU model 

is calibrated to the historical data from May 7th to July 7th, 2009. Using historical asset 

prices, S ^ j — 0 ,1 , . . . , N, 0 = to < ti < • • • < ijvt and the transition densities, we obtain 

the following (single-asset) log-likelihood function for this set of observations: 

N 
Lt(0 = ^lnpsitj - t j - x S t ^ S ^ t ) 

j=i 

= X > ( - T ^ r r / x (*; • 
i=i \°{stj)0 v >) J 

Here, we assume the sequential simulation method. 

In practice, the implementation of the calibration procedure is started with some initial 

values of model parameters. The upper and lower bounds for the parameters should also 

be provided. Based on empirical analysis, such bounds are obtained and are provided in 

Table 2.1. 



Parameter P V a0 K 

Lower bound 0.001 0.005 45 0.5 

Upper bound 0.5 2 250 10 

Initial value 0.04 0.34 102.59 1 

Table 2.1: Initial values and bounds for the parameters of the UOU model. 

Running on an Intel Core 2 CPU 2.14GHz with 2 GB of main memory, the calibration 

procedure takes approximately 200 seconds to fit the model to 63 historical asset prices. The 

optimal values, that maximize the log-likelihood function (2.25), are p = 0.0357, v = 0.0531, 

oo = 118.2404, k — 0.5951. This set of parameters defines the primal probability measure. 

The estimation of the regularization parameter a in formula (2.23) is based on the algorithm 

described above. The calculated value of a is 0.266. 

The final step of the calibration process is the minimization of the nonlinear least 

squares function regularized by the relative entropy as is given in (2.23). The computation 

algorithm utilizes the Matlab function Isqnonlin with the exit tolerance set to 10 -6 . This 

function employs the Levenberg-Marquardt least-squares algorithm for estimating optimal 

parameters. The starting values and the limits for the parameters remain the same as given 

in Table 2.1. The computational time is approximately 400 seconds to fit the model to 

79 option prices. The best-fitted parameters of the model are p = 0.0203, v = 0.0013, 

ao = 102.1384, K = 0.6579. The objective function Fa attains its minimum value of 1.58. 

The discrepancy between the computed option prices and observed option prices may 

originate from different sources. First, the market data may contain errors or misleading 

information. For example, the values of illiquid options might be mispriced, or simple 

input errors may occur. Second, the calibration procedure estimates model parameters of 

an arbitrage-free model, while the market prices are not necessarily arbitrage-free. Hence, 

there is an inherent mismatch between the model prices and the market data. Notice that 

the use of time-dependent parameters may decrease the level and number of errors and 



make the calibration procedure maturity-wise. Another possible solution to improve the 

accuracy is to employ the calibration separately for out-of-the-money, at-the-money and 

in-the-money options. Of course, a source of error that will always exist with any model is 

the specification of the model itself. 

2.3.3 Mult ivar iate Case 

Let us consider the multi-asset price processes (St)t>o that follows a multivariate UOU 

model, where univariate UOU diffusions are coupled via the Gaussian copula function. 

The calibration procedure can be split into two stages: 

1. Estimation of the parameters of the marginal (single-asset price) processes. 

2. Estimation of the correlation matrix R of the Gaussian copula. 

Such a calibration algorithm admits multiple variations. First, one may use maximum like-

lihood estimation (MLE) to fit the marginal models to historical asset prices. Second, one 

may use the least squares method to fit the marginal models to historical derivative prices 

(say European options). For both approaches, the correlation matrix is then estimated by 

MLE using historical asset prices. Alternatively, one may use only observed asset prices 

to estimate all parameter of the multivariate model simultaneously without splitting the 

calibration process. However, in this case the computation time will increase significantly 

due to higher dimensionality of the optimization problem. Notice also that the multivariate 

path distribution depends on the simulation method used. By using the sequential sampling 

or some version of the bridge sampling, one may obtain different models and, hence, obtain 

slightly different estimates of the model parameters. 

Let | (S j j , . . . , S^.) | be the n x (Ar+1) matrix containing N + l independent historical 

prices for each of the n financial assets observed on a set of time points T = {io, t\, • •., i/v}. 

Let (£,R) — (£i , . . . ,£n,i?) denote the set of model parameters to be estimated. The his-

torical observations in -space are obtained by applying the inverse map Xk. = Xk(Sf;. ). 



Assume that T = {tj}jL0 represent some arrangement of time points in T. The ordering 

of the time points is determined by the simulation method used. For the (forward) sequential 

method we assume that 0 = to < t\ < • • • < tjv = T, i.e., Vj > 0 tj — tj. For the backward-

in-time bridge method we have that 0 — to < t^ < tjq-i < • • • < t2 < t\ — T, i.e., 

V j > 1 t j = t N + i - j . 

Let fk(x) denote the PDF of x\pk'k) conditional on the er-algebra generated 

by the first j sample path points XKPk'K\X(/k' >,..., XK~pk>K), where 1 < j < N and 11 t j' — J 
r(Pk,k) v(Pk,k) v(pk,k) W11C1C x ^ ^ 

1 < k < n. For the sequential path sampling method, with t7 = t,t, we have that fk(x) = 

p{Pk,k) ^ _ x[Pk,k\ a;̂  . For the backward bridge method we have that fk(x) = bk
x ( t j \ x ) 

is a bridge PDF of the Ornstein-Uhlenbeck bridge conditional on X{pk'k) and X{-Pk'k), where tj-i 
tj = tjv+i-j and tj-1 = tpf+2-j- Let <l>k denote the CDF that corresponds to the PDF fk. 

Suppose the joint transition PDF of the process (x j p ' ) is constructed with the Gaussian 

copula as given by (2.13) and (2.17). The n-asset log-likelihood function is then 

Ln(£,R) = J2ln 

j = i v m - 1 (xi •, 6) ) ) • • • m - 1 ; u ) ) 
7 (2.26) 

( V / *=i 

where 4>r denotes the joint PDF of the n-variate normal distribution with mean vector zero 

and covariance matrix R; L\ is the single-asset log-likelihood function given by (2.25), and 

L'norr denotes the log-likelihood function for the copula function. Recall that the expression 

in (2.26) is independent of the simulation method used. For the sequential and bridge 

methods, we provide below specific expressions of the log-likelihood function. 

As is suggested by the structure of the log-likelihood function in (2.26), the calibration 

process can be split into two steps. First, the sets = {A ,̂ a>ok,Pk} , fc = 1,2, . . . , n of 

parameters of the marginal distributions are estimated by employing maximum likelihood 



estimation: 

= argmaxLi(£fc) = argmax Y~]ln — 
a a r-J I ak 

As is seen, the parameters of the marginal distributions are estimated based on historical 

data. An alternative approach to computing the parameters is to fit asset price distributions 

to observed option prices. 

The last step is to estimate the correlation matrix R for the given optimal model 

parameters £ = {£1,..., £n} estimated from the previous step. 

Sequential calibration. 

For the sequential path generation method, the algorithm is as follows. 

(i) Map all the observations into X^-space using the respective inverse maps: 

X,- = (Xj,..., X?) = ((X\Sl; f ) , . . . , Xn{S?.; j = 0,...,N. 

