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ABSTRACT

The impact of the current mountain pine beetle (Dendroctonus ponderosae
Hopkins) epidemic in British Columbia underscores the need for scientifically informed
management practices. During an epidemic it is necessary to manage large areas and an
understanding of landscape scale spatial and spatial-temporal processes is required. With
the recent availability of large area, multi-temporal data sets there are new opportunities

for landscape scale studies of the mountain pine beetle over space and through time.

In this thesis large area spatial and spatial-temporal patterns of lodgepole pine
(Pinus contorta var. Latifolia) mortality are explored using point data collected through
helicopter surveys. As with all large area data sets, mountain pine beetle data are prone
to uncertainty. Using field measurements collected to supplement the helicopter data set,
we explore the nature and amount of error in point data. Based on error estimates, a
method is presented for incorporating uncertainty when visualizing data via kernel

density estimation.

Locations that are hot spots, or have the most intense infestations, are identified
and used to explore dispersal behaviour. Comparing hot spots to various landscape
characteristics allows investigation into how mountain pine beetle utilize the forest in
space and through time. Locations of change are also identified and explored in terms of
spatial-temporal patterns and associated landscape characteristics. The relatedness of hot

spot and change locations is investigated.



A randomization approach is also used to supply the spatial pattern of large area
infestations by evaluating .observed data relative to a null expectation conditioned on a
model of forests at risk to beetle attack. Investigating the landscape characteristics
associated with unexpected locations enabled exploration into the cause of differences

between empirical and modelled patterns.
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1 INTRODUCTION
1.1 CONTEXT

The mountain pine beetle (Dendroctonus ponderosae Hopkins) is endemic in pine
(Pinus) stands throughout Western North America (Safranyik et al., 1974). At endemic
levels, the impact of the mountain pine beetle on forests is relatively minor. However,
periodic epidemics, or outbreaks, result in large areas of lodgepole pine (Pinus contorta
var. Latifolia) mortality. Currently, British Columbia is experiencing the largest
infestation on record, with more than seven million hectares of lodgepole pine affected by
the mountain pine beetle(Westfall, 2004). Particularly in the interior of British
Columbia, where communities are built on forest-based employment, the economic
impacts of the mountain pine beetle outbreak will be severe. With no foreseeable end to
the current epidemic, there is a reinforced need for scientifically informed management

practices.

As with many natural phenomena, spatial and spatial-temporal interactions are an
essential aspect of mountain pine beetle behaviour (Turchin, 1989; Logan et al., 1998;
Liebhold and Gurevitch, 2002). Examples of spatial behaviour include: the aggregation
of individual mountain pine beetles in response to chemical signals (Geiszler et al.,
1980), the effect of the spatial distribution of individual trees on the spatial pattern of
attack (Mitchell and Preisler, 1991), and differences in the spatial pattern of infestations
resulting from endemic and epidemic populations (Logan et al., 1998). Although there is
much evidence that spatial components of mountain pine beetle behaviour are important,

spatially explicit research is limited.



The development of spatial mountain pine beetle research parallels, generally, the
process by which spatially explicit studies became mainstream in ecology. For
ecologists, spatial structure was initially considered a nuisance, invalidating assumptions
of homogeneity (Mclntosh, 1985). However, in the 1980’s perspectives on spatial
structure changed (Liebhold and Gurevitch, 2002). Spatial structure began to be viewed
as a source of information, and it was recognized that spatial knowledge was necessary
for understanding the physical environment and our interactions with it (Legendre and
Fortin, 1989; Kareiva, 1994; Perry et al., 2002). By the mid 1990s, the utility of
considering space was widely recognized, yet direct spatial studies of ecological
phenomena were few and explicit exploration of space was still seen by some as the final

frontier for ecologists (Kareiva, 1994).

Discipline-wide recognition of the importance of space was only the first step to
acquiring spatial knowledge. Integrating space with ecology required techniques that
allowed for spatial heterogeneity, the availability of spatial data sets, and ecologists with
spatial expertise. Much of the groundwork for current spatial research in ecology was
carried out in the 1980s and early 1990s as scale, spatial heterogeneity, and spatial pattern
were explored (Legendre and Fortin, 1989; Wiens, 1989; Mclntosh, 1991; Levin, 1992).
Owing to this earlier work, significant efforts have now been undertaken in the
exploration of spatial processes and spatially explicit studies are frequently found in a
wide range of ecology-focused journals (e.g., Liebhold and Gurevitch, 2002;

Matthiopoulos, 2003; Wu, 2004).



In spatial mountain pine beetle research, a similar series of developments are
ongoing. While the importance of considering space has been acknowledged for some
time (Bentz et al., 1993; Logan et al., 1998), an understanding of mountain pine beetle
spatial behaviour is still in its infancy (Hughes, 2002). Spatial studies, carried out by a
handful of researchers, have undoubtedly improved our understanding of spatial
mountain pine beetle behaviour (e.g., Mitchell and Priesler, 1993; Powell et al., 1996;
Powell et al., 2000). Although the number of spatial studies is increasing, spatial
research on the mountain pine beetle, and more generally in entomology, is not yet

mainstream.

The current understanding of large area mountain pine beetle spatial and spatial-
temporal behaviour is cursory. Most spatial and spatial-temporal studies of mountain
pine beetle have been undertaken at forest stand or finer spatial scales. While knowledge
of fine scale mountain pine beetle spatial processes is necessary, it should not be assumed
that the same processes operate at a landscape level. Given the size of the current
infestation in British Columbia, there is a particular need to understand mountain pine

beetle spatial behaviour at a landscape scale, as outbreaks impact large areas.

There are several practical reasons for the lack of landscape scale spatial studies
of the mountain pine beetle. First, mountain pine beetle behaviour is complex and when
spatial parameters are considered, the additional dimensions result in computationally

expensive analysis (Powell et al., 1996). While increases in analytical complexity are



often manageable for small area studies, over larger areas, computational requirements
may become prohibitive. A second difficulty inherent to landscape scale spatial research
is the limited availability of large area data sets. Until quite recently, large area data on
mountain pine beetle infestations have been difficult to obtain and multi-temporal data
sets unavailable. Changes in technology, such as faster computers and increased storage
capabilities, and improved data availability, due to increased funding for mountain pine
beetle monitoring and better access to remotely sensed imagery, mean that large area

analysis of mountain pine beetle spatial behaviour is now possible.

