
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Theses and Dissertations (Comprehensive) 

2010 

Computational and Theoretical Aspects of Computational and Theoretical Aspects of N-E.C. Graphs -E.C. Graphs 

Alexandru Costea 
Wilfrid Laurier University 

Follow this and additional works at: https://scholars.wlu.ca/etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Costea, Alexandru, "Computational and Theoretical Aspects of N-E.C. Graphs" (2010). Theses and 
Dissertations (Comprehensive). 968. 
https://scholars.wlu.ca/etd/968 

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for 
inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ 
Laurier. For more information, please contact scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F968&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholars.wlu.ca%2Fetd%2F968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/968?utm_source=scholars.wlu.ca%2Fetd%2F968&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


NOTE TO USERS 

Page(s) not included in the original manuscript are 
unavailable from the author or university. The 

manuscript was microfilmed as received 

11 

This reproduction is the best copy available. 

UMI 





1 * 1 
Library and Archives Bibliothgque et 
Canada Archives Canada 

Published Heritage Direction du 
Branch Patrimoine de l'6dition 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votra r6f6rence 
ISBN: 978-0-494-64358-7 
Our file Notre reference 
ISBN: 978-0-494-64358-7 

NOTICE: 

The author has granted a non-
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non-
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 

L'auteur a accorde une licence non exclusive 
permettant a la Bibiiotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, pr§ter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, §lectronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

Bien que ces formulaires aient inclus dans 
fa pagination, il n'y aura aucun contenu 
manquant. 

I + I 

Canada 





COMPUTATIONAL AND THEORETICAL ASPECTS OF 
N-E.C. GRAPHS 

by 

Alexandra Costea 

BSc, Wilfrid Laurier University, 2006 

Submitted to the Department of Mathematics 
in partial fulfillment of the requirements for 

Master of Science and Finance 

Wilfrid Laurier University 
January 21 2010 

© Alexandru Costea 2010 



The undersigned hereby certify that they have read and recommend 

to the Faculty of Mathematics for acceptance a thesis entitled "COMPU-

TATIONAL AND THEORETICAL ASPECTS OF N-E.C. GRAPHS" 

by Alexandru Costea in partial fulfillment of the requirements for the 

degree of Master of Science and Finance. 

Dated: January 21 , 2010 

Supervisor: 
Professor Anthony Bonato 

Readers: 
Professor Joe Campolieti 

Professor Peter Danziger 

Professor Roderick Melnik 

iii 



Table of Contents 

List of Figures vi 

Abstract vii 

Acknowledgements viii 

Chapter 1 INTRODUCTION 1 

1.1 Motivation and Background 1 

1.2 Mathematical Concepts 3 

1.2.1 Graph Theory 3 

1.2.2 Discrete Probability Theory 10 

1.2.3 Graphs from Algebra: Paley and Cayley Graphs . . 13 

1.3 Thesis Overview 15 

Chapter 2 EXISTENCE A N D PROPERTIES OF N-E.C. 

GRAPHS 17 

2.1 Introduction 17 

2.2 Properties of n-e.c. Graphs 22 

2.3 Applications of n-e.c. Graphs 25 

2.4 Explicit Constructions of n-e.c. Graphs 26 

2.4.1 Paley Graphs 27 

2.4.2 Finite Geometry 30 

Chapter 3 COMPUTATIONAL RESULTS 38 

3.1 Introduction 38 

3.2 Data Sets and Results 39 

3.3 A New 3-e.c. Example of Order 30 42 

Chapter 4 R A N D O M CAYLEY GRAPHS 43 

4.1 Introduction 43 

iv 



4.2 Random Cayley Graphs 44 

Chapter 5 CONCLUSION A N D OPEN PROBLEMS 49 

Appendix A A P P E N D I X 51 

A.l Code to check for 3-e.c. property 51 

A.2 Code for standard, cubic and quadruple Paley graphs . . . 53 

Bibliography 59 

v 



List of Figures 

Figure 1.1 Abstract representation of the n-e.c. property. . . . 1 

Figure 1.2 Three drawings of the Petersen graph 4 

Figure 1.3 The complete graph K5 and the complete bipartite 

graph if3,3 5 

Figure 1.4 A 3-regular graph with diameter three 7 

Figure 1.5 A 3-colouring of a graph 8 

Figure 1.6 Isomorphic graphs 9 

Figure 1.7 The lattice graph of order 12 9 

Figure 1.8 The graph P9 14 

Figure 2.1 A plot of function / (m, n) from Theorem 2.1 b). . . 19 

Figure 2.2 Number of vertices m needed for G(m, 1/2) to be 

n-e.c 20 

Figure 2.3 The 1-e.c. graphs of minimum order 20 

Figure 2.4 The unique 2-e.c. graph of minimum order 21 

Figure 2.5 The 5-cycle is a SRG(5, 2,0,1) 27 

Figure 2.6 A cubic Paley graph of order 19 29 

Figure 2.7 A quadruple Paley graph of order 17 30 

Figure 2.8 Affine planes of order two and three 32 

Figure 3.1 The 3-cube Q3 39 

vi 



Abstract 

We consider graphs with the n-existentially closed adjacency property. 

For a positive integer n, a graph is n-existentially closed (or n-e.c.) if for 

all disjoint sets of vertices A and B with \A U B\ = n (one of A or B can 

be empty), there is a vertex 2 not in AUB joined to each vertex of A and 

no vertex of B. Although the n-e.c. property is straightforward to define, 

it is not obvious from the definition that graphs with the property exist. 

In 1963, Erdos and Renyi gave a non-explicit, randomized construction 

of such graphs. Until recently, only a few explicit families of n-e.c. graphs 

were known such as Paley graphs. Furthermore, n-e.c. graphs of mini-

mum order have received much attention due to Erdos' conjecture 011 the 

asymptotic order of these graphs. The exact minimum orders are only 

known for n = 1 and n = 2. 

We provide a survey of properties and examples of n-e.c. graphs. Us-

ing a computer search, a new example of a 3-e.c. graph of order 30 is 

presented. Previously, no known 3-e.c. graph was known to exist of that 

order. We give a new randomized construction of n-e.c. vertex-transitive 

graphs, exploiting Cayley graphs. The construction uses only elementary 

probability and group theory. 
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Chapter 1 

INTRODUCTION 

1.1 Motivation and Background 

The purpose of the thesis is to investigate adjacency properties of 

graphs. An adjacency property is a global property of a graph, where 

given a fixed subset of vertices S, there exists vertices outside of S joined 

to vertices of S in a predetermined way. Adjacency properties stem from 

a seminal paper on random graphs by Erdos and Renyi [14] published in 

1963. One particular adjacency property that has received much recent 

attention is the n-e.c. property. For a positive integer n, a graph is n-

existentially closed (or n-e.c.) if for all disjoint sets of vertices A and B 

with \A U B\ = n (one of A or B can be empty), there is a vertex 2 not 

in A U B joined to each vertex of A and no vertex of B. We say that z 

is correctly joined (or c.j.) to A and B. A visual representation of this 

property is presented in Figure 1.1. Hence, for all n-subsets S of vertices, 

Figure 1.1: Abstract representation of the n-e.c. property. 

there exist 2"-many vertices joined to S in all possible ways. Although 

1 

/ \ 
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the n-e.c. property is straightforward to define, it is not obvious from the 

definition that graphs with the property exist. Erdos and Renyi gave a 

non-explicit, randomized construction of such a graph in [14]. Explicit 

examples of n-e.c. graphs were later introduced in [7] who used graphs 

defined over certain finite fields. Almost all finite graphs are n-e.c. (in 

a sense to be made precise in Section 2.1) but, until recently, only a 

few explicit constructions were known. Furthermore, n-e.c. graphs of 

minimum order have received much attention due to Erdos' conjecture 

on the asymptotic order of these graphs. The exact minimum orders are 

only known for n = 1 and n = 2. 

The n-e.c. graphs are an instance of pseudo-random, graphs; that is, de-

terministic graphs which satisfy some of the properties of random G(m,p) 

graphs (see [28]). Two key properties of random graphs with applications 

to real-world networks are universality and expansion. As we will prove 

in Theorem 2.4, an n-e.c. graph G is (n + l)-universai. that is, each graph 

of order at most n + 1 is isomorphic to an induced subgraph of G. Uni-

versal graphs have numerous applications in computer science. Several 

optimization problems in data representations (see [13]), data structures 

(see [24]), and circuit design (see [29]) surround problems on certain uni-

versal graphs. An expander graph has high connectivity properties. To 

be more precise, given a set S of vertices, define the boundary of S, writ-

ten d(S), to be the set of edges with one end in S, and the other outside 

S. Expander graphs require that for all "small" sets of vertices (where 

small usually means a fraction of the order of the graph), the ratio of the 

cardinality of d(S) to the order of S is greater than or equal to some fixed 

positive constant. Expander graphs have several applications to theoreti-

cal computer science, design of robust computer networks, and the theory 
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of error-correcting codes (see [1], for example). Certain well-known fam-

ilies of n-e.c. graphs—such as Paley graphs and certain random Cayley 

graphs—are expanders [1], The n-e.c. graphs witness a type of expansion 

described in Lemma 2.1. 