(ii) Compute vectors u j = ( u j , . . . , u") G [0, l]n, by evaluating the integrals: 

«?= J P{tk\u-tj-i^X^x-^dx, j = l,...,N 
—oo 

(iii) Maximize the log-likelihood function with respect to R: 

N 

Y , In 4>r . . . , N ~ \ x q ) ) - max. 
3=1 R 

Bridge calibration. 

The estimation of the log-likelihood function for the sequential calibration involves numer-

ous estimations of the CDF for the UOU model. Since there is no simple-form solution for 

Vk 
(si) 

k = 1, , n. (2.27) 



the CDF, the numerical integration of the probability density function should be performed 

regularly. By applying the bridge approach to the construction of the multivariate path dis-

tribution function, the number of integrals to be computed numerically on step (ii) reduces 

from n x N to n. This is due to the fact that for the bridge approach, the marginal CDFs 

j = 2,... ,N, are Gaussian. Hence, for the backward-in-time bridge path generation 

method, the log-likelihood function can be simplified as follows: 

„ " (4>R{a 

^ ^ (2.28 

t i ' ^ " (i 

t n ' ~ 
X* - akj 

where xk — —3— ; mean a k j and variance 6? • are computed by formulae in (2.21) using 
h • J 3 

\ — \ k , H = Ai = tj — tj-1, A2 = tj +1 - tj. 

The following algorithm can be applied for the backward-in-time bridge path generation 

method. 

(i) Map the observations into -space Sj —> X j = F 1{Sj\£),j = 1 , . . . , AT, as is 

described in part (i) of the sequential algorithm. 

(ii) For each k — 1 , . . . , n and j — 1 , . . . , N — 1 calculate akj and bkj by using (2.21) with 

respective parameters A = Xk, k = Ai = tj — tj-1, and A2 = tj+1 — tj. Then, set 

xk = ~ aki 
3 hj 

(iii) Compute u,v = ('ujy,..., u^), the values of normal CDFs corresponding to the termi-

nal point of a path: 

uk
N 

vk 

J Pxk,k)(tN-tN-^Xx^xitk) dx, k — 1,... ,n. (2.29) 

(iv) Maximize the log-likelihood function with respect to R: 
N—l 

In fa {x},..., + ln <f>R (N~l{ul
N),... ,M-\un

N)) max. 
j=1 



Numerical Results for the Multivariate Case 

For this numerical experiment the daily observations of four American companies, namely, 

IBM, Microsoft, Pepsi, and Walmart, have been collected from Y A H O O ! ™ . The examined 

period is April 7th, 2009, to July 7th, 2009, and it consists of 63 time points. In the first 

stage of the calibration, the optimal sets of parameters of the marginal distributions are 

estimated by solving equation (2.27), and they are provided in Table 2.2. 

IBM Microsoft Pepsi Walmart 

p 0.0496 0.2173 0.0865 0.0493 

V 0.0887 0.0365 0.1149 0.0886 

a0 103.9904 21.1638 31.671 52.3842 

K 0.9670 0.874 0.910 0.9874 

Table 2.2: Optimal parameters estimated for IBM, Microsoft, Pepsi, and Walmart 

Two approaches are then used for the evaluation of the optimal correlation matrix R. 

In the first approach, the correlation matrix is obtained by the pairwise calculation of the 

correlation coefficients. There are (2) correlation coefficients for 4 stock-price processes to 

be calculated. However, the resulting matrix may violate the positive-definite property of 

a correlation matrix. To overcome this problem, a method suggested by [20] of finding the 

closest correlation matrix by the spectral decomposition is applied. 

The idea of the spectral decomposition method is to obtain a valid (N x N) correlation 

matrix C that best fits a given, not necessarily positive-definite N x N matrix C. Given 

the eigensystem S and associated set of eigenvalues {A,}, a real symmetric matrix C can 

be written as 

C = SAST, where A = diag(Ai,..., An) . 

If the matrix C is not positive-definite, it has at least one negative eigenvalue. By setting 

the negative eigenvalues to small positive number e, we define the elements of the diagonal 



matrix A' = diag(A'i,. . . , A'at) as 

A',; = 
^it Aj > 0, 

i — 1,..., N. 
e, A, < 0, 

To obtain unit diagonal correlation elements we set the non-zero elements of the diagonal 

scaling matrix L — diag(Zi,..., IN) with respect to the eigensystem S by 

N 
-1 

i — 1,..., N. 
w=1 

Then, one can obtain a positive-definite matrix with unit diagonal elements as 

C = y/LSA'STVL. 

The results of the numerical experiment are shown in Figure 2.4. The computation 

time for the bridge simulation is 1.5 times faster than for the sequential simulation. 
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Figure 2.4: Correlation matrices obtained by using the bridge path simulation (left matrix) and the 
sequential path simulation (right matrix). The pairwise computation of the correlation coefficients 
is employed. 

In the second method, the correlation matrix as a whole is estimated. The computation 

of an optimal correlation matrix is performed in Matlab using the function fmincon, which 

allows us to find a minimum of a multivariate function with non-linear constraints. By 

adding nonlinear constraints, the algorithm works in the class of semi-positive matrices, 

which is absolutely necessary for the correct formulation of the correlation matrix. However, 

the candidate matrix, which minimizes the objective function in (2.26), may not have ones 

on the principal diagonal. To obtain a correct correlation matrix that is closest to the 



given one, the spectral decomposition method is applied again. The results are shown in 

Figure 2.5 and Figure 2.6. 
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Figure 2.5: The candidate semi-positive matrix that minimizes the objective function (2.26) 
(left matrix) obtained by using the sequential simulation method and the closest correlation matrix 
obtained by using the spectral decomposition method (right matrix). 
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Figure 2.6: The candidate semi-positive matrix that minimizes the objective function (2.26) (left 
matrix) obtained by using the bridge simulation method and the closest correlation matrix obtained 
by using the spectral decomposition method (right matrix). 



3 Credit Risk Modeling with the Confluent—U 

Model 

3.1 T h e Family of Confluent Hypergeometr ic Models 

We now consider a diffusion process (St)t>o of the form (1.1), in which the underlying 

X-diffusion is a Cox-Ingerssol-Ross (CIR) process (Xt)t>o 6 I = (0, oo) with SDE [21] 

dXt = (a0 - aiXt)dt + vy/X~tdWu t > 0, (3.1) 

where ao , a i , v are positive constants, and (Wt)t>o is a standard Brownian motion. With 

the condition /z :— ^f 1 — 1 > 0 the process (Xt)t>o is conservative on I (the origin is 

entrance and oo is a non-attracting natural boundary). The speed and scale densities are 

s(x) = x-^e™, m(x) = e~KX , (3.2) 
v l 

where K := The transition PDF of the CIR process on (0, oo) is given by 

px(t;x0,x) = cteait e - ^ ^ + ^ I ^ c t ^ ^ ) , (3.3) 

where ct := n/(eait — 1) and IM(x) is the modified Bessel function of the first kind. 

