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Abstract 

The vast increase in the number of sequenced genomes has irreversibly changed the 

landscape of the biological sciences and has spawned the current post-genomic era of 

research. Genomic data have illuminated many adaptation and survival strategies 

between species and their habitats. Moreover, the analysis of prokaryotic genomic 

sequences is indispensible for understanding the mechanisms of bacterial pathogens and 

for subsequently developing effective diagnostics, drugs, and vaccines. Computational 

strategies for the annotation of genomic sequences are driven by the inference of function 

from reference genomes. However, the effectiveness of such methods is bounded by the 

fractional diversity of known genomes. Although metagenomes can reconcile this 

limitation by offering access to previously intangible organisms, harnessing metagenomic 

data comes with its own collection of challenges. Since the sequenced environmental 

fragments of metagenomes do not equate to discrete and fully intact genomes, this 

prevents the conventional establishment of orthologous relationships that are required for 

functional inference. Furthermore, the current surge in metagenomic data sets requires 

the development of compression strategies that can effectively accommodate large data 

sets that are comprised of multiple sequences and a greater proportion of auxiliary data, 

such as sequence headers. While modern hardware can provide vast amounts of 

inexpensive storage for biological databases, the compression of nucleotide sequence 

data is still of paramount importance in order to facilitate fast search and retrieval 

operations through a reduction in disk traffic. To address the issues of inference and 

orthology a novel protocol was developed for the prediction of functional interactions 
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that supports data sources that lack information about orthologous relationships. To 

address the issue of database inundation, a compression protocol was designed that can 

differentiate between sequence data and auxiliary data, thereby offering reconciliation 

between sequence specific and general-purpose compression strategies. By resolving 

these and other challenges, it becomes possible to extend the potential utility of the 

emerging field of metagenomics. 
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Chapter 1 

General Introduction 

The vast increase in the number of sequenced genomes has irreversibly changed 

the landscape of the biological sciences and has spawned the current post-genomic era of 

research. Genomic data have illuminated many adaptation and survival strategies 

between species and their habitats [1.1]. Moreover, the analysis of prokaryotic genomic 

sequences is indispensible for understanding the mechanisms of bacterial pathogens and 

for subsequently developing effective diagnostics, drugs, and vaccines [1.1]. With the 

advent of techniques to capture various microbial communities including freshwater, 

marine, subterranean, intestinal, and many other previously uncharacterized 

environments, the field of genomics rests at the forefront of a new generation of 

computationally driven biological sciences. 

1.1 The Rise of Functional Genomics 

Toward the end of the last millennium, a large increase in the number of 

sequenced genomes began to emerge with the total amount of sequenced DNA doubling 

at a rate of roughly every 18 months [1.2] (see Figure 1.1). However, this influx of data 

did not initially equate to an immediate increase in knowledge about proteins and their 

respective functions [1.3]. Researchers were faced with the task of transforming this vast 

repository of sequences into meaningful interpretations, thereby giving rise to the field of 

functional genomics [1.3]. 

Traditionally, knowledge about proteins has been acquired experimentally on the 

basis of biochemical, genetic, or structural properties [1.3]. However, conducting such 
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approaches on a genomic scale poses high costs combined with difficult and time 

intensive procedures [1.4]. This is compounded by the fact that different experimental 

methods provide minimal agreement in a comparison of their determinations of function 

[1.4]. In an effort to overcome these limitations, the field of functional genomics relies on 

computational procedures that attempt to infer functional relationships among the 

complete set of proteins encoded by a given organism [1.5]. As a result, computational 

approaches to inference have evolved as powerful tools to aid in the classification of 

hypothetical proteins and the assignment of functional annotations to newly sequenced 

genomes. 

1.2 Beyond the Limitations of Genomic Data 

A fundamental aspect of functional inference is that it relies on the current body 

of sequence information as a primary data source [1.5]. Therefore, its efficacy is largely 

constrained by the quality and representativeness of available sequence databases. Until 

recently, much of what had been deposited in sequence databases was data from 

microorganisms that are amenable to culturing [1.6-1.8]. However, it has been estimated 

that more than 99% of microorganisms are not culturable [1.6-1.8]. Furthermore, even 

among the culturable microorganisms there may exist additional biases that have resulted 

from the potential applications gained by studying certain categories of microbes, as 

illustrated in Figure 1.2, panel A. Consequently, the degree of database completion 

combined with compositional biases can impact both functional assignments and 

taxonomic classifications [1.9]. In fact, it has been recently demonstrated that the 

resulting taxonomic assignments for a set of open reading frames have clearly changed 
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over time and in conjunction with the growth of the GenBank non-redundant protein 

database [1.9]. Thus, capturing a greater sample of biodiversity has the capability of 

reducing the biases contained in existing sequence databases by extending the repertoire 

of known genes and known functions [1.6]. This will subsequently benefit both 

functional assignments and taxonomic classifications. 

Metagenomics can be regarded as stemming from conventional microbial 

genomics but without requiring pure cultures for sequencing [1.10]. Instead, it involves 

the sequencing of heterogeneous samples of DNA that contain a variety of genomic 

sources, rather than a single target organism [1.7]. The benefit of this approach is that it 

provides access to previously intangible organisms and environments [1.7] (see Figure 

1.2, panel B). For example, environmental microbes are typically not able to grow in pure 

culture and symbionts and obligate pathogens cannot survive outside of their hosts [1.7]. 

Therefore, DNA from such organisms can be extracted directly from them while in their 

natural habitats as a heterogeneous mixture of DNA that can be fragmented into a library 

of sequence data [1.7]. In turn, this data can provide insight into various systems, like the 

species dynamics among the organisms of particular environments [1.7]. Perhaps most 

importantly, the availability of metagenomic data sets offer a means to reconcile the 

current limitations of functional genomics by vastly extending the amount of usable 

sequence data. However, the effective harnessing of metagenomic data comes with its 

own collection of challenges. 
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1.3 Current Challenges in the Field of Metagenomics 

1.3.1 Phylogenetic classification of sequence fragments 

Understanding the taxonomic composition of the microbial community that 

comprises a particular metagenomic data set is essential for studying individual 

populations and their respective interactions [1.11, 1.12]. Sequence reads generated from 

metagenomic samples are assembled into scaffolds where the average length is affected 

by factors like the number of distinct populations present and their relative abundance in 

the sample, and also the size and architecture of the individual genomes [1.11, 1.12]. 

Thus, scaffold length typically decreases with increasing community complexity [1.11, 

1.12]. Since this greatly reduces the likelihood of recovering complete genomic entities, 

methods have been developed to assign individual sequence fragments to populations or 

higher-level clades [1.11,1.12]. 

Universally present markers such as rRNA can be used to construct phytogenies 

that can be subsequently applied to make taxonomic assignments to individual sequence 

fragments [1.12]. Another approach is to use homologs retrieved from database searches 

for the assignment of fragments [1.12]. However, the previously discussed bias in the 

databases toward cultivable organisms raises concerns about the effectiveness of this 

approach, particularly with respect to assignments for novel organisms [1.12]. An 

alternative method is to use oligomer frequencies to classify sequence fragments based on 

their genome sequence composition [1.12]. While all of these methods can be used to 

make reliable phylogenetic classifications for sufficiently long sequence fragments, none 

of them can provide confident assignments for fragments shorter than 1000 base pairs 
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[1.12]. Therefore, the development of a method that would increase the proportion of 

assignments for short fragments, such as pyrosequencing reads, would represent a major 

breakthrough for the phylogenetic classification of sequence fragments [1.12]. 

1.3.2 Functional inference in the absence of orthology 

As soon as the publication of a sufficient number of genomes first allowed for 

testing, methods were proposed to infer functional interactions by genomic context [1.3, 

1.13]. These methods are dependent on the establishment of orthology, which is the 

condition of homology resulting from a speciation event [1.14, 1.15], which differs from 

paralogy, the condition of homology resulting from a duplication event [1.14, 1.15]. The 

three main methods used to infer functional interactions involve finding: (a) Gene fusions 

[1.16, 1.17], where two genes are assumed to interact if their orthologs are fused into a 

gene coding for a multidomain protein in another genome; (b) Conservation of gene order 

[1.18], where the conservation of adjacent orthologs, beyond expectations by chance, 

provides a clue for a functional interaction; and (c) Phylogenetic profiles [1.19-1.21], 

where the orthologs to genes coding for functionally interacting proteins are expected to 

co-occur; in other words, be both present or both absent across genomes. An additional 

method of functional inference exploits methods to predict operons. A functional 

interaction is inferred if the genes themselves, or their orthologs, are found to be in the 

same operon [1.22-1.25]. 

In order to extend the computational inference of functional associations by 

genomic context, the use of metagenomic sequences could be included to complement 

the functional associations predicted for a genome of interest. Although functional 
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inference from metagenomic context offers an invaluable means to exceed the current 

limitations of functional genomics, it poses an inherent challenge with respect to 

orthology. The inability to distinguish the particular types of homologies within a 

metagenome stems from the fact that the environmental sequence fragments do not 

equate to complete and discrete genomic entities. However, conventional approaches to 

functional inference are dependent on the detection of orthology. Since comparisons 

between genes in a metagenome are confined to a consideration of only the general case 

of homology, rather than specific orthology, many spurious functional inferences can 

arise due to the presence of paralogs because they possess homologous sequences but 

potentially divergent functions [1.26]. These extraneous inferences add noise to the 

predictions and are evident in the form of false positives upon validation of the overall set 

of predicted functional interactions. Although the previously discussed methods to 

classify sequence fragments may shed light on establishing orthology by way of 

phylogenetic classification, the creation of a protocol that is not limited to using known 

orthologous data would represent a major step toward permitting functional inference 

from metagenomic context. 

