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ABSTRACT 

The Western Boreal Plain (WBP) of North Central Alberta consists of a mosaic of 
wetlands and aspen (Populus tremuloides) dominated uplands. This region operates 
within a moisture deficit regime where precipitation (P) and evapotranspiration (ET) are 
the dominant hydrologic fluxes. As such these systems are extremely susceptible to the 
slightest climatic variability that may upset the balance between P and ET. Vegetation 
composition is the dominant control on wetland ET, and itself is extremely dynamic 
within these wetland environments, which can be attributed to varying moisture regimes 
along with micrometeorological variations. To address this variability in moisture 
regimes ET was examined in a typical moraine wetland of the WBP during the 2005 and 
2006 snow-free seasons. Closed dynamic chamber measurements were used to gather 
data on plant community scale actual evapotranspiration (ET) for an undisturbed natural 
bog with varying degrees of canopy cover surrounding a shallow groundwater fed pond. 
For the purposes of scaling plant community ET contributions to that of the wetland, 
potential ET (PETEQ) was measured using a Priestley-Taylor energy balance approach at 
three separate wetland sites with varying aspects surrounding the central pond, along with 
actual ET using a roving eddy covariance (EC) tower. Growing season peak ET rates 
ranged from 0.2 mm hr"1 to 0.6 mm hr"1 depending on location, vegetation composition 
and time period. Sphagnum contributions were the greatest early in the growing season 
reaching peaks of 0.6 mm hr"1, while lichen sites exhibited the greatest late season rates at 
0.4 mm hr"1. Thus, Sphagnum and other non-vascular wetland plant species control ET 
differently throughout the growing season and as such should be considered an integral 
part of the moisture and water balances within wetland environments at the sub-landcover 
unit scale. 

Upland ET was characterized over three scales during the 2005 and 2006 snow-
free seasons. Above canopy (ETc) and within canopy (ETB) were examined using the EC 
technique situated at 25.5 m (7.5 m above crown) and 4.0 m above the ground surface 
respectively. Soil evaporation (Es) was examined using a closed dynamic chamber 
system to gather data on surface evaporation for upland soils. ETc and ETB were 
controlled primarily through atmospheric demand (VPD) while Es was controlled by soil 
moisture (9). During the green periods ETc averaged 3.08 mm d"1 and 3.45 mm d"1 in 
2005 and 2006 respectively while ETB averaged 1.56 mm d"1 and 1.95 mm d"1. Es was 
consistent across both snow-free seasons and averaged 0.28 mm hr"1 in 2005 and 0.31 
mm hr"1 in 2006. The nature of Populus tremuloides canopies permits ample energy 
availability within the canopy during the early season early green periods which promotes 
the development of a lush understory consisting of Rosa acicularis and Viburnum edule. 
ETb fluxes were equal to or greater than the ETc fluxes once understory development had 
occurred. Upon crown growth ETB fluxes were reduced as a reduction in available energy 
existed. ETB fluxes ranged from 42 to 56% of ETc fluxes over the remainder of the snow-
free seasons. Vapour pressure deficit (VPD) and soil moisture (0) displayed strong 
controls on both ETc and ETB fluxes. ETc fluxes responded to precipitation events as the 
developed crown intercepted and held available water which contributed to peak ETc 
fluxes following precipitation events >10 mm. This indicates the importance of 
interception in aspen dominated forest canopies of the WBF. 
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Chapter One 

Introduction 

1.1 Western Boreal Forest 

The Western Boreal Forest (WBF) is a large ecosystem covering 35% of Canada 

(Canadian Forest Service, 2006) and contains nearly one quarter of the world's 

undeveloped forested area (Bryant et al., 1997). This forest region represents an 

extremely important ecosystem for fresh water resources and carbon storage crucial for 

global climate regulation (Metcalfe and Buttle, 1999). A large portion of the WBF is 

comprised of the Western Boreal Plain (WBP) ecozone (Devito et al., 2005a). The WBP 

supports a variety of landcover units (upland forest, shallow lakes, peatlands, and ponds) 

on three common landforms including coarse-grained glaciofluvial outwash deposits, 

fine-grained disintegration moraines and low-lying glaciolacustrine plains (Devito et al., 

2005a). This ecozone extends across the provinces of Alberta, Saskatchewan, and 

Manitoba in west-central Canada (National Wetlands Working Group, 1988), and is 

currently subject to the potential impacts from rapid development and the proliferation of 

natural resource based industries (Alberta Environmental Protection, 1998). Recent 

hydrologic research completed in the WBP has shown that temporal climate patterns and 

geology control hydrologic processes driving wetland sustainability, vegetation patterns, 

and regional groundwater recharge (Ferone and Devito, 2004; Devito et al., 2005b; 

Smerdon et al., 2005; Petrone et al., 2007; Smerdon et al., 2007). Quantifying impacts 

caused by anthropogenic development in the area requires a detailed understanding of the 

natural variability of hydrologic processes and water cycling unique to this region, under 

past, present, and future climatic conditions. 
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The WBP has many physical characteristics that necessitate different hydrologic 

analyses than other Boreal ecozones (Winter, 2001; Devito et al., 2005a; Smerdon et al., 

2007). The combination of the sub-humid climate (i.e., precipitation (P) is exceeded by 

potential evapotranspiration (PET); Winter and Woo, 1990), low relief, deep glacial 

sediments (20 to 240 m thick; Klassen, 1989; Pawlowicz and Fenton, 2002), and its 

location south of the discontinuous permafrost zone (Woo and Winter, 1993) creates a 

unique hydrologic environment that has achieved a temporal and volumetric balance of 

atmospheric water fluxes, vegetative water demand, and soil water storage that differs 

from other ecozones (Smerdon et al., 2005). The wetland-upland mosaic in the WBP is 

sustained by infrequent wet years within periods of drought where PET exceeds P on a 

10-15 year cycle (Marshall et al., 1999; Devito et al., 2005a). Thus, the wetlands and 

uplands within this region are vulnerable to any climatic change that may alter patterns of 

P and actual evapotranspiration (AET) (Petrone et al., 2007). Further, several industries 

are currently developing vast areas of the WBP, with major disturbances from the 

forestry and conventional oil/gas industries, as well the development of oil sands 

resources (Ducks Unlimited Canada, 2006). This rapid development of the WBP presents 

challenges in preserving its ecological characteristics for storing fresh water (in wetlands) 

and carbon, and for providing habitat for millions of waterfowl and songbirds (Blancher 

and Wells, 2005). A disconnect exists between the intrinsic, economic and ecologic 

values of the WBP, requiring development of a standard conservation methodology that 

considers the diversity and complex hydrology of the landscape. 

To further investigate this hydrologic environment, a research area within the 

Boreal Plain ecozone has been established called the Utikuma Region Study Area 
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(URSA), which encompasses the spectrum of physiographic landforms commonly found 

in the region and the WBP. Current multidisciplinary research at the URSA includes 

concurrent characterization of atmospheric flux patterns, surface water-groundwater 

interaction, recharge characteristics, vegetative controls, and soil water storage. The 

determination of the influence of climatic and geologic characteristics on the 

ecohydrology of several wetland/upland complexes located across the geologic and 

physiographic gradients observed in the Boreal Plain will improve our ability to scale-up 

hydrologic responses to natural variability and disturbances. 

Current research ongoing in the WBP is divergent from the model of 

topographically driven flow systems and the fundamental hydrologic landscape unit 

(FHLU) concept as described by Winter (2001). Completing process based research at 

plot and catchment scales allows the development of hydrologic response unit (HRU; 

Devito et al., 2005a) characteristics for a variety of land features in this environment. 

These characteristics will guide generalizations implemented within larger-scale 

hydrologic modeling, while improving our ability to predict hydrologic responses and 

natural variability at the landscape scale. Ultimately, this approach is intended to improve 

sustainable development of the Boreal Plains. 

1.2 Evapotranspiration in the Western Boreal Forest 

ET is the dominant hydrologic flux in this landscape however research into the nature and 

seasonal variability of ET within the Boreal regions of northern Canada is difficult to 

quantify (Amiro et al, 2006; Blanken et al., 2001) and represents a significant challenge 

towards the characterization of ET within the WBP hydrologic cycle (Baldocchi et al., 
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1997). Examining the controls on ET within the context of landcover units through a 

focus on both the wetland and aspen dominated uplands will provide an insight into the 

nature and scope of this integral aspect of the hydrologic cycle within a sub-humid 

climatic setting, where water use efficiency is of growing concern (Peterson and 

Peterson, 1992). Other studies (Blanken et al., 2001; Nijssen and Lettenmaier, 2002; 

Amiro et al., 2006) have outlined differing controls on ET within Boreal forests, however 

limited work has been done covering different scales of research that encompasses both 

wetland and forested upland landcover units within the WBP region of North Central 

Alberta. 

Vegetation plays a significant role in the contributions of ET within Boreal 

landscapes (Nijssen and Lettenmaier, 2002) in both the wetland and forested upland 

landcover units, and is dependent on the nature of the forest cover and underlying surface 

vegetation and soil composition (Cuenca et al., 1997; Grelle et al., 1997). Landcover unit 

vegetation composition has been identified as a significant driver of energy exchange 

within Sphagnum dominated wetland environments (Heijmans et al., 2004) and aspen 

dominated forests (Blanken et al., 1997). Within wetland environments vegetation 

controls on ET in general, whether dominated by vascular plants or bryophytes, are an 

integral part of the seasonal energy balance for wetlands of the WBP. When present, a 

dense canopy of vascular plants will dominate the exchange processes with the 

atmosphere, and the resultant energy partitioning will largely depend on the transpiration 

capacity of the canopy (Heijmans et al., 2004). Whereas, feathermoss species rely on the 

occurrence of precipitation and dew formation, critical hydrological events, which 

provides the single most important source of moisture (Busby et al., 1978; Longton and 
4 



Greene, 1979; Skre et al., 1983; Vitt, 1990; Bisbee et al., 2001). In addition, the presence 

of frost (Amiro et al., 2006), limited soil moisture content (Moore et al., 2000) and a late 

development of leaf area index (LAI) inhibit the rates of ET originating from boreal 

wetlands (Nijssen and Lettenmaier, 2002). 

Aspen dominated upland vegetation exerts a strong control on ET processes, 

because of their ability to access, transport, and evaporate water that would otherwise be 

detached from terrestrial water cycles (Calder 1998; Nosetto et al. 2005). The deciduous 

nature of aspen in addition to their clonal root systems has an especially important effect 

on the water and energy exchanges from these southern boreal portions of the boreal 

forest (Blanken et al., 2001). The sparse and trembling nature of aspen crowns often 

allows a sufficient amount of light penetration and the proliferation of understory species 

such as Rosa acicularis and Viburnum edule, which also contributes to the canopy energy 

and mass exchanges (Blanken et al, 1998). Studies have shown that much of the 

variation in aspen upland ET can be explained by variation in vapour pressure deficit 

(VPD) (Kurpius et al, 2003; Hogg et al., 2000; Hogg et al., 1997; Hogg and Hurdle, 

1997). 

Determining the rates of ET from boreal wetlands and forested uplands must 

incorporate the above mentioned aspects in order to properly quantify the spatial and 

temporal (seasonal) variability that is present within this system. Accurately identifying 

the drivers of ET within the WBP will lead to a more concise description of the factors 

that act to control ET from within Boreal Forest catchments, inside and outside the WBP, 

ultimately leading to better conceptual understanding of the processes and more 

5 



acceptable model predictions. A summary of the role of vegetation within Boreal regions 

is summarized in Table 1.1 along with the seasonal contributions of ET during the 

growing season. 

6 



V
eg

et
at

io
n 

D
es

cr
ip

tio
n 

St
ud

y 
Si

te
 L

oc
at

io
n 

M
ay

 
Ju

ne
 

Ju
ly

 
A

ug
us

t 
Se

pt
em

be
r 

(m
m

 d
"1) 

(m
m

 d
"1) 

(m
m

 d
"1) 

(m
m

 d
"1) 

(m
m

 d
"1) 

A
sp

en
 (A

m
iro

 e
t a

l.,
 2

00
6)

 
B

O
R

EA
S 

SO
A

, P
rin

ce
 A

lb
er

t S
K

. 
1.

0 
2.

0 
3.

0 
2.

0 
1.

0 
A

sp
en

 (
Bl

an
ke

n 
et

 a
l.,

 2
00

1)
 

B
O

R
EA

S 
SS

A
, P

rin
ce

 A
lb

er
t 

SK
. 

1.
5 

3.
0 

3.
0 

3.
0 

2.
0 

Pi
ne

 (
Am

ir
o 

et
 a

l.,
 2

00
6)

 
B

O
R

EA
S 

SO
JP

, P
rin

ce
 A

lb
er

t S
K

. 
0.

5 
1.

0 
2.

0 
1.

0 
0.

5 
Pi

ne
 (B

al
do

cc
hi

 e
t a

l, 
19

97
) 

B
O

R
EA

S 
SO

JP
, P

rin
ce

 A
lb

er
t S

K
. 

1.
0 

1.
5 

2.
0 

1.
5 

1.
0 

Pi
ne

 (
C

ue
nc

a 
et

 a
l, 

19
97

) 
B

O
R

EA
S 

N
O

JP
, T

ho
m

ps
on

 M
B

. 
2.

4 
3.

0 
3.

5 
n/

a 
n/

a 

Pi
ne

 &
 S

pr
uc

e 
(C

ie
nc

ia
la

 e
t a

l.,
 1

99
8)

 
N

O
PE

X
, 

Sw
ed

en
 

1.
5 

2.
0 

2.
5 

1.
0 

0.
5 

Pi
ne

 &
 S

pr
uc

e 
(G

re
lle

 e
t a

l, 
19

97
) 

N
O

PE
X

, 
Sw

ed
en

 
2.

0 
2.

5 
3.

0 
2.

0 
1.

0 

SO
A 

is 
de

fin
ed

 a
s 

an
 o

ld
 g

ro
wt

h 
as

pe
n 

fo
re

st 
(>

80
yr

s)
 

SS
A 

is 
de

fin
ed

 a
s 

a 
yo

un
g 

as
pe

n 
fo

re
st 

(<
 4

0 
yr

s)
 

SO
JP

/N
O

JP
 i

s d
ef

in
ed

 a
s 

an
 o

ld
 ja

ck
 p

in
e 

fo
re

st 
(>

 8
0 

yr
s)

 

Ta
bl

e 
1.

1:
 S

um
m

ar
y 

of
 m

on
th

ly
 g

ro
w

in
g 

se
as

on
 e

va
po

tra
ns

pi
ra

tio
n 

re
su

lts
 (

m
m

 d
"1) 

fr
om

 v
ar

io
us

 s
tu

di
es

 w
ith

in
 s

im
ila

r 
ve

ge
ta

tio
n 

co
m

po
si

tio
ns

 a
s 

co
m

pa
re

d 
to

 th
e 

U
tik

um
a 

R
eg

io
n 

of
 N

or
th

 C
en

tra
l A

lb
er

ta
, C

an
ad

a.
 

7 



1.3 Thesis objective and format 

The objective of this thesis is to understand the processes and controls on 

evapotranspiration from a typical wetland-forested upland complex within the Western 

Boreal Plain region of North Central Alberta, Canada. A small moraine landscape 

catchment typical of the WBP (Devito et al, 2005a) referred to as "Pond 40" was utilized 

for this study with a detailed analysis of two distinct landcover units within the catchment 

(wetland and aspen dominated upland). This thesis addresses the following research 

questions: 

1) What is the role that surface vegetation (especially the extensive moss covers) play in 

moderating soil and atmospheric controls on ET within a wetland of the sub-humid 

WBP? 

2) What are the roles of surface and atmospheric conditions when characterizing the 

dynamics of the energy balance and ET from above and within an aspen dominated 

upland in the sub-humid WBP? 

This thesis follows a paper based format and has been organized into four 

chapters including this introduction, which provides a brief overview of the Western 

Boreal forest, the role of evapotranspiration within the WBP and the study rationale. The 

field research element of the thesis, including independent measurements and 

interpretation on the controls on evapotranspiration is summarized in chapter two and 

three. Chapter two is focused on the role of wetland vegetation in controlling 

evapotranspiration rates within the WBP and as such is designed to address question 1 

posed above. This chapter examines the role of differing moss and vascular plant cover 

found within the WBP, their role in controlling ET along with near surface hydrological 
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linkages which act in parallel to typical hydrological function of these wetland landcover 

units. Chapter three is focused on the nature and seasonal distribution of 

evapotranspiration from above and within an aspen dominated forest HRU of the WBP 

and as such is organized to address question 2. Both the role of vegetation (above and 

within canopy) distribution coupled with atmospheric demands at both scales are key 

aspects of the analysis. Finally, Chapter four provides a summary of the two main data 

chapters focusing on the controls on ET within two distinct landcover units within the 

WBP and elaborates on the applicability of this research to evolving water resource 

management practices, and landscape reclamation approaches currently ongoing in the 

region. 