Applying the diffusion canonical transformation methodology described in Section 1.1 

with the choice of coefficients = 1, q\ — 0, = 0, c\ — ao leads to the Confluent-U model 

with generating function 

Up(x) = U(v, FJL + 1, KX) , (3.4) 



where v :— p/a\ > 0. p is an arbitrary positive constant, and U(a,b,z) is the confluent 

hypergeometric function of the second kind or Tricomi function, see [17] for details. A pair 

of fundamental solutions (for any p > 0) in this case are: 

<PP(x) = M ( v , p + 1, KX) , <PP ( x ) = U(v,FL+ 1, KX) , 

where M(a,b,z) is the confluent hypergeometric function of the first kind or Kummer's 

function, see [17]. Then according to equation (1.10) the mapping function is 

M ( v + + 1, KX) 
F(x) = a0—777 x , (3.5) 

and it has unique inverse X = F_1 . This construction leads to ^'-diffusions with diffusion 

coefficient (1.12) of the form [14] 

\vM(v + £,/i + l,Kx)U(v + l,fi + 2,Kx) 
a(S) = v F (x) = aonvsjx — r 

(v + )M{v + j- + 1 , p + 2 , KX)1 
(P+ 1 )U[V,P+ 1,KX) 

The volatility function a(S) depends on a set of several adjustable positive parameters 

£ = {ao - //, ai • p-V\ and drift rate r. It is worth noting that for the driftless case, with 

r — 0, the formula (3.6) reduces to 

( - a°u wP e K X (o 7\ 

where wP — (F(p + 1)/T(t/)) is a Wronskian constant. As is seen in Figure 3.1, typical 

plots of the local volatility function a(S)/S generated by formula (3.6) have a pronounced 

smile-like pattern. 



Local Volatility 

Figure 3.1: Local volatility function a(S)/S for the Confluent-U model. The curves are 
plotted using the model parameters £ -- {65,1.25,0.1,0.001,2,0.02} (the thinnest line), £ = 
{65,1.25,0.1,0.02,2,0.02} (the moderate line), f = {65,1.25,0.25,0.001,2,0.02} (the thickest line). 

As is shown in [11] the discounted Confluent-U process (e~RTST)T>o is a martingale 

under the assumed risk-neutral measure which we shall denote by P. The transition density 

of the regular Confluent-U process on (0, oo) by substituting (3.3), (3.4), (3.6) into (1.9) 

has the following representation: 

/. R, ^ vJxe~pt U(v, u + 1. KX) , . v-Jx (n\, . , 
ps(t;S0,S) = : ( s ) = (3.8) 

where x — X(F),xo = X(Fo). The lower endpoint F(0+) = 0 is an absorbing boundary and 

the upper endpoint F(oo) = oo is a non-attracting natural boundary for the ^-diffusion with 

diffusion coefficient in (3.6) and SDE (1.1). 

3.2 T h e Conf luen t -U Defaul t Model 

There exist two main approaches in credit risk modeling: structural models and reduced 

form models. The structural, or firm based, credit default model, originated from the work 

of Black and Scholes (1973) in [22] and Merton (1974) in [23]. Such structural models 

assume that a firm would default if its asset value falls below a certain default level. The 



general problem with asset value models is that asset value processes are not observable. 

In contrast to structural models, reduced-form credit models use market prices of de-

faultable instruments (such as bonds or credit default swaps) to extract firm's default prob-

abilities. Initiated by Jarrow/Turnbull (1995) [24], in a reduced-form model, default is 

treated as an exogenous event. The main weakness of reduced form models is that they do 

not make effective use of balance sheet and stock market information. 

The approach developed in this chapter exploits some of the benefits of structural 

models in conjunction with reduced-form models. In particular, we put forth an equity-

based structural model of default. The model allows us to link the pricing of equity options 

to the pricing of defaultable bonds on a given firm. Our model shares similarities with 

recent works by Linetsky [25], Carr and Linetsky [26]. However, rather than using a jump 

to default process, our model is based on the first hitting time of the equity price which is 

assumed to follow a diffusion with nonlinear (smile-like) volatility. 

Let the equity price (i.e., stock share) of a company be described by a stochastic process 

{St)t>o with currently observed price So. According to the simplest case of a first passage 

time methodology, the default event occurs at the first time Triej at which the stock price 

falls below some default trigger (barrier) level B > 0, where So > B: 

In this thesis we deal with diffusions whose sample paths are continuous functions of time, 

and hence the first passage time is a first hitting time for the process, i.e., 

Assume that the firm's equity price process (St)t>o belongs to the Confluent-U family 

defined in Section 3.1 with the set of parameters £ = {a®, p,v}. For So > B the 

probability of default Pdef{t) before time t can be written as follows: 

TDEF = TB := inf{£ > 0 : St < B). (3.9) 

Tdef = t b := inf{£ > 0 : St = B}. (3.10) 

Pdef(t) = P(rdef <t) = P S O ( T B < t) 
(3.11) 

= P ( r 6
( r f < i | ^ = x 0 ) = Pxo(r6

(p)<t) 



where T^ := inf{£ > 0 : x[p} = b}, b = X(J5) and XQ — X(So) are given by the inverse of F 

in (3.5). The survival probability Psurv(t) can be written as follows: 

Psurv(t) = 1 - Pdef(t) = 1 - PX0(T(
b

P) < t) = 
(3.12) 

= P x o(t < r{
b

p) < oo) = P,0(rb
(p) > t), 

since PXQ ( r j ^ = oo) = 0 in the case of the Confluent-U process where oo is a (non-

attracting) natural boundary. 

The CDF of the first-hitting time down r ^ is given by the discrete spectral expan-

sion [13]: 

( V ) * * , I* + 1 , > * ) E ~ { P + ^ N ) T + 1 , K X 0 ) 
(rb <t) = l~ai ^ (3'13) 

where An,n = 1,... ,oo, are positive eigenvalues, i.e., the positive roots of 

U(- — ,fi + l,Kb)=0, (3.14) 
ai 

where U\(a,b,z) = Since St — F(X t^), where F is monotonic, the first-hitting 

time probabilities are simply related by: 

Ps0(rB<t) = PX0(4p) <t), b = X(B), x0 = X(S0). (3.15) 

(H) 

Consider the stock price process killed at level B > 0, with transition PDF ps (t; So, S). 