1.3.3 Compression for large heterogeneous data sets 

In recent years, metagenomic data sets derived from environmental shotgun 

sequence data have gained a position of increased prominence in many sequence 

repositories. In fact, the sheer volume of metagenomic sequence data has exceeded the 

combined total of the microbial genomes [1.27]. While modern hardware can provide 

vast amounts of inexpensive storage for biological databases, the compression of 
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metagenomic sequence data is still of paramount importance in order to facilitate fast 

search and retrieval operations through a reduction in disk traffic. 

To accommodate this surge in volume, compression strategies must be developed 

to accommodate large-scale data sets that are comprised of multiple sequences and a 

greater proportion of auxiliary data, such as sequence headers. Compression protocols 

developed specifically for sequence data offer good compression ratios but may perform 

poorly on large data sets or data sets that contain a significant amount of auxiliary data. 

In comparison, general-purpose compression utilities can easily compress large 

heterogeneous data files but cannot take advantage of the predominantly limited range of 

symbols that occur in sequence data. Thus, the development of a protocol that could offer 

reconciliation between sequence-specific and general-purpose compression strategies 

would have a beneficial impact on the management and processing of large 

heterogeneous data sets, such as metagenomes. 
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1.4 Figures 
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Figure 1-1 Growth rate of the GenBank sequence database 

A graph of number of sequences (Number of Sequences) contained in the GenBank 

sequence database versus the year (Year). Beginning in 1982 GenBank contained 606 

sequences and by 2008 it contained 98,868,465 sequences. GenBank growth statistics are 

provided by the National Center for Biotechnology Information (NCBI) [1.28] which 

maintains the GenBank sequence database. 



Figure 1-2 Genome projects versus metagenome projects 

Panel A - Funding relevance of bacterial genome projects: The relative allocation of 

funding for bacterial genome projects with respect to project category. Funding allocation 

data was provided by the Genomes OnLine Database (GOLD) [1.29]. Panel B -

Metagenome project categories: The relative allocation of metagenome projects with 

respect to project category. Metagenome project data was provided by GOLD [1.29]. 
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2.1 Abstract 

The effectiveness of the computational inference of function by genomic context is 

bounded by the diversity of known microbial genomes. Although metagenomes offer 

access to previously intangible organisms, these sequenced environmental fragments 

prevent the conventional establishment of orthologous relationships required for reliably 

predicting functional interactions. We introduce a novel protocol for the prediction of 

functional interactions using data sources without information about orthologous 

relationships. To illustrate this process, we use the Sargasso Sea metagenome to construct 

a functional interaction network for the Escherichia coli K12 genome. We identify two 

reliability metrics, target intergenic distance and source interaction count, and apply them 

to selectively filter the predictions retained to construct the network of functional 

interactions. The resulting network contains 2,297 nodes with 10,072 edges with a 

positive predictive value of 0.80. The metagenome yielded 8,423 functional interactions 

beyond those found using only the genomic orthologs as a data source. This amounted to 

a 134% increase in the total number of functional interactions that are predicted by 

combining the metagenome and the genomic orthologs versus the genomic orthologs 

alone. In the absence of detectable orthologous relationships it remains feasible to derive 

a reliable set of predicted functional interactions. This offers a strategy for harnessing 

other metagenomes and homologs in general. Because metagenomes allow access to 

previously unreachable microorganisms, this will result in expanding the universe of 

known functional interactions thus furthering our understanding of functional 

organization. 
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2.2 Introduction 

The main objective of the present work is to provide a method to extend the 

computational inference of functional associations by genomic context, to include the use 

of metagenomic sequences to complement the functional associations predicted for a 

genome of interest (Figure 1). 

Almost as soon as there were sufficient genomes available for a test, researchers 

proposed methods to infer functional interactions by genomic contexti'2. The three main 

methods, which we call the Three Musketeers of Genomic Context3, rely on finding 

orthologs, homologs diverging after a speciation event4, and inferring a functional 

interaction by finding: (a) Gene fusions 5'6, where two genes are assumed to interact if 

their orthologs are fused into a gene coding for a multidomain protein in another genome; 

(b) Conservation of gene order7, where the conservation of orthologs next to each other, 

beyond expectations by chance, is used as a clue for a functional interaction; and (c) 

Phylogenetic profiles 8"10, where the orthologs to genes coding for functionally interacting 

proteins are expected to co-occur, be both present or both absent across genomes. The 

D'Artagnan of functional inference builds on top of methods to predict operons. A 

functional interaction is inferred if the genes themselves, or their orthologs, are found to 

be in the same operon3''113. 

While the above-mentioned methods provide many high-quality predictions of 

functional interactions, their coverage might be limited by the biases determining which 

genomes have been sequenced. In recent years, metagenomic data sets derived from 

environmental shotgun sequencing have gained a position of increased prominence in 
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biological databases. Large-scale metagenomic projects have been completed that depict 

various viral and microbial communities including freshwater, marine, subterranean, 

intestinal, and many other environments 14"27. Furthermore, the sheer volume of 

metagenomic sequence data has exceeded the combined total of the microbial genomes 

28. Thus, metagenomes offer the prospect of providing novel insights into the dynamics of 

microorganisms with populations that are neither clonal, nor single species, such as 

symbionts and obligate pathogens 29~31. Such an increase in the accessibility of microbial 

biodiversity has the potential to further our understanding of fundamental biological 

functions and processes 28. It also has the capability of reducing the biases contained in 

existing sequence databases by extending the repertoire of known genes and functions 30' 

32 

The fields of comparative metagenomics and functional metagenomics have 

emerged in an effort to compare microbial communities in terms of their relative 

biodiversity and respective functional activities 33~35. While uncovering novel functions is 

an integral aspect of these fields 33"35, functional metagenomics remains in its infancy and 

little effort has been directed toward treating the metagenomes as sources of functional 

interactions useful at complementing the information of fully sequenced genomes. This is 

a paramount consideration since prior to the introduction of metagenomic data the 

information that had been deposited had been principally derived from the genomic 

sequences of microorganisms that are amenable to culturing " ' . However, it has been 

estimated that more than 99% of microorganisms are uncultivable " ' .Capturing a 

greater sample of the biodiversity of microorganisms and their known functional 
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interactions would ensure a more accurate representation of existing proteins and 

potentially help to assign function to the larger number of currently uncharacterized 

proteins 30. Therefore, metagenomic data sets can provide an opportunity to extend the 

universe of known functional interactions and subsequently facilitate pursuits such as 

classifying hypothetical proteins and assigning functional annotations. 

Functional inference from metagenomic context offers an invaluable means to 

reconcile the current limitations of functional genomics through the expansion of usable 

data sources. However, reliable functional inference is dependent on the detection of 

orthology. The particular types of homologies are hard to identify in metagenomes 

because of the fragmented nature of the environmental sequences. Therefore, comparison 

between genes is confined to a consideration of only the general case of homology. 

However, using homology rather than orthology generates many spurious predictions that 

arise from paralogs because they possess homologous sequences but potentially divergent 

functions 37. For instance, if each member of a family of proteins interacts with a specific 

member of another family of proteins, the problem of solving for orthology would result 

in predictions for all members of the first family interacting with all members of the 

second, thus generating a high number of false positives (see Figure 1). Therefore, the 

development of a protocol that is not limited to using known orthologous data, yet solves 

the problem of correct assignment of interactions, would represent a major step toward 

furthering many different pursuits in functional genomics and metagenomics. 

In the case of functional inference, we propose that the use of indiscriminate 

homology results in a superset of functional interaction predictions. A reliable set of 
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predictions should lie within the prediction superset that has been inflated by paralog 

families producing many extraneous functional interactions. If this is indeed the case, 

then it should be possible to demonstrate an improvement in validation measures through 

the removal of these spurious predictions. To explore this possibility, we present a three-

part protocol that extends on the use of rearranged operons 3 into metagenomes. First, we 

predict operons in the metagenome sequences based on intergenic distances 38'39. Next, 

these predictions are mapped using BLASTP 40 results against a target genome. Lastly, 

spurious predictions are reduced through filtering with a set of prediction reliability 

metrics. To illustrate the feasibility of this process, we used the Sargasso Sea 

metagenome 15 to construct a functional interaction network (FIN) for the Escherichia 

coli K12 MG1655 41 target genome (NCBI Version: NC_000913.2). 

2.3 Results and Discussion 

2.3.1 Baseline predictions network 

To assess the construction of FIN from homologs in metagenomes, we developed 

three contrasting FINs (see Methods and materials), one using the genomic orthologs, 

another using genomic homologs, and a final one using metagenomic homologs (Table 

1). As expected, the genomic-ortholog FIN provides a better positive predictive value 

(PPV) than either of the FINs derived from all homologs. The homologs also performed 

poorly when assessed using correlation of expression data to validate the predictions that 

are not captured by the measure of PPV. Figure 2 shows the distribution of the correlation 

of expression values for the metagenomic-homologs FIN. The metagenome exhibits a 

trend that is only marginally better than that of gold negatives (GN) derived from the 
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EcoCyc database ' . Overall, the indiscriminate homologs, whether genomic or 

metagenomic, appeared to be a poor data source for the development of a FIN. 