1.4 Utikuma Region Study Area 

The wetland-forested upland complex studied is located 370 km north of Edmonton AB, 

Canada (56°6N, 116°32W) at the URSA. The URSA is located in the Mixed-wood 

Boreal Plains ecoregion and lies approximately 150 km south of the discontinuous 

permafrost zone (National Wetlands Working Group, 1988; Woo and Winter, 1993). The 

climate is characterized by seasonally variable average monthly air temperatures ranging 

from -14.6 °C in January to 15.6 °C in July (Environment Canada, 2003), and is 

considered sub-humid with normal annual precipitation (481 mm; Environment Canada, 

2003) which is exceeded by annual potential evapotranspiration (517 mm; Bothe and 

Abraham, 1993). This net deficit in atmospheric fluxes is typical of most years, with 

atmospheric surpluses occurring approximately every 10 to 15 years, resulting from a 

combination of cool summer temperatures and greater than normal annual precipitation 

(Devito et al., 2005b). Most precipitation (~ 70%) generally falls in the summer months 
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(June, July, and August), and snow typically accounts for <25% (<100 mm) of the 

average total annual precipitation (Devito et al., 2005a). The surficial geology of the 

URSA is composed of glacial derived sediments including glaciofluvial, moraine, and 

glaciolacustrine deposits that vary in thickness from 20 to 240 m (see Figure 1.1) 

(Pawlowicz and Fenton, 2002). 

Figure 1.1: Schematic diagram of the Utikuma Region Study Area (URSA) regional 
surficial geology and location of "Pond 40" research study site within the Western Boreal 
Plain region of North Central Alberta, Canada. 
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This research was conducted within a small (~1 km ) moraine landscape 

catchment, the central feature of which is a shallow (1 m deep) pond with an area of 175 

m2 ringed by a well defined black spruce dominated wetland (Figure 1.2). The overstory 

canopy of the study catchment is predominantly trembling aspen (Populus tremuloides), 

with minor amounts of black poplar (Populus balsamifera) in depressions and ephemeral 

draws (Figure 1.2). Forested uplands consisting of Gray Luvisolic soils (Soil 

Classification Working Group, 1998) developed from disintegration moraine deposits, 

which are typically silt-rich but spatially heterogeneous, with zones of high clay or sand 

contents (Redding and Devito, 2008; Fenton et al., 2003). 
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Figure 1.2: Schematic diagram of the Utikuma Region Study Area (URSA) (Pond 40) 
study site and location within the Western Boreal Plain region of North Central Alberta, 
Canada. The distribution of the landcover units comprising the study catchment are 
illustrated. 
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Chapter Two 

Surface vegetation controls on evapotranspiration from a sub-humid Western 
Boreal Plain wetland 

2.0 Introduction 

Wetlands comprise approximately 50% of the Western Boreal Plain (WBP) (Vitt et al., 

2000). These wetlands exist although annual precipitation (P) inputs are less than annual 

potential evapotranspiration (PET) (Hogg et al., 1994; Devito et al., 2005b; Petrone et al., 

2006; Redding and Devito, 2008). Low surface runoff is common (Devito et al, 2005b) 

and hydrologic contributions to low lying areas (i.e.; wetlands) may not be controlled by 

topography, but rather climate patterns and regional surficial geology (Devito et al, 

2005a). The water budgets of low-lying pond-wetland complexes are dominated by 

vertical fluxes (Smerdon et al., 2005). Furthermore, at the local scale the exchange of 

water between ponds and wetlands is dynamic and can shift direction during intra-annual 

wet and dry periods (Ferone and Devito, 2004). Evapotranspiration (ET) is a significant 

aspect of the water balance for this region and the mechanisms by which these wetlands 

retain and exchange water with the atmosphere is important to the overall maintenance of 

these common ecosystems within the WBP. 

Peatland ecosystems dominated by black spruce are the most widespread boreal 

forest type in North America (Viereck et al., 1986). Boreal black spruce cover is 

relatively open due to the narrow structure and low density of trees (Heijmans et al., 

2004). This results in a large portion of solar radiation received at the surface, creating a 

significant role for understory/surface vegetation species dominated by Sphagnum, 

feathermoss and lichen (spp) with regards to energy exchange (Baldocchi et al., 2000; 



Heijmans et al., 2004). The ground surface within these open black spruce systems is 

often dominated by Sphagnum and feathermoss, which can account for a significant 

fraction of the water exchange between the terrestrial biosphere and atmosphere 

(Williams and Flanagan, 1996). Lafleur and Schreader (1994) demonstrated that from a 

sub-arctic forest Sphagnum and feathermoss surface cover can account for as much as 

65% of the total water loss from the ecosystem. As Sphagnum mosses act to insulate the 

soil, intercept atmospheric nutrients, and decompose slowly resulting in lower soil 

temperatures and rates of nutrient supply (Heijmans et al., 2004) they should be 

considered significant with regards to their role in surface energy exchange within the 

WBP. 

Vegetation controls on ET in general, whether dominated by vascular plants or 

bryophytes, are an integral part of the seasonal energy balance for wetlands of the WBP. 

When present, a dense canopy of vascular plants will dominate the exchange processes 

with the atmosphere, and the resultant energy partitioning will largely depend on the 

transpiration capacity of the canopy (Heijmans et al., 2004). As vascular plants have 

extensive root systems, they are seldom restricted by water supply (Lafleur, 1990). 

However, many northern wetlands, especially those in the WBP, are covered by a sparse 

canopy because of a low trophic status (Schipperget and Rydin, 1998). Since water 

supply in these systems is primarily by rainwater, rather than by groundwater from 

surrounding areas, the peat substrate is acidic and mineral-poor in bogs (totally rain-fed) 

and poor fens (to some extent supplied by groundwater but still acid and mineral-poor). 

The ground surface then is often dominated by Sphagnum mosses, which unlike vascular 

plants, do not have roots or internal water conducting tissues but depend on capillary 
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transport from underlying layers (Price et al., 2002). Therefore, the evaporative capacity 

should largely depend on peat wetness. Little is known about the variation of peat 

wetness and its influence on the total ET, though peat wetness seems to be crucial for 

some types of wetlands (Price, 1991), it is probable that the impact of surface wetness 

varies seasonally with the development of vascular plants (Kim and Verma, 1996). Thus, 

in order to quantify and predict the ET regime from WBP wetlands and how they may 

respond to climate variability requires an understanding of how these vegetation groups 

interact with each other along with soil moisture patterns over a season. 

Feathermoss species, also present in these systems, have a significantly different 

physiological and structural design compared to Sphagnum. The occurrence of 

precipitation and dew formation are critical hydrological events and provide the single 

most important sources of moisture (Busby et al., 1978; Longton and Greene, 1979; Skre 

et al., 1983; Vitt, 1990; Bisbee et al., 2001). Feathermoss species commonly occur 

within environments where incident shortwave radiation and evaporative demand are low 

(Bisbee et al., 2001). Skre et al. (1983) suggest water loss from feathermoss species 

occur at greater rates in open, more exposed locations as a result of the increased 

exposure to precipitation when coupled with a greater exposure to incident radiation and 

wind. 

2.1 Study Objectives 

The objective of this study is to examine the role that surface vegetation (especially the 

extensive moss covers) plays in moderating soil and atmospheric controls on ET within a 

wetland of the sub-humid WBP. It is hypothesized that wetland scale ET will be 
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controlled primarily by the vegetation communities present. Consequently, these controls 

were characterized temporally throughout the 2005 and 2006 snow free seasons (May 1 

to Sept 30). Environmental factors including water table (WT), soil moisture (0), 

photosynthetic active radiation (PAR) and ground temperatures (Tg) were also examined 

at the vegetation scale to determine the relationships between variables coupled with the 

vegetation controls on ET. It is also hypothesized that ground thermal conditions, 

especially the depth of ice, will impact ET (especially early in the season) more so than 

soil moisture within these wetland environments, and thus, the depth of ice is also 

considered within this study to characterize the roles of wetlands within a broader 

representation of ET at the catchment scale. 

2.2 Study Area 

2.2.1 Utikuma Region Study Area 

The wetland studied here is located within the Utikuma Region Study Area (URSA), 370 

km north of Edmonton, Alberta, Canada (56° 4 ' 'N, 115° 28' W) (Figure 2.1). URSA is 

situated approximately 150 km south of the discontinuous permafrost zone (Woo and 

Winter, 1993) within the Plains region of the Western Boreal forest. Climate within 

URSA can be characterized by cold winters and warm summers with average 

temperatures of -14.6 to 15.6 °C, respectively over the past 30 years (Environment 

Canada, 2003). Annual PET (517 mm, Bothe and Abraham, 1993) is slightly higher than 

the average annual P (481 mm, Environment Canada, 2003) at URSA over this same 

period, with snowfall averaging less than 100 mm yr"1 (less than 25% of the total annual 

precipitation for the region) (Marshall et al., 1999; Devito et al, 2005). Devito et al. 
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(2005) report that within the sub-humid boreal plains region, a water deficit exists during 

most years, and that only on an average cycle of 10 to 15 years, will annual P surpass ET. 

Furthermore, 70 % of annual P occurs between June and August, coinciding with peak 

vegetation growth and maximum ET demand, and is followed by a relatively dry period 

during fall (Ferone and Devito, 2004; Devito et al, 2005; Petrone et al, 2006). 

2.2.2 Study Catchment 

This research was conducted within a small (~1 km2) moraine landscape catchment, the 

central feature of which is a shallow (1 m deep) pond with an area of 7500 m2 ringed by a 

well defined black spruce dominated wetland (Figure 2.1). Six sites were selected for 

community scale measurements of ET based on aspect, dominant vegetation species (ie; 

vascular vs. non-vascular), microtopography (i.e. lawn vs. depression) and canopy 

closure (i.e. covered vs. uncovered) and represent the range of vegetation within the 

wetland. As the controls of vegetation coverage on snow-free season ET was the primary 

goal of this research, experimental plots were assigned in an attempt to characterize the 

vegetation distribution within the wetland (Table 2.1). Overlain on top of this distribution 

of six sites were three energy balance towers with varying aspects surrounding the central 

pond, among which a roving eddy covariance system was relocated every 2 weeks. 

Microtopography and vegetation distribution among the three main sites were 

highly dynamic depending on location and moisture conditions (Table 2.1). 

Microtopographical relief ranged from 35 cm (±6 (SE)) to 76 cm (±10 (SE)), with the 

smallest ratio of lawn to depression ares in the northern portion of the system, and the 

largest ratio in the southern area (Table 2.1). Overstory species throughout the wetland 



consisted of black spruce (Picea mariana), white spruce (Picea glauca), paper birch 

(Betula papyrifera) and willow (salix sp). Canopy closure ranged from 80% in the 

northwestern portion to -30% in the southern portion of the wetland (Table 2.1). The 

surface cover vegetation distribution within the wetland had lichen species (Cladina 

mitis) largely on the lawns (90%) within the southern portion, and in both the lawn and 

depression sites in the northern portion of the wetland (Table 2.1). Sphagnum species 

(Sphagnum fuscum, Sphagnum cappifolium) were dominant (60 - 90%) in both lawns 

and depressions in northern and southern sides of the pond. While feathermoss species 

(Pleurozium schreberi and Hylocomium splendens) were located primarily at the 

northwestern end of the wetland with 97% on lawns and 95% in depressions (Table 2.1). 

Vascular plants (Ledum groenlandicum, Vaccinium oxycoccos, Rubus chamaemorus) 

were present as well throughout the entire wetland (Table 2.1). 
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Figure 2.1: Schematic diagram of the Utikuma Region Study Area (URSA) (Pond 40) 
study site and location within the Western Boreal Plain region of North Central Alberta, 
Canada. The distribution of the landcover units comprising the study catchment and the 
location of measurement sites are illustrated. 
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2.3 Methods 

2.3.1 Wetland Energy Balance 

In order to better account for the potential spatial variability of ET within the wetland, 

three energy balance systems were installed on Day of Year (DOY) 160 in 2005 and ran 

continuously through to DOY 270 of 2006 (Figure 2.1). The three towers consisted of 

measurements of air temperature (Ta) and relative humidity (RH) (HOBO Onset Pro 

Temp/RH, Hoskin Scientific, Vancouver, Canada) at 1.5 m above the wetland surface 

and a net radiometer installed at the same height (NRLite, Kipp and Zonen, The 

Netherlands). Profiles of soil temperatures were recorded at all 3 wetland sites using 

thermocouples (Omega copper-constantin, Campbell Scientific Inc, Logan, Utah, USA) 

at 0.10 m, 0.25 m, 0.50 m and 1.0 m depths in the peat. Soil moisture (0) was recorded in 

both a lawn and depression at each site using water content reflectrometry probes 

(CS616, Campbell Scientific Inc, Utah, USA) placed vertically in order to collect average 

•a -a 

0 (m m" ) of the upper 0.3 m of the peat. Water content reflectrometers were calibrated 

from depth integrated peat cores at each site within the wetland (Solondz, 2007). 

Published values for heat capacities of peat soils under a range of moisture conditions 

were used to determine the heat capacity values to be used in the ground heat flux and 

storage calculations (Oke, 1987). The ground heat flux was measured using the 

calorimetric method (Halliwell and Rouse, 1987; Petrone et al., 2000; Petrone et al., 

2006) using the ground temperature profile and heat capacity calculations for each soil 

layer accounting for changes in moisture amount and state. 

The energy balance of the wetland surface at each location is given by, 
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Q * = QE + QH + QG (2.1) 

where Q* is the net radiative flux at the surface, QE is the latent heat flux, QH is the 

sensible heat flux and QG is the ground heat flux (W m"2). Vegetated surfaces generally 

have a mean daily soil heat flux (QG) one or two orders of magnitude smaller than the 

major terms in the surface energy balance (Brutsaert, 1982). However, on shorter 

temporal scales, QG can be quite important. The subsurface soil temperatures, and QG, are 

a function of solar radiation, soil texture, soil moisture content and state, in addition to 

surface vegetation cover and weather conditions (wind, air temperature, humidity) 

(Williams and Smith, 1989). This is especially true in systems such as this wetland with 

persistent seasonal ice (Petrone et al., 2008). 

2.3.2 Potential Evapotranspiration 

The Priestley-Taylor equation is classified as a radiation-based approach to estimating 

PET, using Q* and TA to evaluate equilibrium evapotranspiration (PETEQ), which 

assumes that an air mass moving over a homogeneous, well-watered surface would 

become saturated (Priestley and Taylor, 1972). Under these ideal conditions ET would 

reach a state of equilibrium (Priestley and Taylor, 1972). Radiation is a very effective 

parameter to use in measuring equilibrium evaporation or PET. In a review of 30 studies 

it was commonly found that approximately 95% of the annual evaporative demand was 

supplied by radiation in vegetated areas with very small, or no, water deficits (Stagnitti et 

al., 1989). The Priestley-Taylor model obtains PETEQ via, 

PETEQ=-^-(Q*-QG) 
A + y 

(2 .2) 
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where A (kPa °C"1) is the slope of the saturated vapour pressure curve, y (kPa °C'1) is the 

psychrometric constant, Q* (W m" ) is net radiation, and QC (W m") is the soil heat 

transfer. The equilibrium ET is related to the potential ET, defined as the rate of ET if 

energy or moisture is not limiting, or actual ET via the Priestley-Taylor coefficient. In 

their original manuscript Priestley and Taylor define a as, 

, _ _ P FT a = 1.26 = (2.3) 
PETEQ 

where P E T is the potential evapotranspiration and PETEQ is the total equilibrium 

evapotranspiration (Wilson and Baldocchi, 2000). However, equilibrium rarely occurs, as 

there is almost always horizontal advection and deviations from a 'wet' surface (Wilson 

and Baldocchi, 2000). Therefore, an a less than, or greater than, this value gives "actual 

ET". The large range in alpha inherent in this original definition is reflective of the range 

in natural surface cover and above the large water body on which their work was done. In 

this manuscript, the technical definitions are insignificant as PET calculated here is 

converted to actual ET using a values obtained using the mobile EC system. 

2.3.3 Eddy Covariance Theory 

The eddy covariance (EC) technique is based on the theory of vertical flux gradients 

which examines an area-integrated surface flux from a known distance upwind of the 

measuring point on uniform terrain (Brutsaert, 1982). EC measurements provide 

ecosystem-scale measurements on a time series continuum that permits the investigation 

of the interactions between energy and mass balance fluxes. A flux can be characterized 
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as the covariance of an upward wind vector and a scalar flux of the measurement 

parameter (F), 

F = -pa<D'x' (2.4) 

where pa is the average density of air, and co' is the average instantaneous covariance of 

the vertical wind velocity and x' is the average instantaneous covariance of the scalar flux 

(Baldocchi et al., 1988). 

The EC technique for measuring the surface energy fluxes is based on 

determining the turbulent fluxes of water vapour, momentum and sensible heat from the 

covariance of their respective eddies (Petrone et al., 2001). This measures the turbulent 

exchange directly without restrictive assumptions as to the nature of the surface and the 

transfer mechanisms involved (Peixoto and Oort, 1992; Petrone et al., 2001). The mean 

vertical flux of the sensible and latent heat fluxes was calculated via, 

QH = pCpwT (2.5) 

Q e = Lpw'q' (2.6) 

where p (kg m") is the density of air, Cp (MJ kg"1 K"1) is the heat capacity of the air, L 

(MJ kg"1 kPa"1) is the latent heat of vaporization, w' (ms"1), 7 ' (K) and q' (kPa) are the 

instantaneous variances in the vertical windspeed, air temperature and specific humidity 

measured at the same height. The covariances between w', q' and T' were conducted by 

electronic analog computation consisting of a multiplication and averaging process on the 

CR23X datalogger. The CR23X processor calculated a simple statistical covariance for a 
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give given time period, and if there were more than one time period in the output interval 

it averaged the covariance results (denoted by the overbar). ET (mm d"1) was then 

calculated from the product of QE via, 

ET = (2.7) 
LvPw 

* 1 * 3 

where Lv is the latent heat of vaporization (J kg" ) and pw is the density of water (kg m") 

(Oke, 1987). 
2.3.4 Eddy Covariance Measurements of ET 

A mobile eddy covariance (EC) tower was used to allow for rapid, but rigorous, 

comparison of surface fluxes within this wetland ecosystem (Eugster et al., 1997). 