The focus of the remainder of this chapter is to recall various notations 

and concepts from graph theory, probability theory and finite fields that 

will be used in later chapters. We conclude this introductory chapter with 

an outline of the remainder of the thesis. 

1.2 Mathematical Concepts 

Graphs are both highly useful and beautiful mathematical structures. 

This section provides some of the basic terminology and operations needed 

for the study of graphs and lists several useful families of graphs. Some 

families of graphs stem from other mathematical areas such as finite fields 

and probability theory. We present some of the graph concepts needed to 

describe such families of graphs. For a good reference on graph theory, 

see [30]. 

1.2.1 Graph Theory 

A graph is a pair G — (V(G), E(G)) of sets such that V(G) is non-

empty, and E(G) is a set of unordered pairs from V(G). For simplicity, we 

often write V(G) = V and E(G) = E. The elements of V are the vertices 

(or nodes) of the graph G and the elements of E are its edges defined 

in terms of the nodes. We take V (and hence, E) to be finite, unless 

otherwise stated. The usual way to picture a graph is by drawing a dot 

for each vertex and joining two of these dots by a line if the corresponding 

two vertices form an edge. As an example, in Figure 1.2 we give three 
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drawings of the Petersen graph. A graph is called simple if it consists of 

Figure 1.2: Three drawings of the Petersen graph. 

no loops nor multiple edges, while an undirected graph forces E to be a 

symmetric relation. We will always consider simple, undirected graphs, 

unless we state otherwise. The number of vertices of a graph is its order, 

written |V|, while the number of edges, denoted by is its size. If 

{u, v] E E, then we denote the edge by uv. We say that u is joined to v 

or that u is adjacent to v and write u ~ v. We say that u and v are both 

incident to the edge and that u and v are the endpoints of uv. The set 

E may be empty. For all graphs, as there are at most as many edges as 

distinct pairs of vertices, the following inequality holds: 

Graphs are often used in network analysis. In this context the term 

network may differ and is often referred to as a simple graph. Hence, a 

graph is also known as a network, especially with respect to real-world 

examples. 

Given any subset S C V in G, the subgraph induced by S in G, 

denoted by G \ S, has two vertices joined if and only if they are joined 

in G. Given a vertex x, the induced subgraph formed by deleting x is 
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denoted by G — x. 

Certain special types of graphs play prominent roles in graph theory. 

For example, a complete graph of order n, denoted by Kn, has the prop-

erty that each pair of distinct vertices are adjacent. A graph is bipartite if 

its vertices can be partitioned into two sets XY and XI such that any two 

adjacent vertices are not both in the same Xi, where i = 1,2. A complete 

bipartite graph, written Km^n, has |Xi [ = m, and jJ^j = n, and each 

vertex of X\ is joined to each vertex of X2. Figure 1.3 depicts a complete 

graph and complete bipartite graph. The maximum integer r such that 

KR is an induced subgraph of G is called the clique number of G, and is 

written uj(G). For example, oj(K^) = 5, while = 2. 

Figure 1.3: The complete graph and the complete bipartite graph 

A walk in a graph consists of an alternating sequence of vertices and 

edges 

xo,ei,xi,...,et,xt (1.1) 

so that for all 1 < i < t, e* = x ^ x,. Note that vertices and edges may 

be repeated in a walk. To be explicit about the endpoints, we sometimes 

refer to (1.1) as an xo,xt-walk. A walk is closed if xq = xt; otherwise, it is 

open. The number of edges is the length of the walk. A path is an open 

walk with no repeated vertex. A cycle is a closed walk with no repeated 
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vertex. The path of length n is Pn, and the cycle of length n is Cn. 

A graph is connected if for each pair of vertices there is a path be-

tween them. The relation of being connected by a path is an equivalence 

relation on V, and the equivalence classes are the connected components 

of G. A graph which is not connected is called disconnected; a connected 

component consisting of a single vertex is called an isolated vertex. A 

vertex joined to all other vertices is called universal. The complement G 

of G is the graph whose vertex set is V and whose edges are the pairs of 

non-adjacent vertices of G. 

The distance between u and v. written d(u,v), is either the length 

of a shortest path connecting u and v (and 0 if u = v) or oo otherwise. 

Note that d(u, v) turns each connected graph into a metric space. The 

diameter of a connected graph G, written diam((?), is the maximum of all 

distances between distinct pairs of vertices. If the graph is disconnected, 

then diam(G) is oo. 

The set of vertices joined to a given vertex u G V(G) is called the 

neighbour set of u, written N(u). The cardinality of this set is called the 

degree of vertex u, denoted by degG(x). The following theorem is called 

the First Theorem of Graph Theory and it establishes a fundamental 

relationship between number of edges and the degrees of the vertices in 

a graph. The proof follows the one found in [30]. 

Theorem 1.1. For a graph G = (V, E) we have that 

£ d e g G(V) = 2\E\. (1.2) 
v€V 

Proof. Each edge is incident to two vertices, thus contributing to the 

degree of two distinct vertices. Counting the degrees of every vertex in 
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the graph, the equation (1.2) follows. • 

A graph G is k-regular if degG(v) = k for all v 6 V. For example, Kn 

is (n—l)-regular. A 3-regular graph with diameter 3 is given in Figure 1.4. 

The set Nc(u) is the set of all vertices not joined to u excluding u itself. 

Figure 1.4: A 3-regular graph with diameter three. 

We note that a partition of the vertex set of a graph is {?/}, N(u), Nc(u). 

Figure 1.5 illustrates this partition for a graph of order seven. A k-

colouring of a graph is a vertex partition into k independent sets. The 

chromatic number, written x(G), is the smallest integer k such G has a 

^-colouring. 

An important concept in graph theory is the notion of isomorphism. 

A homomorphism f between graphs G and H is a function / : V(G) —* 

V(H) which preserves edges; that is, if xy 6 E(G), then f{x)f{y) G 

E(H). We abuse notation and simply write / : G —» H. An embedding 

from G to H is an injective homomorphism / : G —> H with the property 

that xy e E{G) if and only if f ( x ) f ( y ) e E(H). We will write G < H if 

there is some embedding of G into H, and say that G embeds in H. An 
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X 

isomorphism is a bijective embedding; if there is an isomorphism between 

two graphs, then we say they are isomorphic. We write G = H if G and 

H are isomorphic. For an example, consider graphs G and H shown in 

Figure 1.6. It can be directly verified that the mapping / , given by 

1 a, 2 —> e, 3 —> c, 4 —> / , 5—> 6,6 —> d 

is an isomorphism between G and H. (Note that the mapping is not 

unique.) The relation = is an equivalence relation on the class of all 

graphs, whose equivalence classes are isomorphism types or isotypes. We 

will always identify a graph with its isomorphism type. An automor-

phism of a graph G is an isomorphism from G to itself; the set of all 

automorphisms forms a group under the operation of composition, writ-

ten Aut(G). A graph G is vertex-transitive if for every pair of vertices u 

and v there is automorphism of G mapping u to v. 

There are several ways to represent graphs. One common representa-

tion describing the relationship between vertices and edges is the so-called 

adjacency matrix representation. Suppose that G is a graph, and with-

out loss of generality, assume that V = {1, 2 ,3 , . . . , n}. Let A be a n x n 
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Figure 1.6: Isomorphic graphs. 

matrix, where the (i,j) entry of A is denoted by aitj. We define the adja-

cency matrix A{G) of a graph G of order n to be the n x n matrix defined 

as follows: 
/ 

0 if i=j or ij <£E(G), 
aid = < 

1 otherwise. 

Notice that the adjacency matrix of a undirected graph is symmetric with 

O's on the main diagonal. Figure 1.7 depicts the so-called lattice graph of 

order 12. The adjacency matrix A(G) of G is given by 

Figure 1.7: The lattice graph of order 12. 



0 0 0 1 1 0 1 0 1 1 0 0 

0 0 0 0 1 1 0 1 0 1 1 0 

0 0 0 0 0 1 1 0 1 0 1 1 

1 0 0 0 0 0 1 1 0 1 0 1 

1 1 0 0 0 0 0 1 1 0 1 0 

0 1 1 0 0 0 0 0 1 1 0 1 

1 0 1 1 0 0 0 0 0 1 1 0 

0 1 0 1 1 0 0 0 0 0 1 1 

1 0 1 0 1 1 0 0 0 0 0 1 

1 1 0 1 0 1 1 0 0 0 0 0 

0 1 1 0 1 0 1 1 0 0 0 0 

0 0 1 1 0 1 0 1 1 0 0 0 

1.2.2 Discrete Probability Theory 

We now present concepts from discrete probability theory that will be 

used in this thesis. This will help in proving results related to the random 

graph G(n,p) in Chapter 2, and results on random Cayley graphs in 

Chapter 4. 