To rule out effects of the data preparation process, we considered how the PPV of 

the metagenomic homologs was affected by various preparation variables. Specifically, 

we examined two levels for each of the following variables: source interaction prediction 

threshold, minimum sequence coverage in the alignment, and maximum E-value 

threshold (see Methods and materials). Table 2 shows the results of the different 

combinations for these variables. In general, increasing the stringency (using the High 

treatment level) of any variable resulted in an increased PPV and the best PPV was 

achieved by increasing the stringency for all variables. However, increasing the PPV 

through increased filtering markedly decreased the proportion of recovered gold positives 

(GP) derived from EcoCyc 42'43. Therefore, adjusting the values of the preparation 

variables does not satisfactorily reconcile the poor PPV of the metagenomic homologs. 

Instead, we elected to use the largest FIN as a baseline and explore the feasibility of 

discarding a portion of the predictions according to some other measure of reliability. 

2.3.2 Prediction reliability metrics 

We attempted to identify properties of predicted functional interactions that could 

serve as metrics to determine their reliability on an individual case basis. This approach 

was intended to provide a protocol to selectively filter the full data set and remove 

spurious predictions, thereby improving the overall quality of the remaining set of 

functional interactions. To accomplish this we selected two specific metrics; target 

intergenic distance and source interaction count. 
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Target intergenic distance was defined as the distance in base pairs between two 

target genes according to the following formula: 

D = gene2_start - (genel_end + 1) 

For example, if the functional interaction M]-M2 was predicted in the source 

metagenome and M] and M2 map to T] and T2 in the target genome (see Methods), then 

the target intergenic distance would be defined by the distance between T] and T2, 

regardless of these target genes being adjacent or not. To accommodate the circularity of 

the E. coli K12 genome, distances were calculated in each direction and the lesser of the 

two values was defined as the target intergenic distance. We experimented with the use of 

a maximum value for target intergenic distance as a metric for determining the reliability 

of individual predictions (see Additional file 1). Figure 3 shows the relationship between 

PPV and maximum target intergenic distance. As expected, this metric was particularly 

useful for recovering genes belonging to the same experimentally verified operons in the 

GP dataset. 

Source interaction count was defined as the number of predicted interactions in 

the data source that equated to a given target interaction. For example, the interaction T]-

T2 in the target genome must have been mapped from at least one observed source 

interaction, such as M7-M2 in the metagenome. However, as a consequence of the 

mapping process (See Materials and methods) it is possible that multiple interactions 

observed in the metagenome all translate into the same interaction in the target genome. 

As a result, any target interaction must be instantiated from one or more predictions from 

the source interactions. We experimented with the use of a minimum value for source 
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interaction count as a metric for determining the reliability of individual predictions (see 

Additional file 1). Figure 4 shows the relationship between PPV and minimum source 

interaction count. This metric was useful for increasing the number of non-operonic GPs 

that would otherwise not be recovered by using target intergenic distance alone. 

2.3.3 Filtered predictions network 

We applied the prediction reliability metrics to filter the previously constructed 

baseline FINs. It was possible to achieve a range of improved PPVs (see Additional file 

1). As a result, it was possible to construct a FIN for the metagenome that yielded a 

reliable PPV value (0.80), despite the absence of any information about orthologous 

relationships. Figure 5 shows the FIN that was obtained for the E. coli K12 genome using 

the Sargasso Sea metagenome 15, as viewed using Cytoscape 44. Next, we investigated 

whether the prediction reduction protocol could be used for other data where only 

homology is determined, not orthology. This was demonstrated by generating a reliable 

FIN (0.80) for the genomic homologs. Finally, we verified that the prediction reduction 

protocol was also suitable for filtering orthologous data by constructing a reliable FIN 

(0.80) for the genomic orthologs. Table 3 shows the results for filtering each of the 

previously constructed FINs to achieve a reliable PPV value. It was observed that each of 

the filtered FINs retained large proportions (77% to 94%) of their original nodes but had 

undergone a substantial reduction in their numbers of edges. This reduction in edges 

corresponded to the removal of spurious predictions of functional interactions and 

facilitated the improved PPV. 
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In addition to the improved PPV, we were also interested in the correlation of 

expression data for the metagenomic FIN. This was essential since 8755 (87%) of the 

predicted functional interactions are neither GPs nor GNs. Therefore, examining the 

distribution of the correlation of expression values provided an indication of the 

reliability of those unknown predictions. Figure 6 shows the difference between the 

distributions of the correlation of expression values for the filtered metagenomic FIN 

versus the unfiltered metagenomic FIN. A distinct improvement can be seen for the 

filtered FIN versus the unfiltered FIN. 

2.3.4 Contribution of the metagenome 

Having demonstrated the ability to construct a reliable FIN from a metagenomic 

source data source, we investigated the contribution of this FIN with respect to expanding 

the universe of known functional interactions for the E. coli K12 genome. First, the 

filtered set of metagenomic predictions was compared against the filtered set of 

predictions for the genomic orthologs. An intersection of 1,649 predictions showed that a 

common core of functional interactions existed. Furthermore, the combination of these 

two sets yielded 8,423 more functional interactions than using only the genomic 

orthologs, resulting in a 134% increase. To determine the impact of filtering the 

predictions from the genomic orthologs, the filtered set of metagenomic predictions was 

compared against the unfiltered set of predictions for the genomic orthologs. The 

metagenome still donated 8,161 that were not found using the full set orthologs for an 

increase of 51 % for the total number of functional interactions. To determine whether the 

level of homology was a factor, the filtered set of metagenomic predictions was 
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compared against the filtered set of predictions for the genomic homologs. In this case, 

the metagenome contributed 1,232 functional interactions for a 7% gain in the total 

number of interactions. Compared to the genomic orthologs, the metagenome exhibited a 

smaller relative union and a larger relative intersection with the genomic homologs, 

suggesting that there was a greater mutual component given a common level of 

homology, likely due to the robust coverage of the genomic homologs versus the 

genomic orthologs. Finally, to explore whether the genomic homologs could extend the 

genomic orthologs the filtered set of predictions for the genomic homologs was compared 

against both sets of predictions for the genomic orthologs. While the homologs clearly 

added a large proportion of functional interactions, the orthologs, whether filtered or 

unfiltered, contained their own unique contribution of functional interactions. Table 4 

summarizes the results for comparing and combining the various FINs. 

2.4 Conclusions 

2.4.1 Beyond orthology 

The prediction reliability metrics used in the present work to filter homolog-based 

predictions have demonstrated that in the absence of known orthologous relationships it 

remains possible to derive a reliable set of predicted functional interactions. This is 

noteworthy because it offers a strategy for harnessing other metagenomes and homologs 

in general. Not only does this offer the opportunity to utilize novel data sources, it also 

provides a means to use homologs and orthologs together, thereby yielding an addendum 

to results achieved by the conventional use of only the genomic orthologs. Future works 

should be aimed at determining more and better prediction reliability metrics and to 
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examine their portability between different target genomes. Techniques such as binary 

logistic regression could be used to develop a general predictive model that could 

potentially eliminate the constraint of orthology. 

2.4.2 Metagenomic functional inference 

The ability to infer functional interactions from metagenomic data sources creates 

the opportunity to further functional metagenomics. Because the metagenomes allow 

access to previously intangible microorganisms, this will result in expanding the universe 

of known functional interactions, especially as the number of deposited environmental 

data sets continues to grow. In turn, increasing the existing collection of functional 

interactions will have a cascading effect on our understanding of functional organization 

while improving our accuracy in identifying hypothetical proteins and assigning 

functional annotations. Future works should be aimed at extending the present proof of 

concept through the incorporation of multiple metagenomes. Thus, the omissions and 

biases that have arisen from the prevalence of clonal microbial organisms could be 

eventually rectified through capturing a greater breadth of the true microbial biodiversity. 

Ultimately, the recovery of novelty from the metagenomes will propel applications across 

a wide spectrum of other fields thereby allowing the advancement of countless interests. 

2.5 Methods 

2.5.1 Data sources 

The Sorcerer II data package available online from the Sorcerer II Expedition 

website 21 was used as the metagenomic data source for this work. This is an annotated 

data set of 811,372 contiguous environmental fragments (contigs) that include 1,001,987 
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different genes obtained from the Sargasso Sea 15. The website of this metagenome 

provides FASTA format files for both the nucleotide and the peptide sequences. 

Additionally, a gene feature format (gff) file is included that maps individual genes to 

their corresponding peptide sequences. 

The gff file was used to identify a total of 1,001,987 annotated genes. There were 

403,051 contigs containing a single gene each. The remaining 598,936 genes were 

distributed across 251,638 contigs. These data provided 347,298 pairs of adjacent genes 

that could be used to predict operons by intergenic distances. 

2.5.2 Prediction generation phase 

To generate predictions of functional interactions, we used an existing method to 

infer functional relationships from the recombination of predicted operons . We 

predicted operons within the data set of metagenomic adjacent, same-strand, gene pairs 

explained above, by the methods described previously ' . Distances were determined 

using start and end coordinates contained in the gff Sargasso Sea files. A minimum log-

likelihood 38'39 (LLH) threshold of 0.01 was used. The final result was a prediction set 

that included a total of 197,678 predicted interactions derived on the basis of co­

occurrence within a mutual operon. 