Continuous half-hourly ET fluxes were measured at 2.0 m above the peat surface at the 

three wetland sites using the EC technique for both the 2005 and 2006 snow free seasons. 

The EC tower was moved between sites every two weeks from May 5 to October 5 in 

order to characterize the fluxes over both seasons at the scale of synoptic variability 

(Eugster et al., 1997). The EC instrumentation consisted of a 3-D sonic anemometer 

(Campbell Scientific CSAT 3) and an open path infrared gas (C02/H20) analyzer 

(IRGA) (LI7500, LI-COR Inc., Lincoln, NE) sampled at 20 Hz and averaged every half 

hour on a Campbell Scientific 23X datalogger. The IRGA was calibrated as outlined in 

the LI-COR Instruction Manual (LI-COR Inc, 2000) once after the season along multiple 

points and adjustments were made to raw fluxes based on the post-field season 

calibrations if there was any drift in the calibration coefficients (this was typically less 

than 4%) over the length of the field campaign. 
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The 2 week rotation among the 3 sites ensured that each wetland site had 

simultaneous measurements of ET and PET three times per season, coinciding with the 

main growth periods into which the data were delimited based on observed phenology. 

Although the actual transition dates varied slightly between the 2 years, period 

measurements were standardized into Early Green (EG) (DOY 121 - 158), Green (G) 

(DOY 158 - 218), Late Green (LG) (DOY 219 - 260) and Senescence (S) (DOY 261-

290) (Solondz, 2007). During these 2 week periods time series of the Priestley-Taylor 

Coefficient (a) were obtained. During each of these periods the average a was calculated 

along with soil moisture for each site in each period, which when used in addition to the 

continuous radiation data collected at each of the sites permitted the calculation of an 

actual latent heat flux over the entire season using equations 2.2 and 2.3. 

Due to the small fetch of the three wetland sites, the EC sensors were located at 2 

m above the peat surface in order to obtain a flux representative of the wetlands being 

examined. In order to ensure that the low position of the sensors captured a representative 

flux, a power spectral density function was computed using high frequency EC data to 

determine if the sensor location and sampling intervals were sufficient to capture the 

large lower frequency and small higher frequency eddies after Petrone et al., 2001. Prior 

to analysis, the EC data was first filtered for periods of low turbulence (u* < 0.23 m/s) 

(Figure 6.3), then corrected for density effects (Webb et al., 1980; Leuning and Judd, 

1996) and sensor separation (Leuning and Judd, 1996; Blanford and Gay, 1992) (see 

Section 6.2). As a final correction to the flux data the energy balance closure was 

calculated and forced to close for the study period (Petrone et al., 2001). Closure is most 

reasonably forced by assuming that the measured available energy is representative of the 
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plot that the EC sensors are measuring (Petrone et al., 2001), leaving the sensible and 

latent heat fluxes to be adjusted (Twine et al., 2000). It was assumed that the Bowen 

ratio was correctly measured by the EC system and individual values of the sensible and 

latent heat fluxes were adjusted to balance the energy budget (Barr et al., 1994; Blanken 

et al., 1997; Twine et al., 2000; Petrone et al., 2001). A footprint analysis (Scheupp et al., 

1990) was performed at all three wetland sites during measurement intervals to determine 

the source locations of fluxes measured by the EC system. Periods when fluxes originated 

from outside the wetland area were observed from the EC tower were removed from 

analysis leaving only those fluxes that originated from within the desired wetland to be 

included in the final analysis of wetland ET. 

2.3.5 Community-Scale Measurements of Evapotranspiration 

Vegetation community distributions within the footprints of the 3 towers were 

determined and community-scale ET measurements were conducted using a closed 

system EGM-4 Infrared Gas Analyzer (PP Systems, Amesbury, MA). To examine the 

interactions of the vegetation with environmental conditions vapour pressure, temperature 

and relative humidity (RH) were collected once per min over a 5 minute interval at each 

of the chamber sites (Figure 2.1). At each of the 3 sites, lawn and depression areas were 

selected for communities dominated by Sphagnum, feather moss and lichen species. 

Throughout the measurement campaign, the sampling frequency and duration was 

routinely tested among sites using higher frequency sampling over a 10 minute period to 

ensure that gradient conditions were maintained. Clear chambers (0.03 m2 surface area, 

-5 

0.06 m volume) were made of clear plexiglass with the ability to transmit 87% of PAR 



(Waddington and Roulet, 2000). Collars were constructed of 19 cm (inside diameter) 

polyvinyl chloride (PVC) plastic piping cut to a height of 15 cm with perforated grooves 

etched in the lower 6 cm of the collar to allow for smooth insertion into the soil. The 

chamber was then placed in a 3 mm wide groove cut into the top of each collar. Collars 

were placed 4 cm into the soil two weeks prior to the first sampling measurement being 

taken to ensure that disturbance was minimized. The use of these collars permits 

repeated measurements at a single location, while minimizing soil disturbances (root 

growth into the soil and under the collar) in order to better assess temporal influences 

(Tufekcioglu et al, 2001). Inside chamber volume was recorded at every collar site for 

each measurement by averaging the height of the ground surface to the top of the collar at 

four reference locations. In order to collect point measurements of ET the chambers used 

were placed on the collars and the grooves were filled with water to obtain an air tight 

seal. 

The sampling protocol was aimed at evaluating the change in ET dynamics over 

the 2005 and 2006 snow-free seasons. Measurements were obtained between the peak 

growth hours of 08:00 and 16:00 MST to minimize flux variations caused by the diurnal 

cycle (Laporte et al., 2002) and to obtain fluxes operating at maximum levels to ensure 

existing spatial variability is captured. All sites were measured twice per week in order 

to acquire a greater spatial data set over the study period, rather than the more common 

approach of extensively replicating a few sites less frequently (LeCain et al., 2002). As 

chamber measurements provide only point measurements the daily sampling order was 

altered by randomly selecting the sites on a daily basis to ensure a range in environmental 

conditions are being captured, and fluxes were grouped into climatically distinct seasonal 
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periods in order for temporal/seasonal comparisons to be made (see Section 2.3.1) 

(Petrone et al., 2008; Solondz et al., 2008; Petrone et al., 2003; Waddington et al., 1998). 

2.3.6 Chamber Flux Calculations 

In order to assess the fluxes of water vapour from these chamber sites, measurements of 

the rate of vapour density increase inside the measurement chambers were conducted as 

per McLeod et al. (2004). To calculate the instantaneous rate of evapotranspiration 

(ET;„) the slope of vapour pressure (e) from within the chamber was plotted against time 

using the least squares method. This calculated slope value was then used within a 

modified equation (Stannard, 1988) to calculate ET inside the chamber over the 5 min 

measurement interval, 

MVC 
ETm = 3-6—-j— (2.8) 

A 

where ETin is the rate of evapotranspiration (mm hr"1), M is the slope of the vapour 

"2 1 

pressure over time measurement for each interval (g/m s*), V is the volume inside the 
"2 

chamber (m ), C is the calibration factor to account for vapour absorption within the 

chamber (dimensionless) and A is the area of ground surface covered by the chamber 

(m2). The conversion factor of 3.6 was used in order to convert a volume of water per 
2 1 1 unit area (g H2O m" s") into an hourly flux rate (mm hr" ). The calculation of C was 

obtained through the methods outlined by McLeod et al., (2004) (see Section 6.1). 
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2.4 Results 

2.4.1 Climate 

The study site received 234 mm of precipitation during the 2005 snow-free season with 

the largest storm occurring on 25 July (DOY 206) delivering 45 mm (Figure 2.2). The 

average event during the 2005 study season was 6.8 mm. During the 2006 study season 

approximately 226 mm of precipitation occurred with the largest event occurring on 4 

May (DOY 124) with 37.5 mm (Figure 2.2) with the average event being 7 mm. 

Although precipitation at Pond 40 was evenly distributed during the 2005 study season, 

larger magnitude events occurred more frequently from 19 June to 28 August (DOY 170-

240; Figure 2.2). During the 2006 study season precipitation events occurred earlier than 

normal and a prolonged event free period existed from 6 August (DOY 218) through to 

15 September (DOY 258). Historically 70% of the annual precipitation is received 

between June and August (Devito et al., 2005). This was observed during the 2005 study 

period but not during the 2006 study period. 

Mean daily air temperatures ranged from 2.3 °C (DOY 141) to 19.6 °C (DOY 

215) during 2005. An increase in mean daily air temperatures was observed in 2006, 

ranging from 2.5°C (DOY 258) to 24.9°C (DOY 204). Over the course of the 2005 study 

season, the mean daily air temperatures at the study site were similar from June to 

August, decreasing after DOY 210 (Figure 2.2). 
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Figure 2.2: Daily precipitation (bars) and daily averaged air temperature (lines) over the 
(a) 2005 and (b) 2006 snow-free seasons, Pond 40, Utikuma Region Study Area (URSA), 
Alberta, Canada. 
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2.4.2 Wetland Energy and Mass Exchange Processes 

2.4.2.1 Energy Flux Densities 

There was no significant differences in the energy fluxes between the three sites 

(ANOVA, P > 0.05), with all sites showing similar seasonality in energy balance 

components with the peaks occurring at the same times during both seasons. As a result 

data from the three sites were averaged in order to characterize the wetland as a single 

unit (Figure 2.3). Daily net radiation (Q*) peaked in 2005 on DOY 198 at 187 W m"2 and 

averaged 97 W m"2 for the 2005 snow-free season. During the 2006 snow-free season, Q* 

peaked on DOY 179 at 156 W m"2 with a seasonal average of 86 W m"2. 

Latent heat fluxes (QE) were calculated using a values attained from the energy 

balance PET measurements coupled with the roving EC tower. These a values were then 

applied to the spatially averaged energy balance data to produce Qe for the wetland over 

both snow-free seasons (Table 2.2). Qe for the 2005 season peaked at 87 W m" on DOY 

180 with a seasonal average of 47 Wm (Figure 2.3). For the 2006 

snow-free season Qe 

peaked at 82 Wm"2 (DOY 137) with a seasonal average of 42 W m" . Statistical analysis 

between years showed no significant differences (ANOVA, P>0.05). Ground heat fluxes 

(QG) were within 15% of daily Q* throughout the two snow-free seasons with peaks of 

21 W m" and 28 W m" for 2005 and 2006 respectively and seasonal averages of 11 W 

m"2 and 13 W m"2 (Figure 2.3). 
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Figure 2.3: Seasonal daily averaged wetland energy flux densities for the 2005 and 2006 
snow-free seasons, Pond 40, Utikuma Region Study Area (URSA), Alberta, Canada. 
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2.4.2.2 Atmosphere-Surface Interactions 

Vapour pressure deficits (VPD) (kPa) were measured within the wetland during the 2005 

and 2006 snow-free seasons. Measurements were averaged by period for both snow-free 

seasons (early green (EG), green (G), late green (LG)) (Figure 2.4a). The EG period of 

2005 had a VPD average of 0.76 kPa but was reduced in 2006 to 0.68 kPa. Unlike the QE 

data, significant differences were observed between years, during both the G and LG 

periods (ANOVA, P < 0.05). The G period average VPD in 2005 (0.39 kPa) was much 

lower than the 2006 average of 0.84 kPa, as was the LG period 2005 average VPD of 

0.28 kPa (relative to the 2006 average of 0.76 kPa). 

Available energy (Q*-QG) provides an indication of the nature of energy use 

within wetland systems and along with water deficit as it can be used as an indicator for 

wetland ET efficiency (Stagnitti et al., 1989). Large differences in Q*-QG were observed 

during the EG periods of 2005 and 2006 (Figure 2.4b). For the 2005 snow-free season, 

EG Q*-QG averaged 52 W m" with an increase to 91 W m" for the 2006 season. Within 

the G period of 2005 Q * - Q G averaged 83 W m"2 and decreased to 86 W m"2 in 2006. Q* -

QG in the LG period averaged 41 W m" and 77 W m" in 2005 and 2006, respectively. 

ET showed similar patterns within the wetland over both the 2005 and 2006 

snow-free seasons (Figure 2.4c). EG period ET in 2005 for the wetland averaged 0.83 

mm d"1, while in 2006 it increased to 1.56 mm d"1. The G period for both seasons 

averaged -1.46 mm d"1 an increase in 2005 but a slight decrease from the EG period in 

2006. Finally during the LG period ET was reduced to 0.74 mm d"1 and 1.21 mm d"1 in 

2005 and 2006, respectively. The 2005 snow-free season showed the "typical" seasonal 



variability expected of sub-humid boreal wetlands whereas 2006 saw the largest ET 

during the EG period. 
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Early Green Green Late Green 

Figure 2.4: Period averages composed of Early Green, Green and Late Green for a) 
Vapour Pressure Deficit (VPD), b) Available Energy ( Q * - Q G ) , C) Peatland 
Evapotranspiration (ET) calculated using the combined methods of eddy covariance and 
Priestley-Taylor model, and d) Soil Moisture (0) (m3 m"3) over the 2005 and 2006 snow-
free seasons, Pond 40, Utikuma Region Study Area (URSA), Alberta, Canada. Bars 
denote standard error (SE) of variables. 
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Volumetric soil moisture (0) (m m") varied little throughout both snow-free 

seasons but differed slightly between seasons as 2005 was slightly wetter than 2006 

(Figure 2.4d). 0 in 2005 averaged 0.37 m3 m"3 during the EG period and 0.29 m3 m"3 in 

2006. A decrease was observed in 2005 to 0.35 m3 m"3 while a slight increase to 0.32 m3 
a 

m" was observed during the 2006 G period. The LG period 0 in 2005 increased slightly 

to 0.37 m3 m"3 but remained steady for the 2006 period at 0.32 m3 m"3. 

2.4.3 Vegetation Controls on ET 

Vegetation contributions can be considered a significant aspect of wetland ET, where 

processes at the vegetation community scale will influence total ecosystem scale fluxes. 

To investigate the role of vegetation, and remove the influence of time, chamber data 

from 2005 and 2006 were grouped and sorted by dominant surface vegetation 

communities. Figure 2.5 shows that no significant relationship exists between ET and 

VPD, or 0, in either year. However, a weak relationship between ET and VPD is 

observed at lower deficits and ET becomes limited as VPD exceeds 1 kPa (Figure 2.5a). 

While no significant relationship is present between ET and 0, the clustering of the data 

among the vegetation communities does suggest some vegetation controls (Figure 2.5b). 

While all vegetation types experience similar ranges in ET and 0 over both years, the 

lichen tend to be wetter and the Sphagnum seem to be able to sustain larger rates of ET 

over a larger range in 0. 
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Figure 2.5: Daily chamber evapotranspiration (ET) as a function of a) Vapour Pressure 
Deficit (VPD) and b) Soil Moisture (0) (m3 m"3) for each dominant wetland vegetation 
community for the 2005 and 2006 snow-free seasons, Pond 40, Utikuma Region Study 
Area (URSA), Alberta, Canada. 

Sphagnum mosses for both snow-free seasons show the greatest ET rates peaking 

during the G period at -0.47 mm hr"1 (± 0.06) with the EG at 0.25 mm hr"1 (± 0.09) and 
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the LG at 0.39 mm hr"1 (± 0.04) (Figure 2.6a). Lichen dominated sites exhibited the 

second largest ET rates, but peaked in the LG period at 0.33 mm hr"1 (± 0.10). EG period 

lichen contributions averaged 0.19 mm hr"1 (± 0.08), while G period contributions 

averaged 0.29 mm hr"1 (±0.04). Feathermoss dominated sites showed the smallest ET 

rates over both snow-free seasons (Figure 2.6a), reaching a maximum during the G 

period of 0.27 mm hr"1 (± 0.06), and with similar fluxes in the EG and LG periods. 

Statistical analysis on the differences between vegetation community contributions 

showed that the Sphagnum contributions are significantly different from the lichen and 

feathermoss species contributions (ANOVA, P<0.05). 

0 was organized by vegetation communities in order to characterize the 

relationships between vegetation ET and the associated moisture regimes. Lichen and 

feathermoss sites were the wettest sites across both seasons and showed limited 

variability at -0.67 (± 0.01) and -0.71 (± 0.02), respectively (Figure 2.6b). The 

Sphagnum sites were significantly different from the lichen and feathermoss sites 

(ANOVA, P<0.05). However, the moisture regimes within each of the three vegetation 

communities showed little variability among the three periods. The Sphagnum sites were 

relatively dry at 0.28 ± 0.03 during G period and 0.34 ± 0.03 during LG period and were 

not significantly different between periods. The range in 0 from Sphagnum (-0.3) to 

lichen and feathermoss (~0.7) shows the variability in 0 that exist within the sub-humid 

WBP wetlands among vegetation communities. 