The spatial-temporal behaviour of the mountain pine beetle, which is also
understudied, is fundamental for improving mountain pine beetle prediction and
modelling. Spatial-temporal analysis has additional limitations over pure spatial analysis
owing to the existence of relatively few methods for analyzing both space and time, or
changes in space through time (Anselin, 2000; Box, 2000; Jacquez, 2000). The lack of
spatial-temporal methods poses difficulties for spatial analysis in general, while
fundamental concerns regarding data representation in space and time have yet to be
resolved (Heuvelink, 1996; Peuquet, 1999). Aside from technical limitations, spatial-
temporal analysis of the mountain pine beetle is further complicated by a lack of
theoretical information on space-time processes. Many basic spatial-temporal questions
regarding mountain pine beetle dynamics, such as the definition of meaningful change in
infestation magnitude, have not been addressed. These fundamental gaps in knowledge
suggest that space ts not the final frontier for ecologists. Rather, led by the increasing

temporal resolution of data sets, and concern with issues such as climate change, there is



a pressing need to consider spatial-temporal patterns and processes. Only by exploring
both space and time is it possible to make meaningful environmental predictions and

informed decisions.

Another factor, impacting both spatial and spatial-temporal studies, applies
broadly to the transfer of spatial analysis to many disciplines. Proper use of spatial
analysis methods requires consideration of several issues; therefore, a certain amount of
expertise m spatial theory and spatial analysis software is required to ensure the integrity
of analysis. For instance, consideration must be given to data representation (Miller,
2000), analysis resolution and extent (Wiens, 1989), neighbourhood definition (Davis et
al., 2000), and the selection of appropriate null models (Fortin and Jacquez, 2000). Often
individuals with knowledge of specific applications do not have expertise in spatial
analysis, and vice versa. This may explain why the majority of spatial research in
entomology is carried out by a small group of researchers (e.g., Liebhold et al., 1994;

Powell et al., 2000).

As will be discussed in Chapter 2, most spatial studies of mountain pine beetle
observe or model spatial processes, rather than consider spatial pattern. A spatial pattern
is the expression of one or more spatial processes (Getis and Boots, 1978; Haining,
1990), and a process 1s considered spatial when changes in state are due to the spatial
properties of the attribute (Haining, 1990). Observations of mountain pine beetle spatial
processes are made locally via mark recapture studies. Alternatively, mathematical

models may be used to mimic spatial processes. While modelling has an important role



in furthering our understanding of mountain pine beetle spatial behaviour, efforts would

benefit from a better understanding of spatial processes (Hughes, 2002).

A limitation of the spatial process approach is that, as with many environmental
phenomena, direct data on spatial processes of the mountain pine beetle, particularly over
large areas, s difficult if not impossible to obtain. In such cases, spatial pattern may be
used as a surrogate for studying spatial processes. By characterizing spatial patterns we
make inferences regarding processes (Getis and Boots, 1978; Sokal et al., 1998; Jacquez,
2000). Unfortunately, the relationship between pattern and process is complex (Fortin et
al., 2003). Most often a spatial pattern will result from several processes, and it may be
difficult to identify all contributing processes or to know the impact of each process on
the pattern (Jacquez, 2000). For example, the spatial pattern of trees infested by
mountain pine beetles is affected by factors such as forest age (Safranyik et al., 1974),
climate (Logan and Bentz, 1999), and the spatial pattern of trees previously infested
(Mitchell and Preisler, 1991). To further complicate matters, there is often positive
feedback between pattern and process. For instance, it is understood that the process of
mountain pine beetle infestation impacts the spatial pattern of individual tree mortality
during a mountain pine beetle epidemic; yet, it appears that the pattern of individual trees
may impact the process of infestation (Preisler and Mitchell, 1993). While spatial
patterns often provide the best available information on spatial processes, it is difficult to
isolate which process(es) are responsible for a pattern. This combined complexity (i.e.,
multiple processes give rise to a single pattern) and necessity (i.e., spatial pattern is often

the only available spatial information), may be one reason that pattern-process



interactions have been highlighted as a major research priority in landscape ecology (Wu

and Hobbs, 2002).

1.2 GOALS AND OBJECTIVES

Our research goal is to explore landscape scale spatial and spatial-temporal
patterns of lodgepole pine mortality caused by epidemic mountain pine beetle
populations. Understanding the spatial structure of infestations will allow us to
characterize the spatial behaviour of the mountain pine beetle over the landscape, and
will generate new information for modellers and decision makers working towards
improved knowledge and better management practices. The goal of this research will be

met using the objectives listed below.

1. To investigate the information content of point-based, aerial surveys of mountain
pine beetle infestations, and to demonstrate appropriate techniques for visualizing

spatial patterns in infestations while considering data uncertainty (Chapter 4).

2. To explore spatial and spatial-temporal variation in mountain pine beetle
infestation intensity by locating attack hot spots, characterizing the persistence of
hot spots through time, investigating spatial-temporal relationships between hot
spot patches, and relating the presence and persistence of hot spots to landscape

characteristics (Chapter 5).



3. To identify locations of spatial-temporal change in mountain pine beetle
infestations, investigate spatial relationships in change through time, and relate

change to landscape characteristics (Chapter 6).

4. To study the spatial correspondence between hot spots and change (Chapter 7).

5. To investigate landscape level application of a stand scale forest risk model, by
identifying locations where infestation intensity is unexpected relative to a
random expectation conditioned on forest risk, to represent unexpected areas
through time, and to investigate the landscape properties underlying unexpected

locations (Chapter 8).

First however, we provide background information on the biology and spatial
studies of the mountain pine beetle (Chapter 2), and describe the study area and the data

sets used throughout this thesis (Chapter 3).