Note that for B = 0 we recover the transition PDF in (3.8), p^it; S0, S) = ps(t; S0,S). We 

have another useful relation between the transition PDF and the first-hitting time CDF: oo ^ oo 

Ps 0 ( tb <*) = ! - Jp{sB\t-,So,S)dS = 1 - ' ^ J up(Kx)pf(f,x0,x)dx, (3.16) 
B P b 

where function up(x) is given by (3.4). pjr(t;xq,X) is the transition PDF for the CIR 

X-diffusion Xt E (b, oo) killed at a given level b — X(B), which is given by [13]: 

vW(txn x) -Px ^°'^-r(M+l)sin(7r(M + l)) 
(3.17) 

p + 1, K,b)U(-un,n + l,Kx)U(—un,p + 1, KXo) oo 

X . 
sm{nvn)Ui{—vn, p + I, Kb) n=l 



i a / 7 \ sm(7rb)_., . . . - , , N sin(7rb) , , 
where vn = An /a i , U(-a,b,z) = U(-a,b,z) and Ui(-a, b, z) = ———Wi(-a, b, z) 

ai (a) ai (a) 

are the scaled confluent hypergeometric function and its scaled partial derivative w.r.t. 

argument a, respectively. The eigenvalues {An}n>i are the same as above. 
OO 

We note that the integral J So, S)dS represents the survival probability before 
B 

time t. Therefore, the default and survival probabilities are related to the transition density 
/ r>\ 

ps (t: S'o, S) and the barrier level B. Recent studies in credit derivatives pricing using 

structural approaches to model default make different assumptions about how the default 

barrier function is determined. Some studies employ a specific functional form of the default 

boundary [27], [28], whereas the default boundary is primarily a function of asset volatility. 

Other studies [29] assume a more flexible setup featuring an arbitrary deterministic default 

boundary function. In order to incorporate a default barrier into the Confluent-U model, 

we propose the default barrier B(t) to have a piecewise and time-wise form. The default 

time is generally given by (assuming S'o > B(0)) 

Tdef := inf{t > 0 :St< B(t)}. 

In its simplest form we have a constant barrier B(t) — B, for all t > 0. 

Let us compute default probabilities with a non-constant (i.e., piecewise constant) de-

creasing default barrier 
N 

B(t) = Y,Bll{u_lM]{t), (3.18) 
i=1 

where Bi corresponds to the default level for the time interval < t < U, B(0) = B\. 

to = 0, B\ > Bi > Let bi — X(£?j), xo — X(5o). The default probabilities, i.e., the 

first-hitting time CDF for the S'-diffusion across the piecewise constant barrier B(t), can 

then be computed from first principles by concatenation. For up to iV = 2, we have: 

• for 0 < t < ti: 

P(W <t) = PSo(rBl <t) = PX0(r{
bf < t), (3.19) 

where Px 0(^f ) < t) is given by (3.13). 



for t\<t< t2: 

P(Tdef<t) = L-Ps0(Tdef>T) = L-Ps0( inf SU > BU inf S U > B 2 ) 
0 <u<t\ tl<U<t 

<_XJ LXJ 

= 1 - JIPifl){t1]S0,S1)p(f*\t-t1-,Si,S2) 
Bi B2 

oo 
= 1 - JPlf1\t1-,SQ,S1)Ps1{TB2>t-t1)DS1 

Bi 
oo 

" XBl) 

dS2 d Si 

1~ I Ps '(ti;S0,Si)[l-PSl(TB2 <t-ti)}dSi 

I oo 

p{
s
Bl)(ti-So, Si) dSi + J p{

s
Bl\ti, So, SI)PSi(TB2 <t-ti) dSi 

Bi 
oo 

= Ps0(tSi < H) + J p{
s
Bl)(ti-, So, SI)PSi(TB2 <t-ti) dSi 

= 1 

Bi 
oo 

Bi 

B i 

= PX0(T^ < h ) + 

,-pti 

up(x o ) 

oo 

J Up(x)p%l]{tl-X0,X)PX{T^ <t~tl) dx. 
bi 

(3.20) 

for t > t2\ 

P(Tdef <t) = P(Tde f < t2) + Ps0 ( inf Su > BU inf SU > B2, inf SU < B3) 0 <u<t\ ti<u<t2 t2<u<t 

= ^(Tdef < t2) 

+ 
oo oo 

J J P{sBl)(tf,So,Si)p(
s
B2)(t2-ti-,Si,S2)Ps2(TB3<t-t2)dSidS2 

B2 Bi 

= P(Tdef < t2) 

+ 
Up(xo) 

oo oo 

J J Up(x2)p{x\ti\xo,xi)p{x\t2 -ti',xi,x2)dxi 
b2 U>\ 

X PxM? <t~t2)dx2. 'b3 

(3.21) 

Note that in deriving (3.20) and (3.21) we have made use of the Markov property and the 

time homogeneity of the process. 



3.2.1 Linkage t o Intensity Based Default Models 

According to the intensity based default model, the stochastic behavior of a default process 

is determined by a hazard rate function h(t) for time t > 0 at which default events occur. 

Then, the instantaneous probability of default, conditional on having survived up to time t, 

is proportional to the product of the hazard rate h(t) and the length of the infinitesimal time 

interval dt: P[Tfjf.f < t + dt\rcief > t] — h(t)dt. Integration gives the survival probability 

for a finite time interval as 

Psurvit) = P(rde f >t) = h^du. (3.22) 

Based on this representation for the survival probability, and assuming the constant default 

level B, the hazard rate h(t) can be interpreted as 

h(t) = - l l n P s u r v ( t ) = = ^ f f i - f , " (3.23) 
Psurvit) PI0(t6

1p; > t) 

where b = X(B), x0 = X(S0). Substituting the (3.19) — (3.21) into (3.23) one can obtain 

hazard rate for the Confluent-U model with nonconstant default barrier levels. Let us define 

the density for the first-hitting time at default level b for the X^-diffusion: 

Then the hazard rate function for 0 < t < t\ with default barrier level B\ has the following 

representation: 

where {An}n>i are given by (3.14), h = X(Bi), x0 = X(S0). For tx < t < t2 from (3.20) 

and (3.24) the hazard rate function is 

OO 

ggy f up(x)pix1 \ty,x0, x)p{
b

p) (t - ti; x) dx 
h(t) = b-± . (3.26) 

Psorf? <ti) + i^IM^)Pxl)(h;x0,x)Px(rlJ
p) <t-h)dx 

b l 



Similarly, one can obtain the hazard rate function for t2 < t: 
oo oo „ . „ N , . 
f J up{x2)Px1\tr,xo,xi)p)c

2\t2 -t1;x1,x2)plP
3
>(t -t2-,x2)dx1dx2 

= ~ oo oo ~ 
P(Tdef < t2) + g g y / / ( ^ - t i ^ i . ^ P x ^ C < t - t 2 ) d a ; i d a r 2 

62 61 
(3.27) 

Figure 3.2 gives an example of different hazard rate curves obtained using (3.25). The 

parameters used are: S'o = 14.5,5 = 5.8, ao — 12.5, fi = 1.25, ai = 0.1,1/ — 2,r = 0.02. 

One advantage of formula (3.25) is that it allows us to calculate implied hazard rates and 

survival probabilities based on historical stock prices. 

Figure 3.2: The term structure of hazard rates per annum for different values of p (left plot). The 
term structure of hazard rates per annum for varying spot price SQ with p = 0.005 (right plot). 

3.2.2 Matching Empirical Default Probabilities 

For our first simple numerical example, we examine the ability of the Confluent-U default 

model to capture the actual average observed (real-world) default probabilities across bonds 

with different ratings. In our experiment, we use historical data derived from observations 

of default events captured between 1970 and 2000 in the report provided by Moody's in [30]. 