Seasonal variations in Tg at 5cm depths in the wetland show that Sphagnum sites 

were the warmest during the EG and G periods (4.7 and 10.1 °C, respectively) and 



dropped slightly to 8.4 °C during the LG period (Figure 2.6c). Lichen sites were the 

coldest across the snow-free season at 2.1°C, 7.8 °C and 8.1 °C during EG, G and LG 

periods, respectively. Feathermoss sites peaked during the LG and G periods at 

approximately 9.9 °C, with the coldest temperatures for feathermoss dominated sites 

occurring during the EG period (3.1 °C) (Figure 2.6c). Lichen sites were significantly 

different from the other two vegetation communities across the season (ANOVA; 

P<0.05). 
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Figure 2.6: Period averaged data of a) Chamber Evapotranspiration (ET), b) Soil 
Moisture (0) (m m") and c) Ground Temperatures (at 5 cm below ground) grouped by 
vegetation composition for both the 2005 and 2006 snow-free seasons, Pond 40, Utikuma 
Region Study Area (URSA), Alberta, Canada. Bars denote standard error (SE) of 
measurement variables. 
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2.4.4 Microtopographical Controls on Wetland ET 

The distribution of surface vegetation in wetlands is largely controlled by 0, which is a 

function of microtopography. The chamber ET data were also grouped by vegetation and 

microtopography in order to address this question (Figure 2.7a). Lichen located in lawn 

environments showed seasonal variations in ET of 0.27 mm hr"1 (EG), 0.34 mm hr"1 (G) 

and 0.32 mm hr"1 (LG). However, lichen situated in depressions had ET rates of 0.12 mm 

hr"1 (EG), 0.22 mm hr"1 (G) and 0.23 mm hr"1 (LG). Sphagnum had the largest ET rates 

in either microtopographical unit, with no statistically significant difference (ANOVA, 

P>0.05) between units. Sphagnum lawn sites had ET rates of 0.23 mm hr"1, 0.41 mm hr" 

and 0.39 mm hr"1 during the EG, G and LG periods, respectively. While depression sites 

with Sphagnum had ET rates of 0.21 mm hr"1, 0.40 mm hr"1 and 0.38 mm hr" in the EG, 

G and LG periods, respectively. Feathermosses were significantly different between 

microtopographical units (ANOVA, P<0.05). Contributions from feathermoss dominated 

lawn sites were 0.27 mm hr"1, 0.35 mm hr"1 and 0.33 mm hr"1 during the EG, G and LG 

periods, respectively. However, depression sites with feathermoss species had water 

losses of 0.10 mm hr"1, 0.22 mm hr"1 and 0.24 mm hr"1 in the EG, G and LG periods, 

respectively. 

Thermal regimes in wetland environments can also be influenced by the 

microtopographical changes. Lichen sites had Tg ranges that were significantly different 

between lawns and depressions (ANOVA; P<0.05) (Figure 2.7b). Within lawn sites, Tg 

at lichen sites during the EG period were 6.0 °C (± 0.02) and climbed to 11.3 °C (± 0.03) 

during the G period and dropped slightly to 9.6 °C (± 0.03) during the LG period. 

However, the lichen depressions had temperatures of 2.2 °C (±0.02), 7.5 °C (± 0.03) and 
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7.9 °C (± 0.02) for the EG, G and LG periods, respectively. Tg among Sphagnum sites 

were not significantly different between microtopographical units (ANOVA, P>0.05) 

averaging approximately 6.1 °C for the EG period, 10.1 °C for the G period and 9.5 °C 

for the LG period. Feathermoss dominated sites displayed similar trends to that of the 

Sphagnum dominated sites with regards to their thermal regimes. For lawn sites, the Tg 

was 4.1 °C (± 0.02), 9.8 °C (±0.03) and 9.5 °C (± 0.02) during the EG, G and LG periods, 

respectively. Depression sites dominated by feathermoss communities had EG Tg values 

of 2.5 °C (± 0.03), G period Tg of 9.4 °C (± 0.02) and LG period Tg of 9.6 °C (± 0.02). 

Moisture regimes grouped by vegetation and delineated by microtopography also 

showed distinct trends correlated to ET rates. Lawn sites were dry with 0 values ranging 

from 0.19 to 0.39 (± 0.04) and showed limited variability throughout the snow-free 

seasons (Figure 2.7c). Depression sites were significantly different when comparing 

lichen and feathermoss to Sphagnum (ANOVA; P<0.05). Lichen and feathermoss 

showed limited seasonal variations in 0, ranging from 0.65 to 0.71 (± 0.02), while 

Sphagnum were significantly drier at approximately 0.25 (± 0.03) across the snow-free 

seasons. The most significant feature of Figure 2.7c is the fact that there is no significant 

difference in Sphagnum 9 between lawns or depressions (ANOVA, P < 0.05). 
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Figure 2.7: Period averaged a) Chamber Evapotranspiration (ET), b) Soil Moisture (0) 
•3 -J 

(m m" ), and c) Ground Temperatures (at 5 cm below ground) (Tg) for microtopography 
(lawns and depressions) over 2005 and 2006 snow-free seasons, Pond 40, Utikuma 
Region Study Area (URSA), Alberta, Canada. Bars denote standard error (SE) of 
measurement variables. 
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2.4.5 Regulation of Wetland ET by Persistent Seasonal Ground Ice 

Examining the cumulative ET for the three main wetland sites over the snow-free season 

indicate the differences in controls on ET that occur within a wetland environment in the 

WBP over the course of a season (Figure 2.8a). Seasonal totals in ET for the wetland 

were 226 mm and 247 mm in 2005 and 2006, respectively. An interesting feature of 

Figure 2.8a is the response of the slope of the cumulative ET curve early in the season, 

where despite lower available energy the slope of the ET curve is still quite steep. This is 

especially true in 2005, for example, where the ice layer is at a significant depth below 

the surface. 

A persistent ice lens was measured and observed throughout the wetland over 

both the 2005 and 2006 snow-free seasons (Figure 2.8b). When comparing the ice lens 

data to the change in water table (WT), it can be noted that the position of the WT during 

the early season is trapped above the ice lens resulting in early season peaks in WT 

position until the wetland responds to mid season precipitation events when ice out has 

occurred. It was determined that ice out has effectively occurred once the depth to ice 

had reached 70 cm and the influence of the ice lens on the near-surface hydrology of the 

wetlands would be limited. Melt rates for both seasons were not significantly different 

from each other (ANOVA, P>0.05). Early season WT fluctuations were observed at all 

sites over both years but were limited by the position of the ice lens within the wetland. 

As the water is trapped by the slowly melting ice layer WT position fluctuates close to 

the retreating ice lens and is sustained only by lateral flow within the wetland or by 

precipitation events. This occurs until ~DOY 204 in 2005, and DOY 198 in 2006, where 

the retreat of the ice lens is sufficient enough to allow the WT to rise close to the wetland 
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surface and steadily decline for the remainder of the season, albeit at a greater rate in 

2006 (Figure 2.8c). 

Figure 2.8d shows the seasonal daily averaged 0 of the upper 20cm for the 

examined wetland over both the 2005 and 2006 snow-free seasons. During the 2005 
-i -i 

season sharp increases in 0 were observed on DOY 204 of 0.15 m m" as a result of a 

large precipitation event (45 mm). A similar trend is not observed during the 2006 snow-

free season. Wetland 0 remained relatively steady throughout the 2006 season ranging 

between 0.39 m3 m"3 and 0.45 m3 m"3. 
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Figure 2.8: Daily averaged a) Cummulative Wetland Evapotranspiration (ET), b) Depth 
of Frost Table (cm below ground surface), c) Depth of Water Table (WT) (cm below 
ground surface) and d) Soil Moisture (0) (m m" ) of the upper 20 cm of peat soil for both 
the 2005 and 2006 snow-free seasons, Pond 40, Utikuma Region Study Area (URSA), 
Alberta, Canada. 
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2.5 Discussion 

ET and ground temperature patterns here do not follow the "typical" seasonal variability 

as depicted by other ET studies in the boreal forest (Baldocchi et al., 1997; Cuenca et al., 

1997; Grelle et al., 1997; Cienciala et al., 1998; Rouse, 2000; Amiro et al., 2006), where 

seasonal trends are depicted on the variability of evaporative fluxes and the predicted 

peaks in ET coupled with the warmest temperatures (July). However, the temperature 

regimes during the early green period, when the presence of a melting ice layer consumes 

a significant portion of the available energy are associated with peak ET rates. That is, 

vegetation communities such as Sphagnum mosses show unique and consistent ET 

characteristics that are not a function of soil moisture and the typical catchment 

characteristics that control the patterns in soil moisture. 

2.5.1 Vegetation Controls on Wetland Evapotranspiration 

The vegetation composition within wetland environments of the WBP is highly 

dependent on the spatial variability of the wetlands moisture regime. Sphagnum mosses 

exist within less wet moisture regimes, whereas feathermosses have the ability to thrive 

in moisture rich environments. ET rates from differing vegetation communities within a 

wetland environment show the extent to which these relationships occur within a natural 

system. Sphagnum mosses lose water at the highest rates throughout the growing seasons 

of the WBP despite their drier conditions, a result of their ability to retain moisture within 

the cushion and their self-regulating of water table position (Price, 1997). Lichen species 

ET rates are second to those contributed by Sphagnum mosses, a result primarily of their 

location within the wetlands. For all sites, lichen species were located as additional 



growth above Sphagnum moss mats. Thus, the ability to completely delineate the 

contributions of lichen species was inhibited by the presence of an underlying Sphagnum 

mat, where the greatest rates of ET were observed during both seasons. Lab experiments 

conducted on isolated lichen species show a reduced rate of evaporative losses compared 

to this study (Bisbee et al., 2001). However, within the natural system, a lichen patch 

underlain by Sphagnum mat is common (Bisbee et al., 2001), indicating that the 

contributions of both wetland species in a combined setting is a more appropriate 

approach to analysis within the WBP. 

The physiological controls of Sphagnum, feathermoss and lichen species vary 

considerably between species. As Sphagnum lack specialized water absorption and 

internal water conduction systems (Nichols and Brown, 1980), water is transported and 

conducted by an external wicking system and adsorption along the stem and leaf surfaces 

(Bold, 1957; Nichols and Brown, 1980). Whereas, the growth of feathermoss species 

(Hylocomium splendens) is controlled by rainfall frequency and degree of protection 

from evaporation stress. Therefore, feathermosses are primarily restricted to areas 

sheltered by trees and shrubs and require shade, moderate water levels, and high nutrient 

levels (National Wetlands Working Group, 1988). Feathermoss species have a tendency 

to dry up quickly when canopy cover is not adequate to prevent high evaporation. This is 

evident in the distribution of feathermosses seen here. 

Soil moisture and vegetation interactions are a significant control on wetland ET 

because while the presence of vegetation is dependent on the localized soil moisture 

regime, it is more strongly controlled by microclimatic factors, especially canopy closure 



(Solondz et al., 2008). Further, as shown here the moisture regime of a wetland is utilized 

differently by the dominant vegetation units. Williams and Flanagan (1996) found that 

ET decreases with wetland moisture even though the VPD increased, a result of a 

decrease in the surface conductance as moss systems lack the vascular tissues and 

stomata to transmit water through the leaf structure. Further, limited lateral gradients of 

flow exist within the WBP (Devito et al., 2005) and the vertical components of moisture 

exchange are enhanced (Smerdon, 2005). Thus, any increased localized moisture 

patterns only act to promote the vertical movement of water within the WBP as the 

gradients are induced by the differences between moisture rich peat surface and the drier 

air above (Williams and Flanagan, 1996). 

The atmospheric controls on ET from the wetland environment studied show that 

little correlation can be made between the VPD and ET. With the presence of smooth 

canopies the strongest relationships are found between ET and available energy with 

limited, if any controls by the VPD and stomata of the resident communities 

(McNaughton and Jarvis, 1991). The importance of the sheltering between and among 

sites shows distinct trends in ET rates across the examined wetland. Direct canopy cover 

is a control in terms of limiting incoming radiation receipt at the surface along with 

limiting the boundary layer and subsequent leaf surface interaction with convection. 

Thus, gradients that are created from the leaf surface to the atmosphere (VPD) are 

dependent on the nature of the temperature regime, along with the available moisture 

conditions in which the gradient is formed. 
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2.5.2 Vegetation and Ground Thermal Influences on Wetland Evapotranspiration 

Thermal controls of vegetation on ET have also been determined to be significant when 

examining wetland ET rates across Boreal landscapes (Nijjsen et al., 2002; Rouse, 2000). 

However, this study observed limited, if any, direct relationships between soil thermal 

regime and wetland ET from this WBP wetland. Nichols and Brown (1980) found that 

within wet Sphagnum moss mats an increase in temperature (air temperature), which can 

be transferred to the thermal ground regime (as Sphagnum and feathermoss leaf and 

associated ground temperatures appear to follow the diurnal fluctuations of localized air 

temperatures closely), resulted in an increased rate of ET from the moss surface. That is, 

in environments where ET can be expected to occur at near potential rates, temperature is 

strongly correlated with ET. This was not the case for this study in a much drier 

environment. The thermal regime here showed a distinct seasonal pattern, while ET rates 

showed spikes during the early season, when moisture is high (a result of the underlying 

ice lenses) and moss growth was limited, and generally lower rates during the drier 

growing period (despite peak moss growth rates), with periodic spikes following rain 

events. In this system the net effect of the thermal regime is the magnitude of soil heat 

flux, which peaks during the early season, but is drastically reduced after the ice retreats 

below 0.30 m. This 0.30 m threshold for which a change in soil heat flux is observed 

also approaches the position to which capillary action is limited by Sphagnum mosses 

(Price, 1997), indicating a relationship between thermal and moisture characteristics of 

the wetlands. 
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The surface vegetation and canopy cover also controls ET by influencing rates of 

ground thaw, especially early in the season (Petrone et al., 2006). Examining the seasonal 

energy balance of the wetland, a clear peak in early green ET rates can be observed. A 

persistent early season ice lens throughout the wetland acts as an impermeable layer to 

moisture close to the surface. This impermeable layer acts to prevent infiltration of 

incoming precipitation events, and early season snow and ice melt thus creating a 

moisture rich wetland beyond the initial snowmelt period. As the ice begins to melt out 

and Tg is increased, ET will begin to be reduced within the systems. The water that is 

present at the surface will then gain the ability to infiltrate downwards and merge with 

the existent groundwater that is trapped from vertical movement. As the majority of flow 

within WBP catchments is vertical in nature, the system becomes infused with the 

additional water that is received below the surface of the peat with the melt out of the ice 

lenses. Acting to raise the water table above the decreasing ice lens via fissures and 

cracks that have been created with the melt process allows for the ET rates to remain 

relatively constant and proceed under the aforementioned controls through the remainder 

of the growing season. 

2.6 Conclusions 

The role that vegetation plays in controlling wetland ET within the WBP is significant. 

However, the significance of that role is governed by the moisture regimes in which the 

vegetation are present. The dynamics of wetlands, especially within the WBP, and their 

respective ET contributions can be directly connected to their respective constituent 

vegetation communities. Sphagnum dominated sites have shown to lose water at the 
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greatest rates to ET, yet Sphagnum sites show the lowest moisture regimes and no control 

of microtopography. This is a result of the existence of weak hydrological gradients 

between lawn and depression units of wetlands, consistent with the climatic and moisture 

regimes of such sub-humid environments, where precipitation is typically less than PET. 

Finally, the presence of seasonal ice lenses plays a significant role in controlling 

ET within all units of wetlands of the WBP. It can be concluded that, the net effects of 

the presence of ice will not affect the ET rates on an annual scale, but will rather affect 

the early season rates of ET, and therefore the seasonal distribution of ET. Ice lenses 

have the potential to shift peak ET rates from wetlands to earlier on in the snow-free 

season when peak vegetation growth has not yet occurred creating a situation where peak 

ET rates occur before the maximum soil moisture demands of seasonal maximum 

vegetation growth. Given the role of ice lenses in wetlands of the WBP, the role that 

climatic variability will play could potentially have an impact on the severity of early 

season ET fluctuations. 

Therefore, when designing an approach to quantify or model wetland ET from 

sub-humid regions such as the WBP, it is essential to characterize vegetation community 

patterns. That is, differences in surface cover vegetation, regardless of the overlying 

canopy cover and general nature (classification) of the wetland can contribute to 

significant spatiotemporal variability in ET. 
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Chapter Three 

Evapotranspiration from above and within a Western Boreal Plain aspen forest 

3.0 Introduction 

At the southern edge of the boreal forest, deciduous aspen are found with a 

northern limit roughly corresponding to the 13°C July isotherm (Peterson and Peterson, 

1992). Of the geographical areas where Populus are the predominant genus, over 71% 

(ground area basis) occurs in the boreal forest region with 20-40% of Canada's 

aspen/poplar stands located in the prairie provinces (Peterson and Peterson, 1992). In 

fact, 13.5% of the southern boreal forest is dominated by aspen stands while another 

15.4% is covered by mixed deciduous forests (Hall and Allen, 1997; Blanken et al., 

2001). However, only recently has aspen been recognized as an economically important 

species with a variety of uses such as pulp, stand board, lumber, plywood and fuel 

experiencing an increase in harvesting practices. Further, the impact of global climate 

change on precipitation and temperature regimes on the Western Boreal Forest (WBF) 

threatens to significantly alter forest water budgets (Wullschleger and Hanson, 2006). 

Although aspen are intolerant to shade, they are able to colonize disturbed areas quickly 

since they are a clonal species (Blanken et al., 2001). This is especially significant in the 

Western Boreal Plain (WBP) portion of the WBF, which supports a significant portion of 

Canada's merchantable aspen stands within a sub-humid climate. The role of aspen 

within this climatic setting is significant as aspen are a high water use species and as such 

require an ample regional water supply (Blanken et al, 2001). Thus, the atmospheric 

interactions of aspen stands with the hydrologic cycle need to be understood within this 

climatic setting. 