The probabilistic method is a powerful tool for tackling many problems 

in discrete mathematics. Roughly speaking, the method works as follows: 

when attempting to prove that a structure with certain desired properties 

exists, one defines an appropriate probability space of structures and then 

shows that the desired properties hold in these structures with positive 

probability (or even better: with probability tending to 1 as the order of 

the structures tends to oc). 

For simplicity, we consider only finite, discrete probability spaces. A 

probability space (f2, T, P), consists of a finite set Q, called the sample 
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space, T is the collection of all subsets of Q. and probability function 

P : Q —* [0,1] satisfying Ylujen = 1- A subset of the sample space Q, 

is called an event. The function P must satisfy the following properties. 

1. For all events wG J , P(w) <E [0,1] and P(Q) = 1. 

2. If (Ai-.ie I) is a countable set of events that are pairwise disjoint, 

then 

iei iei 

An important example for us of a probability space are random graphs. 

Roughly speaking, random graphs arise by choosing edges among pairs of 

distinct vertices independently with a given probability. To be more pre-

cise, the random graph G(m,p) consists of the probability space (Qm, F, P), 

where Qm is the set of all graphs with vertex set [n] = {1,2, . . . , m}, T is 

the family of all subsets of Qm. Each graph is chosen independently (two 

events X and Y are independent if and only if P(A n B) = P(A)P(B)). 

There are \Qm\ = 

graphs, so the probability function is given by 

P(G) = 2-(»), for allG C Qm. 

A more general probability space on the set Qm may be obtained by 

fixing a real number pG (0,1) and choosing each edge with probability p. 

This space may be viewed as (™) independent coin flips, one for each pair 

of vertices where the probability of success (that is, drawing an edge) is 

equal to p. The probability of one edge not drawing an edge is 1 —p and 

so the probability function P is given by For every G € Qm 

(1.3) 
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Observe that in the special case where p = 1/2 that 

P ( O - Q) (?) 

We say that an event holds asymptotically almost surely (a.a.s.) in 

G(m,p) if it holds with probability tending to 1 as m —> oo. For exam-

ple, as we will prove in Theorem 2.1, G(m, 1/2) a.a.s. satisfies the n-e.c. 

property for a fixed positive integer n. 

We will consider asymptotic results on probability spaces such as 

G(m,p), so we recall asymptotic notation. Let / and g be functions 

whose domain is some fixed subset of M. We write / G 0(g) if 

exists and is finite. We will the standard notation and write / = 0(g). 

We write / = Q(g) if g = 0 ( f ) , and / = ©(</) if / = 0(g) and / = Q(g). 

If 

then / = o(g). So if / = o(l), then / tends to 0. We write / ~ g if 

All logarithms are in base e, and written (keeping with the convention 

among random graph theorists) as log a; (i.e. logo: = In x). If 0 < m < n 

are integers with n > 0, then we will use the following inequality for 

binomial coefficients: 
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1.2.3 Graphs from Algebra: Paley and Cayley Graphs 

We will use abstract algebra to describe certain classes of graphs called 

Paley and Cayley graphs. As we will see, Paley graphs are derived from 

finite fields, while Cayley graphs axe defined using groups. 

The finite fields are classified by size; in particular, there is exactly 

one finite field up to isomorphism of size pk for each prime p and posi-

tive integer k, written GF(pk) (where "GF" stands for Galois Field; see 

[18]). For further discussion of algebraic structures in the context of graph 

theory, please see [15]. 

Now let q be a prime power such that q = 1 (mod 4). The Paley graph 

of order q is the graph Pq whose vertices are the elements of the finite 

field GF(q) in which two distinct vertices x and y are joined if and only 

if x — y is a square in GF(q). Since q = 1 (mod 4), it follows that — 1 

is a contained in the set of non-zero squares of GF(q). In particular, the 

edge set E(Pq) is a symmetric relation: x — y is a square if and only if 

y — x is a square. 

As an example, consider the graph P9. Let S be the set of all non-zero 

squares in GF(9). We use the following representation of elements of the 

field with 9 elements: 

GF(9) = {a + bi : a, b € Z3, i2 = -1} . 

In particular, 

GF(9) = {0,1,2, i, 2i,l + i,l + 2i,2 + i,2 + 2i}. 
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Computing all the non-zero squares we find that 

S = {1,2, i, 2i}. 

See Figure 1.8, where vertices are labelled by the elements of GF(9). 

Figure 1.8: The graph P9. 

We now consider Cayley graphs. Let G be a group of order m and let 

S be a set of elements of G so that the identity element, written e, is not 

in S and S is inverse-closed: that is, if g G S, then g~l £ S. The set S is 

called the connection set. Define the Cayley graph G(S) to have vertices 

the elements of G, with g joined to h if gh"1 e S. Note that G(S) is 

simple and undirected by the defining properties of S. If G is Abelian, 

then we use additive notation, so g~l is written —g. 

The following theorem shows that each Paley graph is a Cayley graph. 

Theorem 1.2. Let q be a prime power such that q = 1 (mod 4), and let 

S be the set of squares in GF{q). Then S is inverse-closed. 

Proof. Write — 1 = 62, for a suitable b € GF(q) (which is possible by 



the hypothesis on q). For x € S, choose a € G such that x = a2. Then 

-z = b2a2 

= (ba)2. 

Hence, — x is also a square and S is inverse-closed. • 

1.3 Thesis Overview 

We now summarize the contents of the remainder of the thesis. In 

Chapter 2 we will elaborate on basic properties of n-e.c. graphs, as well 

the existence of such graphs using probabilistic methods. We will present 

an overview of some of the known constructions of n-e.c. graphs. These 

explicit families of graphs with the property are derived from finite fields 

and finite geometry. Computational results on n-e.c. graphs are presented 

in Chapter 3. Given a graph, it can be easily verified in polynomial time 

whether the graph satisfies the n-e.c. property. (For example, it can be 

shown that the 3-e.c.-checking algorithm described in Appendix A.l is 

of complexity 0(n4).) Finding graphs with a certain order that satisfy 

the n-e.c. property is difficult. Even for n = 3, it has proven difficult to 

check the 3-e.c. property for all graphs of a certain class of graphs. Thus, 

to aid in the search for 3-e.c. graphs, a computer search was conducted 

on certain small order vertex-transitive and strongly regular graphs. As 

a result, a new example of a 3-e.c. graph of order 30 will be presented. 

Previously, no 3-e.c. graph was known to exist of that order. In Chapter 4 

a new construction for n-e.c. graphs using elementary probability and 

group theory will be given. We conclude with Chapter 5, in which we 
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will summarize the main results of the thesis, and state the main open 

problems surrounding n-e.c. graphs. 



Chapter 2 

EXISTENCE AND PROPERTIES OF N-E.C. 

GRAPHS 

2.1 Introduction 

In this chapter we consider the existence and properties of graphs with 

the n-e.c. adjacency property. Although the n-e.c. property is straight-

forward to define, it is not clear from the definition that graphs with the 

property exist. We now give a classic proof of Erdos and Renyi [14] which 

demonstrates that for a fixed integer n > 0, asymptotically almost surely 

G(m, 1/2) is n-e.c. 

Theorem 2.1. Fix an integer n G N. The following then holds. 

1. A.a.s. G(rn, is n-e.c. 

2. Let f be a positive real-valued function defined by 

If m is an integer chosen so that f(m) < 1, then there is an n-e.c. 

graph of order m. 

Proof. Let G = G(m, 1/2). For item (1), let A,B be two sets of 

vertices of G such that AnB = 0 and \AuB\ = n. Fix z AUB. Then, 

by the independence of the choice of edges in G, the probability that 2: is 

(2.1) 

17 



not joined correctly to A and B is 

18 

1 
J_ 
2" 

Hence, the probability that no vertex of G is joined correctly to A and B 

is 

There are (™) choices of an n-set of vertices X, and 2" many partitions 

of X into sets A and B. Hence, by (2.2) it follows that the probability 

that G is not n-e.c. is at most 

where the last equality follows since log (l — ^r) is a negative constant. 

For the proof of item (2), if m has the given property, then with 

positive probability, G(m, | ) contains a n-e.c. graph with positive proba-

Theorem 2.1 generalizes to G(m,p), where p £ (0,1) is fixed. We 

omit the more technical proof of this generalization, as our focus here is 

on proving the existence of n-e.c. graphs. 