2.5.3 Prediction mapping phase 

The proteins that corresponded to the genes in the metagenomic prediction set 

were compared against the set of E. coli K12 proteins using NCBI's BLASTP 40. The 

results were filtered to remove hits with less than 60% alignment (target or query), or 
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with E-values greater than lxl0"6. The 1,231,909 remaining hits were used as the 

mapping set. 

The mapping phase was designed to generate all possible functional interactions, 

without regard to spurious interactions that result from the combinatorial use of 

homologs. We generated an interaction superset by using the prediction set in 

conjunction with the mapping set, in the following manner. First, the individual elements 

of the mapping set were aggregated into mapping lists that were sorted according to a 

prediction key. Next, an individual prediction was obtained from the prediction set. For 

each of the two members of the predicted interaction, a list of target proteins was created. 

This involved searching the mapping lists to retrieve the list of proteins from the target 

genome that mapped onto the given interaction member. Finally, if the lists for each 

interaction member were non-empty, we generated a set of target functional interactions 

using the complete bipartite graph of the two lists. The resulting set was added to the 

overall superset of interactions and contributed mn interactions, where m and n were the 

respective sizes of the non-empty lists. This process was repeated until all entries from 

the prediction set had been exhausted, resulting in the final interaction superset. 

2.5.4 Prediction reduction phase 

The prediction reduction phase was designed to reduce the number of spurious 

predictions that were produced by the previous phase, thereby improving the overall 

quality of the functional interaction network. Each element of the interaction superset 

was tested according to the values of the prediction reliability metrics (see Results and 

Discussion) that were selected to generate the particular reduced functional interaction 
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network. Specifically, if an individual predicted functional interaction did not exceed the 

maximum target intergenic distance, then it was retained as part of the reduced set of 

functional interactions. Otherwise, if it was not below the minimum source interaction 

count, then it was retained as part of the reduced set of functional interactions. Otherwise, 

no further metrics were applied and the interaction was rejected from the reduced set of 

functional interactions. 
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2.8 Figure Legends 

Figure 1 - The problem of paralogy 

Two genes, A and B, might be separated in a target genome. Yet, their orthologs, AQ and 

B0, within an informative genome might be in the same operon, indicating that genes A 

and B might functionally interact in the target genome. In metagenome fragments, 

orthology cannot be inferred. Genes homologs to A and B, Ah and Bh, might indicate a 

functional interaction. However, if genes A and B belong to protein families with several 

paralogs, where each member of Family A interacts with a specific member of Family B 

(solid lines), there is a potential for a large number of false positives. In the example, we 

would infer three true positives (solid lines) and 9 false positives (dashed lines). 

Figure 2 - Relative frequencies of correlation of expression values 

A graph of the relative frequencies of correlation of expression values for the EcoCyc 

gold negative functional interactions (GNs), the Ecocyc gold positive functional 

interactions (GPs), and the full set of predicted functional interactions from the Sargasso 

Sea metagenome (S-Full). 

Figure 3 - Target intergenic distance versus positive predictive value 

A graph of positive predictive value (PPV) scores and proportions of EcoCyc gold 

positive functional interactions (GPs) versus maximum target intergenic distances 

(Distance) that are used as thresholds to reject predictions that exceed these maximum 

values. 

Figure 4 - Source interaction count versus positive predictive value 
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A graph of positive predictive value (PPV) scores and proportions of EcoCyc gold 

positive functional interactions (GPs) versus minimum source interaction counts (Count) 

that are used as thresholds to reject predictions that do not meet these minimum values. 

Figure 5 - Functional interaction network for the E. coli K12 MG1655 genome 

A functional interaction network for the E. coli K12 MG1655 genome derived from the 

prediction reduced Sargasso Sea metagenome, as viewed through Cytoscape 44. 

Figure 6 - Relative frequencies of correlation of expression values 

A graph of the relative frequencies of correlation of expression values for the EcoCyc 

gold negative functional interactions (GNs), the Ecocyc gold positive functional 

interactions (GPs), and the reduced set of predicted functional interactions from the 

Sargasso Sea metagenome (S-Red). 

2.9 Tables 

Table 2-1 Baseline functional interaction networks 

"FIN Nodes Edges GNs GPs PPV 

Sargasso 2,991 53,126 3,439 1̂ 535 0.309 

Homologs 3,837 217,701 10,948 3,040 0.217 

Orthologs 3,672 15,959 1,415 1,879 0.570 

A summary of the functional interaction networks constructed by using all generated 

predictions from each respective data source. For each functional interaction network the 

number of network nodes (Nodes) is listed along with the number of network edges 

(Edges), the number of recovered EcoCyc gold negative interactions (GNs), the number 
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of recovered EcoCyc gold positive interactions (GPs), and the positive predictive value 

(PPV). 

Table 2-2 Effects of data preparation variables 

Factors Interactions GPs GNs PPV Coverage 

LowE 

Low % Value 

Align High E 

Value 

53,126 1,535 3,439 0.309 100.00% 

36,373 1,354 2,495 0.352 88.21% 

Low LLH 
LowE 

High % Value 

Align High E 

Value 

40,324 1,389 2,700 0.340 90.49% 

29,208 1,244 2,088 0.373 81.04% 

LowE 

Low % Value 

Align High E 

Value 

31,085 1,108 1,906 0.368 72.18% 

21,432 967 1,331 0.421 63.00% 

High LLH 
LowE 

High % Value 
24,005 1,006 1,488 0.403 65.54% 

Align High E 

Value 
17,402 893 1,102 0.448 58.18% 0 

A summary of the functional interaction networks constructed by manipulating three 

different data preparation variables. Source interaction prediction threshold was tested 

using two values for log likelihood (0.01 (Low LLH) and 1.00 (High LLH), combined 

with minimum sequence (target or query) alignment percentage using two values (60% 
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(Low % Align) and 80% (High % Align), combined with the maximum allowable E 

value using two values (le-6 (Low E Value) and le-10 (High E Value). It should be 

noted that here Low E Value refers to the factor level (level of stringency), not the 

magnitude of the value itself. For each functional interaction network the number of 

interactions (Interactions) obtained is listed (this is synonymous with network edges) 

along with the number of recovered EcoCyc gold negative interactions (GNs), the 

number of recovered EcoCyc gold positive interactions (GPs), the positive predictive 

value (PPV), and the proportion of recovered GPs (Coverage) versus the GPs found in 

the functional interaction network derived from the least stringent levels for the 

preparation variables (Low LLH, Low % Align, Low E Value). 

Table 2-3 Filtered functional interaction networks 

FIN Nodes Edges GNs GPs Operons Coverage PPV 

Sargasso 2,297 10,072 263 1,054 781 76.80% 0.800 

Homologs 3,380 17,740 443 1,776 1,267 88.09% 0.800 

Orthologs 3,437 6,267 387 1,550 1,057 93.60% 0.800 

A summary of the functional interaction networks constructed by using filtered 

predictions from each respective data source. For each functional interaction network the 

number of network nodes (Nodes) is listed along with the number of network edges 

(Edges), the number of recovered EcoCyc gold negative interactions (GNs), the number 

of recovered EcoCyc gold positive interactions (GPs), the number of EcoCyc gold 

positive interactions that contained string "operons" in the keywords list (Operons), the 

34 



8,423 

8,161 

1,232 

14,476 

14,132 

4,618 

14,048 

8,900 

3,003 

12,351 

134.40% 

51.14% 

6.94% 

230.99% 

88.55% 

proportion of nodes contained from the corresponding unfiltered network (Coverage), 

and the positive predictive value (PPV). 

Table 2-4 Gain in functional interactions from combined sets 

~S1 S2 JS1J [S2J |S1 U S2| |S1 • S2| |S1 - (SI • S2)| |S2 - (SI • S2)| S2 % Gain 

Sarg Orth 10,072 6,267 14,690 1,649 

Sarg Orth* 10,072 15,959 24,120 1,911 

Sarg Horn 10,072 17,740 18,972 8,840 

Horn Orth 17,740 6,267 20,743 3,264 

Horn Orth* 17,740 15,959 30,091 3,608 

A set theoretical summary of the functional interactions contained in the various 

networks and their combinations with one another. Set One (SI) and Set Two (S2) are 

given for each combined superset of predicted functional interactions. The size of Set 

One (|S 11) and the size of Set Two (|S2|) are listed along with the size of their union (|S 1U 

S2|), the size of their intersection (|S1 • S2|), the number of unique predictions found 

only in Set One (|S1 - (SI • S2)|), the number of unique predictions found only in Set 

Two (|S2 - ( S I * S2)|), and proportional increase in the number total number of 

predictions from the combined sets (S2 % Gain) versus Set Two alone. Comparisons 

were performed for the filtered Sargasso Sea metagenome functional interaction network 

(Sarg), the filtered genomic homologs functional interaction network (Horn), the filtered 

genomic orthologs functional interaction network (Orth), and the unfiltered genomic 

orthologs functional interaction network (Orth*). 
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2.10 Additional Files 

File 2-1 Metrics.xls - Spreadsheet of results from prediction reliability metrics tests 

Minimum source interaction count (Min Count) was tested ranging from 0 to 200 

predictions at intervals of 10 predictions, in combination with maximum target intergenic 

distance (Max Dist) ranging from 0 to 150,000 base pairs at intervals of 500 base pairs. 