Over many landscapes, plants exert a strong control on evaporation processes, 

because of their ability to access, transport, and evaporate water that would otherwise be 

detached from terrestrial water cycles (Calder 1998; Nosetto et al. 2005). The deciduous 

nature of aspen in addition to their clonal root systems has an especially important effect 

on the water and energy exchanges from these southern boreal portions of the boreal 

forest (Blanken et al., 2001). In addition, the sparse and trembling nature of aspen crowns 

often allows a sufficient amount of light penetration and the proliferation of understory 

species such as Rosa acicularis and Viburnum edule, which also contributes to the 

canopy energy and mass exchanges. Whether the shrub understory found in aspen stands 

is a result of the ample light penetration or due to the relatively higher nutrient status of 

Populus ecosystems is not clear (Blanken, 1998). Regardless though, well developed 

deciduous shrub understories (Rosa acicularis and Viburnum edule) are typical within 

aspen stands (Peterson and Peterson, 1992) and the extensive areal cover and relatively 

large leaf area of this understory species necessitates the importance of the understory 

relative to the overstory in terms of water and energy exchange be quantified. 

Total evapotranspiration (ET) from a boreal forest stand can be partitioned into 

three main source components: canopy evapotranspiration (ETc), understorey 

evapotranspiration (ETB) and evaporation from the soil surface (Es) (including bare soil, 

grasses, mosses and herbaceous species), with ET given as: 

ET = ETC + ETb + E s (3.1) 

Despite a large body of literature, there is still considerable uncertainty about this 

partitioning of ET into its various components and their key controls in boreal forest 

ecosystems, especially in the climatically tenuous WBP. Previous studies in other regions 



of the boreal forest have recognized canopy wetness as the main driver of the above 

canopy water flux (Barbour et al. 2005). The degree, to which these two main (ETc and 

ETB) components dominate the partitioning of forest water fluxes on daily or annual 

timescales is largely determined by the openness of the canopy and character of the 

rainfall. Closed-canopy forests often see limited contributions from the other sources of 

forest water flux (i.e. understorey evapotranspiration and evaporation from the forest 

floor) because of the small amounts of advected and radiant energy available below the 

canopy (Wullschleger et al. 1998a). In contrast, open-canopy forests may see much larger 

contributions from these components (Barbour et al. 2005; Unsworth et al. 2004), but few 

studies have examined this relative to the different layers within the forest stand (Blanken 

et al., 1998). 

ETc is generally the largest component of both the total water vapour flux to the 

atmosphere and the water budget in forested ecosystems (Schafer et al. 2002). Extensive 

work has been conducted investigating the environmental controls on ETc by comparing 

measurements of sap flow velocity with soil and environmental variables (Bovard et al., 

2005; Kurpius et al, 2003; Wullschleger et al. 1998a; Hogg and Hurdle, 1997). Studies 

have shown that much of the variation in ETc can be explained by variation in vapour 

pressure deficit (VPD) (Kurpius et al, 2003; Hogg et al., 2000; Hogg et al., 1997; Hogg 

and Hurdle, 1997) suggesting a strong linear relationship until a transitional VPD 

threshold is reached, after which ETc tends to remain relatively constant. Linear 

dependencies of ETc to VPD were found to exist until a threshold VPD of 1.0 kPa in a 

boreal trembling aspen (Popolus tremuloides) stand in Saskatchewan, Canada, above 
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which, a lack of a transpiration response to VPD to be a stomatal response to high VPD 

(Hogg and Hurdle, 1997). 

The ET and VPD relationship can also be sensitive to soil water supply 

(Cinnirella et al., 2002; Wullschleger et al. 1998a), but even fewer have examined this 

relative to the different layers within the stand (Blanken, 1998). Relatively little is known 

about how soil moisture (0) and VPD interact with each other to influence ETc (Bovard 

et al., 2005). Previous studies have suggested a strong negative feedback between VPD 

and canopy conductance, which when coupled with insensitivity to typical 0 variations, 

may result in similar growing season ETc rates between forests growing in comparable 

climates (Humphreys et al., 2003; Oren and Pataki, 2001; Roberts, 1983). Some studies 

have shown that stomatal conductance is generally unaffected by 0 until a deficit occurs, 

at which point transpiration is limited, as trees close stomata in an effort to conserve 

water (Cinnirella et al., 2002; Irvine et al., 2002; Phillips and Oren, 2001; Wullschleger 

et al., 1998a). Further, the deficit required to induce change in canopy transpiration 

differs from site to site, and within a stand, most likely due to differences in vegetation 

type and soil texture, as different plants respond differently to given soil water states 

(Roberts, 2000). 

3.1 Study Objectives 

The objective of this study is to characterize the dynamics of the energy balance 

and ET above and within an aspen dominated upland in the sub-humid WBP with a focus 

on the roles of vegetation and atmospheric conditions. It is hypothesized that above 

canopy aspen dominated ET will be controlled primarily by the vegetation present, thus 

outlining the roles of aspen overstory (Populus tremuloides) with an herbaceous 
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understory (Rosa acicularis and Viburnum edule) structure within a small boreal forest 

catchment. Consequently, these controls are characterized spatially and temporally 

throughout the 2005 and 2006 snow free seasons. Secondly, it is hypothesized that VPD 

and 8 will act as both a control and limitation on whole stand ET, primarily through their 

influence on the above canopy flux. 

3.2 Study Site 

3.2.1. Utikuma Region Study Area 

The catchment studied here is located within the Utikuma Region Study Area 

(URSA), 370 km north of Edmonton, Alberta, Canada (56°4' N, 115°28' W; Figure 3.1). 

URSA is situated approximately 150km south of the discontinuous permafrost zone 

(Woo and Winter, 1993) within the Plains region of the Western Boreal Forest. Climate 

within URSA can be characterized by cold winters and warm summers with average 

temperatures of -14.6 to 15.6 °C (Environment Canada, 2005). Annual potential 

evapotranspiration (PET) averages 517 mm (Bothe and Abraham, 1993), which is 

slightly higher than the average annual precipitation of URSA (481 mm) (Environment 

Canada, 2005). However, Devito et al. (2005) report that on an average cycle of 10-15 

years, annual precipitation surpasses evapotranspiration, although within the sub-humid 

WBP, a water deficit exists during most years. Further, approximately 70% of annual 

precipitation occurs between June and August and is followed by a relatively dry period 

during the fall (Ferone et al, 2004); this period of peak precipitation also coincides with 

the period of maximum evaporation demand (Devito et al, 2005a; Petrone et al, 2006). 
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Snowfall in this area averages less than 100 mm yr"1 and represents less than 25% of the 

total annual precipitation for the region (Marshall et al., 1999; Devito et al, 2005a). 

URSA is characterized by the presence of low relief rolling moraines, low lying 

clay plains and coarse textured outwash plains (Ferone et al, 2004). This study was 

conducted on the moraine portion of the region where glacial tills range from 20 to 240 m 

in thickness and overlie the Upper Cretaceous Smoky Shale Group (Vogwill, 1978) 

(Figure 3.1). The natural drainage patterns of the region are northward towards the Peace 

River Basin but are not well developed due to the presence of many depression lakes, 

ponds and wetland systems that are not connected with the integrated drainage network 

of the region (Vogwill, 1978). The moraine landscape was chosen as these systems are 

dominated by the presence of vertical exchanges of water (Devito et al., 2005a; Redding 

et al., 2006; Redding and Devito, 2008) making this the most susceptible area to any 

fluctuations in climate (Devito et al, 2005b). 
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Figure 3.1: Schematic diagram of the research catchment, location of the instrumentation 
and dominant vegetation landcover units comprising the catchment, Pond 40, Utikuma 
Region Study Area (URSA), Alberta, Canada. 

3.2.2 Study Catchment 

The overstory canopy of the study catchment is predominantly trembling aspen (Populus 

tremuloides), with sporadic clusters of black poplar (Populus balsamifera) in depressions 

and ephemeral draws (Figure 1). The understory vegetation at the site is dominated by 

Alberta rose (Rosa acicularis) and low bush-cranberry (Viburnum edule) in the shrub 
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layer, and twinflower (Linnea borealis) in the herb layer. The forest floor surface is 

dominated by aspen litter with small amounts of mosses (spp) and lichens (spp). Above 

canopy (ACEC) and below canopy (BCEC) eddy covariance measurements were 

established at two towers in an upland area consisting of Gray Luvisolic soils (Soil 

Classification Working Group, 1998) developed from disintegration moraine deposits, 

which are typically silt-rich but spatially heterogeneous, with zones of high clay or sand 

contents (Redding and Devito, 2008; Fenton et al., 2003). 

3.3 Methods 

3.3.1 Above and Below Canopy Eddy Covariance Measurements 

The EC technique was used to measure vertical fluxes of momentum, sensible 

heat (QH) and latent heat (QE) on a continuous basis above an aspen dominated stand 

during the 2005 and 2006 snow-free seasons. The ACEC tower was located on the upland 

south facing slope (SFS) of the study catchment at 7.0 m above the canopy at peak 

growth. The measurement system consisted of a three dimensional sonic anemometer 

(CSAT3; Campbell Scientific, USA), an open-path infrared gas analyser (LI-7500; Li-

Cor, USA) and a fine-wire thermocouple located in the approximate centre of the sonic 

head, which was located 25.0 m above the ground. The IRGA was calibrated as outlined 

in section 2.3.4. Both wind speed and water vapour concentration measurements and their 

fluctuations were obtained at a frequency of 20 Hz. Mean horizontal (v') and vertical (w') 

wind velocities were mathematically rotated to zero following the procedure of Kaimal 

and Finnigan (1994). QE and QH were calculated as the product of the mean covariance of 

the vertical wind speed fluctuations (w') and the scalar fluctuations in water vapour 



density (p v ' ) and temperature (T') as described by Webb et al. (1980). The running mean 

was based on a 300 s time constant; the resultant mean fluxes and various wind 

components were computed every 30 min on a CR23X data-logger (Campbell Scientific, 

USA). The ACEC also consisted of a net all-wave radiation sensor (NR-lite; Kipp and 

Zonen, Netherlands) mounted 24.5 m above the ground on a boom that projected 1.5 m 

horizontally from the tower. Air temperature and relative humidity were measured at 24.5 

m above the ground surface (HMP45C; Vaisala Oyj, Finland). Power to the tower was 

supplied via six solar-powered 12 volt deep-cycle marine batteries with regulators, 

maintained by two 60 watt solar panels. 

Supplemental soil thermal and moisture data was collected at a second tower 

approximately 20 m up slope from the ACEC tower. Soil heat fluxes (Qg) were 

measured using two heat flux transducers (HFT-03; Campbell Scientific, USA), buried 

0.05 m below the litterfall horizon (LFH) - soil interface, and soil temperature and heat 

storage in the upper 0.05 m with a thermopile (TCAV-L; Campbell Scientific, USA). 

Supplemental data was sampled at 60 s intervals and recorded every 30 min on a CR10X 

data-logger (Campbell Scientific, USA). Soil moisture (CS616 TDR; Campbell 

Scientific, USA) and soil temperature using thermistors (107B; Campbell Scientific, 

USA) were recorded at depths of 0.01, 0.10, 0.30, 0.50, and 1.0 m below the LFH-

mineral soil interface. Soil suction (\j/) was measured in profile at 0.1, 0.3 and 0.5 m 

using soil tensionmeters (SW-033; Soil Measurement Systems, USA). Precipitation was 

measured 30 m south of the ACEC tower using a RM Young Tipping Bucket (52202; 
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R.M. Young, USA) with a Tru-Chek metric rain gauge as backup for any missing data 

points. 

A mobile eddy covariance (EC) tower was used to permit the rapid, but rigorous, 

comparison of surface fluxes among the understory components of the catchment 

(Eugster et al., 1997). Continuous half-hourly ET fluxes were measured at 3.5 m above 

the surface within the aspen understory for both the 2005 and 2006 snow free seasons. 

The BCEC tower was situated 20 m upslope of the ACEC tower for a 35 day period 

during green up in 2005 and 33 days in 2006 before being rotated every two weeks from 

June 3 to October 5 in order to characterize the fluxes from varying sites within the 

catchment over both seasons at the temporal scale of synoptic variability (Eugster et al., 

1997). The BCEC was comprised of identical instrumentation and sampling protocols as 

outlined above for the ACEC. Due to the relatively small fetch area of the BCEC site, 

the EC sensors were located at 3.5 m above the surface in order to obtain a flux 

representative of the understory species examined. 

3.3.2 EC Data Filtering and Gap Filling 

Footprint analysis to determine the contributing areas to the measured fluxes at 

the two tower heights was done according to Schuepp et al. (1990). Results from the 

footprint model were used to filter-out data that originated outside the area of interest. In 

order to ensure that both the ACEC and BCEC sensors captured a representative flux 

power spectral density functions were computed using high frequency EC data (20 Hz) to 

determine if the sensor location and sampling intervals were sufficient to capture the 

large lower frequency and small higher frequency eddies (Petrone et al., 2001). Prior to 



analysis, the EC data was corrected for density effects (Webb et al., 1980; Leuning and 

Judd, 1996) and sensor separation (Leuning and Judd, 1996; Blanford and Gay, 1992) 

(see Section 6.2). As a final correction to the flux data the energy balance closure was 

calculated and forced for the study period (Petrone et al., 2001). The energy budget for 

ACEC and BCEC can be described as; 

Q * = QE + QH + QG + JT (3 .2) 

where Q* is net radiation (Wm" ), Qe is the latent heat flux (Wm"), Qh is the sensible 

heat flux (Wm"2), Qg is the soil heat flux (Wm"2) and Jt is the canopy storage (Wm"2). Jt 

was calculated based on slope regressions of Q* as outlined in Blanken et al. (1998). 

Typically, eddy covariance underestimates turbulent fluxes (QH and QE) resulting in a 

residual flux density. Causes for this underestimation have been examined in great detail 

within the literature and are commonly ascribed to high- and low frequency eddies that 

are not measured at the sampling frequency (20 Hz) (i.e. Mahrt, 1998; Massman, 2000; 

Finnigan et al., 2003) and different effective measurement areas of radiation components 

and flux components and their respective measurement errors (Aubinet et al., 2000; 

Twine et al., 2000). In this study, QH and QE were corrected for underestimation by EC 

by adjusting for energy balance closure (i.e. Barr et al., 2002; Wilson et al., 2000). The 

slope of the relationship between net radiation minus ground heat flux (Q*-QG) and the 

total turbulent flux (QH + QE) indicated that EC underestimates turbulent fluxes by 21% 

for all measurement periods. There were no significant inter-annual differences in the 

closure estimates, nor were there significant differences associated with wind direction. 

Closure is most reasonably forced by assuming that the measured available energy is 



representative of the plot that the EC sensors are measuring (Petrone et al., 2001), leaving 

the sensible and latent heat fluxes to be adjusted (Twine et al., 2000). It was assumed 

that the Bowen ratio was correctly measured by the EC system and individual values of 

the sensible and latent heat fluxes were adjusted to balance the energy budget (Barr et al., 

1994; Blanken et al., 1997; Twine et al., 2000; Petrone et al., 2001). 

Above canopy fluxes were removed when u* < 0.1 m s"1, where u* is the friction 

velocity as measured by EC (Figure 6.4), while within canopy fluxes were filtered when 

u* <0.29 m s"1 (Figure 6.5). These thresholds were defined from poor energy balance 

closure at low wind speeds (see Section 6.2). Flux measurements were also removed 

during periods of rainfall and when rapid and unexpected changes in state variables 

occurred over halfhour intervals using a criteria of 1.5 standard deviations from the mean 

value for that time period (Restrepo and Arain, 2005). Quality controlled EC 

measurements of ET had an error of approximately 23% prior to correction. 

Several strategies were used to compensate for missing data due to the above 

conditions and occasional power failure. Short half-hour breaks were filled by linear 

interpolation. For longer breaks (i.e. >12 half-hour periods), turbulent fluxes were 

estimated using the mean diurnal variation method (Falge et al., 2001) replacing missing 

observations by the mean for that time period based on previous and subsequent 14-day 

periods. Missing or rejected data occurred for a total of 19% of all possible time periods 

during the study, mostly during major precipitation events and nocturnal periods. Finally, 

the flux footprint, or integrated area from which the tower is measuring scalar fluxes was 

calculated as described by Scheupp et al., (1990). The peak flux ranged from 70 to 110 m 



upwind, with approximately 95% of the cumulative flux footprint within 300 m upwind 

of the tower, indicating that fluxes represent aspen dominated upland. 

3.3.3 Chamber Measurements of Surface Evaporation 

Surface evaporation measurements were conducted using a closed system EGM-4 

Infrared Gas Analyzer (PP Systems, Amesbury, MA.) where C02, vapour pressure, 

temperature, PAR and relative humidity (RH) were collected once per minute over a 

5min interval. Calculations were adapted from (McLeod et al., 2004) by integrating 

micrometeorological factors into the calculations. The sampling protocol was aimed at 

evaluating the change in surface E dynamics over the 2005 and 2006 snow-free seasons 

(May - September). The majority of samples were obtained between the peak growth 

hours of 08:00 and 16:00 MST to minimize flux variations caused by the diurnal cycle 

(Laporte et al., 2002) and to obtain fluxes operating at maximum levels to ensure existing 

spatial variability is captured. All collars were measured twice per week in order to 

acquire a greater spatial data set over the study period, rather than the more common 

approach of extensively replicating a few sites, less frequently (LeCain et al., 2002). As 

chamber measurements provide only point measurements the daily sampling scheme was 

altered by randomly selecting the sampling sites on a daily basis and fluxes were grouped 

into climatically distinct seasonal periods in order for temporal/seasonal comparisons to 

be made (Petrone et al., 2008; Petrone et al., 2003; Waddington et al., 1998). 