2 MOUNTAIN PINE BEETLE BACKGROUND
2.1 MOUNTAIN PINE BEETLE AND PINE BIOLOGY

As the mountain pine beetle is a native species in Western North America, they
are an important component of forest disturbance, development, and health. By infesting
and killing lodgepole pine, western white pine (Pinus monticola), and ponderosa pine
(Pinus ponderosa), the mountain pine beetle naturally disturbs the forest and aids forest
succession (Safranyik ef al., 1974; Parminter, 1998). In this chapter we provide
background information necessary for justifying the goals and interpreting the results of
this thesis. We begin with a discussion of mountain pine beetle and forest biology, and

then review spatial research on the mountain pine beetle.

Although the mountain pine beetle mechanism for host selection is debateable, it
has been well documented that mature pines are preferred (Safranyik ef al., 1974;
Geiszler ef al., 1980; Preisler and Mitchell, 1993). Large trees provide the mountain pine
beetle with optimal food resources (thicker phloem), protection from cold and predators
(thicker bark), and are less able than younger trees to resist beetle attacks (Safranyik et
al., 1974; Larsson et al., 1983). However, in trees older than 150 years, phloem may
become too thin to support mountain pine beetle broods (Shrimpton and Thomson, 1985).
Stand age impacts the duration and intensity of an infestation and older stands will
typically have longer and more intense infestations (Safranyik et al., 1999). Even though
within a stand larger trees are attacked first, once the infestation has established, younger
trees will also be infested (Safranyik et al., 1974; Mitchell and Preisler, 1993). A key
reason for the current epidemic in British Columbia is the abundance of mature lodgepole

pine.



Mountain pine beetle attacks on pine are initiated by female, pioneer beetles
(Safranyik et al., 1999A) and involve a complex series of interactions between beetles and
the tree (Geiszler et al., 1980). Through a reaction with a pine chemical compound
(myrcene), the mountain pine beetle produces an aggregation pheromone (brevicomin)
initially attracting males (when concentrations are high) and eventually both sexes (as
concentrations decrease) (Powell and Rose, 1997; Barclay ef al., 1998). To ensure that
limited resources are not over-exploited, male beetles produce an anti-aggregation
pheromone (verbenone) (Amman, 1994; Powell and Rose, 1997; Barclay et al., 1998).
As the host reaches carrying capacity the anti-aggregation pheromone becomes stronger
than the aggregation pheromone, and pioneer mountain pine beetles move to another

host.

Mountain pine beetles attack en masse to overwhelm the defence system of the
pine tree (Geiszler et al., 1980). After boring through a tree’s bark, the beetle carries blue
stain fungus to the phloem and xylem (Figure 2.1 - A). The fungus disturbs water flow,
which the pine tree requires to generate a resinous pitch used to saturate the phloem and
sapwood around the borehole (Safranyik et al., 1974; Raffa and Berryman, 1982; Unger
1993). This process is called “pitching-out” and is a key defence against attacking
mountain pine beetles. Mature and unhealthy trees have lower pitch production than
young vigourous trees. Therefore, as age and stress increase, there is a decrease in the
tree’s resistance to infestation (Raffa and Berryman, 1982; Larsson ez al., 1983; Mitchell

et al., 1983; Berryman, 1982). It has been suggested that the pine’s ability to respond to

10



blue stain fungal invasion is the main characteristic that determines the tree’s ability to

resist mountain pine beetle attack (Raffa and Berryman, 1982).

Figure 2.1. The biology of the mountain pine beetle and pine. A) Boring dust. B) Egg
galleries. C) Oval chambers used for the transformation into pupae. D) The adult
mountain pine beetle. E) Phases of tree mortality. F) Pitch tubes or resin created by the
pine to plug boreholes. (Photos from http://www.for.gov.bc.ca/hfp/mountain_

pine beetle/bbphotos.htm. Last accessed April 17, 2005.)
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Pine mortality tends to be greatest when stand densities are intermediate (Amman
et al., 1988). As aresult, stand thinning is one approach that has been investigated to
improve tree vigour (e.g., Larsson et al., 1983; Preisler and Mitchell, 1993; Whitehead ez
al., 2001). Under certain conditions, silvicultural treatments such as thinning, may
minimize stand loss and susceptibility (Mitchell ez al., 1983; Anhold and Jenkins, 1987;
Whitehead et al., 2001). Stand thinning increases canopy openness, causing changes to
the microclimate and tree vigour, and may result in a short-term reduction in tree
susceptibility (Powell et al., 2000; Whitehead et al., 2001). Although thinning may be
beneficial in some scenarios, under epidemic conditions mature trees are susceptible

regardless of stand management (Preisler and Mitchell, 1993).

If the mountain pine beetle successfully overcomes the tree’s defence
mechanisms, egg galleries 30 to 90 centimetres long will be constructed below the bark
(Figure 2.1 - B) (Safranyik et al., 1999). Eggs are laid 0.5 centimetres apart and are
tightly packed with frass or boring dust, hatching in 10 to 14 days. Larvae feed on
phloem over the winter and mature in the early summer when they excavate an oval
chamber to use during transformation into pupae (Figure 2.1 - C). After a short period as

pupae they become adults (Figure 2.1 - D) and emerge by boring back through the bark.

Mountain pine beetle emergence has a significant influence on the success and
size of populations. Mass, simultaneous emergence is required for the mountain pine
beetle to have a large impact on the forest, as many individuals are required to

successfully attack even a single host. The timing of emergence is influenced by
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seasonal and daily temperatures (Safranyik ef al., 1989), whereas the number of emerging
beetles is related to the size of attacked trees. The larger the tree, the more beetles will
emerge (Safranyik et al., 1974); and if trees are small, fewer beetles will emerge from the
tree than were required to kill it. In that way, small trees act as beetle sinks. Although
emergence usually occurs once a year, if summers are unusually warm, parent adults may

re-emerge and establish a second brood (Reid, 1962; Safranyik et al., 1999).