We now consider how large m must be for G(m, to be n-e.c. with 

positive probability. Using Theorem 2.1 (2), we plotted the function 

f(m, n) considered as a two-variable function of both m and n (hence, 

the plot is three dimensional). See Figure 2.1. 

(2.2) 

bility. • 
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As expected, as n increases, the value of m such that G{m, | ) is n-

e.c. with positive probability grows exponentially. Extrapolating from 

Figure 2.1, a plot n versus m (where the corresponding m value is found 

by solving the equation \f(m, n)] = 1) is shown in Figure 2.2. Note that 

whenever m is an integer satisfying f(m, n) < 1, then by the probabilistic 

method there is an n-e.c. graph of order m. 

We now turn our attention to the minimum order of an n-e.c. graph. 

For a positive integer n, denote the minimum order of an n-e.c. graph by 

mec(n). By Theorem 2.1 (2), n-e.c. graphs exist for all n > 0, and so the 

function mec(n) is well-defined. It was determined in [9] that mec( 1) = 4 

and mec(2) = 9. In [9], it was shown that there axe exactly three non-

isomorphic 1-e.c. graphs of order four. Figure 2.3 shows these graphs in 

the following order 2K2 (which consists of two disjoint copies of K2), the 

4-cycle C4, and the path with 4 vertices P4. 



20 

Figure 2.2: Number of vertices m needed for G(m, 1/2) to be n-e.c. 

•—•—•—• 

p< c4 ac. 

Figure 2.3: The 1-e.c. graphs of minimum order. 

To describe the minimum order 2-e.c. graph, we need to define the 

Cartesian product of two graphs. The Cartesian product of G and H, 

written GOH, has vertices V(G)xV(H) and edges (a, 6)(c, d) € E(GOH) 

if and only if ac € E(G) and b = d or a = c and bd G E(H). The notation 

stems from the fact that 

K2UK2 C4. 

The graph K^nK3 , which is the unique 2-e.c. of minimum order (as 

proved in [9]), is shown in Figure 2.4. 

Theorem 2.1 (2) supplies an asymptotic upper bound for G(m, to 

be n-e.c., which we describe in our next theorem. 

Theorem 2.2. I f m = 0(n22") and n is a sufficiently large integer, then 
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Figure 2.4: The unique 2-e.c. graph of minimum order. 

with positive probability G(m, |) is n-e.c. In particular, 

mec(n) = 0(n2 2n). 

Proof. Let m = f(n) be the function defined as in (2.1). We must 

show that if m = 0(n22"), then /(to) < 1. Equivalently, we show that if 

c > 0 is fixed and TO = (e 4- l)n22™, then 

l o g / ( m ) < 0 . (2.3) 

Now 
\ / i \ m—n / , \ m—n 

m)2«(l-±-) < mn2n (l —— 
nj \ 2n J \ 2" 

Hence, (2.3) is equivalent to showing that 

n log TO + n log 2 + (m — n) log ( 1 — ^ ) < 0 . (2.4) 

For n sufficiently large we have that log (l — r̂r) ~ — By this fact, by 

computation, and by the choice of TO, (2.4) is equivalent to 

Tt 
n(log(e + 1) + 2 logn + log2) + n2 log 2 + — < (e + l)n2, 2 n 



22 

which is valid for large n as log 2 < 1. • 

The determination of mec(n), where n > 3 is a difficult open problem. 

It was proved in [10] that mec(n) = Q(n2n). In fact, one of the deepest 

conjectures on n-e.c. graphs was given in Erdos et al. [10], which states 

that 

mec(n) = G(n2n). 

Hence, to prove the conjecture, we would need to present a family of 

n-e.c. graphs with order 0(n2n). 

There has been much research done in determining the minimum order 

of a 3-e.c. graph. The results of [9] show that 

20 < mec(3) < 28. 

A lower bound on the order of mec(3) was found recently using complex 

computational methods. Based on 15,000 hours of CPU time, the authors 

of [16] demonstrated that mec(3) > 24. 

2.2 Properties of n-e.c. Graphs 

We now consider how n-e.c. graphs behave with respect to (among 

other things) the taking of complements and induced subgraphs. The 

following theorem is a part of folklore (see [8]) but we present a full proof 

for completeness. 

Theorem 2.3. Fix n a positive integer, and let G = (V, E) be a fixed 

n-e.c. graph. 

1. The graph G is m-e.c. for all 1 < m < n — 1. 
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2. The graph G has order at least n + 2n and has at least n2n 1 many 

edges. 

3. The graph G is n-e.c. 

4• If n > 1, then for each vertex x of G, each of the graphs 

are (n — 1 )-e.c. 

5. I f n > 2, then the graph G is connected with diameter 2. 

Proof. To prove (1), fix a positive integer m < n— 1, and let A,BCV 

be disjoint sets chosen so that \A U B\ — m. Choose a set of vertices C 

disjoint from A U B so that \A U B U C\ = n. As G is n-e.c., there is a 

vertex z £ V correctly joined to A and B U C. Then 2 is correctly joined 

to A and B, and so G is m-e.c. 

For item (2), fix an n-set X of vertices in V. There are 2" many distinct 

vertices correctly joined to X by the n-e.c. property. Hence 

For each subset A of X with \ A\ = i, where 1 < i < n, by the n-e.c. 

property there is a vertex z joined to A and no other vertices of X. Such 

a z contributes i edges for each subset A. Hence, the number of edges in 

G is at least the following 

using a standard equality for sums of binomial coefficients; see [11 

G\{x}, G \ N(x), G r Nc(x). 

V\ >n + 2n. 



For (3), let A,BC V(G). By the n-e.c. property there exists z € 

V(G) joined to B and not A. Vertex 2 will then be correctly joined to 

A, B in G. This implies that G is n-e.c. 

For (4), define G' = G — x, and let A, B C V(G') be chosen such that 

\A U B\ = n — 1. Define A' = A U {x}. By hypothesis there exists z 

correctly joined to A' and B. This implies 2 G l/(<S'\{x}). Then G' is 

(n — l)-e.c. 

Let A, B C N(x) such that \A U B\ = n - 1. Define A' = A U {a;}. 

Then there exists z correctly joined to A' and B and 2 G N(x). Hence, 

G \ N(x) is (n - l)-e.c. 

Let A,B C Nc(x) such that \A U B\ = n - 1. Define B' = B U {x}. 

Then there exists z correctly joined to A and B' and z € Nc(x). Hence, 

G \ Nc(x) is (n - l)-e.c. 

To prove the final item (5), let x and y be distinct non-joined vertices 

in G. By the n-e.c. property, there is a vertex joined to both x and y. 

Hence, any two distinct vertices axe connected by a path of length at most 

two. • 

We consider one illustration of Theorem 2.3 below. Note that if G 

is 2-e.c., then by the Theorem 2.3 (4), it follows that G [ N(x) and 

G I" Nc(x) are 1-e.c. Hence, G has order at least 19. However, if G was 

of order 19, it would be 19-regular, which violates the First Theorem of 

Graph Theory (see equation (1.2)). It follows that 

mec(3) > 20. 

This argument was first given in [9]. 
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As mentioned in the introduction of Chapter 1, an n-e.c. graph G is (n+ 

l)-universal. That is, each graph of order at most n+1 is isomorphic to an 

induced subgraph of G. We show this in Theorem 2.4. Universal graphs 

have numerous applications in computer science. Several optimization 

problems in data representations [13], data structures [24], and circuit 

design [29] surround problems on certain universal graphs. 

Theorem 2.4. For a fixed integer n > 0 , if G is an n-e.c. graph, then G 

is (n + 1 )-universal. In particular x{G),uj(G) > n + 1. 

Proof. Let H be a graph of order at most n + 1. We will prove that 

H < G by induction on \V(H)\. 

For the base case, we have that |V(if) | = 1. Hence, H = Ki which 

embeds in G, as G has at least one vertex. Now assume that each graph 

of order at most k embeds in G, where 0 < k < n is a fixed integer. Fix H 

a graph of order k + 1, and fix a; € V{H). Consider H' = H — x. Then by 

the induction hypothesis H' < G. Say x has neighbours in H equalling 

the set A and non-neighbours B. Since G is n-e.c., it follows there exists 

z € V(G) correctly joined to vertices of A and B. It follows that 

G f ( F ( i / \ { x } ) u { z } ) = E 

The final statements of the theorem on the clique and chromatic num-

ber follow since G contains the complete graph Kn+1 as an induced sub-

graph. • 

Expander graphs were first defined by Bassalygo and Pinsker, and 

their existence was first proved by Pinsker around 1970 (see [23]). The 
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property of being an expander seems significant in many mathematical, 

physical, and computational settings. For example, expander graphs are 

very useful in the design and analysis of communication networks; see 

[17]. As mentioned in Chapter 1, under certain conditions, n-e.c. graphs 

behave like expander graphs. 