Collars were constructed of 19 cm (inside diameter) polyvinylchloride (PVC) 

plastic piping cut to a height of 15 cm with perforated grooves etched in the lower 6 cm 

of the collar to allow for smooth insertion into the soil. The chamber was then placed in 



a 3 mm wide groove cut into the top of each collar. Collars were placed 4 cm into the 

soil, 2 weeks prior to the first sampling measurement being taken to ensure that 

disturbance was minimized. The use of these collars permits repeated measurements at a 

single location, while minimizing soil disturbances (root growth into the soil and under 

the collar) in order to better assess temporal influences (Tufekcioglu et al, 2001). 

In order to collect point measurements of soil E the chambers used were placed on 

the collars and the grooves were filled with water to obtain an air tight seal. Chambers 

(0.03 m2 surface area, 0.06 m3 volume) were made of clear plexiglass with the ability to 

transmit 87% of PAR (Waddington and Roulet, 2000). Inside chamber volume and 

adjustment height was recorded at every collar site for each measurement by averaging 

the height of the ground surface to the top of the collar at 4 reference locations. 

3.3.4 Chamber Flux Calculations 

In order to assess the fluxes of water vapour from forest environments, measurements of 

the rate of vapour density increase inside the measurement chambers were conducted as 

per McLeod et al., (2004). To calculate the instantaneous rate of evaporation (E,„) the 

slope of vapour pressure from within the chamber was plotted against time using the least 

squares method. This calculated slope value was then used within a modified equation 

(Stannard, 1988) to calculate Em over the 5 min measurement interval, 

where Ein is the rate of surface evaporation (mm hr"1), M is the slope of the vapour 

pressure over time measurement for each interval (g/m3 s"1), V is the volume inside the 



•3 

chamber (m ), C is the calibration factor to account for vapour absorption within the 

chamber (dimensionless) and A is the area of ground surface covered by the chamber 

(m ) (Brown et al., in press). The conversion factor of 3.6 was used in order to convert a 

volume of water per unit area (g H2O m"2 s"1) into an hourly flux rate (mm hr"1). The 

calculation of C was obtained through the methods outlined by McLeod et al., (2004) 

whereby an absorption factor was determined (see Section 6.1). 

3.3.5 LAI Measurements 

Forest mensuration plots were established at Pond 40 in order to assess the variations in 

LAI and other forest stand characteristics within the catchment. Three 15 m x 15 m plots 

were sampled. Tree height and live crown length were measured using a vertex sonic 

hypsometer (for crown apices that were not distinct, the average of three measurements 

was recorded), diameter at breast height (DBH) was measured with a standard DBH 

caliper, and crown diameter was measured along a north-south and east-west crown axes 

using a survey tape measure. All trees with a DBH greater than 9 cm were included 

within the survey as trees with a DBH of less than 9 cm were determined to not constitute 

a significant element in the overall canopy (Table 3.1). 
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Max. Leaf Area Index, LAI 
Max. Plant Area Index, PAI 
Diameter at breast height, DBH (cm) 
Base Diameter (cm) 
Tree Height (m) 

1.4 (±0.13) 
0.9 (±0.06) 
12.9 (±1.5) 
15.5 (±2.6) 
16.6 (±0.73) 

Table 3.1: Summary table of catchment forest characteristics for the upland aspen 
dominated forest situated at "Pond 40", Utikuma Region, Alberta Canada. Measurements 
consisted of three 15 m x 15 m plots situated on the south facing slope (SFS) of the 
catchment within the calculated footprint of the EC tower. Values in parentheses are 
standard errors (SE) of measurement variables. 

3.4 Results and Discussion 

3.4.1 Climate and Environmental Conditions 

Mean daily air temperatures (Ta) ranged between 2.3 °C (DOY 141) and 19.6 °C (DOY 

215) during the 2005 study period (Figure 3.2a) and 2.5°C (DOY 258) to 24.9°C (DOY 

204) during the 2005 and 2006 study periods respectively. Overall seasonal patterns in 

daily averaged Ta were similar from June to August in 2005 and 2006, decreasing after 

DOY 210 (Figure 3.2a). Seasonal patterns in PAR were similar to those observed for Ta 

while PAR showed seasonal variation across both the 2005 and 2006 snow-free seasons 

with peaks in average daily PAR occurring mid season, between DOY 175 and DOY 215 

of approximately 170 Wm"2 (Figure 3.2b). 

The study site received approximately 235 mm of precipitation during the 2005 

snow-free season with the largest event occurring on 25 July (DOY 206) delivering 45 

mm (Figure 3.2c). The average event during the 2005 study season was approximately 

6.8 mm. During the 2006 study season approximately 226 mm of precipitation occurred 

with the largest event occurring on May 4 (DOY 124) with 28 mm (Figure 3.2d) and an 

average event being 7.4mm. Although precipitation events in the area of Pond 40 were 
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generally evenly distributed during the 2005 study season, larger magnitude events 

occurred more frequently from 19 June to 28 August (DOY 170-240; Figure 3.2c). 

During the 2006 study season precipitation events occurred earlier than normal and a 

prolonged "event free" period existed from 6 August through to 15 September. 

Historically June-August represents 70% of the annual precipitation (Devito et al., 2005). 

This was observed during the 2005 study period but was not observed during the 2006 

study period. 

-3 -3 

Daily averaged rooting zone (0-50cm) volumetric moisture content (0) (m m" ) in 

2005 peaked on DOY 206 at 0.27 in response to a 45 mm precipitation event (Figure 

3.2c). This event acted to replenish soil moisture storage for the upland soils. However, 

limited responses to subsequent precipitation events occurred during the 2005 season and 

the 0 steadily declined throughout the remainder of the snow-free season. During the 

2006 period, 0 peaked much earlier on DOY 127 in response to a 47 mm precipitation 

event over a three day period and was adequately replenished by several smaller events 

until DOY 201 where an event free period of 40 days occurred and 0 decreased along 

with evaporative demand (Figure 3.2d). 

Daily averaged early season VPD fluctuations were greatest during the 2006 

season ranging between 1.5 kPa (DOY 123) and 0.2 kPa (DOY 169) (Figure 3.2e). Early 

season measurements were unavailable in the 2005 season as the instruments were not 

functional until DOY 187. Mid-season (peak growth) VPD for both seasons stabilized 

around 0.8 kPa but ranged from 1.0 kPa to 0.4 kPa. Increases in daily averaged VPD 
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occurred once senescence began for both seasons with an average of 0.9 kPa during this 

time period. 
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Figure 3.2: Daily Averaged a) Air Temperature (°C), b) Photosynthetic Active Radiation 
(PAR) (W m"2), c) 2005 Soil Moisture (6) (m3 m"3) of the rooting zone (0-50cm depth) 
and daily precipitation, d) 2006 Soil Moisture (0) (m m" ) of the rooting zone (0-50cm 
depth) and daily precipitation and e) Vapour Pressure Deficits (VPD) (kPa) for the 2005 
and 2006 snow-free seasons, Pond 40, Utikuma Region Study Area (URSA), Alberta, 
Canada. 

72 



3.4.2 Flux Footprint Analysis 

Analysis of the above canopy flux source indicates that the majority of the fluxes 

originated from the westerly upwind area, encompassing a predominantly aspen 

dominated hillslope (Table 3.2a). The 2005 season saw the maximum flux (max) 

originate from 95 m during the green/late green periods and 99 m during the senescence 

period for a seasonal average of 96 m. During the 2006 season, the maximum flux 

originated from 68 m during the early green period and grew to 71 m and 92 m during the 

green/late green and senescence periods, respectively producing a seasonal average of 74 

m, a 12% decrease in maximum flux source area. Flux source areas are dependent on 

windspeed (u) (m s"1) and wind direction (degrees) along with the upwind source 

vegetation and canopy structure components. Period averaged u was 2.1 m s"1 during the 

green/late green period and 2.5 m s"1 during senescence in 2005. In 2006, period averaged 

u during the early green period was 1.6 m s"1, 1.9 m s"1 and 2.4 m s"1 during the green/late 

green and senescence periods, which ultimately contributed to a reduction in flux source 

area between both years. Friction velocity (u*) (m s"1) averaged 0.40 in 2005 and 0.38 in 

2006, with daily maximums occurring during the green period for both years. Given these 

factors the area contributing to 80% of the flux averaged 347 m during green/late green 

and 376 m during senescence periods giving a seasonal average of 356 m. During the 

2006 season the 80% flux contribution originated from 289 m during the early green 

period and grew to 290 m during the green/late green period with a peak during the 

senescence period of 366 m for a seasonal average of 304 m. 

For ETb fluxes the 2005 season saw the maximum flux (max) originate from 19 m 

during the early green period, 15m during the green/late green periods and 22 m during 



the senescence period for a seasonal average of 19 m (Table 3.2b). During the 2006 

season, the maximum flux originated from 21 m during the early green period and was 

reduced to 19 m and 20 m during the green/late green and senescence periods, 

respectively producing a seasonal average of 20 m. Friction velocity (u*) (m s"1) averaged 

0.3 in 2005 and in 2006, with daily maximums occurring during the early green period 

for both years. Given these factors, the area contributing to 80% of the flux in 2005 

averaged 89 m during the early green, 76 m during green/late green and 96 m during 

senescence periods giving a seasonal average of 87 m. During the 2006 season the 80% 

flux contribution originated from 93 m during the early green period and was reduced to 

82 m during the green/late green period with a peak during the senescence period of 97 m 

for a seasonal average of 91 m. 
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With knowledge of the flux source distance and magnitudes, an understanding of 

the directions of the upwind source is crucial in interpreting the nature of EC fluxes and 

associating the fluxes with a spatial component within the catchment. Figure 3.3 outlines 

a daily averaged histogram of the upwind source areas in degrees from the tower. In 

2005, there were 36 days during the examined period where the flux originated from the 

west, while 29 days saw a flux originating from the southwest. The 2006 study period 

had 43 days in which the flux originated from the west and 41 days where the flux 

originated from the southwest. There were 30 days in 2006 where the flux source was 

from the NW, a significant increase from 2005, which saw only 11 days. Combining the 

knowledge of the orientation of the sensors with both the flux source distance and 

direction it can be determined that the majority of the fluxes seen over both seasons were 

from the aspen dominated upland where Populus tremuloides was the dominant species 

present. 

76 



50 

c a> 
a- 40 -
a) 

c o 
| 30-
Q 
"O C 
^ 20 -
T3 a> O) 
2 
a> 
^ 10 -> 

ro Q 
0 -

N NE E SE S SW W NW 

Figure 3.3: Histogram of daily averaged above canopy wind direction frequency as 
classified in 45° intervals for the 2005 and 2006 snow-free seasons, Pond 40, Utikuma 
Region Study Area (URSA), Alberta, Canada. 

3.4.3 Temporal Dynamics of the Energy Balance 

The ACEC tower was installed on DOY 187 of 2005 and was removed on DOY 291. 

Seasonal patterns in surface energy balance components were similar within 2005 and 

9 9 2006 study seasons (Figure 3.4). Q* averaged 106 W m" and 165 W m" during the 

growth periods in 2005 and 2006 respectively. Qe followed patterns in Q* quite closely 

in both years and represented 61% and 68% of Q* during the green period in 2005 and 

2006, respectively (Figure 3.4). QH was the dominant flux in the early green and late 

green periods and remained relatively constant throughout the green period in both 

seasons. Qg fluxes had the greatest contribution during the early green period with an 

average of 25 Wm" but dropped to approximately 10 Wm" once peak growth had 
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occurred in the canopy (Figure 3.4b). QG was similar between both study seasons. Daily 

averaged Jt again remained relatively constant through the study period at approximately 

10 Wm"2, with also little seasonal variation. 
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Day of Year 

Day of Year 

Figure 3.4: Daily averaged above canopy energy flux densities for the a) 2005 and b) 
2006 snow-free seasons, Pond 40, Utikuma Region Study Area (URSA), Alberta, 
Canada. Transitions between defined growth periods are denoted by vertical lines. 
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The diurnal partitioning of energy fluxes from above the canopy throughout the 3 

seasonal periods is shown in Figure 3.5. The early green period of 2006 (Figure 3.5a) 

experienced peak Q* mid-afternoon (MST) (401 Wm"2) with a QH being the dominant 

2 2 flux at 296 Wm" and Qe at 120 Wm" . Jt fluxes were greatest in the early morning but 

decreased during the afternoon hours. Green period for 2005 (Figure 3.5b) and 2006 

(Figure 3.5c) indicate the overtaking of QE fluxes as the dominant flux source, with 2 0 0 6 

fluxes being only slightly larger. Figures 3.5d and 3.5e show the senescence period 

diurnal flux partitioning in both seasons during which Q* is reduced to peak of -200 

Wm" in both years, and Qh again becomes the dominant flux. 
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Figure 3.5: Period averaged diurnal above canopy energy flux densities for a) Early 
Green period 2006, b) 2005 Green/Late Green Period, c) 2006 Green/Late Green Period, 
d) Senescence 2005 and e) Senescence 2006, Pond 40, Utikuma Region Study Area 
(URSA), Alberta, Canada. 
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3.4.4 Overstory and Understory Flux Partitioning 

Examining the relationships between the above and below canopy fluxes shows the 

nature of the understory contributions in determining whole stand-scale energy fluxes. 

With limited development of the aspen canopy during the early green period maximum 

incoming solar radiation is available for understory development. Q* within the canopy 

during the early green period is at or equal to the above canopy measurements, which acts 

to promote the initial growth and development of the understory herbaceous species 

(Rosa acicularis and Viburnum edule) (Figure 3.6a). The partitioning of that increased 

Q* during the early green period that reaches the understory contributes more to Qe as 

compared to the above canopy measurements. Qe fluxes increases steadily over the early 

green period as an increase in herbaceous development occurs eventually surpassing the 

above canopy contributions where green up has yet to begin. Qh shows an inverse 

relationship to Qe with greater contributions from the understory during leaf development 

up until approximately DOY 135, where it is surpassed by the above canopy 

contributions and Qe becomes the dominant flux from the understory (Figure 3.6b and 

3.6c). 
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Figure 3.6: Daily averaged energy flux densities of a) Net Radiation (Q*) (W m"), b) 
Latent Heat Flux (QE) (W m~2) and c) Sensible Heat Flux (QH) (W m'2) for both above 
and within canopy measurements during the 2005 and 2006 snow-free seasons, Pond 40, 
Utikuma Region Study Area (URSA), Alberta, Canada. Transitions between defined 
growth periods are denoted by vertical lines. EG represents early green period, G 
represents green period, LG represents the late green period and S represents senescence. 
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During the green period when full canopy leaf out has occurred at both levels Q* within 

the understory is approximately half of the above canopy values. Similarly, the 

partitioning of Qh and Qe are reduced in magnitude during the green period averaging 

9 9 

~65 Wm" and 45 Wm* , respectively (Figure 3.6b and 3.6c). During the green period the 

below canopy is contributing ~ 20% on average of the canopy Qe (Figure 3.6b). During 

the late green period Q* is -76% of the above canopy Q*, which translates to a reduction 

in both Qe and Qh of similar magnitudes. 

3.4.5 Seasonal and Diurnal Partitioning of Evapotranspiration 

Above canopy evapotranspiration (ETc) shows a direct response to net precipitation 

inputs across both the 2005 and 2006 snow-free seasons (Figure 3.7b). Peaks in daily ETc 

can be seen following precipitation events, while the magnitude of the precipitation 

events also affects the maximum rate of daily ETc across both seasons. As precipitation 

is intercepted by the canopy during green periods, ETc increases, suggesting the 

dominance of diurnal evaporation of intercepted water from leaf catch atop the canopy. 

Following times of no precipitation, ETc is reduced and is presumed to follow the 

controls of transpiration across the upper canopy. In 2006, early green period ETc 

averaged 1.9 mm d"1 with a maximum occurring on DOY 144 of 2.9 mm d"1 (Figure 

3.7b). Green/late green period ETc in 2005 averaged 3.1 mm d"1 with maximum ETc 

occurring on DOY 216 of 4.9 mm d"1, while in 2006 ETc averaged 3.5 mm d"1 with a 

period maximum of 5.9 mm d"1 following a 23 mm precipitation event (Figure 3.7b). 

Peaks in ETc across both seasons occurred following days where precipitation events 

occurred that were greater than 10 mm. In 2006 late green period ETc averaged 1.1 mm 
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d"1 and peaked on DOY 249 at 1.6 mm d"1, again following a five day period of 

precipitation totaling 10 mm. Senescence period ETc in 2005 averaged 0.6 mm d"1 and 

were relatively stable during that time period, while in 2006 ETc averaged 0.7 mm d"1. 