The Confluent-U model parameters £ = {ao, p, ol\,p,v}, drift rate r and default barrier 

B(t) were calibrated to fit the curve of the average historical cumulative default probabilities 



for two types of bonds with investment grade and speculative grade ratings1, respectively, 

with maturity of 10 years. The calibration procedure minimizes the least square error 

between the historical default probabilities and the default probabilities produced by the 

Confluent-U model using formulas (3.13), (3.17) — (3.21). It is assumed that the company's 

spot price SQ is normalized and is equal to 100. We note that the same results are readily 

calibrated if one varies So. The following objective function is minimized: 

N 2 

Y , { P d e f ( t i ) - P ? e
s

f ( U ) ) - £ m i n g , (3.28) 
i = 1 ' ' ' 

where t i — i , i = 1, . . . , 10, P ^ f ( U ) corresponds to the observed default probability at t n . 

Figure 3.3 and 3.4 reports the numerical results of fitting the Confluent-U model to 

credit default rates from 1 to 10 years maturity for speculative and investment grade bonds, 

respectively. The optimal model parameters and default barrier levels are reported in Table 

3.1. It is clear from these figures that the Confluent-U default model calibration matches 

default rates quite accurately over all time horizons and is capable of reproducing the general 

shapes of default probabilities for bonds with different ratings. 

a0 P OI\ P r BI B2 B3 

Investment Grade 94.23 1.995 0.087 0.0004 0.02 59.9 24.0 23.8 

Speculative Grade 93.7 1.198 0.123 0.0112 0.051 52.2 41.5 40.85 

Table 3.1: The optimal Confluent-U model parameters and default barriers obtained from the 
calibration for historical default probabilities for investment grade and speculative grade bonds. 
Note that parameter r in this case is the real-world growth rate. 

1A bond is considered as investment grade if it is judged by the rating agency as likely enough to 
meet payment obligations that banks are allowed to invest in them. Speculative grade rating is 
below investment grade with higher risk of default. 
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Figure 3.3: Confluent-U model default rates plotted against historical average default rates for 
the period from 1970 to 2000 for speculative grade bonds (left plot) and the respective hazard rate 
(right plot). 
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Figure 3.4: Confluent-U model default rates plotted against historical average default rates for 
the period from 1970 to 2000 for investment grade bonds (left plot) and the respective hazard rate 
(right plot). 

3 . 2 . 3 P r i c i n g B o n d S p r e a d s 

Consider a defaultable zero-coupon bond with unit notional value at maturity. The payoff 

ZR(T) with maturity T and recovery rate R is given by: 

ZR(T) = ZR(SQ,T) = L{T>R} + R1{T<T} = (1 - R)L{R>T} + R, (3 .29) 



where r = TRJ( F is a default time. For constant risk-free discount rate r and constant recovery 

rate R, spot price S'o, the current price of a defaultable zero-coupon bond maturing at T is: 

PR(S0,T) = e-rTVSo [ZR{T)\ = e'RTR + (1 - R)e~rTPSO(R > T). (3.30) 

Assuming that the event of default occurs when the stock price falls below level B, 0 < B < 

S'o, then PR(B, SQ,T) is the price of a defaultable zero-coupon bond with default barrier B: 

PR(SQ,T-B) = e-RTR+(L-R)e~rTFSo(rB>T) (3.31) 

= e~RTR + (1 - R)e~rT( 1 - P S O ( R B < T)). (3.32) 

Bond prices can be quoted as credit spreads over treasury bond yields due to different credit 

quality. Let y(T) be the present risk-free treasury yield curve, then the bond credit spreads 

are given by: 

SR(S0,T;B) = - i l n PR(S0,T; B) - y(T). (3.33) 

Figures 3.5 and 3.6 illustrate some typical shapes of the term structure of bond credit 

spreads quoted in bps (a basis point (bp) is equal to l/100th of 1%) for the model considered 

above as one varies the model parameters, including the single default barrier level B. The 

spot price is S'o = 14.5, the risk-free rate is taken to match the yield curve of the US 

Treasury for December 6, 2009 and is provided in Table 3.3. Each figure contains four 

curves corresponding to four choices of model parameters. Fixed values of the parameters 

and their ranges are shown in Table 3.2. 

As usual in no-arbitrage pricing the price of a CDS is given by the risk neutral expec-

tation of its discounted payoff. 

3.2.4 Pricing Credit Default Swaps 

A Credit Default Swap (CDS) is a contract that provides insurance against the risk of a 

default by a particular company (the reference entity). The protection buyer regularly pays 



Parameter B a0 <*i P 

Fixed value 5.8000 12.5181 1.2177 0.0939 0.0075 

Min value 2 8 0.001 0.0100 0.001 

Max value 8 15 4.5 0.5 0.01 

Table 3.2: The model parameters and their ranges. 

Period 3 mo 3 mo 1 yr 2yr 3 yr 5 yr 7 yr 10 yr 

Rate (%) 0.06 0.17 0.36 0.84 1.34 2.24 2.97 3.48 

Table 3.3: US Treasury bond yields for December 6, 2009. 
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Figure 3.5: Some representative term structures of credit spreads with varying parameter B (left 
plot) and /J, (right plot). 

a stream of constant premiums to the protection seller until the maturity of the CDS TN 

or the default time r if r < f,\r. The premium paid by the protection buyer to the seller 

is called the spread and is quoted in basis points per annum of the notional value of the 

contract and is usually paid quarterly. 

Without loss in generality, we assume that there are N contractual payment dates 

ti < < • • • < tjq between the current time t < t\ and the maturity at T = t^. So, 

the payment at time ti < = 1,... ,N, is made only if r > fy. Then the value of the 
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Figure 3.6: Typical term structures of credit spreads with varying parameter p (left plot) and ao 
(right plot). 
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Figure 3.7: CDS contract cash flows. 

T t 4 def n+1 

premium leg at time t is equal to 

s(tN)^2D(t,t i)ail{r>ti} > 
N 

i= 1 

where s(t, t^) = s(t/v) is the ^ -matur i ty contractual default swap spread, D(t,T) = 

M(t)/M(T) is the discount factor at time t for maturity T >t, where M(t) denotes risk-free 

money market account (i.e., bank account) numeraire, i.e., M(t) = eJo r(s)ds- a- = ^ — ti_l 

is the year fraction between payment dates ti and tt-1. 

If the reference entity defaults before the end of the CDS contract maturity T — t^, 

then the protection seller pays to the protection buyer an amount (1 — R), where R € [0,1] 

is the recovery rate of the notional value (taken as $1) which is delivered to the protection 

buyer at the default time, i.e., given default time T, the amount delivered has present value 



at time t 

(l-R)D(t,T)l{t<T<tN}. 

For a par spread, the no-arbitrage present value, at time t, of the difference between 

the premium leg and the protection leg must equal zero, i.e., 

N 
E[(l - R)D(t,T)l{i<T<tN} - s ( t N ) £)£>(M i)ail{ T > t l } | .F t] = 0, 

i=i 

where this expectation is taken w.r.t. the risk-neutral equivalent martingale measure and 

the filtration Tt represents all available information up to time t, i.e., Tt — a(Su : 0 < u < t) 

is taken as the natural filtration generated by the stock price process. Then the expression 

for the par CDS spread s(tjv) is given by 

= (1 - R) ft
N D{t,u)&Pdej{u) = (l-R)Jt

tND(t,u)dP(rdef<u) 

Dili D{t, ti)aiPsurv(ti) Ya=\ D(t, ti)aiP(Tdef > U) 

where PSUrv and Pdef are the cumulative survival and default probabilities, respectively. 