Lemma 2.1. Let G be an n-e.c. graph, and let S be a set of vertices of 

G of order n. Then |<9(5)| > n. 

Proof. Fix a vertex x of S. By the n-e.c. property, there is a vertex 

zx joined to x and to no other vertex of S. Hence, the edge xzx is in d(S). 

Note that for x ^ x', we have that zx ^ zTj. It follows that 

\d(S)\ > \{xzx : x e S}\ = n, 

and the proof of the lemma follows. • 

2.4 Explicit Constructions of n-e.c. Graphs 

This section describes various constructions for n-e.c. graphs. While 

we do not cover all known constructions, our discussion should provide 

further insight to the nature of the n-e.c. graphs. 

Most of the known explicit n-e.c. graphs are strongly regular. Let k, 

v > 0, A, and p, be non-negative integers. A k-regular graph G with v 

vertices, so that each pair of joined vertices has exactly A common neigh-

bours, and each pair of non-joined vertices has exactly /i common neigh-

boms, is called a strongly regular graph; we say that G is SRG(u, k, A, //). 

An example of a strongly regular graph is the 5-cycle, depicted in Fig-

ure 2.5. 
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Figure 2.5: The 5-cycle is a SRG(5,2, 0,1). 

2.4.1 Paley Graphs 

The first family of explicit graphs that were discovered to contain n-e.c. 

graphs for all n were Paley graphs Pq. Recall from Chapter 1 that a Paley 

graph is a graph constructed on the points of a finite field such that two 

vertices axe adjacent if and only if their difference is a non-zero square 

in the field. Chung. Graham, and Wilson (see [12]) proved that Paley 

graphs are contained in a class of graphs called quasi-random graphs, 

thereby showing that such Paley graphs share a large number of graph 

properties with random graphs. 

Some of the main properties of Paley graphs are summarized in the 

following theorem, whose proof is omitted. A full proof may be found in 

[6]-

Theorem 2.5. Fix q a prime power with q = 1 (mod 4). 

1. The graph Pq is a SRG(q, ^ 1 ) . 

2. The graph Pq is self-complementary; that is Pq = Pq. 

3. The graph Pq is vertex-transitive. 

The following result on the n-e.c. properties of Paley graphs was 

proven independently in [5, 7]. The proof is beyond the scope of this 
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thesis, and so is omitted. It uses a famous result from number theory: 

Weil's proof of the Riemann hypothesis over finite fields. 

Theorem 2.6. If 

q > n222"-2, 

then Pq is n-e.c. 

Note that Theorem 2.6 demonstrates that sufficiently large Paley 

graphs are n-e.c. However, it only gives examples of prime power or-

der. 

As described in [2], one variation of a Paley graph is the cubic Paley 

graph. A cubic Paley graph, denoted by P^ of order q = 1 (mod 3) 

has distinct vertices joined if their difference is the cube of an element 

of GF(q). The condition <7 = 1 (mod 3) ensures that —1 is a cube in 

GF(q), and so Pq^ is a well-defined, undirected graph. As an example, 

the cubic Paley graph of order 19 shown in Figure 2.6. 

A quadruple Paley graph Pqof order q = 1 (mod 8) has two vertices 

joined if and only if their difference is a fourth power of an element of 

GF(q). See Figure 2.7 for an example of a quadruple Paley graph. 

These two variations of Paley graphs possess the n-e.c. property if q 

is large enough. The following result—proven in [2]—provides a lower 

bound on the size of q required for the Paley graph variations to be n-e.c. 

Theorem 2.7. 1. If 

q > (2n22n~1 - 22n + 1)2n^q + 3n2-n32n~1, 

then Pq^is n-e.c. 
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Figure 2.6: A cubic Paley graph of order 19. 

2. If 

q > (2n22n~1 - 22n + 1)3"^ + AnTnA2n~l, 

then Pq4\s n-e.c. 

There is another natural generalization of Paley graphs described as 

follows. Let q = pr be an odd prime power so that q = 1 (mod 4) and 

p = 3 (mod 4). Let v be a generator under the multiplicative group of 

GF(q). Define the graph P*(q) where the set of vertices are the elements 

of GF(q) and two vertices are joined if their difference is of the form iP, 

where j = 0 (mod 4) or j = 1 (mod 4). It can be shown that P*(q) 

is strongly regular, self-complementary, and vertex-transitive (see [21]). 

These graphs are n-e.c. given a large enough q. Using character sum 

estimates, the following result was proven in [20]. 

Theorem 2.8. If q = pr is a prime power so that q = 1 (mod 4), p = 3 
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Figure 2.7: A quadruple Paley graph of order 17. 

(mod 4), and 

q > 8n228", 

then P*(q) is n-e.c. 

2.4.2 Finite Geometry 

Euclidean plane geometry investigates the incidence structure formed 

by points and lines in a plane. One important incidence structure is 

called an affine plane. Using affine plane geometry, we describe a recent 

construction from [8] of strongly regular n-e.c. graphs. This randomized 

construction will set the stage for our randomized Cayley graph construc-

tion of n-e.c. graphs in Chapter 4. 

An affine plane is a pair (̂ 4, C) satisfying the following properties, 

where A is a non-empty set of elements called points and £ is a family of 

subsets of A called lines. First, any two points uniquely determine a line. 
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Second, given a line I and a point p, there is a unique line I' containing 

p parallel to I (where two lines are parallel if they are disjoint). The 

last property states that an affine plane has at least four points, no three 

which are on the same line. We denote a line by pq, for the line between 

p and q. 

As an example, let X be a two dimensional vector space over the field 

F. Consider elements of X as ordered pairs (x,y) where x,y € F. For 

any m,b € F with 6 ^ 0 , we will name the set 

{(®,y) : y = mx + b} 

a line with slope m. For any a e F, we will call the set {{x, y) : x = a} 

a line with infinite slope. If £ is the set of all lines, then (X, C) is a 

well-defined affine plane. Observe that two lines are parallel if they have 

the same slope. We note that parallelism is an equivalence relation on 

the set of lines. That is, it is reflexive, symmetric and transitive. Lines 

with same slope form a parallel class. 

For any finite affine plane A, there is a positive integer n > 2 such 

that every line of A consists of exactly n + 1 lines and A has exactly n2 

points, n2 + n lines, and n + 1 parallel classes. We say that the affine 

plane is of order n. Every point in the affine plane is on n -I- 1 lines and 

each line is incident to n points. Given a line I in the affine plane there 

are n — 1 other lines parallel to I. Because each point is on n + 1 lines it 

follows that the affine plane contains n + 1 parallel classes. The proof of 

these and other results on affine planes may be found in [19]. 

The affine plane of order two is shown in part (a) of the following 
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figure. The set of points is {1,2,3,4}. The six lines are 

{1,2},{3,4},{1,3},{2,4},{1,4},{2,3} 

contained in three parallel classes. Similarly, the affine plane of order 

three shown in part (b) has 9 vertices, 12 lines, and four parallel classes. 

Figure 2.8: Affine planes of order two and three. 

We now present a geometric construction of strongly regular graphs 

which is due to Delsart, Goethals and Turyn (see [26]). Fix a finite affine 

plane A. Let be the line at infinity, which contains q + 1 elements. 

The elements of l^, may be identified with the slopes of lines in the affine 

plane. Let S C l^. Define a graph G(q,S,A) of order q with vertices 

representing the points of the affine plane A. Two vertices p and q are 

joined if and only if the line pq has a slope in S. We show now that 

G(q,S, A) is strongly regular. 

Theorem 2.9. Fix an affine plane A of order q, and fix S C l^. The 

graph G(q, S, A) of order q is a 

SRG{q\ |S|(q> - 1), q - 2 + (\S\ - 1)(|S| - 2), |S|(|S| - 1)). 

Proof Vertices are the points of the affine plane and so there are q2 

vertices. Each vertex lies on I5"! lines, each with q points. Hence, we have 
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that 

k=\S\(q-l). 

To determine A, fix distinct adjacent vertices x and y. There are q — 2 

vertices on the xy joined to x and y. A vertex z is joined to x, y if and 

only if the slopes determined by lines xz and yz are in S. There are 

(|5| — 1)(|<S'| — 2) such choices for z. It follows that 

A = g — 2 + (|S| — 1)(|5| — 2). 

The fact that 

» = \S\(\S\-l) 

follows in an analogous fashion. • 

Let Q(q, A) be the family of graphs G(q, S, A) for all choices of S; if 

0<k<q + lis fixed, then we write Q(q,k,A) for the subfamily of all 

graphs in Q{q,A) where \S\ = k. In particular, fix A, an affine plane of 

even order q > 8, where the points are given by GF{2k). Choose S to 

contain | slopes from l^. It follows that G is a 

qnr (r? g ^ " 1 ) - 2) 9(q-2)\ SRG ^ , - j - , —— J . 