For each combination of prediction reliability metrics, the number of interactions 

(Interacts) obtained is listed (this is synonymous with network edges) along with the 

number of recovered EcoCyc gold negative interactions (GNs), the number of recovered 

EcoCyc gold positive interactions (GPs), the number of EcoCyc gold positive interactions 

that contained string "operons" in the keywords list (Operons), and the positive predictive 

value (PPV) obtained using the given values of the prediction reliability metrics. This 

was performed on the genomic orthologs (Orthologs), the genomic homologs 

(Homologs), and the Sargasso Sea metagenome (Sargasso). An additional set of 

experiments was carried out on the genomic orthologs with source interaction count held 

at 10 (Orthologs 10) to obtain values that yielded a positive predictive value that was 

comparable to the other two sets of values. The sets of values that were used to construct 

the respective functional interaction networks have been highlighted. 
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2.11 Figures 

Ao,B0 

operon 

Target genome 

operon 
, * t 

Metagenome 

Informative genome 

Family A Family B 

A1 • , . , _,.# B1 

A 4 " ' 

Figure 2-1 The problem of paralogy 

Two genes, A and B, might be separated in a target genome. Yet, their orthologs, A0 and 

B0, within an informative genome might be in the same operon, indicating that genes A 

and B might functionally interact in the target genome. In metagenome fragments, 

orthology cannot be inferred. Genes homologs to A and B, Aj, and Bh, might indicate a 

functional interaction. However, if genes A and B belong to protein families with several 

paralogs, where each member of Family A interacts with a specific member of Family B 

(solid lines), there is a potential for a large number of false positives. In the example, we 

would infer three true positives (solid lines) and 9 false positives (dashed lines). 
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Figure 2-2 Relative frequencies of correlation of expression values 

A graph of the relative frequencies of correlation of expression values for the EcoCyc 

gold negative functional interactions (GNs), the Ecocyc gold positive functional 

interactions (GPs), and the full set of predicted functional interactions from the Sargasso 

Sea metagenome (S-Full). 
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Figure 2-3 Target intergenic distance versus positive predictive value 

A graph of positive predictive value (PPV) scores and proportions of EcoCyc gold 

positive functional interactions (GPs) versus maximum target intergenic distances 

(Distance) that are used as thresholds to reject predictions that exceed these maximum 

values. 
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Figure 2-4 Source interaction count versus positive predictive value 

A graph of positive predictive value (PPV) scores and proportions of EcoCyc gold 

positive functional interactions (GPs) versus minimum source interaction counts (Count) 

that are used as thresholds to reject predictions that do not meet these minimum values. 
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Figure 2-5 Functional interaction network for the E. coli K12 MG1655 genome 

A functional interaction network for the E. coli K12 MG1655 genome derived from the 

prediction reduced Sargasso Sea metagenome, as viewed through Cytoscape 44. 
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Figure 2-6 Relative frequencies of correlation of expression values 

A graph of the relative frequencies of correlation of expression values for the EcoCyc 

gold negative functional interactions (GNs), the Ecocyc gold positive functional 

interactions (GPs), and the reduced set of predicted functional interactions from the 

Sargasso Sea metagenome (S-Red). 
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3.1 Abstract 

While modern hardware can provide vast amounts of inexpensive storage for biological 

databases, the compression of nucleotide sequence data is still of paramount importance 

in order to facilitate fast search and retrieval operations through a reduction in disk 

traffic. This issue becomes even more important in light of the recent increase of very 

large data sets, such as metagenomes. In this paper, I propose the Differential Direct 

Coding algorithm, a general-purpose nucleotide compression protocol that can 

differentiate between sequence data and auxiliary data by supporting the inclusion of 

supplementary symbols that are not members of the set of expected nucleotide bases, 

thereby offering reconciliation between sequence specific and general-purpose 

compression strategies. This algorithm permits a sequence to contain a rich lexicon of 

auxiliary symbols that can represent wildcards, annotation data, and special 

subsequences, such as functional domains or special repeats. In particular, the 

representation of special subsequences can be incorporated to provide structure-based 

coding that increases the overall degree of compression. Moreover, supporting a robust 

set of symbols removes the requirement of wildcard elimination and restoration phases, 

resulting in a complexity of 0(n) for execution time, making this algorithm suitable for 

very large data sets. Because this algorithm compresses data on the basis of triplets, it is 

highly amenable to interpretation as a polypeptide at decompression time. Also, an 

encoded sequence may be further compressed using other existing algorithms, like gzip, 

thereby maximizing the final degree of compression. Overall, the Differential Direct 
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Coding algorithm can offer a beneficial impact on disk traffic for database queries and 

other disk intensive operations. 

3.2 Introduction 

The field of bioinformatics necessitates a particular set of considerations, with 

respect to database management systems. A fundamental requirement is the capacity to 

warehouse large amounts of biological sequence data that are currently inundating the 

publicly available database resources. As of January 2009, the Nucleic Acids Research 

online Molecular Biology Database Collection listed 1170 publicly available biological 

databases [1]. GenBank, a major sequence database and a component of the International 

Nucleotide Sequence Databases (INSD), doubles in size roughly every 18 months [2]. 

Furthermore, biological data is distinct in that it requires accompanying annotation data 

in order for it to be useful [3]. While modern hardware can provide vast amounts of 

inexpensive storage, the compression of biological sequence data is still of paramount 

concern in order to facilitate fast search and retrieval operations, primarily by reducing 

the number of required I/O operations. Therefore, the effective management and 

compression of both sequence data and corresponding annotation data are indispensable 

considerations for biological database management systems. 

Data compression requires two fundamental processes, modeling and coding [4]. 

Modeling involves constructing a representation of the distinct symbols in the data, along 

with any associated data, like the relative frequencies of the symbols [4]. Coding involves 

applying the model to each symbol in the data to produce a compressed representation of 

the data, preferably by assigning short codes to frequently occurring symbols and long 
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codes to infrequently occurring symbols [4]. A variety of dictionary methods, such as the 

Ziv-Lampel algorithms [5,6], can be employed to achieve this [7]. Likewise, the 

Huffman algorithm [8] or some form of arithmetic coding could also be applied to yield a 

compaction in data [7]. However, methods that rely on evolving models may not perform 

adequately for sequences of genomic proportions. Such limitations will certainly be 

exacerbated by the recent surge in large-scale metagenomic data sets. 

In the case of DNA sequences, the finite set of nucleotide symbols {A, C, G, T} 

can be efficiently modeled as a corresponding set of binary values {00, 01, 10, 11} [9]. 

This model constitutes an effective binary representation where each nucleotide base is 

directly coded by two bits. This assumes that sequence data is indeed composed solely 

from the four symbols of the nucleotide set. However, this assumption is not guaranteed 

to be met and a nucleotide sequence may include additional wildcard symbols, like N or 

5 [4]. Therefore, to reconcile the potential occurrence of symbols other than the expected 

four nucleotide bases, any unexpected symbol is randomly converted into one of the valid 

symbols that it represents [4]. Eliminated wildcards are subsequently restored during 

sequence decompression [4]. 

The study of the compression of sequence data began with the work of Grumbach 

6 Tahi [10, 11] and separately with the work of Milosavijevic [12] and the work of 

Rivals et al. [13]. Since then several major compression tools have been developed. 

While a variety of different underlying approaches have been employed, all of these 

efforts draw on the large body of existing work on general data compression, particularly 

text compression algorithms. In this work, I present the Differential Direct Coding 
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algorithm, a general-purpose nucleotide compression protocol that can differentiate 

between sequence data and auxiliary data by supporting the inclusion of supplementary 

symbols that are not members of the set of expected nucleotide bases, thereby offering 

reconciliation between sequence specific and general-purpose compression strategies. 

3.3 Nucleotide Sequence Compression Strategies 

3.3.1 Evolving models 

Most previous approaches to nucleotide sequence compression consider a 

sequence as a finite length string of symbols where each nucleotide base corresponds to 

an individual symbol. On this basis, information content can be assessed and repeating 

patterns can be exploited using dictionary methods that progressively evolve models for 

data by encoding selected strings of symbols as tokens [7]. In general, dictionary-based 

compression protocols, such as the Ziv-Lampel algorithms [5, 6], are entropy encoders 

and will compress a string of n symbols to nE bits, where E is the entropy of the string 

[7]. 

While some sequence compression tools, like DNASequitur [14] and 

RNACompress [15], use grammar-based compression algorithms, most use some form of 

evolving model driven by a dictionary-based algorithm, typically derived from the Ziv-

Lampel algorithms [5, 6]. Both biocompress [10] and biocompress-2 [11], along with 

GenCompress [16], DNACompress [17], DNAPack [9], and CASToRe [18-20] all 

involve the detection of approximate repeats to evolve a model for the encoding of a 

given sequence. While dictionary-based algorithms are often applied to string-like data to 

achieve general purpose compression, their effective use is contingent on having a 
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sufficiently large input file [7]. However, as input size increases, the running time of 

some algorithms becomes unmanageable, especially those that use greedy approaches for 

the selection of repeat segments [9]. Moreover, nucleotide sequences often need to be 

subdivided into discretely accessible records and this reduces the effectiveness of 

compression strategies that rely on evolving data models [4]. Arithmetic coding can be 

used to overcome this limitation but does not typically offer the speed required for 

modern database applications [4]. 