3.3 Cal ibrat ion for CDS Spread Prices 

The Confluent-U model is calibrated for CDS spreads with maturity ranging from 1 to 10 

years for 4 publicly traded companies. To assess the capability of the Confluent-U model to 

adapt to different scenarios, the model is tested on the market CDS data for companies with 

various credit qualities. Sample data consist of closing CDS spread mid prices obtained from 

a Bloomberg terminal on February 16th, 2010. Figure (3.8) shows that observed companies 

produce different CDS spread curves. The following companies are considered: 

• Apache — energy sector — "A+" S&P rating. The spot price is So = 91.2. 

• Walmart — retail sector — "AA" S&P rating. The spot price is So — 53.56. 

• Dell — technology sector — "A-" S&P rating. The spot price is So = 14.5. 

• Motorola — technology sector — "BB+" S&P rating. The spot price is So — 7.26. 
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Figure 3.8: Market CDS spread curves for Dell, Apache, Motorola and Walmart. 

The calibration procedure minimizes the sum of squares of the error between the market 

CDS spreads and the model CDS spreads, with respect to the given model parameter set 

Market CDS spreads are taken yearly from 1 to 10 years. The following objective function 

is considered: 

N 

n o = - m i n ' ( 3 - 3 5 ) 

i=1 ^ 

where s(U),i — 1, 2 , . . . , N = 10 are the observed market CDS spreads with i, maturity, 

are CDS spreads produced by the Confluent-U equity model according to the formula (3.34) 

with model parameters adjustable default barrier B(t). and where w-i is the ith weight 

assigned to the ith data point. 

3.3.1 Constant Default Barrier 

In preparation for the non-constant default barrier calibration, for the first preliminary 

stage of the calibration it is assumed that the default barrier is constant, i.e., we simply set 

B(t) — B. The weights in the objective function are set to zero for the CDS spreads with 



maturity less than 3 years, assuming that the default barrier for maturities U > 3 years is 

approximated by a constant value B. 

The recovery rates are obtained from [31], which provides average recovery rates by 

industry for the period from 1982 to 2003. The recovery rates of R — 25.5%, 34.8% and 

53.4% are utilized for companies from technology, retail and energy sectors respectively. 

The risk-free discount rate is set to the US Treasury yield curve. The calibration procedure 

is the same for each company, thus all the steps of the calibration are shown below in detail 

only for the case of Dell. 

The objective function (3.35) depends on the 5 model parameters (indicating the barrier 

level B) listed in Table 3.4. The objective function is minimized by using a gradient based 

algorithm. Calibration results are very sensitive to the initial set of parameters listed in 

Table 3.4. In order to recover an optimal parameter set for the Dell CDS data set, the initial 

guess for the default barrier B is varied from 0.5 to 13 with step size 0.25. For each default 

barrier the calibration algorithm provides an optimal set of parameters and the respective 

value of the objective function. The best solution with the minimal objective function is 

reported in Table 3.4. 

Parameter B ao P ai P 

Lower bound 0.5 0.1 0.0001 0.01 0.00001 

Upper bound 13 25 4.5 0.5 0.5 

Initial value 5 13.5 1.25 0.1 0.001 

Optimal value 1.851 12.806 0.177 0.1229 0.0128 

Table 3.4: Model parameters, their boundaries, initial guess and optimal values. 

Figure 3.9 plots the comparison between the model and the market CDS spreads. Our 

results show that for a constant default level i? = 1.85 the Confluent-U model can produce 

an excellent fit to the CDS spreads with maturity from 3 to 10 years, i.e., for data points 

with maturity > 3 years. 
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Figure 3.9: Market CDS spreads for Dell company and spreads produced by Confluent-U model 
with a constant default barrier. 

3.3.2 Piecewise Default Barrier 

To minimize the overall error in the CDS curve, as well as, the error between market 

and model CDS spreads with maturity < 3 years (i.e., for the first and second years) a 

step-wise non-constant barrier is employed. However, a piecewise default level increases 

the computational time due to the necessity of computing a single and double integral in 

formula (3.21). For multiple barrier levels the model calibration involves multiple integrals. 

As a trade-off between the speed and accuracy, the default level is specified with only 3 

segments as follows: 

Bi, 0 < t < l , 

B{t) = b2, l<t<2, 

B3, 2 < t < 10. 

Thus, the default level is non-constant for the first two years of the CDS spreads and is 

constant for the rest of the maturities. Steps 1-3 below constitute the algorithm that we 

have applied for the full CDS calibration. 

Step 1. Obtain a preliminary estimate of — B ^ by calibrating to CDS spreads for 

maturity > 3 years. 



(i) Set w\ = w2 — 0 in equation (3.35). 

(ii) Use formula (3.19) and (3.13) to compute the default probability for constant 

barrier 

(iii) Obtain first estimates of £ = and = B ^ by solving the optimization 

problem (3.35). 

Step 2. Obtain a preliminary estimate of B2 = B^ and an improved estimate of B3 = B^ 

by calibrating CDS spreads for maturity > 2 years. 

(i) Set w\ = 0 in equation (3.35). 

(ii) As an initial guess, set model parameters and the two barrier levels to 

i = £W,{B2,B3} = {Bi1\B£)}. 

(iii) Use formulae (3.19) and (3.20) for the default probability for a two-step bar-

rier. 

(iv) Obtain estimates £ ^ and {BI,B2} = by solving the opti-

mization problem (3.35). 

Step 3. Obtain the final estimates of the set of parameters £ and the piecewise constant 

default barrier{B\, B2, B3} by calibrating to CDS spreads for the whole range of 

maturities. 

(i) As an initial guess, set model parameters to £ = 

{B1,B2,B3} = {BI1),BI1),B^}. 

(ii) Use the formulae (3.19)—(3.21) for the default probability for the case of the 

three-step piecewise barrier. 

(iii) Finally, obtain the calibrated model parameters £ and compute the default 

barrier {B\, B2, B%} by solving the optimization problem (3.35). 

The results in Figure 3.10 show that the calibration with a piecewise default level pro-

duces a significantly better fit to the market spreads than the constant barrier calibration. 



The optimal non-constant default levels are B\ — 7.26, B2 = 2.72, B3 = 1.89, and the 

optimal model parameters are ao = 12.883,/i = 0.173, a\ — 0.117, p = 0.0126. 
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Figure 3.10: Comparison of market and model CDS spreads for Dell with the piecewise default 
level B1 = 7.26,B2 = 2.72, B3 = 1.89. 