Considering all the subsets S of Ioo, with |5| = | we can construct an 

equiprobable probability space, where each point of the probability space 

corresponds to a subset S (that is, each choice of S is made uniformly at 

random from all | subsets of Zoo). This leads to a result, proven in [4], 

which states that as q approaches infinity, the probability that Q(q, A) 

is n-e.c. tends to one. We formally state this result in the following 

theorem. 



Theorem 2.10. Let q be a power of 2, fix an affine plane A of order q, 

and fix n a positive integer. With probability tending to 1 as q —>• oo, 

Q(q, |,A) is n-e.c. 

A different construction of explicit n-e.c. graphs was given recently by 

Bonato in [8]. Instead of fixing the order of \S\, a slope m G l x is added 

independently to S with probability p, where p € (0,1) is fixed. Note that 

the probability that m is not in S is 1 —p. It follows that G(q, |5|, A) is a 

probability space, and l^l is a random variable on this space. We denote 

this space by Q(q,A). All choices of S lead to a strongly regular graph. 

We present a proof of the following result found in [8] as it will aid us in 

Chapter 4 to prove that Cayley graphs are n-e.c. We only consider the 

case p = 1/2. 

Theorem 2.11. ([8]) Fix an affine plane A of order q, and fix n a positive 

integer. With probability tending to 1 as q —» oo, 61/2(9, A) ls n-e.c. 

Proof. Let X and Y in G, with \X U Y\ = n and X n Y = 0. Let 

U = X U Y. We prove that for sufficiently large q, with probability 1 

there is a vertex 2 correctly joined to X and Y. To accomplish this, we 

construct a set Pu of points, disjoint from U, such that with probability 

1, 2 is in Pu- We set s = \qb~\ , where b < 1 is fixed. 

Fix a point v of A. The projection from v onto l^ is the map 

irv : ,4\{u} 

taking a point x to the intersection of vx with Hence, nv(x) is the 



slope of the line vx. If V is a set of points, then let 
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(V) = | J *v(x). 

For sufficiently large q, we inductively construct a set of points Pu 

distinct from U with the following properties. 

1. If p e Pv, then \irp(U)\ = n. 

2. For all distinct p and q in Pu, 7rp(U) fl 7iq(U) = 0. 

3. \PV\ = s. 

Define Pu,i by choosing any point p\ ^ U that is not on a line joining 

two points of U. For large q 

so we may find such a p\. 

For a fixed positive i < s — 1, suppose that Pu,% has been constructed 

for large q, with Pu,i containing Pu,i, and \Pu,i\ = We would like to 

choose pi+i £ U to be a point that is 

(i) not on a line joining two points of U, and 

(ii) not on a line joining a point of U to a point in 

Condition (i) rules out points on (2) lines, while (ii) rules out points 

on 

ni + n(n — l)i 
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lines. For large q 

n + ( ^ ) (<l - 2) + ni{q - 1) + n(n - 1 )i(q - 2) < n 2 ^ 1 < q2, 

so we may find a suitable pi+1 satisfying items (1) and (2). Add Pi+\ to 

PUti to form Pu,i+i- Define 

Pu = \JPu,i 
i=1 

so \Pu\ = s, as desired. 

For a fixed n-set U of vertices we estimate the probability that none 

of the vertices of Pu are correctly joined to U. By item (1), note that any 

z in Pu has the property that zx and zy have distinct slopes, where x, y 

are distinct points of U. Note also that zx is an edge of G if and only if 

7iz(x) € S. Therefore, the probability that a given z in Pu is not joined 

correctly to X and Y is the positive constant 

By item (2) in the defining properties of Pu, any two distinct points of 

Pu induce disjoint slope sets in In particular, the probability (2.5) 

independently holds for any choice of z in Pu. Hence, the probability that 

no z in Pu is correctly joined to X and Y is (pn) ^ 1. The probability 
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that Qp(q,A) is not n-e.c. is therefore at most 

exp n log q + n log 2 + qb log — 

o( l ) 
)) 

where the last line follows since log (l — --) is a negative constant. • 

Determining the minimum order of n-e.c. graphs remains one of the 

most challenging problems surrounding such graphs. In our search for 

minimal order n-e.c. graphs, our focus has been on the case n = 3. The 

next chapter provides an overview of some classes of graphs that have 

been checked for the 3-e.c. property using a computer search. 



Chapter 3 

COMPUTATIONAL RESULTS 

3.1 Introduction 

The difficulty of determining if a graph is n-e.c. increases exponentially 

with n. For example, to check that a graph of order m is n-e.c., for each of 

the (™) subsets S of vertices, we would need to find 2n vertices joined to 

S in all the possible ways. This becomes difficult, if not impossible, to do 

by hand for large examples. The focus of this chapter is on computational 

results related to the minimum order of a 3-e.c. graph. We recall from 

Section 2.1 that 

24 < raec(3) < 28 

(the lower bound follows from [16], while the upper bound follows from 

[9]). We note that most of the known explicit n-e.c. graphs are strongly 

regular. For n = 3, in [3] it was shown that the Paley graph of order 29 is 

the minimum order 3-e.c. Paley graph. Few examples of strongly regular 

non-Paley n-e.c. graphs are known. 

Recall from Section 1.2.1 that a graph G is vertex-transitive if any 

two distinct vertices of G, there is an automorphism mapping one to the 

other. An example of a vertex-transitive graph is the k-cube Qk- The 

vertex set of Qk is the set of all 2h binary strings of length k, with two 

being adjacent if they differ in precisely one position. Figure 3.1 depicts 

the 3-cube Qa with vertices labelled by the binary strings of length 3. 

38 
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Note that Qk is bipartite, so it is not even 2-e.c. (recall by Theorem 2.3 

that 2-e.c. graphs have chromatic number at least 3). 

Strongly regular graphs were defined in Section 2.4. Paley graphs are 

an important instance of strongly regular graphs. In our computer search 

for a minimum order 3-e.c. graph, we focused on strongly regular graphs 

and the class of vertex-transitive graphs with orders between 24 to 30 

(inclusive). 

3.2 Data Sets and Results 

Appendix A.l describes the algorithm used for checking the 3-e.c. con-

dition given an adjacency matrix of a graph as input. Lists containing 

all isotypes of small order vertex-transitive and strongly regular graphs 

are publicly available on-line. The data sets for the class of strongly 

regular graphs can be found in [27], while the data for the class of vertex-

transitive graphs is available on-line at [25]. The data set is partitioned 

into different files based on the order of the graph. Each file consists of 

adjacency matrices encoded in the g6 format. (More on this format can 

Figure 3.1: The 3-cube Qz. 
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be found at [25].) The search was conducted only on graphs of order 24 

to 30 to determine if a minimum order 3-e.c. graph lies in one of these two 

classes. We note that the vertex-transitive graphs of orders 20 to 28 were 

checked for the 3-e.c. property in [9]. Although we did not determine 

the order of minimum order 3-e.c. graph, we found other results which 

we now report. 

The following table summarizes the results of the computer search for 

3-e.c. graphs. The numbers in the second and third columns represent 

the number of isomorphism types of graphs which are 3-e.c. The time re-

quired to check all the isotypes is presented along with number of isotypes 

checked for each order. 

Order Vertex-Transitive SRG Isotypes C P U hrs 

24 0 0 15506 8 

25 0 0 464 0.29 

26 0 0 4236 3.06 

27 0 0 1434 1.16 

28 2 0 25850 23.52 

29 1 1 1182 1.19 

30 2 0 46308 52 

Before we discuss the results, we mention the numerical location of 

these graphs within the data sets. Hence, the numbers in the last two 

columns correspond to the positive integer assigned to the graphs. 

Order Vertex-Transitive Strongly Regular 

28 11440 and 15880 -

29 653 41 

30 19022 and 24918 -



As mec(3) > 24, our results show that there are no 3-e.c. strongly 

regular or vertex-transitive graphs of order less than 28. The two 3-e.c. 

graphs of order 28 (first found in [9]) are not isomorphic and one is the 

complement of the other. (This can be verified using a software such as 

Mathematica, whereby isomorphism between the first found graph and 

the complement of the second found graph is verified. The command is 

'IsomorphicQ') The adjacency matrix is shown below. 

/ 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \ 
/ l 0 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 0 l \ 

1 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 0 
1 1 0 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 
1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 
1 0 1 1 0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 
1 0 1 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 
1 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 
1 1 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 1 1 
1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 
1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 1 0 
1 1 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0 
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 
1 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0 
0 0 1 1 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1 
0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 
0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 
0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 
0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 
0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 
0 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 
0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 
0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1 0 0 1 
0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0 1 
0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 

\ 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 1 / 
> • 0 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 ' 

The 3-e.c. graph of order 29 found through our search is isomorphic to 

/^g, the Paley graph of order 29. This is shown in the following lemma. 