Below canopy evapotranspiration (ETB) averages 1.1 mm d"1 during the early 

green period and increases by 12% on DOY 139 in 2005, corresponding with understory 

vegetation emergence (Figure 3.7c). Larger shorter period increases in ETB were 

observed in 2006 relative to 2005. For example, an increase in ETb occurred on DOY 

141 from an average of 1.1 mm d"1 before understory leaf out to an average of 3.5 mm d"1 

once the understory canopy had developed. Green/late green period ETb was 

approximately 45% of ETc over both study seasons with averages in 2005 of 1.6 mm d"1 

and 1.9 mm d"1 in 2006. ETb during the green period showed maximum rates of 2.1 mm 

d"1 on DOY 205, which followed the 45 mm precipitation event in 2005 and 2.8 mm d"1 

on DOY 203 in 2006, again following a 25 mm precipitation event. Senescence period 

ETb in 2005 was approximately 60% of ETc rates with an average of 0.4 mm d"1 and was 

stable across the late season measurement period, in which no precipitation events 

occurred. In 2006, ETB during late green averaged 0.9 mm d"1 peaking during the early 

portion of late green when canopy development had just begun to cease. A sharp decrease 

in ETb was observed on DOY 256, following the leaf off and saw a peak following the 10 

mm event in which there was limited canopy interception, allowing for the majority of 

precipitation to reach the understory. 
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Figure 3.7: Daily averaged a) rooting zone Soil Moisture (0) (m m" ) (0-50cm) and daily 
precipitation (mm), b) above canopy ET (mm) and c) within canopy ET (mm) for the 
2005 and 2006 snow-free seasons, Pond 40, Utikuma Region Study Area (URSA), 
Alberta, Canada. Transitions between defined growth periods are denoted by vertical 
lines. EG represents early green period, G represents green period, LG represents the late 
green period and S represents senescence. 
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During the 2005 study season Es remained constant with averages of 0.13 (±0.04), 

0.18 (±0.09) and 0.11 (±0.08) mm hr"1 during the early green, green/late green and 

senescence periods, respectively (Table 3.3). In an effort to partition scalar fluxes of ET 

between differing layers within the structure of the aspen forest measurements of ETc 

and ETB were time matched to the closest half-hour interval when ES was measured. 

Subtracting ES values from B C E C data shows that ETB averaged 0.17 mm hr"1 (±0.06) 

with 0.13 mm hr"1 (±0.04) and 0.10 mm hr"1 (±0.04) occurring during the early green, 

green/late green and senescence periods respectively. ETc averaged 0.25 mm hr"1 

(±0.12) and 0.15 mm hr"1 (±0.08) during the green/late green and senescence periods, 

respectively. There were no ETc measurements made during the early green period of 

2005. In 2006 Es again remained relatively constant across the season with averages of 

0.14 mm hr"1 (±0.05) during early green, 0.19 mm hr"1 (±0.08) during the green/late green 

and 0.13 mm hr"1 (±0.04) during the senescence period (Table 3.3). ETb contributions 

averaged 0.21 mm hr'1 (±0.09) during the early green period, and decreased during the 

green/late green period to an average of 0.15 mm hr"1 (±0.06) and 0.14 mm hr"1 (±0.06) 

during the senescence period. Finally, ETc contributions averaged 0.19 mm hr1 (±0.11), 

0.28 mm hr"1 (±0.13) and 0.17 mm hr"1 (±0.08) during the early green, green/late green 

and senescence periods. 
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3.4.6 Soil Moisture (0), Soil Suction (\|/) and Evapotranspiration 

The relationships between rooting zone soil moisture (0) (average 0 over the top 50cm) 

and soil suction (\|/) with ETc over three selected periods in 2005 and four selected 

periods of growth through the 2006 season shows the interconnected dependence of the 

variables (Figure 3.8 and 3.9). During the 2005 study season the green period 0 depletion 

is greatest and shows direct correlation with peak daily ETc and maximum daily vjy. 

Maximum rooting zone V)/ peaks midday at 158 kPa corresponding with peak ETc of 0.28 

mm hr"1 (Figure 3.8a). The peak vj/ and maximum seasonal ETc rates result in a reduction 

in 0 from 0.232 m3 m"3 to 0.218 m3 m"3. During the late green period vy is reduced in 

magnitude (94 kPa) compared with the green period but the amplitude of the variation 

remains approximately the same and is correlated with a 0 depletion of 0.203 m m" to 

3 3 * • 

0.193 m m" while peak daily ETc rates reach -0.2 mm with peak midday \\i reaching 94 

kPa (Figure 3.8b). The senescence period in 2005 shows limited response to 0 depletion 

as a drastic reduction in ETc (-0.07 mm hr"1) coupled with limited \\i in the rooting zone 

(~ 35 kPa). These senescence period patterns are a result of the rooting zone demand 

being reduced and the plants beginning to shut down or become dormant for the winter 

season. 
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Figure 3.8: Precipitation free 4 day periods for the green (G), late green (LG) and 
senescence (S) periods of rooting zone Soil Moisture (0) (m m - ) (solid blue line), 
rooting zone soil tension (ij/) (kPa) (dashed red line) and above canopy ET (ETc) (mm) 
for the 2005 snow-free season, Pond 40, Utikuma Region Study Area (URSA), Alberta, 
Canada. 
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During the 2006 study season early green period (DOY 135-138) 0 depletion 

from 0.255 to 0.235 m3 m"3 occurs when \\i and ETc reach daily maximums of 82 kPa and 

0.18 mm hr"1, respectively (Figure 3.9a). Similar trends are observed for the green period 

with 0 depletion of 0.208 to 0.187 m3 m"3 coupled with a peak y of 120 kPa and 

maximum daily ETc rate of 0.31 mm hr"1 (Figure 3.9b). Late green period shows a 0 

depletion of 0.203 to 0.182 m3 m"3 and a maximum daily \|/ of 96 kPa and ETC of 0.29 

mm hr"1 (Figure 3.9c). Senescence in 2006 again shows limited 0 depletion with reduced 

daily maximum \\i (-37 kPa) and limited ETc (0.12 mm hr"1) (Figure 3.9d). This results in 

limited 0 depletion within the rooting zone. 

Other studies (c.f. McLaren et al., 2008) have suggested that the diurnal increases 

in 0 are evidence of hydraulic lift. However, even after calibration and temperature 

corrections the range in TDR data reported here are generally not greater than the range 

in potential instrumental error. While the downward trend in 0 over the 3 day period does 

provide evidence of general decline in rooting zone 0, the diurnal patterns in v|/ provide a 

clearer indication of the occurrence of hydraulic lift occurring in response to ET demand. 

This is especially evident when comparing green and senescence period data where ET 

and 0 diurnal variation and maximums are decreased but the amplitude of the daily 

changes in 0 remains basically the same. 

Figure 3.8 and 3.9 show that a delay exists in the response of 0 to morning 

increases in v|/ throughout the snow-free season of both 2005 and 2006. As evaporative 

demand begins during early morning hours an increase in i|/ is observed along with ET. 



However, over all periods the 0 response is delayed until ETc reaches peak daily values 

at which time i|/ decreases until daily ETc is limited and a "bleeding effect" of soil water 

demand permits the capillary rise to occur, causing 0 to increase gradually (McLaren et 

al., 2008). These subtle changes in 0 occur throughout the snow-free seasons of 2005 and 

2006, however are most pronounced during peak growth when water demand from the 

aspen roots is at its greatest (Caldwell et al., 1998). While during senescence periods 

when root water uptake is all but removed a limited response is observed in 0 within the 

rooting zone. 
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Figure 3.9: Precipitation free 4 day periods for the early green (EG), green (G), late green 
(LG) and senescence (S) periods of rooting zone Soil Moisture (0) (m3 m"3) (solid blue 
line), rooting zone soil tension (vy) (kPa) (dashed red line) and above canopy ET (ETc) 
(mm) for the 2006 snow-free season, Pond 40, Utikuma Region Study Area (URSA), 
Alberta, Canada. 
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3.4.7 Atmospheric Controls and Evapotranspiration 

Vapour pressure deficit (VPD) is expected to be the most important environmental factor 

governing the transpiration of boreal deciduous forests when 0 and radiation is not 

limiting (Hogg et al., 1997; Blanken et al., 1997). Atmospheric controls on ET including 

VPD and photosynthetic active radiation (PAR) over the three periods of the snow-free 

season and the differences between canopies are depicted in Figure 3.10. Peak above 

canopy ET rates during the early green period are observed closer to mid afternoon 

(-16:00 MST) at 0.1 mm hr"1. Peak ET rates from above the canopy occur just prior to 

midday (12:00 MST) at 0.18 mm hr"1 during green periods while senescence peak rates 

occur again closer to midday (12:00 MST), similar to early green period timing at 0.04 

mm hr"1. Early green from below the canopy shows similar diurnal ET patterns and is 

slightly less than the above canopy measurements when averaged over the entire growing 

period with peak ET occurring late afternoon at 0.08 mm hr"1. Below canopy ET shows 

similar timing to that of the peak daily ET measured from above the canopy however is 

reduced to 0.11 mm hr"1. Senescence period from below the canopy peaks in a similar 

fashion to the above canopy measurements in timing at -0.02 mm hr"1 close to 12:00 

MST. 

Maximum and minimum atmospheric demand as indicated by the maximum of 

VPD from above and below the canopy can provide insight into the nature of diurnal ET 

patterns at both scales. Figure 3.10b shows the diurnal patterns of VPD over the three 

snow-free seasons from above and below the canopy layers. Above canopy peak VPD 

occurs during the green period and is delayed compared to peak ET for the same growth 

period which occurs at 13:00 MST of 1.2 kPa. For the early green period, peak VPD 
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occurs close to 12:00 MST at 1.1 kPa, approximately 4 hours earlier than peak ET rates 

during the same growth period, while senescence occurs during the same time period of 

the day however at a much less magnitude (0.65 kPa) (Figure 3.10b). Below the canopy, 

peak VPD is observed during the early green period with daily maximums of 0.9 kPa 

occurring around solar noon. Peaks in VPD during both the green and senescence periods 

of the canopy occur during a similar time window but are reduced to 0.62 kPa and 0.39 

kPa, respectively (Figure 3.10b). 

PAR measurements show similar patterns to those of ET from above the canopy 

with peaks occurring at 12:00 MST of 350 W m" for the green period (Figure 3.10c). 

Comparing the early green and senescence phases of the snow-free seasons shows that 

similar PAR values and peaks are recorded. Peaks of -210 W m"2 are observed for both 

early green and senescence, the only differences between the two growth periods is the 

duration of positive PAR values, as early green experiences longer positive PAR hours as 

compared to senescence. However the magnitudes of the peaks are similar. Below canopy 

PAR, as with VPD had the highest values during the early green period at just less than 

200 W m"2 with peaks at approximately 14:00 MST (Figure 3.10c). Similar PAR values 

are observed for both the green and senescence periods with peaks occurring at 12:00 

MST of approximately 125 W m"2, with the senescence period being slightly greater. This 

indicates the role of the fully developed canopy layer on PAR levels available to below 

canopy vegetation. Further, during the green periods solar radiation is not limited in this 

aspen dominated system. Figure 3.10 also indicates that the observed midday peaks in 

ET occur just before peak VPD and at approximately the same time as PAR, as 
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demonstrated in other studies (Hogg et al., 1997; Blanken et al., 1997, Grelle et al., 

1999). 

Time (MST) T i m e (MST) 

Figure 3.10: Above (ACEC) and within canopy (BCEC) period averaged diurnal 
comparisons of a) Evapontranspiration (ET) (mm hr-1), b) Vapour Pressure Deficits 
(VPD) (kPa) and c) Photosynthetic Active Radiation (PAR) (W m"2) Pond 40, Utikuma 
Region Study Area (URSA), Alberta, Canada. 
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3.4.8 Interaction Between Atmospheric Demand and 6 

The stomatal dynamics responsible for this ET response to VPD variations are a function 

of the hydraulic response from the soil to leaf (Meinzer and Grantz, 1991; Hogg and 

Hurdle, 1997). However, VPD and 0 are not always independent of each other while a 

relationship should be observable between VPD and canopy ET under differing 0 

conditions, VPD and 0 may not always be independent of each other (McLaren et al., 

2008; Kurpius et al., 2003). If VPD is high at the beginning of the diurnal transition 

cycle (early in the day) initial rates of water transport from the soil through the tree will 

be lower regardless of the regulation of VPD later in the cycle, because stomatal closure 

are met earlier in the day (Kurpius et al., 2003). Examining the relationships between 

initial Vapour Pressure Deficit (VPDo) and ETc shows distinct clustering and breaks in 

the ETc data (Figure 3.11). VPDo is defined as the average VPD between 06:00 and 

08:00 MST. Here we group the data into three distinct categories 

a) VPDo LOW is defined as VPD0 <0.05 kPa 

b) VPDo MID >0.05 kPa and <0.15 kPa 

c) VPDo HIGH > 0.15 kPa 

On days when VPDo was classified as HIGH (ie: high morning atmospheric demand) 

maximum ETc rates are observed. ETc rates reached peak daily maximums (> 0.3 mm hr" 

') during periods when high atmospheric demand was observed during the time period 

when daily atmospheric demand was at the onset. ETc rates were thus controlled by the 

VPD origins for that specific day (ie: high morning atmospheric demand translates to 

high ETc rates for the given days). Days in which VPDo was classified as MID reach 

maximum ETc rates of < 0.2 mm hr"1. Consequently, days classified as VPDo LOW 
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showed the most limited ETc rates (< 0.15 mm hr"1). These distinct clustering patterns 

observed between the three categories, show that for URSA the use of VPDo as a proxy 

for ETc is an appropriate method for characterizing the daily catchment ET rates. Thus, 

to investigate whether changes in 0 can produce diurnal shifts in maximum ET relative to 

maximum VPD data were first grouped by daily initial VPD (6:00 and 8:00 MST) 

(VPDo). 
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Figure 3.11: Relationship between above canopy ET (ETc) (mm hr"1) and VPD (kPa) 
based on VPD0 thresholds of a) VPD0 LOW <0.05 kPa, b) VPD0 MID >0.05 kPa and 
<0.15 kPa and c) VPD0 HIGH > 0 . 1 5 kPa, Pond 40, Utikuma Region Study Area 
(URSA), Alberta, Canada. 

Given that the vegetation comprising the understory will differ in the amount of 

solar radiation received and root structure, it can be expected that this relationship will 
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differ for ETc and ETB. The relationship between daily maximum ET and VPDo FOR both 

above and within the canopy layer during the green periods of 2005 and 2006 are shown 

in Figure 3.12. A distinct separation of the data is clear between canopy layers. 

Significant clustering occurs for both the above and within canopy measurements at low 

VPDo levels (<0.10 kPa). Maximum ETB rates reach 0.16 mm hr"1 at VPDo levels less 

than 0.1 kPa. An increase in VPDo from below the canopy does not result in an increased 

maximum daily ET above approximately 0.1 kPa. The same is observed for the 

relationship between daily maximum ETc and VPDo with a leveling of ETc across a 

range of VPD0 values above -0.10 kPa. Significant clustering of daily maximum ETc is 

observed at VPDo levels less than 0.10 kPa. However, the range in ETc at VPDo's 

between 0.1 and 0.4 kPa is greater than observations in ETB (Figure 3.12). The lower 

limit of ETc is approximately 0.15 mm hr"1 with the exception of minimal outliers, which 

corresponds to the upper threshold of the daily maximum ETb- This shows that VPD 

tends to constrain ET within a much narrower range in the understory (Schwartz et al, 

2006). Despite the controls of atmospheric demand on stomatal capture, the root systems 

of the aspen are still able to maintain critical hydraulic gradients from the soil to the leaf 

(Schwartz et al., 2006). 

99 



0.40 -i 

0.35 -

'L- 0.30 -JC 0.30 -

E 
£ 0.25 -
l -
LLI 
£ 0.20 -
3 
£ 
X TO 0.15 -

TO 0.10 -
Q 

0.05 -

0.00 

• • • • 

• • • • •• 

' r a r e ~ . . 

0.0 
—I— 
0.1 0.2 

VPD0 (kPa) 
0.3 0.4 
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Alberta, Canada. 

Thus, it is expected that 0 will influence this relationship between VPD and ET 

and will likely be the limiting factor on ET regardless of atmospheric demand. A 50 day 

precipitation free period in 2006 (DOY 205 to 255) is examined (Figure 3.13). During 

this period of no precipitation inputs the data was binned into 2 0 categories; 0 > 0.20 m 

m"3 and 0 < 0.20 m3 m"3. Maximum ETc rates of 0.33 mm hr"1 are observed when 0 > 

0.20 m3 m"3 (Figure 3.13). Whereas when 0 is limiting (0 < 0.20 m3 m"3) ETC only 

reaches a maximum of 0.17 mm hr"1, with the majority of the ETc clustering below 0.10 

mm hr"1. Thus, it can be observed that ETc rates are limited when 0 approaches the 
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wilting point of the soil (0.15 m3 m"3) regardless of VPD (Saxton et al, 1986) (Table 3.4). 

During periods when 0 is not limited in the rooting zone ETc rates can be maintained at 

higher levels, even at higher VPD's, as long as there is sufficient 0 and hydraulic 

response from soil to leaf is minimized (Meinzer and Grantz, 1991). 
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Figure 3.13: Relationship between above canopy ET (ETc) (mm hr"1) and VPD (kPa) for 
periods during the 2005 and 2006 peak growth periods when Soil Moisture (0) become 
limited and approaches the wilting point (0.15 m m" ) (Saxton et al, 1986), Pond 40, 
Utikuma Region Study Area (URSA), Alberta, Canada. 

3.5 Conclusions 

Strong seasonality is observed in ETc across both snow-free seasons, with maximum 

daily averages in ETc of 3.08 and 3.45 mm d"1 occurring during the green periods of 2005 

and 2006 respectively. ETB can be an important contribution of overall canopy ET and 

varies seasonally. This seasonal variation in ETB is largely a function of the aspen 

canopies ability to alternate radiation and the aspen root systems influence on the 

availability of root zone 0. For the 2005 and 2006 snow-free seasons understory ET was 
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the dominant flux during the early green period, which was a direct result of the timing of 

understory canopy shrub layer development. As the understory developed before the 

overstory canopy, increased energy was able to penetrate the canopy layer allowing for 

increased productivity during this time period. For the remainder of the growth period 

seasons ETB averaged 32% of ETc-

displayed evidence of hydraulic lift and correlated well with changes in ETc 

rates. Further, relationships between 0 and ETc showed strong seasonal variation 

corresponding with aspen phenology. 