The above calibration procedure was also applied to Walmart, Motorola and Apache 

companies. The results of the calibrations are respectively reported in Figures 3.11, 3.12 

and 3.13. Our results confirm that the Confluent-U default model can produce various 

shapes of the CDS spreads and works reasonably well, and in some cases exceptionally well, 

to fit market CDS data. 
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Figure 3.11: Calibration results for Walmart using a constant default barrier B = 22.52 (left plot) 
and three default barrier levels (right plot), where Bx = 40.11, B2 = 22.88, B3 = 22.31. 
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Figure 3.12: Calibration results for Motorola using a constant default barrier B = 1.55 (left plot) 
and three default barrier levels (right plot), where B\ = 3.25. B-2 = 1.59, S3 = 1.51. 
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Figure 3.13: Calibration results for Apache using a constant default barrier B = 11.85 (left plot) 
and three default barrier levels (right plot), where B\ = 55.51, B2 = 14.31, S3 = 10.9. 



3.4 Linkage Between CDS Spreads and P u t Options 

Let us consider an investor who wants to protect long position in company stocks from 

default. Assuming a particular recovery rate, the same payoff of a CDS can be replicated 

with deep out-of-the-money put options. Assuming that an investor is looking for $1 million 

worth of protection for the next year, the stock of Apache on April 14th, 2010 is trading at 

So — $92.75 and put option with strike K — 40 and expiration of one year has a mid-market 

price of $0.63. The 5-year CDS contract spread is quoted as 41.8 bps. 

Assuming a 40% recovery rate, the CDS would pay the protection buyer $600,000 in 

the event of default. Assume that the event of default occurs when the stock price hits zero. 

The investor needs to purchase 600,000/(40 x 100) = 150 put contracts (1 contract consists 

of 100 puts) with 1 year maturity to obtain a $600, 000 payoff. The cost of this position 

would be 0.63 x 150 x 100 = $9,450. The cost of the same position in a CDS contract would 

be $4,128 assuming continuous compounding with constant interest r = 0.2% per annum 

and 40% recovery rate. Prom this example we see that obtaining protection by entering 

into the put contract is much more expensive. However, one should take into account other 

factors such as liquidity and transaction costs. To adjust the price of protection and make 

it fair for put and CDS contracts, one should change the recovery rate to approximately 

75%. This example raises an important question about the linkage between market CDS 

spreads and put options. This linkage is examined in Sections 3.4.1 and 3.4.2. 

3.4.1 Calibration to Option Put Prices 

We now consider the calibration procedure for the Confluent-U model for pricing European 

put options. Suppose we have N market prices of European put contracts 

Pi, i — 1 , . . . , N. The calibration then consists of searching for the model parameter set of 



values £ = {/>, r/Q, /x, oi. 0} that minimizes the objective function: 

N 

05 7) = - Pi\2 + 7#(£,£o) - min . (3.36) 
i=l ^ 

The objective function (3.36) consists of two terms. The first term incorporates pricing 

error between market option put prices Pi and model put option prices P(KU Tt: £) with 

corresponding strike price jFQ and maturity Tj. Here Wi are non-negative weights that reflect 

the relative importance of reproducing different put prices precisely. 

The second component is a penalization term with regularization parameter 7 and 

-̂ (£>£0) as the relative entropy or the Kullback-Leibler distance (see Section 2.3.1): 

dP ~ 
ln dPo 

(3.37) 

With inclusion of the penalty term, the inverse problem becomes well-posed and measures 

the discrepancy between probability measure P with parameters £ and a given prior measure 

Po with parameter set 

The choice of the prior probability density for the stock price process with parameters2 

£0 — {p, ao, p, ai, 0} is based on the result of the calibration of the Confluent-U model 

parameters to the time series of stock weekly returns for a one-year period. To evaluate the 

optimal parameter set £0 with the best fit to the historical stock price data {Si , . . . , Sn}, 

the negative log-likelihood estimator has to be minimized: 

n 

£0 = axgmin^(-lnp5(A^;Si_i,Si;£)), 
^ i=1 

where ps is the transition PDF of the Confluent-U model given by formula (3.8). The 

historical data contain n weekly observations, i.e., Ai,-t — 1/52, for a one year period for 

Apache from April 14th, 2009 to April 14th, 2010. The optimal parameter set is reported 

in Table 3.5. 
2 The drift parameter r has been replaced by 9 as it now denotes the physical growth rate of the stock 
price. 



a0 Ql P B 

83.48 1.684 0.493 0.0472 0.072 

Table 3.5: Optimal model parameters £o obtained in the calibration for the historical prices. 

To be able to estimate the performance of the Confluent-U model in terms of its ability 

to replicate the empirical density, it is compared to the Black-Scholes model. Taking into 

account that the Black-Scholes model assumes the log-normal distribution of stock returns, 

the expected growth rate 0 and volatility a can be easily estimated: 

n ' 
E l U t M ^ r M ] 2 

a — . 
n 

Once an optimal parameter set £o for the prior measure is obtained, the ratio of the likelihood 

estimators for the Confluent-U, MLEU, and the Black-Scholes model, MLEBS, is analyzed. 

For given n — 48 weekly historical observations for Apache from April 14th, 2009 to April 

14th, 2010, the ratio MLEBS/MLEJJ is equal to 0.96. Hence, the Confluent-U model 

provides better fit to the historical data. We note that the Confluent-U model can capture 

more rare events in the fatter tails of the probability distribution. 

The regularization parameter 7 in (3.36) is estimated based on the Morozov discrepancy 

principle [7], which is described by the following algorithm: 

1. Compute parameters of £ = {p, ao, yi, a i} (note 0 — r in this step) by solving the 

nonlinear least squares problem (3.36) in low precision without penalty function. 

2. Fix 5 G (1,1.5) and numerically solve equation F(£. 7) = <5F(£, £0; 0) for the regu-

larization parameter 7, where jF(£,£o;7) is defined in (3.36). 

The solution to the nonlinear least square problem with low precision is reported in Ta-

ble 3.6. For given 5 = 1.2, the regularization parameter 7 is equal to 2.3. 



a0 P ai P r 

86.158 1.5771 0.227 0.0546 0.0025 

Table 3.6: Optimal model parameters obtained in the calibration for the option prices with low 
precision. 

Solution to the nonlinear least squares problem (3.36) with regularization parameter 7 

and prior measure £0 is estimated by a gradient-based method. The optimal parameter set 

is reported in Table 3.7. 

ao P ai P r 

83.0651 1.87238 0.243 0.0563 0.0025 

Table 3.7: Optimal model parameters obtained in the calibration for the put option prices. 

Figure 3.14: Comparison of market put option prices and Confluent-U model option prices. 

In Figures 3.14, 3.15 and 3.16 the results of the calibration to option put prices are 

reported. It is clear from the results that the Confluent-U model can be calibrated with a 

very good fit to option prices for various range of maturities and strikes. 
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Figure 3.15: Comparison of market put option prices and Confluent-U model option prices for 
different maturities in years. 

3.4.2 Pric ing CDS Based on Conf luent -U Model Calibrated to P u t Op-
t ions 

To link the European put options to the CDS spreads on the same reference company, we 

assume that the recovery rate R and default barrier B are unknown. The CDS quotes 

are obtained from Bloomberg on April 14th, 2010 for Apache company. To empirically 

test the strength of the linkage between the European put options and CDS spreads, we 

price CDS spreads by formula 3.34. The Confluent-U model parameters set correspond 

to results of calibration to put option prices and are shown in Table 3.7. Recovery rate 

R and default barrier B are calibrated to the fit the model to curve of market CDS data. 