Lemma 3.1. There exists an unique 3-e.c. vertex-transitive graph of or-

der 29, which is isomorphic to P2g. 

Proof. A complete list of vertex-transitive graphs of order 29 is 

provided in [25]. Using a computer search to determine all 3-e.c. graphs 

of order 29, it was discovered that only one graph possesses this property. 

We call this graph G. It is known that the Paley graph of order 29 is 

vertex-transitive and (see [3]) is 3-e.c. Hence, G = P29. • 
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3.3 A New 3-e.c. Example of Order 30 

In [22] it is mentioned that the existence of 3-e.c. graphs of order 30 is 

unknown. The 3-e.c. graphs of order 30 found through our search settles 

this problem. The two 3-e.c. graphs we found of order 30 are complements 

of each other. (This can be verified using Mathematical Below we present 

the adjacency matrix of one of these graphs. 

/ 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \ 
/ l O O l l l l O O O O l l l l l O O O O O O l l l l O O O O X 

1 0 0 1 1 1 1 0 0 1 1 0 0 1 X 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 
1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 
1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 1 
1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 1 0 1 
1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0 
1 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 
1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0 
1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 0 
1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 
1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 
1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 1 
1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 
0 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 
0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 
0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 
0 0 0 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1 
0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 1 
0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 
0 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 0 1 
0 1 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 1 
0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 
0 1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 1 
0 1 1 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 
0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 
0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0 1 0 \ 00 0 1 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 1 1 00 1 0 1 0 1 0 1 . 

\ 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 / 



Chapter 4 

RANDOM CAYLEY GRAPHS 

4.1 Introduction 

We now consider Cayley graphs, which offer a combinatorial depiction 

of groups. They possess good expansion properties (see [17]) and, as we 

will prove in Theorem 4.1, under certain conditions they are n-e.c. 

We recall the definition of Cayley graphs from Chapter 1. Given a 

group G, let S be a non-empty subset of G that is closed with respect 

to taking inverses, and does not contain the identity element e. The set 

S is called the connection set. The Cayley graph, denoted by G(S), has 

vertices the elements of G, and x, y € E(G) if and only if xy~l e S. 

Cayley graphs are an important class of vertex-transitive graphs. The 

following result is standard (see [15], for example), and we include a proof 

for completeness. 

Lemma 4.1. Every Cayley graph G(S) is vertex-transitive. 

Proof. Fix vertices x and y in V = G(S). Define / : V —> V by 

f(z) = zx~ly, 

where z & V. Then 

f{x) = xx~xy = y. 
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Let u, v e V. Note that 

(uxy~l){vxy= uv 

Prom this it follows that uv€ S if and only if f(u)f(v)_1 € S. There-

fore, u is adjacent to v if and only if f(u) is adjacent to f(v). Hence, / 

is an automorphism of G(S) mapping x to y. • 

By the above lemma, G(S) is a regular graph. As an example, consider 

G(S) where S = 0. The graph contains no edges. Similarly, if S = G — e, 

then G(S) is a complete graph. 

4.2 Random Cayley Graphs 

Given a group G, we consider a way of randomly choosing the connec-

tion set S. We begin by defining a set Sf to contain all the pairs {g, g~l) 

from G, except for the pair (e, e). Fix a real number p G (0,1). For 

each pair (g, g~l) € Selements g, g l are added independently and with 

probability p to S\ with probability (1 — p), g, g~l is not added to S. We 

note that S is a well-defined connection set since it inverse-closed and it 

does not contain the identity element. We name the corresponding prob-

ability space the random Cayley graphs on the group G with probability p 

and write G{p)- While ].S| is a random variable in G(p), all choices of S 

give rise to Cayley graphs, and hence, vertex-transitive graphs. This fol-

lows directly from the definition of Cayley graphs. We prove the following 

result in the case when p = 1/2. 

Theorem 4.1. With probability tending to 1 as the order of the group G 

tends to oo, £(1/2) is n-e.c., where n is a positive integer. 
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Observe that Theorem 4.1 supplies a new randomized construction of 

vertex-transitive n-e.c. graphs, for all positive integer n. 

Proof. Consider G — £7(1/2) to have order m. Fix X = {xi, ..., xn} 

an n-set of vertices G( 1/2). We need to find a vertex z correctly joined 

to X (regardless of the partition of X into two sets, say A and B). For 

z £ X define ax (z) to be the set of elements such that either zx~l € S 

or xzG S. More precisely, 

ax{z) = {x e G | zx~l e S or x~lz e S} (4.1) 

We would like to show we can construct a set U, disjoint from X, such 

that with probability tending to 1, there is a z £ U that is correctly joined 

to X. Equivalently, we show that with probability o(l), there is no vertex 

in U correctly joined to X. We construct U such that \U\ = and 

impose the following restrictions on U. 

1. For all distinct z and z' in J7, CRX(Z) H CFX(Z') = 0. 

2. \ax(z)\ = n. 

Item (1) ensures the event that z is joined to a vertex in X is indepen-

dent of the event that z' is joined to .x,> Item (2) ensures that the events 

that 2 is joined to any particular are mutually independent. 

We inductively construct the set Uk whose union will be U. We choose 

Ui to be a single vertex Zi not in X with the property that \ax(zi)\ = n. 

We therefore eliminate elements in X and those z\ such that \<Jx(zi)\ < n. 

For example, if it happens that x~1 Z\ = Z\xj1 for some i and j, then we 

must eliminate z\ from consideration. Each distinct pair of vertices from 

X eliminates at most one element of G. We may now find a suitable Z\ 
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since 

m — n — > 0. (4.2) 

(Recall that n is a constant that does not depend on m.) 

Suppose that Uk has been constructed for a fixed k < , so that 

\Uk\ = k, and the set Uk has elements satisfying items (1) and (2). Set 

Uk = {z\,..., Zk}- We choose Zk+i as the new element of Uk by eliminating 

elements from V(G) \ Uk- As in the base step, by considering all the pairs 

of vertices from X, (2) vertices are eliminated. Each vertex z E Uk 

satisfies \&xz\ = n. To ensure that ox(z) fl crx(z') = 0 for z € Uk and 

z' € Uk+1, we must eliminate another 2kn vertices. For large m, we may 

find a suitable Zk+1 since 

In particular, \U\ = [ ^ J as desired. 

We now estimate the probability that none of the vertices of U are 

correctly joined to X, and show this tends to 0 as m tends to 00. Given 

z G U and x £ X we have by item (1) that 

(4.3) 

Add Zk+i to Uk, to form Uk+i- Define 

u=\Juk. 
i=1 

P(z is c.j. to X) 
1 

2"' 

since each element in G is chosen independently with probability 1/2. 
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Then 

P(no 2 is c.j. to X) = 1 -

By items (1) and (2), we have that 

P(no z in U is c.j. to X) = (l 
I \ L̂ J 

2r 

Hence, we have that the probability P of the event that G is not n-e.c. 

satisfies 

- * CM1-*)" 
m 

< mn2n (1 - — J 

= exp ^nlogra + nlog2 + log - ^ ^ 

= o(l), 

where the last equality follows since log (l — is a negative constant. 

• 
We note that the proof of Theorem 4.1 generalizes to p G (0,1). We 

omit this more technical proof in favour of the proof with p = 1/2, as 

we are focused on providing a new randomized construction of vertex-

transitive n-e.c. graphs. 

The proof of Theorem 4.1 gives an asymptotic upper bound for Q( 1/2) 

to be n-e.c. 

Theorem 4.2. I f m — 0(n32n) and n is a sufficiently large integer, then 

with positive probability (?(l/2) is n-e.c. In particular, there is a vertex-

transitive n-e.c. graph of order 0(n32n). 
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Proof. Let 
m 

be the function defined as in proof of Theorem 4.1. We must show that 

if m = 0(n32"), then f(m) < 1. Equivalently, we show that if e > 0 is a 

fixed constant and m = (e + l)n32n, then 

l o g / ( m ) < 0 . (4.4) 

Now 

Hence, (4.4) is equivalent to showing that 

n logm + n l o g 2 + ( ^ ) l o g ^ l - ^ < 0 . (4.5) 

By choice of m and computation, (4.5) is equivalent to 

n(log(e + 1) + 3 log n + log 2) -I- n2 log 2 < (e + l)n2 , 

which is valid for large n as log 2 < 1. • 



Chapter 5 

CONCLUSION AND OPEN PROBLEMS 

The main goal of the thesis was to investigate the n-e.c. property from 

both theoretical and computational perspectives. In our search for n-e.c. 

graphs, we have shown in Chapter 2 that a.a.s. the random graph G(m,p) 

is n-e.c. and the order of the graph has an asymptotic upper bound given 

by 0(n 2 2 n ) . The compxitational results we provided focused on 3-e.c. 

graphs of small order. The results of Chapter 3 showed that there are no 

vertex-transitive or strongly regular 3-e.c. graphs of order less than 28. 