VPD shows differing controls on ETc and ETb rates. However, similar ranges in 

VPD produce smaller ET fluxes from the understory, which is a function of access to 

available rooting zone 0. Further, in all levels of the canopy 0 exerts the ultimate control 

on ET. That is, regardless of the degree of atmospheric demand ET can be maintained at 

higher levels if there is sufficient 0 in the rooting zone. 
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Chapter Four 

Summary and Management Implications 

4.1 Spatial and temporal variability in evapotranspiration within a forested wetland 
complex 

Examination of the controls on ET from different landcover units in a wetland-forested 

upland complex of the WBP allows for the enhancement of: (1) our understanding of the 

dynamics of ET in a wetland-forested upland complex and the role of vegetation 

communities within differing canopy structures; and (2) evaluate whether these land 

cover units can be assessed as homogeneous units during the growing season, or that they 

exhibit large spatial and temporal variability. The latter has direct implications on 

hydrologic modeling and forest management practices (FMP's) within the WBP, an 

ultimate goal for this research program. 

4.1.1 Wetland Evapotranspiration 

The role that vegetation plays in controlling wetland ET within the WBP is significant. 

However, the significance of that role is governed by the moisture regimes in which the 

vegetation are present. The dynamics of wetlands, especially within this site of the WBP, 

and their respective ET contributions can be directly connected to their respective 

constituent vegetation communities. Sphagnum dominated sites have shown to lose water 

at the greatest rates to ET, yet Sphagnum sites show the lowest moisture regimes and no 

control of microtopography. This is a result of the existence of weak hydrological 

gradients between lawn and depression units of wetlands, consistent with the climatic and 
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moisture regimes of such sub-humid environments, where precipitation is typically less 

than PET. 

The presence of seasonal ice lenses plays a significant role in controlling ET 

throughout wetlands of the WBP. The net effects of the presence of ice does not affect 

the ET rates on an annual scale, but rather affects the early season rates of ET, and 

therefore the seasonal distribution of ET. Ice lenses have the potential to shift peak ET 

rates from wetlands to earlier on in the snow-free season when peak vegetation growth 

has not yet occurred creating an situation where peak ET rates occur before the maximum 

soil moisture demands of seasonal maximum vegetation growth. Given the role of ice 

lenses in wetlands of the WBP, the role that climatic variability will play could 

potentially have an impact on the severity of early season ET fluctuations. 

4.1.2 Aspen Upland Evapotranspiration 

Within aspen uplands strong seasonality is observed in above canopy ET (ETc) across 

two snow-free seasons, with maximum daily averages in ETc of 3.08 and 3.45 mm d"1 

occurring during the green periods of 2005 and 2006 respectively. The shrub layer and 

soil ET (ETB) can be an important contribution of overall forest ET and varies seasonally. 

The seasonal variation in ETB was largely a function of the aspen canopies ability to 

alternate radiation and the aspen root systems influence on the availability of root zone 

soil moisture (0). For the 2005 and 2006 snow-free seasons understory ET was the 

dominant flux during the early green period, which was a direct result of the timing of 

understory canopy shrub layer development. As the understory leafed out before the 

overstory forest canopy, increased energy was able to penetrate the canopy layer allowing 
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for increased productivity during this time period. For the remainder of the snow-free 

seasons ETB averaged 32% of ETc-

Soil tensions (VF) showed upward water movement in strong correlation with 

increased ET, suggesting evidence of hydraulic lift. Further, relationships between 

0 and ETc showed strong seasonal variation corresponding with aspen phenology. 

VPD shows differing controls on ETc and ETb rates. However, similar ranges in VPD 

produce smaller ET fluxes from the understory, which is a function of access to available 

rooting zone 0. Further, in all levels of the canopy 0 exerts the ultimate control on ET. 

That is, regardless of the degree of atmospheric demand ET can be maintained at higher 

levels if there is sufficient 0 in the rooting zone. 

4.2 Implications for Watershed Management 

The ultimate goal of this research was to accurately assess the natural pre-disturbance 

controls on ET, which is the dominant hydrologic flux in this region, from forest and 

wetland landcover units in the WBP. Watershed management practices have become an 

integral aspect for the sustainable development of Boreal forest systems in North Central 

Alberta (Ducks Unlimited Canada, 2006). Several industries are currently developing 

vast areas of the WBP, with major disturbances from the forestry and conventional 

oil/gas industries, as well as development of oil sands resources (Ducks Unlimited 

Canada, 2006). Pressure from government and non-governmental organizations on 

sustainable development of forestry and oil and gas industries requires an accurate 

assessment of the controls and seasonal contributions of ET from the WBP. 
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4.2.1 Forest Harvesting Impacts on Evapotranspiration 

Within the Boreal Forest region of Canada and elsewhere, forestry operations are 

conducted within terrestrial and adjacent to aquatic wildlife habitat areas, and in close 

proximity to agricultural activities, rural communities, and parks (Putz et al., 2003). Harr 

(1982) found that forest soils are wetter after tree removal, which results in a net 

reduction in forest ET after harvest (Putz et al., 2003), although ET rates at the edges of 

remaining boreal forest fragments may be higher than in the forest interior (Cienciala et 

al., 2002). Further, compaction by harvest machinery traffic can increase soil moisture 

and bulk density (Whitson et al., 2003; McNabb et al., 2001; Johnson et al., 1991) 

leading to enhanced overland flow, and a rise in water tables (Lamontagne et al., 2000), 

which enhances baseflow. After a lodgepole pine clear-cutting in a large watershed 

(>2000 ha), annual water yield increased by 52% (Burton, 1997). A less intensive harvest 

(<25% of basin area) on the Shield was not associated with a clear water yield response 

in medium to large sized watersheds (100-1000 km2; Buttle and Metcalfe, 2000). It has 

been shown with this research that the role of vegetation in controlling ET rates is 

significant for the WBP. The removal of vegetation through forest harvesting practices 

would significantly alter the dynamics of the hydrologic cycle for the region, potentially 

impacting the already tenuous relationship between P and ET. 

Increased pressure on proper FMP's with regards to forest harvesting practices in 

the WBP region of North Central Alberta will ensure that the natural cycles of ET will be 

impacted on a less intensive scale. As this region is sub-humid in nature (Devito et al, 

2005a) the balance between P and ET is what ultimately drives the hydrologic cycle of 

the region. Improper FMP's and misguided forest harvesting practices will only serve to 
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augment the water deficits that dominate the region. Implementing alternative harvesting 

practices (shelter and selective cutting) could serve as viable alternatives to large scale 

clearcut practices for the region. The impacts of alternative harvesting methods would 

need to be explored in greater detail within this region, but could serve as a benchmark 

for sustainable forest management, a goal of both industry and conservationist alike. 

4.2.2 Impacts of Oil and Gas Development on Evapotranspiration 

Forest fragmentation is one of the most significant impacts associated with oil and gas 

exploration and development in the forested region of Alberta, Canada. Not only is 

Alberta fortunate to have substantial oil and gas reserves, it also has a substantial forest 

resource that supports a sizable forest industry (MacFarlane, 2003). The exploration and 

development of energy deposits requires access to the surface immediately above these 

reserves. Subsequently, considerable areas of forest are cleared to make way for 

equipment and infrastructure. This has significant social and environmental implications 

such as the clearing and fragmentation of the boreal forest. The forested area of Alberta, 

covering over 50% of the provincial area, has been converted from nearly completely 

intact in the early 1900s, to over 90% fragmented forested landscape in 2002 

(MacFarlane, 2003). In fact, land clearing for oil and gas activities accounts for more than 

double the land cleared for forestry each year (Alberta Environment Protection, 1998). 

As a result, forest fragmentation has become one of the most significant land 

management challenges within forested regions of Alberta. 

A major hydrologic consequence of oil and gas exploration is reduced ET caused 

by removal of vegetation. Forest canopy and understorey removal decreases ET rates by 
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reducing the transpiration and interception surface area and by reducing the water uptake 

by vegetation. Oil and gas exploration and development causes decreases in ET because 

above-ground biomass and leaf area are reduced or eliminated (Putz et al., 2003). A slight 

compensatory increase in Es may occur because the lower albedo of the darkened soil 

surface relative to vegetated surfaces results in higher net solar radiation input (Putz et 

al., 2003). In addition, wind movement over soil surfaces increases after vegetation 

removal and this further enhances evaporative losses. The impacts of oil and gas 

development on the fragmentation of Boreal Forest landscapes require significant 

attention with regards to the magnitudes of fluxes and the nature of ET dynamics. Proper 

FMP's with greater attention to the dynamics of ET within this sub-humid climate will 

not only enhance the sustainability of the region, but also ensure that the hydrologic cycle 

of this tenuous region will be minimally impacted. 

4.3 Conclusion 

The boreal forest constitutes one of the largest biomes on Earth, and as we attempt to 

monitor and model the dynamics of it there is an increasing need to recognize the 

directions and magnitudes of ET, a significant aspect of the hydrologic cycle in this sub-

humid region of the WBP within different landcover units. Treating the catchment as a 

whole unit, that is combining the landcover units of wetlands and uplands to produce a 

single value for ET, is insufficient and will provide limited insight into the actual 

conditions and balance between P and ET for the region. By understanding the dynamics 

in vegetation composition in wetlands and structure of aspen dominated uplands as 

separate units that comprise the catchments of typical boreal forest landscapes and 



quantifying the contributions of ET and dynamics of the hydrologic cycle separately, a 

more complete understanding of the region would be produced. This would be to the 

benefit of forest management practitioners as it would provide a more complete 

understanding the systems they are looking to manage. 
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Chapter Six 

Appendices 

6.1 Water Vapour Absorption by IRGA 

The EGM-4 IRGA used during the experiment operates by filtering sampled air 

through the central membrane of the system before it is analyzed by the central 

processing unit and IRGA cell of the system (PP Systems, 1999). Thus, the air that is 

sampled first passes through a volume (-706.5 mm3) of Sofnolime Granules (Sodium 

Hydroxide) (Molecular Products, Essex, UK). In order to address this removal of 

moisture from the sampled air, calculations were conducted to account for the moisture 

reduction. The volume of chamber air cycled through the IRGA was determined by, 

A = — *1000 (6.1) 
V 

where A is the volume of air cycled through the IRGA (% vol min"1), PR is the pump rate 

(300 cm3 min"1) and Fis the chamber volume (0.016 m3). Assuming a saturated parcel of 

air at 20°C, with a vapor density of 17.3 g m"3 is cycled through the IRGA, the volume of 

air passing through the IRGA can then be calculated over the 5 min sampling interval via, 

B = " P \ N 
H v * V 

yyAreaJ , 
*S, (6.2) 

where B is the volume of water passing through the column (g H2O) and pv is the vapour 

density of the air parcel saturated at 20 °C (g H2O) and S, is the sampling interval (5 min). 

Finally, the net effect (drying capacity) of the Sofnolime granules was calculated given 

the volume of H2O passing the column of the IRGA. This results in a decrease of 0.039 g 
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H2O in vapour content of the sampled air as a result of the drying effect of the Sofnolime 

granules. When multiplied by the volume of Sofnolime granules present within the 

column of the IRGA (150 g) there becomes a loss of vapour of 0.011 g H2O per 5 min 

interval, which amounts to a potential error of approximately 4 %. 

6.2 Eddy Covariance Pre-Analysis 

The eddy covariance (EC) technique for determining fluxes from forested wetland 

complex systems requires that tests be conducted to ensure valid measurements are 

achieved and include; 

1. Suitable response time of the sensors which ensures the capture of smaller higher 

frequency (-20 Hz) eddies and the averaging period over which the covariance's 

are calculated should be long enough to ensure the larger, lower frequency eddies 

are captured, 

2. The orientation and placement of the windspeed sensors must be precise to ensure 

that the correlations involving one or more velocity components are accurate 

(Brutsaert, 1982), 

3. The energy balance is properly assessed and closure is achieved so as to account 

for the available energy within the system accurately and, 

4. Friction velocity (u*) thresholds are accurately assessed to ensure that issues 

revolving around nocturnal stability of fluxes are addressed. 

The vertical windspeed mean, which is separated from the short time fluctuations, is 

subject to larger time scale trends. Therefore, the averaging period should be as short as 
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possible to ensure that the time series remains stationary but long enough to cover even 

the slowest fluctuations of the turbulent spectrum (Brutsaert, 1982). The averaging 

period used in this study was 30 minutes, with sensors sampling every 0.01 seconds. To 

ensure that the sensor placement, sampling and averaging periods were capturing all of 

the eddies contributing to the actual flux spectral analysis of the flux measurements was 

conducted. The power spectral density of the vertical wind signal was calculated using 

Welch's method (Figure 6.1). Optimized sampling interval is obtained when the curve 

flattens out, which occurs at approximately 1200 seconds (20 minutes). The average flux 

calculations should be done when the eddy signal is producing a flat spectrum (white 

noise), commonly occurring at the 30 min interval (Petrone, 2002). 
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Figure 6.1 Power spectral density function of vertical windspeed using Welch's method. 
Data for spectral analysis was taken on August 18, 2005. Pond 40, Utikuma Region 
Study Area (URSA), Alberta, Canada. 

The eddy covariance technique measures the flux of a constituent, mass or heat, past a 

point centered on the sampling volume of the instruments that are placed at a given 

height above the surface of interest. The validity of the measurements is dependent on the 

instruments having a large enough frequency response in order to measure all the 

turbulent eddies (large or small) contributing to the flux. This is dependent on the 

frequency response of the individual sensors as well as how they are positioned relative 

to each other along with the underlying surface being measured (Leuning and Judd, 

1996). A correction factor for sensor separation placement can be defined as, 
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S " m a x T w T ( n ) S w T ( n ) d n 
Qobs = <? * J ^ S w r M d n ( « ) 

" m i n 

where SWT(N) is the frequency cospectrum of the turbulence encountered, TWT (n) is the 

net system cospectral transfer function, n is the frequency of measurements (Hz) and 

Qobs i s observed flux (Moore, 1986; Blanford and Gay, 1992). The variables nmin and 

nmax refer to the lowest and highest frequencies, respectively, that contribute to the 

turbulent transport. Figure 6.2 shows the relationship of the correction factor to the 

horizontal windspeed and the relationship used to apply the correction factor to all flux 

data at URSA over the 2005 and 2006 measurement seasons. 

4 6 8 

Horizontal Windspeed (m s"1) 

10 12 

Figure 6.2 Blanford and Gay correction factor relative to horizontal windspeed for Pond 
40, Utikuma Region Study Area (URSA), Alberta, Canada. Values are based on mean 
sensible heat flux and horizontal wind speed values from the 2005 and 2006 above 
canopy. 
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Another correction to the eddy covariance technique involves the closure of the energy 

balance for the study period (Barr et al., 1994; Blanken et al., 1997; Twine et al., 2000; 

Petrone et al., 2001). This method assumes that the fluxes of sensible and latent heat are 

measured correctly by the sensors and the individual magnitudes of the fluxes can be 

corrected using the closure ratio (CR) defined as, 

C R = 9n±M ( 6 4 ) 
Q'-QG V J 

All flux results over both snow free seasons at URSA showed that prior to correction the 

closure ratio was 0.79. 

Finally, thresholds for friction velocity (u*) (m s"1) from each site must be 

determined as a method of filtering out the data when stability issues arise, primarily 

during nighttime periods. Previous studies (Aubinet et al., 2000; Falge et al., 2001) 

correct nocturnal flux density measurements with values measured during windy periods 

using a regression between the flux density and friction velocity. It was determined that 

the critical friction velocity that produces 'good' nighttime fluxes is not universal and can 

range from 0.1 to 0.6 m s"1 (Baldocchi, 2003). For the purposes of this study, u* was 

plotted against the energy balance closure for each site measured using the EC method 

over both seasons. The "critical" friction velocity point was determined by the point in 

each plot where the slope of the curve, or inflection point was altered (Petrone pers. 

comm.). Data where then filtered using this threshold (0.23 for wetland measurements 

and 0.1 for aspen canopy measurements). Figure 6.3 shows the u* thresholds for the 

wetland measurements, Figure 6.4 shows the u* thresholds for the aspen canopy 

measurements and Figure 6.5 shows the u* thresholds for the within aspen canopy 
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measurements. Crosshairs were placed on each plot to show where the u* threshold 

inferred to be. 
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Figure 6.3 Wetland friction velocity (u*) (m s"1) thresholds plotted against energy balance 
closure for a) 2005 and b) 2006 for Pond 40, Utikuma Region Study Area (URSA), 
Alberta, Canada. Crosshairs in plots indicate the inferred threshold values. All fluxes 
were then filtered using the inferred thresholds (0.23 m s"1). 
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Figure 6.4 Aspen upland friction velocity (u*) (m s"1) thresholds plotted against energy 
balance closure for a) 2005 and b) 2006 for Pond 40, Utikuma Region Study Area 
(URSA), Alberta, Canada. Crosshairs in plots indicate the inferred threshold values. All 
fluxes were then filtered using the inferred thresholds (0.1 m s"1). 
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Figure 6.5 Within canopy upland friction velocity (u*) (m s"1) thresholds plotted against 
energy balance closure combined for the 2005 and 2006 snow-free seasons for Pond 40, 
Utikuma Region Study Area (URSA), Alberta, Canada. Crosshairs in plots indicate the 
inferred threshold values. All fluxes were then filtered using the inferred thresholds (0.29 
m s"1). 
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