3.3.2 Direct coding 

Williams and Zobel [4] developed a direct coding strategy for nucleotide 

sequence compression, including wildcard symbols. The first stage involves replacing 

each wildcard symbol with a random nucleotide from the set of nucleotides represented 

by the given wildcard [4]. Eliminated wildcards are maintained in a separate structure, 

rather than deleting them which would alter the semantics of the sequence [4]. After 

wildcard elimination, the resulting sequence is composed of only four different symbols 

corresponding to the four expected nucleotide bases and each base can be coded using 

two bits [4]. Instead of a space inefficient fixed-length integer representation, a variable-

byte representation is used where seven bits are used to code an integer and the least 

significant bit indicates whether or not the current byte is followed by another byte [4]. 

Decompression requires two steps, the first of which involves mapping the two bit codes 

back to their nucleotide bases [4]. This is followed by decoding the wildcard tuples and 

overwriting nucleotide bases at the appropriate locations with the proper wildcard symbol 

[4]. 
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Direct coding offers a rapid and uniform method of compression that is not 

affected by the size of the input file. However, wildcard elimination and restoration 

require at least a two-phase process for either compression or decompression operations. 

Furthermore, eliminated data requires storage in a secondary structure and that structure 

must include additional information about the location of its data for use at restoration 

time. Finally, sequences that have been compressed by direct coding are not readily re-

compressible by alternative compression strategies that might increase the overall factor 

of compression. 

3.4 Differential Direct Coding (2D) 

3.4.1 Objectives 

With the current surge in metagenomic data sets compression strategies must be 

developed to accommodate large data sets that are comprised of multiple sequences and a 

greater proportion of auxiliary data, such as sequence headers. Compression protocols 

developed specifically for sequence data offer good compression ratios but may perform 

poorly on large data sets or data sets that contain a significant amount of auxiliary data. 

In comparison, general-purpose compression utilities can easily compress large 

heterogeneous data files but cannot take advantage of the predominantly limited range of 

symbols that occur in sequence data. Therefore, the 2D algorithm is designed to provide a 

general-purpose nucleotide compression protocol that can differentiate between sequence 

data and auxiliary data, thereby offering reconciliation between the specific and general 

extremes of data compression. The following list enumerates the specific objectives of 

2D: 
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• Linear execution time to support large data sets: Both compression and 

decompression operations must support implementations with a complexity of 0(n) for 

execution time. 

• Support for the inclusion of supplementary symbols that are not members of the 

set of expected nucleotide bases: Auxiliary symbols can be used to represent wildcards, 

annotation data, or special subsequences, such as functional domains or special repeats. 

• Single phase direct coding: The compression phase must require only a single 

pass with no wildcard elimination phase and no storage of data in secondary structures or 

temporary intermediate files. Likewise, the absence of secondary data storage must 

permit a single pass restoration process for the decompression phase. 

• Lossless compression: The original sequence must be obtained following 

decompression. This can be implemented either with respect to sheer sequence only, that 

is regardless of line breaks and formatting, or optionally with respect to the verbatim line-

by-line layout of the original sequence data. 

• Sequence type indifference: It must not be necessary to specify whether a given 

sequence is DNA or mRNA prior to compression or decompression. 

Polypeptide decompression: It must be possible to optionally restore a 

compressed nucleotide sequence directly to a polypeptide chain of amino acids based on 

an indicated reading frame. 

• Amenable to further compression: A 2D encoded sequence must be readily 

compressible by other compression utilities to optionally provide potential further 

compression of the original sequence. 
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3.4.2 Model 

To provide linear execution time, 2D uses a static model to encode sequence data 

along with any other content that may be contained within the input. For DNA 2D 

expects {A, C, G, T} and for mRNA 2D expects {A, C, G, U}. By taking the union of 

these sets, the set of expected symbols for the 2D model becomes {A, C, G, T, U}. This 

removes the burden of explicit declaration of sequence type. In the event of non-

nucleotide symbols, 2D supports the set of traditional ASCII values, from 0 to 127, 

inclusive. The motivation for such a rich lexicon of symbols is not merely to 

accommodate the handful of wildcards. In addition to wildcards, the other ASCII 

symbols could be used to support the direct inclusion of annotation data or to denote 

special subsequences, such as functional domains or special repeats. The representation 

of domains and repeats through additional symbols can be optionally applied to add a 

degree of structure-based coding within the 2D protocol, thereby increasing the overall 

efficacy of the compression method. The values for the non-printing ASCII characters are 

particularly good candidates for reassignment since supporting them does not offer utility 

for wildcards or annotation data. Finally, 2D needs to support a single general-purpose 

value for occurrences of symbols that are not categorized by the two previously defined 

sets. 

To achieve compression, it is necessary to represent multiple bases with a single 

byte, as in the two-bits-per-base schema. 2D uses direct coding on a triplet (three 

consecutive nucleotide bases) basis for the following reasons. First, this allows for three 

nucleotide bases to be consolidated into a single byte, rather than multiple bytes. Second, 
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by compressing on a triplet basis, rather than a two bit basis, unexpected symbols can be 

coded directly. This removes the need for a wildcard elimination phase and for storage of 

wildcard data in a secondary structure. This is beneficial both at compression time and 

decompression time. Last, representation in terms of triplets makes 2D highly amenable 

to decompression as a polypeptide sequence of amino acids by interpreting the triplets as 

codons. 

The 2D model accommodates a total of 125 different triplets according to any of 

the nucleotide bases at any of the three triplet positions, such that the set of codons is 

{AAA, AAC,. . ., UUT, UUU}. Although some combinations should never occur 

because they violate the nucleotide base subsets for DNA and mRNA, such as UUT, 

these instances are accommodated in order to provide simplified arithmetic translation. 

Also, 128 different ASCII symbols are supported as extra symbols and a single unknown 

flag is included to denote a symbol that belongs to neither set. Table 1 shows the 2D 

model for representing symbols as either aggregate groups (triplets), wildcards or special 

data (single characters), or as unknown. 

3.4.3 Coding 

At the lowest level, 2D uses a signed byte that can range in value from -128 to 

127 inclusive. Conceptually, the low seven bits of each byte are used for coding and the 

most significant bit is used as a compression flag. This schema is shown in Figure 1. 

Symbols are sequentially parsed into triplets if each member is a valid nucleotide base. A 

valid triplet is assigned a single value ranging from 1 to 125 inclusive and the 

compression flag is set, equating to assigning a value between -1 and -125 inclusive. 2D 
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will attempt to differentiate between sequence data and other symbols and if an 

unexpected value occurs that is interpretable as an ASCII value ranging from 0 to 127 

inclusive, then this value is stored verbatim and the compression flag is not set, equating 

to assigning a value from 0 to 127 inclusive. In the event of an unexpected value, the 

other members of the current triplet must also be encoded individually and 

uncompressed, whether nucleotide bases or not, in order to maintain the current reading 

frame to support interpretation as an accurate polypeptide. By default, implementations 

can assume that the desired reading frame begins with the start of the sequence. However, 

multiple reading frames are easily supported by encoding the first symbol or the first two 

symbols as uncompressed data and then commencing the 2D process. Finally, in the 

event of an unknown symbol 2D denotes this by storing it uncompressed as the minimum 

possible signed byte value, -128. The values -126 and -127 are currently unused. Table 2 

illustrates the 2D encoding steps to produce a compressed nucleotide sequence from an 

input string of symbols that includes an auxiliary symbol. 

3.4.4 Algorithm 

The following psuedocode describes the core 2D compression algorithm that 

takes an input string and returns a 2D encoding of the input sequence as a byte array. A 

more complete demonstration tool has been implemented using Java to support the 

Windows-1252 character set for Windows platforms and the MacRoman character set for 

Apple Macintosh platforms. This tool is available as an accompanying JAR file that will 

compress and decompress sequence data on the basis of entire files rather than individual 

strings. It should be noted that this particular implementation defines lossless in terms of 
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file sequence rather than specific line formatting. Decompressed data is restored into 

lines with lengths of mod 3. For example, if the source file's sequence was parsed into 

lines of 70 symbols each, then the restored file's sequence will have line lengths of 69, 

69, 72, 69, 69, 72, etc. This was done in an effort to increase overall compression while 

maintaining readability. However, if required, a completely faithful line-by-line version 

can be easily implemented at the cost of a minor reduction in overall compression. Future 

efforts could include a purely byte based implementation, rather than character based, to 

maximize the degree of compression, particularly if file layout and formatting are not 

requisites. The use of blocked I/O should also be considered. 

begin 

byte list = new List 

char triplet = new Array 

int baseCount = 0 

int nonCompressCount = 0 

foreach character c in input string 

if nonCompressCount = 0 then 

if c is a nucleotide base then 

triplet at position baseCount = c 

baseCount = baseCount + 1 

if baseCount = 3 then 

convert triplet to byte b and add b to list 

reset triplet 
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baseCount = 0 

else 

foreach character t in triplet 

convert t to byte b and add b to list 

endfor 

convert c to byte b and add b to list 

reset triplet 

nonCompressCount = 2 - baseCount 

baseCount = 0 

else 

convert c to byte b and add b to list 

nonCompressCount = nonCompressCount - 1 

endfor 

return list as byte Array 

end 

3.4.5 Compression ratio 

Because 2D uses a direct coding schema, its compression ratio, as defined by 

original size divided by encoded size, can be approximated by a general formula. 