By our exhaustive search using a computer we have determined a new 

3-e.c. graph of order 30. Previously, no 3-e.c. graph was known of that 

order. Finally in Chapter 4, we provided a new construction of n-e.c. 

graphs derived from random Cayley graphs G(p)- We showed that the 

asymptotic order of the n-e.c. random Cayley graphs is 0(n32n). 

We collect the open problems stated in this thesis. 

1. Determine the precise value of mec(3). More generally, determine 

the values of mec(n), where n > 3. 

The determination of mec(3) will likely use a mixture of computa-

tional and theoretical results on 3-e.c. graphs. Determining the ex-

act order of mec(n) for n > 4 appears to be a very difficult problem. 

Even determining the asymptotic order of this function presents a 

serious challenge, as summarized in the next problem. 
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2. Determine the asymptotic order of the function mec(n). The con-

jecture of Erdos et al. [10] states that 

mec(n) = 6(n2n). 

The conjecture of Erdos remains as one of the deepest problems in 

this area of graph theory. Random graphs give rise to n-e.c. graphs 

with order @(n22n) while our new random Cayley graph examples 

in Chapter 4 have order Q(n32n). Even a seemingly modest im-

provement to order Q(n2~c2n), where c is a fixed positive constant 

would represent a significant breakthrough. Although it is not clear, 

it is possible that the random graphs stemming from either affine 

planes or Cayley graphs may eventually be adapted to solve the 

conjecture. 

3. Determine the integers m such that there is a 3-e.c. graph of order 

m. 

By the results in [22] and Chapter 3, the only orders where we do 

not know whether a 3-e.c. graph exists are: 

24,25,26,27,31,33. 



Appendix A 

APPENDIX 

A . l Code to check for 3-e.c. property 

checkNEC[adj _] := Module[ 

{cond, i , j , k, v, r , count}, 

Array[cond, 8] ; 

For [ i = 1, i <= 8, i++, 

cond[i] = 0] ; 

For [ i = 1 , i <= 26, i++, 

For [ j = i + 1, j <= 27, j++, 

For[k = j + 1, k <= 28, k++, 

For[v = 1, v <= 28, v++, 

I f [ i != v && j != v && k != v, 

If [ a d j [ [ i , v]] == 1 && a d j [ [ j , v]] == 1 && 

ad j [ [k, v]] == 1, cond[l] = 1]; 

If [ a d j [ [ i , v]] == 1 && a d j [ [ j , v]] == 1 && 

a d j [ [ k , v]] == 0, cond[2] = 1]; 

51 
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If [ a d j [ [ i , v]] == 1 kk adjCCj, v]] = = 0 kk 

a d j [ [ k , v]] == 1, cond[3] = 1]; 

If [ a d j [ [ i , v]] == 1 kk a d j [ [ j , v]] == 0 && 

a d j [ [ k , v]] == 0, cond[4] = 1]; 

If [adj [ [ i , v]] == 0 kk ad j [ [ j , v]] == 1 kk 

ad j [[k, v]] == 1, cond [5] = 1]; 

If [adj [ [ i , v]] == 0 kk a d j [ [ j , v]] == 1 kk 

adj [[k, v]] == 0, cond[6] = 1]; 

If [adj [ [ i , v]] = = 0 kk a d j [ [ j , v]] = = 0 kk 

a d j [ [ k , v]] == 1, cond[7] = 1]; 

If [adj [ [ i , v]] == 0 kk a d j [ [ j , v]] == 0 .kk 

a d j [ [ k , v]] = = 0 , cond[8] = 1]; 

3 ; 

3; 

(* 

For [r=l ,r<=8,r++, 

If [cond [r] >=2 ,coiint+=l] 
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If [count==8 && i==l , 

Print [ " ( " , i , j , k , " ) " ,cond[l] ,cond[2] ,cond[3] ,cond[4],cond[5] , 

cond[6],cond[7],cond[8]]; 

] ; * ) 

For[r = 1, r <= 8, r++, 

If[cond[r] == 0, Print["Not n - e . c . " ] ; Return[]]; 

cond[r] = 0; 
] ; 

3 ; 

] ; 

] ; 

Print["Graph i s 3 - e . c . of order 28"]; 

Print[adj] 
] 

A.2 Code for standard, cubic and quadruple Paley graphs 

(* Standard Paley Construction Module*) 

Paley[p_, r_] := Module[ 

{adj, i , k, q, z , x, j , zPower, fldElem, pwrElem, elem, f i d , S>, 

q = p~r; 
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« F i n i t e F i e l d s ' ; 

« GraphUt i l i t i e s ' ; 

adj = SparseArray[Array[0 &, {q, q} ] ] ; 

If[PrimePowerQ[q] == False , 

Return["Parameter p expected to be prime."]]; 

(* Define the f i e l d *) 

f i d = GF[q] ; 

(* Find a l l the non-zero elements of GF (q) *) 

elem = PowerList[ f id]; 

f IdElem = { {0}} ; 

pwrElem = {} ; 

(* Find the inverse closed s e t and the elements of GF (q) in \ 

complex arithmetic *) 

For[i = 1, i <= Length[elem], i++, 

z = e l e m [ [ i , 1]] + e l em[ [ i , 2] ] I; 

AppendTo[fIdElem, {z>]; 

zPower = Mod[z"2, p]; 

AppendTo[pwrElem, {zPower}]; 
] ; 

(* Inverse Closed Set Defined *) 

S = DeleteDuplicates[pwrElem] ; 

For[i = 1, i <= q, i++, 
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For[j = l , j <= q, j++, 

ForCk = 1 , k <= Length[S] , k++, 

I f [ 

Mod[(fldElem[[i]] - f l d E l e m [ [ j ] ] ) , p] == Mod[S[[k]], p] && 

i != j , 

a d j [ [ i , j ] ] = 1; 

a d j [ [ j , i ] ] = 1; 
] ; 

] ; 

] ; 

] ; 

Return [adj] ; 
] ; 

(•Cubic Paley Module*) 

CubicPaley[p_] := Module[ 

{adj , i , k, q, z , x, j , zPower, fldElem, F, S}, 

« F i n i t e F i e l d s ' ; 

« GraphUt i l i t i e s ' ; 

adj = SparseArray[Array[0 &, {p, p } ] ] ; 

If[Mod[p - 1, 3] != 0, Return["(p-1) mod 3 not s a t i s f i e d . " ] ] ; 

If [PrimePowerQ[p] == False , 
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Return["Parameter p expected to be prime."]]; 

(* Define the f i e l d *) 

f i d = GF[p]; 

fIdElem = PowerList[fId]; 

S = DeleteDuplicates[PowerMod[fIdElem, 3, p ] ] ; 

F = AppendTo[fIdElem, {0} ] ; 

For[i = 1, i <= p, i++, 

For[j = 1, j <= p, j++, 

For [k = 1, k <= Length[S], k++, 

If [Mod[(F[[i]] - F [ [ j ] ] ) , p] == Mod [S [ [k] ] , p] && i != j , 

a d j [ [ i , j ] ] = 1; 

a d j [ [ j , i ] ] = 1; 

] ; 

] ; 

] ; 

] ; 

Return[adj]; 

] ; 

(* QUAD PALEY MODULE *) 

QuadPaley[p_] := Module[ 

{adj , i , k, q, z , x, j , zPower, fldElem, F, S}, 

« F i n i t e F i e l d s ' ; 



« GraphUti l i t i es ' ; 
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adj = SparseArray[Array[0 &, {p, p } ] ] ; 

If[Mod[p - 1, 8] != 0, Return["(p-1) mod 8 not s a t i s f i e d . " ] ] ; 

If[PrimePowerQ[p] == False , 

Return["Parameter p expected to be prime."]]; 

(* Define the f i e l d *) 

f i d = GF[p]; 

fIdElem = PowerList [ f Id ] ; 

S = DeleteDuplicates[PowerMod[fIdElem, 4, p ] ] ; 

F = AppendTo[fIdElem, { 0 } ] ; 

For[i = 1, i <= p, i++, 

For[j = 1, j <= p, j++, 

For[k = 1, k <= Length[S], k++, 

If [Mod[(F[[i]] - F [ [ j ] ] ) , p] == Mod [S [ [k] ] , p] && i != j , 

a d j [ [ i , j ] ] = 1; 

adj [ [j , i ] ] = 1; 

] ; 

] ; 

] ; 

3 ; 
Return[adj]; 

3 ; 
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