Development of an infestation on the landscape is based on the spatial
arrangement and age distribution of trees, the size and timing of the emergent beetle
population, and beetle dispersal (Safranyik et al., 1989). Although poorly understood,
dispersal is one of the most important factors of mountain pine beetle biology (Powell
and Rose, 1997; Safranyik ef al., 1989). Mountain pine beetle dispersal may occur below
or above the canopy and is influenced by temperature, light, wind direction, and chemical
signals. Within a stand, mountain pine beetles tend to fly downwind when temperatures
are between 19 and 41 degrees Celsius, and newly emergent beetles seem to prefer direct
sunlight (Shepherd, 1966; Safranyik et al., 1996). Preference for sunlight may explain
the beetle’s tendency to infest southern and western slopes during outbreak development
(Safranyik et al., 1974). During dispersal, aggregative odours may override other factors,
as mountain pine beetles have been observed to fly directly towards attractants regardless
of other influences (Safranyik ef al., 1989). While direction of dispersal can be
associated with wind direction, mark recapture studies show that trapping declines

sharply with distance (Safranyik et al., 1999). When chemical traps are used, beetle
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capture decays with distance from the dispersal site and the majority of beetles are

captured in traps within three kilometres of where they emerge (Safranyik ef al., 1992).

During outbreak conditions, infestations are observed to spread progressively
from infestation centers (Safranyik et al., 1974), but new attacks are also found to occur
well beyond the vicinity of the outbreak (Borden, 1993). While progressive spread
suggests short-range dispersal, the occurrence of infestations at distant locations may
indicate that long-range dispersal is also taking place (Borden, 1993). As mountain pine
beetles are not strong flyers, long-range dispersal is likely facilitated by wind (Safranyik
et al., 1989). Upward convection on fair days will carry the mountain pine beetle above
the canopy where strong winds transport beetles long distances (Furniss and Furniss,
1972). Some researchers suggest that mountain pine beetles may have a metabolic
necessity to engage in dispersal flight (Borden, 1993), perhaps explaining why beetles
will disperse past suitable trees during host selection (Safranyik et al., 1989). Long-range
beetle dispersal may also be a mechanism to minimize the overexploitation of resources
in an area (Mitchell and Preisler, 1991). The maximum distance of mountain pine beetle
dispersal is unknown, although they have been shown to disperse as far as one kilometre
(Turchin and Thoeny, 1993), entomologists suggest that long-range dispersion may occur

over much farther distances (i.e. 10 — 100 kilometres) (Carroll, pers com).

The availability of an adequate number of mature pine and climate conditions are

the main factors that enable an endemic mountain pine beetle population to become

epidemic (Cole, 1981). Although outbreaks typically last eight to nine years the extent,
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duration, intensity, and repeat occurrence of infestations are governed by climatic factors
(Safranyik et al., 1974). Warm dry conditions, and mild winters are favourable for
mountain pine beetles. Under such conditions, mountain pine beetle will have a large
impact in a short time period, as populations quickly peak and collapse (Safranyik ez al.,
1999). Cold temperatures are linked to high levels of mountain pine beetle mortality.
Yet, mountain pine beetle cold hardiness changes throughout the year (Safranyik et al.,
1974; Bentz and Mullins, 1999). If temperature declines gradually mountain pine beetle
will produce “antifreeze” (an accumulation of glycerol) allowing survival even when the
temperature is cold (Safranyik and Linton, 1998). A sustained cold spell, as low as -40
degrees Celsius, or a sudden cold snap at an unseasonable time of year is required for
significant mountain pine beetle mortality (Safranyik and Linton, 1998). British
Columbia has experienced many warm winters since the mid 1990s, which in part has
resulted in the current epidemic. Due to climate change, more warm winters are expected
and may further exacerbate the mountain pine beetle situation (British Columbia Ministry

of Forests, 2003).

Linked to climate is the impact of elevation on mountain pine beetles. Mountain
pine beetles range from Northwest British Columbia to Northern Mexico. Maximum
elevations are 750 metres in the north and 3650 metres in the south (Safranyik et al.,
1999). Cooler temperatures found at higher elevations tend to increase mortality and
delay development, in some cases, requiring greater than one year to produce a single

generation of beetles (Amman, 1973). Elevation impacts mountain pine beetle
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populations, as poor synchrony of the life cycle with local weather conditions causes

increased mortality (Amman, 1973).

When a pine tree is attacked by mountain pine beetles, usually in late July or
August, crown foliage changes successively from green to yellow, to brown, to red, and
eventually needles drop off the tree leaving the grey stem and branches (Safranyik ez al.,
1974) (Figure 2.1 - E). While the first visually detectable change to foliage colour
typically occurs in the spring following attack, hot and/or dry summer conditions may
cause foliage to begin changing in the fall (Safranyik ez al., 1974). One year after attack
crown foliage is yellow green or yellow brown. By two years after the attack, the foliage
is usually red and needles fall off in the third year. The rate of foliage change varies
substantially (Wulder ez al., 2004). For instance, crown foliage may become red in a
single year and trees may retain red and brown needles for as long as three years. Areas
with active infestations older than two years commonly have trees with a combination of
grey, red, and fading foliage. Most often, by the time foliage has turned red and attacks
are clearly visible, mountain pine beetles have emerged and moved to a new host
(Safranyik et al., 1974). The sequence of change in pine trees attacked by mountain pine
beetle is the same as change in pine killed by other means. Verification that pine
mortality is the result of mountain pine beetle activity requires the tree stem be
investigated for frass or boring dust, pitch tubes (Figure 2.1 - F), and galleries below the

bark (Figure 2.1 - B) (Safranyik et al., 1974).
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2.2 SPATIAL STUDIES OF THE MOUNTAIN PINE BEETLE

The spatial Behaviour of the mountam pine beetle, particularly at a landscape
scale, 1s not well understood. However, in the last decade research has indicated that
spatial dynamics play an important role in mountain pine beetle behaviour (Bentz e al.,
1993; Powell and Rose, 1997; Logan et al., 1998; Powell ez al., 2000). In this section we
focus specifically on spatial studies of the mountain pine beetle, which may be
categorized as process- or pattern-based. Pattern-based studies typically use pine
mortality to explore the nature of mountain pine beetle spatial behaviour, whereas
process studies focus on direct observation or modelling of mountain pine beetle

emergence, dispersal, and host selection.