Assuming a requirement of one byte to represent an uncompressed symbol as a character, 

the following considerations can be used to derive a predictive formula. If the sequence is 

assumed to be composed only of nucleotide bases and has a length of L symbols and 

therefore a size of L bytes, then its encoded size will be (L / 3 + L mod 3) bytes which is 
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the sum of all triplets plus any remaining symbols. However, it is likely that auxiliary 

symbols will occur at some approximate frequency. Since the occurrence of one or more 

of such symbols within a given triplet will cause all of the triplet members to be encoded 

at a cost of one byte each, there is an added cost of two bytes to each triplet (this triplet 

now requires three bytes instead of one) that contains one or more auxiliary symbols. 

Therefore, two bytes must be added to the encoded size for each occurrence of an 

auxiliary symbol and there will be [aLJ such symbols, where a is the frequency of 

auxiliary symbols and the auxiliary symbols are randomly distributed, rather than packed 

together. Thus, the size of a 2D encoded sequence can be approximated by the following 

general formula: 

Encoded size • (L / 3 + L mod 3 + 2/aLJ) bytes 

This formula can be substituted into the original definition for compression ratio to 

provide a general formula for the 2D compression ratio: 

Compression ratio * L bytes / (L / 3 + L mod 3 + 2/aLJ) bytes 

3.4.6 Benchmarking 

In order to test 2D, it was used to compress several bacterial genomes and its 

performance was compared against several other compression utilities. The Bacillus 

subtilis and Escherichia coli K12 MG1655 genomes were selected because they are 

commonly used model genomes and the Mycoplasma genitalium genome was selected 

because of its small size and the expectation that some of the compression utilities may 

perform poorly with sequence data of genomic proportions. All genomes were 

downloaded from the NCBI FTP server and the files were not modified in any way, 
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thereby conserving the header data as well as the actual genomic sequence. Except for 

GenCompress, all compression utilities were run on an iMac5,l with 3GB of memory. 

The MS-DOS executable for GenCompress was run on a Gateway laptop with 

comparable hardware and 1GB of memory. It should be noted that the benchmarking 

process itself incurs a certain amount of computational overhead and therefore may 

introduce an artifact of inflated execution times. However, this effect can be minimized 

by using sufficiently long sequences. 

The results show that gzip provided the best compression ratios while 2D had the 

fastest execution times. If 2D was applied and then followed immediately with gzip, this 

provided the best compression ratios and at execution times that were still faster than gzip 

alone. The MS-DOS executable for GenCompress failed before completion after a 

considerable execution time, even for the smallest genome. Despite the similarity in 

compression ratios for the 2D compressed genomes the frequencies of the auxiliary 

symbols were 2.1E-05 (89 out of 4214719) for Bacillus subtilis, 1.9E-05 (88 out of 

4639763) for Escherichia coli K12 MG1655, and 1.3E-04 (73 out of 580149) for 

Mycoplasma genitalium. However, in all cases the auxiliary symbols were contained only 

in the sequence header, a single line FASTA identifier at the beginning of each file. 

Therefore, the actual sequences were compressed uniformly and the overall compression 

ratios were similarly impacted by the condensed occurrence of a similar number of 

auxiliary symbols at the start of each file. Table 3 summarizes the compression results. 

Decompression for 2D was also tested by restoring the 2D compressed genomes. 

A consistent file size increase of one byte was observed in all cases along with an 

57 



increase in file length of one line. Unless a sequence has a last line length that is divisible 

by three when combined with any symbols that may already be cached in the 

compression buffer, then there will be either one or two remainder symbols. The current 

implementation will treat any remainder symbols as uncompressible symbols and deposit 

them on their own line at the end of the compressed sequence. In the case of the test 

genomes, the compressed files became one line longer than their source files because 

they each had remainder symbols that were uncompressible. This resulted in the creation 

of one new line for each compressed file and this increase was propagated during 

decompression. To verify this, the last line of symbols from each decompressed file was 

merged with the previous line and both the original line count and original file size were 

restored. Table 4 shows the decompression results. 

To test its robustness for use with very large data sets, 2D was used to compress 

the Sargasso Sea metagenome, a 918.1MB FASTA format file available from the 

Sorcerer II Expedition website [21]. This file is interesting because it contains a very 

large ratio of auxiliary data to sequence data since the metagenome is broken into a vast 

number of individual FASTA records rather than having a single header at the beginning. 

2D performance was measured against gzip, bzip2, and against 2D in combination with 

gzip. As with the genomes, 2D had a faster execution time than gzip, while gzip had a 

better compression ratio. Moreover, bzip2 yielded an even better compression ratio in 

slightly less time than gzip but was considerably slower than 2D. However, the 

combination of both 2D and gzip produced the best compression ratio in less time than 

gzip alone or bzip2. Table 5 summarizes the results for compression of the metagenome. 
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It was observed that 2D read 11,418,321 lines from the source file but wrote 

11,959,572 lines to the compressed file resulting in a gain of 541,251 lines and a definite 

decrease in the compression ratio that was obtained for the metagenome. The Sargasso 

Sea metagenome is composed of 811,372 sequence fragments. Since each sequence 

begins with a header of auxiliary symbols, any remaining symbols from a previous 

sequence are written to their own line before processing the upcoming header. The 

current implementation does this in an effort to maintain human readability between 

sequences. Future implementations should abandon this behaviour to improve the overall 

compression ratio. 

3.5 Conclusion 

2D provides a general-purpose nucleotide compression protocol that can 

differentiate between sequence data and auxiliary data thereby offering reconciliation 

between sequence specific and general-purpose compression strategies. This makes 2D 

suitable for any type of sequence data, including very large data sets, such as 

metagenomes. Because it supports the inclusion of auxiliary symbols that are not 

members of the set of expected nucleotide bases, the source sequence can contain a rich 

lexicon of added symbols that can represent wildcard symbols, annotation data, or special 

subsequences, such as functional domains or special repeats. The representation of 

domains and repeats through additional symbols can be applied to add a degree of 

structure-based coding within the 2D protocol, thereby providing a means to increase the 

overall degree of compression. Also, the encapsulation of unexpected symbols within the 

primary representation removes the need for a wildcard elimination phase and storage of 
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wildcard data in a secondary structure. This is also a benefit at decompression time when 

unexpected symbols must be restored. 2D employs compression by triplets making the 

compressed representation immediately amenable to interpretation as a polypeptide. 2D 

encoded sequences may be subsequently compressed by other compression protocols to 

further the overall degree of compression as demonstrated by its combination with gzip. 

2D has the potential to have a beneficial impact on disk traffic for database queries and 

other disk intensive operations. 
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3.9 Figures 

Figure 3-1 The 2D byte coding schema 

' 
ompression on 

V _ J 
Y 

Coding bits 

The seven least significant bits are used to encode data. The most significant bit is used 

as a flag to indicate the context of the byte as either compressed data or uncompressed 

data. 

3.10 Tables 

Table 3-1 The 2D data model 

Type 

Auxiliary 

Sequence 

Unknown 

Description 

ASCII 

Triplet 

? 

Range 

0 to 127 

-1 to-125 

-128 

Compressible 

No 

Yes 

No 

For sequence data, auxiliary data, and unknown values the range of byte values is listed 

as well as whether the data will be compressed or uncompressed. 

Table 3-2 The 2D encoding process 

Step 

0 

1 

2 

3a 

3b 

Input 

Sequence 

ACTCNTGAGA 

CTCNTGAGA 

TCNTGAGA 

CNTGAGA 

CNTGAGA 

Triplet 

empty 

A 

AC 

ACT 

empty 

Uncompress 

Count 

0 

0 

0 

0 

0 

Encoded 

Sequence 

empty 

empty 

empty 

empty 

~ 
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4 

5a 

5b 

6 

7 

8 

9a 

9b 

10 

NTGAGA 

TGAGA 

TGAGA 

GAGA 

AGA 

GA 

A 

A 

empty 

C 

empty 

empty 

empty 

G 

GA 

GAG 

empty 

A 

0 

0 

0 

1 

0 

0 

0 

0 

0 

~ 

~C 

~CN 

~CNT 

~CNT 

~CNT 

~CNT 

~CNTA 

~CNTAA 

An example of encoding process is given for the sequence ACTCNTGAGA that contains 

the auxiliary symbol N. The remaining input symbols, any symbols cached in the triplet 

structure, the value of the uncompress count (a variable to offset compression after the 

occurrence of an auxiliary symbol), and the encoded sequence are shown for each step in 

the process. 

Table 3-3 Genomic compression benchmarking 

Compression 

Method 

None 

GenCompress 

2D 

gzip 

2D + gzip 

Source Genome 

Bacillus subtilis 

Size 

(bytes) 

4,274,929 

0 

1,465,177 

1,300,308 

1,093,657 

i Ratio ! Time (ms) 

j 1.000 ! N/A 

i 0 j 58,363,756 

i 2.918 j 717.5 

; 3.288 ; 1,671.3 

: 3.909 • 824.9 
1 1 

Escherichia coli K12 MG1655 

Size 

(bytes) 

4,706,046 

0 

1,612,930 

1,431,844 

1,214,444 

Ratio 

1.000 

0 
2.918 

3.287 

Time (ms) 

N/A 

27,887,599 

788.9 

1,819.4 

3.875 : 891.3 

Mycoplasma genitalium 

Size 

(bytes) 

588,437 

0 

201,721 

174,398 

145,727 

Ratio 

1.000 

0 
2.917 

3.374 

4.038 

Time (ms) 

N/A 

8,127,438 

100.5 

254.5 

182.8 

Compression data for GenCompress, 2D, gzip, and 2D + gzip was obtained using three 

bacterial genomes. File size, compression ratio, and execution time are given for each 

algorithm with respect to each genome. Execution time is the average result from 100 
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trials with the exception of GenCompress which is the shortest execution time obtained 

after three consecutive failures. 