The calibration procedure described in details in Section 3.3. The results of calibration 



Market prices Model prices Abolute Relative 

error error (%) 

0.52 0.47 0.05 10.24 

0.80 0.74 0.06 7.47 

1.25 1.15 0.10 8.32 

1.85 1.73 0.12 6.46 

2.65 2.55 0.10 3.88 

3.75 3.65 0.10 2.63 

5.20 5.09 0.11 2.03 

7.00 6.92 0.08 1.20 

9.10 9.14 0.04 0.44 

11.70 11.77 0.07 0.59 

14.65 14.79 0.14 0.94 

18.00 18.17 0.17 0.92 

21.70 21.86 0.16 0.73 

25.70 25.82 0.12 0.48 

29.90 30.01 0.11 0.37 

34.35 34.38 0.03 0.08 

38.95 38.89 0.06 0.15 

43.70 43.52 0.18 0.42 

48.45 48.23 0.22 0.45 

Figure 3.16: Comparison of market put option prices and Confluent-U model option prices for 
maturity T = 0.61. 

are reported in Figure 3.17, where computed CDS curves are plotted against market CDS 

spreads. The obtained recovery rate is equal to 91.1%, default level is B(t) — {B\ = 

20.08,-B2 = 7.62,5S = 0.49}. 

We observe that the Confluent-U model calibration matches CDS curve quite accurately 

over all time horizons. One can investigate time series of the CDS spreads and options 

prices to determine correlation of co-movements and predict future movements in both 



markets. This information can be used to identify arbitrage opportunities and, hence, can 

be incorporated in trading strategies. We conclude that one can examine more about the 

CDS and the stock options markets to determine more accurate relationship between credit 

and market risk. Note, that Confluent-U model allows us to integrate both markets, rather 

than to utilize separate models for each market. 

55 

50 

45 

40 

35 

S 30 ^ 

to 
8 25 

20 j 

15 

10 

5 

0 

- * - Market Spreads 
•o Model Spreads 

Figure 3.17: CDS spreads implied from calibration to put options against market CDS spreads for 
mid quoted prices for Apache on April 16th, 2010. 



Conclusion 

In this thesis we have studied two separate sets of problems that are of considerable im-
portance in mathematical finance from both the theoretical and practical viewpoints. The 
first main problem consisted of formulating a new model for describing multi-asset price 
dynamics that can be readily calibrated realistically to market implied volatility surfaces for 
option prices on a single stock while also incorporating historical correlations among multi-
ple stocks. The other main problem consisted of developing a new equity-based structural 
model for simultaneously pricing credit default swap (CDS) spreads and standard European 
equity call/put options on a given firm and then linking the two results. 

The mathematical framework underlying the single stock price dynamics is the so-called 
diffusion canonical transformation for constructing solvable multi-parameter nonlinear lo-
cal volatility diffusion models with affine drift [15], [10]. In particular, the models and 
applications considered in this thesis specialize to two main families of recently developed 
nonlinear local volatility models: one is the UOU model that is generated by taking the 
standard Ornstein-Uhlenbeck (OU) diffusion as underlying process while the other is the 
Confluent-U family which is built on the Cox-Ingersoll-Ross (CIR) (or Feller) process. The 
forward price (i.e. discounted price) process for all such models is a martingale under a 
given risk-neutral measure. The transition probability densities, as well as the probability 
distributions and densities for other relevant quantities such as first hitting times, for such 
models are given in analytically closed form in terms of known special functions, namely 
confluent hypergeometric functions. The martingale property of the discounted processes 
allowed us to apply an arbitrage-free risk-neutral asset pricing methodology. We also showed 
that these models produce curves for the local volatility function that have a wide range of 
pronounced smiles and skews of the type observed in the option markets. In fact, we have 
successfully calibrated the above models to different sets of observed market equity option 
data and showed good quantitative agreement between the model and observed European 
option prices for a wide range of strikes and maturities. 

In the first part of the thesis, the multivariate UOU process with built-in correlations 
was constructed by using a copula function, where independent Ornstein-Uhlenbeck pro-
cesses are coupled by employing a bridge copula method. We presented a computational 
implementation of the bridge and sequential simulation algorithm for the multivariate UOU 
asset price process. To illustrate the applicability of the UOU model for financial applica-
tions, we successfully calibrated the model to standard equity option market prices using 
data from four different firms. As well, the model was readily calibrated to provide a fit to 
a multi-stock price correlation matrix, for the four firms, by using historical stock prices. 



Since the calibration procedure dealt with an ill-posed inverse problem, we applied a reg-
ularization method based on relative entropy with respect to the historical prior measure. 
The prior measure was obtained by applying a maximum likelihood estimator technique to 
the historical observation of the stocks returns. Mainly, the calibration procedure employed 
nonlinear least squares to find optimal model parameters. The calibration procedure for 
the multivariate case involved computation of the optimal correlation matrix. However, 
the resulting matrix could violate the positive definite property of a correlation matrix. To 
overcome this problem, we applied a method of spectral decomposition. In the second main 
part of the thesis, we introduced an equity-based structural first-passage time default frame-
work in which stock prices are modeled according to the Confluent-U family of diffusion 
models. The model admits very efficient closed-form formulas for default probabilities that 
incorporate freely adjustable non-constant default barrier levels. By fitting the Confluent-U 
model to the historical data derived from observations of default events, we demonstrated 
its ability to accurately capture average observed default probabilities across bonds with 
different ratings and up to a maturity of ten years. We demonstrated how to link our equity 
barrier default model to an intensity based default model: our Confluent-U model allows us 
to calculate implied hazard rates across all maturities. We also tested the model robustness 
by calibrating it to some market CDS spreads for companies with various credit ratings 
across various sectors. We showed that the model with piecewise default barrier level is 
readily and accurately calibrated to the credit spreads. Finally, our equity-based default 
model provides a natural framework for simultaneously handling both equity option pricing 
and CDS pricing since one can employ various calibration schemes for the volatility param-
eters, the default levels, and the recovery rate in the model. In particular, by calibrating to 
CDS spread data, the model provides predictability for equity option prices and vice versa if 
one instead calibrates the model to option prices. Based on this fact, we can investigate the 
linkage between CDS spreads and out-of-the-money put options as a source of protection 
from the credit default of a firm. 

The encouraging results of the model calibrations and applications in this thesis pave 
the way to further study of such solvable models. The successful applications of the nonlin-
ear local volatility diffusion models to financial modeling presented in this paper naturally 
raise further practical and academic interest in these models. The availability of analyti-
cally closed form expressions for the transition probability densities and first-hitting time 
probabilities allow us to employ further extensions and to further improve upon such solv-
able diffusion models. One such avenue of model extensions may involve the incorporation 
of stochastic time changes. Another is the additional inclusion of an instantaneous killing 
(hazard) rate in the solvable diffusion process. 
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