2.2.1 Pattern Studies

Emergence, dispersal, and host selection are difficult to observe; therefore, spatial
patterns are sometimes used as a surrogate for studying these processes. Spatial pattern
investigations allow inference to be made regarding processes in disciplines such as
biology (Sokal et al., 1998), ecology (Levin, 1992), and epidemiology (Jacquez, 2000).
Other spatial pattern studies in entomology are important to note. For instance, Liebhold
and Elkinton (1989) use global join counts to characterize the spatial and spatial-temporal
patterns of gypsy moth defoliation; Powers ef al. (1999) uses the k-function to assess the
spatial pattern of points representing patches of Douglas-fir beetle attacks; Cooke and
Roland (2000) used Global Moran’s / to assess the spatial autocorrelation of tent

caterpillar outbreaks.
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In mountain pine beetle research, Priesler and Mitchell published a pair of papers
on the spatial pattern of individual trees attacked by the mountain pine beetle (Mitchell
and Preisler, 1991; Preisler and Mitchell, 1993). The goal of the first study (Mitchell and
Preisler, 1991) was to investigate the theory that mountain pine beetles initially attack
large trees, and when a host is at carrying capacity will attack the next largest target
(Geiszler ef al., 1980). The locations of individual trees were mapped for 0.5 hectare
areas and characteristics such as diameter at breast height (dbh) and the presence of
mountain pine beetle recorded. Diameter at breast height 1s a measure of trunk diameter
taken at 1.3 metres above the ground. Infestation activity was surveyed over five years,
and logistic regression used to investigate how individual tree characteristics correlate to
mountain pine beetle attacks. As well, the spatial-temporal relationships of attack were
visualized using a series of plots showing tree location, size, and the presence of
mountain pine beetle populations. This analysis demonstrated that the likelihood of
attack increases with nearness to an infested tree and is higher for trees with large
diameters. It was also demonstrated that mountain pine beetles do not move to the next

largest target, but fly short distances to pioneer new locations.

In the second study, Preisler and Mitchell (1993) utilized similar methods to
investigate the spatial pattern of infested trees in thinned stands. This study found that
while thinned stands are initially less attractive to the mountain pine beetle, once attacked
the spatial pattern of infestation is similar to that of unthinned stands. Although the

questions in these papers are spatial in their nature, spatial patterns were not quantified
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and the authors suggest that investigation of spatial interactions would benefit from more

quantitative investigations (Mitchell and Preisler, 1991).

Peltonen ef al. (1998) investigated the impact of the spatial scale of observation
on bark beetle studies. Occurrences of bark beetles were collected for several plots of
various size (10, 20, 40, 80, 160 metres squared). For each plot environmental variables
were also recorded. Logistic regression was used to relate environmental variables (tree
species, soil type, forest site type, stand characteristics, and forest management history) to
beetle presence and absence. Coarse scale data were more related to environmental
indicators than fine scale data. However, poor correlations between environmental
variables and the six most common species may suggest that factors regulating bark
beetle distributions operate at scales coarser than 160 metres (Peltonen et al., 1998). The
trends in this study may also reflect a general quality of environmental data, whereby
spatially coarse data usually have less variance and more predictability than finer data

(Wiens, 1989; Costanza and Maxwell, 1994).

2.2.2 Process Studies

The majority of mountain pine beetle spatial studies deal directly with emergence,
dispersal, or host selection through mark recapture studies or modelling. In some cases
the results of these models are compared with theoretical or observed spatial patterns of
mountain pine beetle infestations. As a point of interest, the majority of spatial

entomological studies have been carried out by a single group of researchers, who use
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continuous data and geostatistics to study and predict gypsy moth behaviour (e.g.,

Liebhold et al., 1994; Sharov et al., 1996).

Direct observations of mountain pine beetle dispersal and host selection have only
occurred at local scales via mark-recapture studies (Safranyik et al., 1989; Safranyik et
al., 1992; Turchin and Thoeny, 1993; Barclay ef al., 1998; Safranyik et al., 2000). Mark-
recapture is a technique whereby mountain pine beetles are marked with a florescent
pigment and traps are used to recapture the insects (Safranyik ez al., 1989). Traps may be
baited with pheromones to simulate the occurrence of pioneer beetles and the presence of
attractive odours (Barclay et al., 1998; Safranyik et al., 2000). These studies are
particularly useful in understanding reactions of mountain pine beetle to stimuli such as
light and temperature, for providing data on flight paths and movement (Turchin and
Thoeny, 1993; Safranyik et al., 2000), and for generating quantitative data on the
distance and direction of mountain pine beetle movement (e.g., Safranyik ef al., 1992).

Mark-recapture techniques are limited to use with tree or stand level studies.

Most modelling studies of mountain pine beetle processes may be categorized
into two groups. The first, use diffusion to model mountain pine beetle movement; the
second, model the local interactions of chemical signals, and responses between the
beetle and the trees. It should be mentioned that while several of these studies consider
spatial pattern in some way they are included in this section as they focus on a process

approach to understanding the spatial behaviour of the mountain pine beetle.
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Turchin and Thoeny (1993) used both mark recapture data and diffusion
modelling to investigate spatial patterns. Mark-recapture data were used té develop
recapture-distance curves of southern pine beetles (Dendroctonus frontalis Zimm).
Results from a simple diffusion model were compared to the recapture-distance curves to
determine if the distance of beetle travel could be modelled. The diffusion model was

found to generate results that reflect the recapture-distance curves.

Another example of mountain pine beetle modelling that emphasizes diffusion is
Polymenopoulos and Long (1990). They combine a mountain pine beetle density model
with a diffusion model of movement, to predict mountain pine beetle mortality in a stand.
The model was developed based on three years of data, collected for a one hectare area,

on the location and magnitude of mountain pine beetle attacks.