Table 3-4 Genomic decompression benchmarking 

Source 

Genome 

File Size (bytes) 

Normal 2D Comp 
2D 

Decomp 

File Inflation 

(bytes) 

bytes lines 

Decomp 

Time 

(ms) 

Bacillus subtilis 

Escherichia coli K12 

MG1655 

Mycoplasma genitalium 

4,274,929 

4,706,046 

588,437 

1,465,177 

1,612,930 

201,721 

4,274,930 

4,706,047 

588,438 

923.9 

1,042.3 

116.2 

Decompression data was obtained using the 2D compressed genomes. File sizes are given 

for the original source file, the compressed file, and the decompressed file, with respect 

to each genome. The differences between the original sizes and the restored sizes are also 

given along with the respective execution times. Execution time is the average result 

from 100 trials. 

Table 3-5 Metagenomic compression benchmarking 

Compression 

Method 

None 

2D 

gzip 

bzip2 

2D + gzip 

Sargasso Sea Metagenome 

Size (bytes) 

962,651,334 

419,368,931 

261,995,558 

238,973,241 

220,487,270 

Ratio 

1.000 

2.295 

3.674 

4.028 

4.366 

Time (ms) 

N/A 

145,115.0 

315,564.6 

301,924.0 

153,175.8 
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Compression data for 2D, gzip, bzip2, and 2D + gzip was obtained using the Sargasso 

Sea metagenome. File size, compression ratio, and execution time are given for each 

algorithm. Execution time is the average result from 5 trials. 

3.11 Additional Files 

File 3-1 2D.jar 

A java implementation of the 2D algorithm was developed and compiled using the JDK 

version 1.5.0_19. This demonstration tool provides compression and decompression of 

sequence data using the Windows-1252 character set for Windows platforms or the 

MacRoman character set for Apple Macintosh platforms. The demonstration tool 

represents a simplified implementation and is not intended to be a robust and 

exhaustively tested software tool. 
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Chapter 4 

General Discussion 

4.1 Contributions to the Field of Metagenomics 

4.1.1 Functional inference from metagenomic context 

Because metagenomes can reach previously inaccessible microbes, the discovery 

of novel enzymes and novel functionalities can have tremendous impact on a variety of 

applied fields such as medicine, agriculture, and industry [4.1]. Likewise, a process to 

harness metagenomes as a data source for functional inference has the potential to benefit 

these same fields by revealing novel functional associations for genomes of interest. By 

furthering the characterization of metabolic pathways countless ventures can be 

facilitated, including drug design and engineering pathogen resistance. 

The first manuscript demonstrated that in the absence of detectable orthologous 

relationships it remains possible to make high quality functional inferences. This offers a 

strategy for harnessing other metagenomes and homologs in general. Because 

metagenomes allow access to previously unreachable microorganisms, this will result in 

expanding the universe of known functional interactions thus furthering our 

understanding of functional organization and enhancing our effectiveness at assigning 

functional annotations. 

Although a functional interaction network was derived for the Escherichia coli 

K12 MG1655 genome using the Sargasso Sea metagenome, this result primarily 

represents a proof of the viability of the proposed process. Future work should use 

multiple metagenomes as a data source to make functional inferences across multiple 
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target genomes. Of particular interest is the relationship between the volume and type of 

source data versus the number of predicted functional interactions. This could provide an 

indication of to what extent the metagenomes actually extend microbial biodiversity and 

the repertoire of novel genes and novel functional interactions. Further attention should 

be devoted to exploring whether or not orthology should remain a necessary requisite for 

in conventional microbial genomics. Perhaps prediction viability metrics or a predictive 

formula derived from binary logistic regression could all together eliminate the need for 

establishing orthology. 

4.1.2 Differential direct coding 

As the prominence of the field of metagenomics continues to grow, there will be 

an intensification in research that relies on the efficient storage and retrieval of very large 

data sets. The development of the general-purpose nucleotide compression protocol can 

potentially have a beneficial impact on disk traffic for database queries and other disk 

intensive operations that involve sequence data. Moreover, it is possible that such 

compressed sequence representations might have future utility for pursuits such as the 

detection of novel patterns and subsequences. 

The second manuscript presented an algorithm that uses a general-purpose 

nucleotide compression protocol that can differentiate between sequence data and 

auxiliary data. This provides reconciliation between sequence specific and general-

purpose compression strategies thus making the algorithm suitable for very large data 

sets, such as metagenomes. 
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Future implementations should use a byte stream implementation, rather than a 

character stream implementation to explore the potential gain in compression ratio. Also, 

certain common and fixed sequences, like stop codons, could be encoded using some the 

non-printing ASCII characters that are currently allocated to represent auxiliary symbols. 

This should be explored with the goal of further increasing the compression ratio by 

using some amount of structure-based coding. 

4.2 Future Research Directions 

Metagenomics, like other areas of computational biology, is driven by user-

friendly software [4.2]. A variety of generic tools could potentially benefit the research 

community. Therefore, any future versions of the research presented in this work should 

be formulated from the perspective of useful and extensible software. Effective 

implementation is a crucial aspect in bringing any proposed computational techniques 

into actual usage [4.2]. Applying fundamental principles from software engineering could 

greatly facilitate the design and maintenance of such projects. 

Horizontal gene transfer (HGT) has been extensively studied in the completed 

genomes and a similar undertaking could be performed using the metagenomes [4.3]. 

Although this would require an adaptation of methods from the genomic approach, 

metagenomic studies of HGT could reveal patterns of prokaryotic evolution [4.3]. 

Metagenomic studies could be used to complement existing genomic studies [4.4] of 

codon usage and codon richness index to compare the relationships between recipient 

genomes and donated genes. Moreover, the connection between environmental factors 

and species composition versus the frequency of HGT events could also be an important 
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relationship that can only be characterized through metagenomic data [4.4]. A better 

understanding of HGT is indispensible to furthering our knowledge about the evolution 

of natural microbial communities [4.4]. 

As well the previously discussed bias in the databases toward cultivable 

organisms, there may be similar bias in validation metrics, such as the genomic 

correlation of expression data [4.5]. It is arguable how applicable this data is for 

benchmarking metagenomic functional interactions since the metagenomes are likely to 

contain novel proteins that necessarily exhibit novel functional interactions, as well as 

instances of novel functional interactions among previously characterized proteins. 

Therefore, appraising the validity of this and other validation metrics is essential in order 

to properly assess the results of future metagenomic research. 

The metagenomes offers a perspective where functional modules form the atomic 

units of conceptualization, rather than the organisms that encapsulate them. This 

provokes a consideration of the validity of many traditional constructs in the biological 

sciences. For example, the accepted relationship between gene and protein has always 

mandated a one-to-one cardinality. However, this may be an artifact of conceptual 

convenience that has propagated to every corner of biological thought, rather than a 

rigidly understood stochastic rule. There is a growing body of evidence in functional 

genomics, proteomics, and epigenetics that points to organization greater than an 

encapsulated unit of inheritance resting at a fixed chromosomal locus. Genomes are not 

flat files; they exhibit robust topologies that defy the simplicity of a one-to-one 

cardinality. Perhaps our entire perspective on genomes has been skewed by the 
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tremendous impact of the one-gene-one-protein model. Exploring the validity of current 

ontology represents a colossal yet essential undertaking toward achieving a truly 

integrated biology. 

4.3 Toward a Post-metagenomic Era 

Addressing challenges to the field of metagenomics requires development in the 

areas of computation, technology, methodology, and conceptual perspectives [4.6]. 

Several major opportunities have been identified for metagenomics in relation to various 

application areas [4.6]. From a life sciences perspective, metagenomes have the potential 

to advance theory and predictive power in microbiology and evolution, while from an 

earth sciences perspective, genome-based microbial models of ecosystems could be used 

to predict global environmental processes [4.6]. Better understanding the biosynthetic and 

biocatalytic potential of microbes has immediate utility for a variety of pursuits in 

biotechnology, while understanding how the human microbiome contributes to health and 

disease will facilitate biomedical research [4.6]. Microbial communities also have the 

potential to drive environmental remediation by providing restoration to various 

ecosystems, and also to maximize the efficiency of agricultural practices that involve 

both plants and animals [4.6]. Even the need for economical and sustainable energy can 

potentially be addressed with microbes by harnessing of bioenergy resources [4.6]. 

Microbial communities are a major component of the biosphere, yet little is 

known about these communities and their dynamics [4.6]. By addressing current 

constraints and exploiting current opportunities, the scope of metagenomics can be 

extended thus paving the way for a post-metagenomic era of research. Harnessing the 
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metagenomes represents one of the remaining great frontiers in the biological sciences. 

Ultimately, the metagenomes will provide a definitive rendering of microbial biodiversity 

that will cascade into many facets of biology and address questions about the diversity of 

life, the ecological and evolutionary roles of viruses, and even what defines a species 

[4.6] With the current surge in biotechnological techniques and computational resources 

it is at last possible to propel biology into the forefront of the sciences and metagenomics 

will play a key role in achieving this goal. 
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