Understanding the importance of incorporating space into ecological models in
general, and mountain pine beetle models specifically, a group of researchers developed a
spatial model of mountain pine beetle pheromone ecology and single tree processes
(Powell et al., 1996; Powell and Rose, 1997; Logan et al., 1998; Powell et al., 2000).
This model uses chemically-based aggregation and dispersal patterns around a single tree,
to predict individual tree mortality. The variables included are summarized in Table 2.1

and are dependent on spatial locations and time (Powell ef al., 1996; Powell and Rose,

1997).
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Table 2.1. Variables in a local model on mountain pine beetle chemical interactions.

Variables
Population of flying mountain pine beetles
Population of nesting/eating mountain pine beetles
Concentration of pheromones
Concentration of volatiles released by attacked trees
Resin outflow
Resin capacity

Number of entrance holes bored

Using this model Logan ef al. (1998) simulated localized mountain pine beetle
spatial processes and generated an expected spatial pattern of pine mortality. By varying
input parameters, endemic and epidemic scenarios were simulated. Researchers found
that under endemic conditions the spatial pattern of an attack correlated strongly with the
pattern of weak trees, whereas epidemic mountain pine beetle populations lead to a more
clustered pattern of attack. Differences in attack patterns indicate that information about
spatial autocorrelation may be useful for differentiating between endemic and epidemic
levels of mountain pine beetle (Logan ef al., 1998). Also this investigation found that the
spatial pattern of currently attacked trees impacts which trees are infested in the future,
and that the larger the distance between weak trees the lower the likelihood of an

epidemic.

This model of mountain pine beetle chemical ecology was combined with a model
of stand demographics, based on forest age and available water (Roberts ez al., 1993), to
generate a stand-based, spatial risk model (Powell ez al., 2000). Forest risk is typically a
description of the likelihood of a mountain pine beetle outbreak, tree mortality, or stand

loss during a specific time period (Bentz et al., 1993; Shore et al., 2000). Incorporating
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space is important when identifying locations at risk, as the transition between endemic
and epidemic populations includes many factors, but appears spatially mediated (Powell
et al., 2000). The authors argued that by considering both chemical ecology and the

spatial arrangement of trees, their risk model has improved handling of spatial processes.

In a subsequent study, the tree-based chemical ecology model was used to
simulate the effect of landscape pattern on the mountain pine beetle (Hughes, 2002). The
landscape extent was five square kilometres. Hughes’ study highlights both the benefits
and limitations of studying mountain pine beetle using processes. By studying spatial
processes, Hughes (2002) was able to tentatively conclude that forest fragmentation has
only minor impacts on mountain pine beetle behaviour, due to the overriding influence of
long-range above canopy dispersal. The caveats that made the conclusion tentative were
difficulties with model parameterization and the sensitivity of the model to small changes
in processes. Hughes demonstrated that, even at local scales, there are many unknowns

related to mountain pine beetle processes.

It is important to point out the use of time in spatial studies of the mountain pine
beetle. With the exception of mark-recapture research and the study of spatial scale by
Peltonen et al. (1998), spatial studies of the mountain pine beetle are multi-temporal.
Spatial processes and patterns are either modelled or observed over time. Although
knowledge of spatial behaviour of mountain pine beetles is important, it is an
understanding of spatial behaviour over time that is necessary for improved prediction

and management.
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3 STUDY AREA AND DATA
3.1 MORICE TIMBER SUPPLY AREA

One area impacted by the current infestation in British Columbia is the Morice
Timber Supply Area, which for simplicity will be referred to as Morice (Figure 3.1).
Morice is part of the British Columbia Ministry of Forests’Nadina Forest District and is
centred on the small town of Houston. Bordered to the west by the Coast Mountains and
to the south by Tweedsmuir Park, the topography is gentle to the north and east,
becoming more mountainous in the southwest. There are three major rivers in the area
(the Bulkley, the Morice, and the Nadina). There are also two large lakes; Babine Lake
to the north is the largest fresh water lake in British Columbia, and Ootsa Lake is in the
south. Morice includes five biogeoclimatic zones: Sub-Boreal Spruce (59 percent),
Engelman Spruce-Subalpine Fir (26 percent), Alpine Tundra (11 percent), Coastal
Western Hemlock (three percent), and Mountain Hemlock (one percent). Covering an
area of approximately 1.5 million hectares, this area is dominated by lodgepole pine and
spruce (Picea). Fifty-four percent of the timber harvest land base is lodgepople pine.
The proportion of pine is less in Morice than in many other districts in the interior of

British Columbia, some of which have upwards of 70 percent pine.
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Morice
Landsat 2000

Figure 3.1. Location of the Morice Timber Supply Area.

3.2 DATA
3.2.1 Mountain Pine Beetle Data

In Morice, mountain pine beetle infestations have been monitored since 1995
using point-based, global positioning system (GPS) aerial surveys. Aerial surveys of
mountain pine beetle infestations use indicators of pine mortality, mainly changes in
crown foliage colour, to monitor mountain pine beetle activity. The response of pine
foliage to a successful mountain pine beetle attack is discussed in Chapter 2. During

aerial surveys, clusters of visually infested trees, typically those with yellow and red
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crowns, are identified and a GPS is used to map cluster centres with a point. For each
cluster, the number of infested trees is estimated and the infesting insect species recorded.
The maximum area represented by a point is 0.031 kilometers squared, equivalent to a
circle with a radius of 100 metres. Although many points represent smaller areas,
variations in circle radii are not recorded. From 1995 to 2002 a total of 43,751 points
were identified during aerial surveys, of which field data were collected for 6,151 points

(Table 3.1).

Table 3.1. The annual number of mountain pine beetle aerial and field survey sites
collected in the Morice TSA from 1995 to 2002.
Survey Sites 1995 1996 1997 1998 1999 2000 2001 2002 Total
Aerial 2,181 6,076 8,461 2,418 4,669 5,333 5,836 8,777 43,751
Field 0 0 0 0 223 104 3004 2820 6151

During field data collection, ground crews locate infestation clusters recorded via
aerial surveys and determine the cause of lodgepole pine mortality. If the mountain pine
beetle is the cause of tree mortality, crews record the number of green trees currently
under attack (Green Attack), the number of trees attacked the previous year (Y1), the
number of trees attacked two years previous (Y2), and the number of trees attacked and
now grey (Greys) (Nelson et al., 2004). Green Attack trees have no visible foliage
discolouration. Crews also note the presence of any non-mountain pine beetle insect
infestations. From the cluster centroid, ground crews walk a 100 metre radius looking for
further evidence of mountain pine beetle activity. If infested trees are found, an
additional 100 metre sweep is conducted. This is continued until no infested trees are

located during a 100 metre sweep. Like all observed data, the mountain pine beetle data
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are prone to uncertainty. Details of measurement error, as well as methods for addressing

uncertainty, are provided in Chapter 4.

3.2.2 Supplementary Data

British Columbia Ministry of Forests’ inventory data were used in this study.
Forest inventory data are primarily generated via aerial photo (1:15,000) interpretation
and were last updated in the mid 1990s. The key forest inventory attributes used were:
age, dbh, and species percent (Figure 3.2). Stand age is the age, in years, of the forest
stand on the date of polygon classification, and is based on ring counts from a bored core
or is estimated from aerial photographs. Diameter at breast height is the quadratic mean
stand dbh and is calculated based on forest age and site index. The quadratic mean is the
square root of the arithmetic mean of squared values and gives greater weight to large
trees. Typically, the quadratic mean is used for calculating stand dbh as it relates to other
forest characteristic more meaningfully than does the arithmetic mean (Curtis and
Marshall, 2000). Tree species and percentages are given for the six most dominant forest
species. The dominant tree species, (noted as species_one in the database), occupies the
largest percentage of the stand. Both the commercial species or brush, and the percentage
of the stand composed of this species are recorded. The same attributes are listed for the
next most common species, species_two, and so on to species_six. The inventory data
were provided in irregular polygon format, but were converted to 200 metre grid cells for

comparison with the kernel density estimated surfaces described in Chapter 4.
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Figure 3.2. Morice TSA forest inventory polygon attributes used in this analysis.
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Other supplementary data included elevation and aspect. Aspect was generated
from a digital elevation model (DEM) provided by Morice (Figure 3.3). The original
elevation model was created from 1:20,000 Terrain Resource Information Management
data (Province of British Columbia, 1996), and grid cell size was 25 square metres. The
data were interpolated using a linear process and the DEM is accurate within 10 metres.
When used in this study, the DEM cell size was aggregated to 200 square metres,
allowing for comparisons with the kernel density estimated surfaces described in Chapter
4. Aspect data were derived from the DEM. Aspect is calculated as the down-slope
direction of the maximum rate of change in elevation value from each cell to its

neighbours.

Elevation Aspect
(metres) (degrees)

0

Figure 3.3. For the Morice TSA, the Province of British Columbia generated elevation
and aspect data. Grid cell size equals 25 square metres.
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3.3 DELINEATION AND DESCRIPTION OF SUBAREAS

Mountain pine beetle populations in the north, middle, and south of Morice tend
to have different behaviour. While cursory investigations show that partitioning Morice
based on the year of initial infestation allowed for more meaningful analysis, the exact
boundaries for partitioning were unclear (Figure 3.4). We conducted boundary
sensitivity analysis by digitizing several possible boundaries and comparing the
distribution of point attributes in all years. Two boundaries were drawn in the south and
three in north (Figure 3.5). This resulted in six different realizations of the Middle
subarea. Kolmogorov-Smirnov tests were conducted to compare the distribution of
attribute values for different realizations of all subareas. In each comparison, the null
hypothesis that distributions were similar could not be rejected. Therefore, the analysis is
unlikely to be sensitive to the minor variations in boundary placement. For the remaining
analysis, North1l, Middlel, and Southl subareas were used. Initial analyses were always
conducted on subareas. However, in certain cases results were consistent between
subareas, or trends more easily interpreted when all results were considered together
(e.g., individual subareas may result in few observations). In such instances, results are

reported for the entire study area.
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Figure 3.4. Initial year of mountain pine beetle infestation in the Morice TSA.
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Figure 3.5. Possible partitions of the Morice TSA based o
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Colours represent the initial year of infestation as shown in Figure 3.4.

n the initial year of infestation.



Mountain pine beetle behaviour in each of the subareas is likely a response to different
management strategies, variability in the magnitude of mountain pine beetle populations,
and differences in the characteristics of the underlying landscape. In the North subarea,
most of the mountain pine beetle activity occurred in the mid to late 1990s and
infestations tend to be localized and intensively managed via harvesting. By 2002,
management and mountain pine beetle activity had removed most of the mature pine in
the North subarea. When data collection began in 1995, the Middle subarea was the most
heavily infested. Infestations in this region also tend to be localized and less rigorously
managed. In the South subarea, the nature of the infestation is quite different. This area
was not heavily infested until 1999. Rather than localized infestations, the attack in the
South appeared continuous with large areas being infested rapidly. Due to the magnitude
of the infestation, mountain pine beetle management has had limited impact in this
region. The South subarea is unique, as monitoring of this area began prior to the
infestation. Usually insect infestation data are not collected until after an outbreak occurs
(Logan et al., 1998). Data captured in the early stages of infestation in the South subarea,
provide a unique opportunity to investigate the characteristics of infestation

establishment.
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4 AERIAL SURVEYS: EXPLORING ACCURACY AND DATA
REPRESENTATION

4.1 INTRODUCTION

Mountain pine beetle monitoring is necessary to assist deciston making at several
management levels; therefore, mapping occurs at various spatial scales. For provincial
use, mapping of mountain pine beetle infestations is generally undertaken via sketch
mapping from a fixed-wing aircraft at a scale of 1:100,000. Sketch mapping is relatively
inexpensive and is an efficient method for monitoring infestations over large areas.
During sketch mapping, surveyors delineate areas of insect infestations and categorize the
estimated percentage of attack. By providing general information, sketch mapping assists
strategic planning and management activities such as provincial forest health reporting

and the setting of annual allowable cuts (Wulder et al., 2004).

Forest districts have a mandate to manage local regions and require data at a fine
spatial scale. This is often acquired by helicopter surveys that use GPS to mark centroids
of individual infestation clusters as points. In some districts, additional field data are also
collected. These point surveys provide spatial detail necessary for tactical planning at a
local level. For instance, point data are used to guide mountain pine beetle mitigation

and harvesting.

Remotely sensed imagery may also be used for mapping mountain pine beetle

infestations at a variety of spatial scales. While the utility of mapping mountain pine

beetle infestations with remotely sensed imagery has been demonstrated (Franklin et al.,
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2003, Skakun et al., 2003), remotely sensed imagery is not yet used operationally. Over
time, as methods improve and cost declines, remotely sensed imagery may be better able
to meet operational demands. Already high spatial resolution imagery, such as IKONOS
panchromatic imagery with a spatial resolution of a metre squared, has been shown to
support tactical planning with detailed information analogous to aerial photography

(White et al., 2004)

Mountain pine beetle monitoring programs generate valuable data sets necessary
for management. However, as with any large area data set, these surveys are prone to
uncertainty. For example, misidentification of the cause of tree mortality may impact
both the accuracy and information content of aerial surveys. As well, information
available from aerial surveys is often difficult to visualize. Large extents, sizeable data
sets, and uncertainty complicate data visualization and representation. A flexible
mechanism for considering uncertainty when visualizing and exploring data would

facilitate effective use of information for decision making and scientific inquiry.

In this chapter we focus on point-based aerial surveys. While such surveys are
produced for management purposes, they also provide spatial detail suitable for landscape
level spatial pattern analysis aimed at better understanding mountain pine beetle
behaviour over large areas. Our goal is to explore the information content of point-based,
aerial surveys of mountain pine beetle infestations and to demonstrate an appropriate
technique for visualizing infestation data while considering data uncertainty. To reach

this goal, three objectives are considered. First, we explore the nature of error and
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uncertainty in aerial survey data. Second, we demonstrate an effective technique for
visualizing variations in infestation magnitude over large areas. Third, we extend the

visualization method to incorporate data uncertainty.

4.2 BACKGROUND ON AERIAL SURVEY DATA

To provide a context for the discussion of uncertainty in the mountain pine beetle
data (data are described in section 3.2.1), we present an overview of the limitations of
point aerial surveys as well as potential sources of attribute error. Attribute uncertainty is
defined both in terms of error in point values and the presence of points. Points located
where infestations do not exist, or having overestimated attribute values, represent
commission errors (false positives), whereas infestations that are not located or points

with underestimated attribute values represent omission errors (false negatives).

Using lodgepole pine mortality as a surrogate for mountain pine beetle
populations limits the stage of infestation that can be detected. Pre-visual infestations, or
green attack, cannot typically be detected by aerial surveys (Wulder ez al., 2004). Aerial
surveys most often capture trees with red foliage that represent the location of mountain
pine beetle in the previous year. Trying to relate mountain pine beetle infestation data to
a single time frame is difficult due to the nature of change in pine foliage, and is further
limited by the time taken to complete aerial surveys for large areas. Over the duration of
a survey, which is often several months, foliage continues to change. If areas flown at
the beginning of the aertal survey were to be inventoried at the time of survey

completion, different trees would likely display visible evidence of attack.
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Another source of uncertainty in aerial surveys is the required assumption that all
lodgepole pine mortality is caused by mountain pine beetles. Aside from mountain pine
beetle activity, lodgepole pine mortality may be caused by root rot, blow down, animal
activity (e.g., porcupine and beavers), and water or nutrient stress. Since the sequence of
foliage colour change is the same regardless of the cause of tree mortality, fieldwork is

necessary to determine conclusively the presence of the mountain pine beetle.

Misidentification of the tree species under attack may also lead to incorrect
attributes. In areas with mixed forests, multiple infestations may occur simultaneously.
For example, in Morice there are both pine and spruce infestations. While the species of
live tree crowns are relatively easy to identify, the species of stressed or dieing trees can

be more difficult to determine.

Operational considerations will also impact aerial surveys. Infestation magnitude
can be difficult to estimate aerially. Aircraft speed, movement, view angle, and flying
height will impact survey quality. As well, shadow, weather conditions, and surveyor

experience may result in over and/or underestimates of infestation magnitude.

Issues that are specific to error in point-based aerial surveys include the sampling

design and point characteristics. The sampling design of point-based aerial surveys is

frequently irregular and may impact the completeness of the survey. Infestation clusters
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are represented by a single point and variations in the area, shape, and compactness of

clusters are not recorded. Also, typically, no information is provided on healthy trees.

4.3 QUANTITATIVE ASSESSMENT OF AERIAL SURVEY UNCERTAINTY

The above description of aerial survey uncertainty is not meant to be overly
critical. Aerial surveys are an efficient means of collecting infestation data over large
areas and provide meaningful information to managers. In order to capitalize on
available information, users need to be cognisant of the sources of error and uncertainty
in aerial data. With that in mind, we use a combination of aerial and field data to assess
both the information content and uncertainty of aerial data. Although field data were not
collected for accuracy assessments, they provide some capability for investigating error.
While field data does not include information on the spatial error of points, Morice data
collectors and users have suggested that the spatial error of cluster centroids is

approximately 25 metres (Nelson e? al., 2004).

Aerial survey estimates of infestation size were compared to the following field
attributes: Green Attack, Y1, Y1+Y2, and All. All is the sum of Green Attack, Y1, Y2,
and Greys (for definitions of attributes see the section 3.2.1). This comparison allowed
quantification of accuracy and errors of omission and commission. We conceptualize
accuracy and error in two ways. The first is based on field survey points, whereby the
percentage of points having the correct number of infested trees, omission error, or
commission error can be determined. The second approach, based on the trees, provides

additional insights on the amount of error that occurs when aerial attributes are
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incorrectly estimated. While commission errors can be characterized using both
approaches, there are limitations to quantifying omission error in terms of missed survey
points. It is not possible to characterize the impact of infested regions that are missed

entirely during aerial surveying.

In Table 4.1 we present the number of field points with attributes that are
accurate, have omission error, or have commission error. When compared with Green
Attack, less than six percent of point attributes are correctly estimated during aerial
surveys. This is not surprising as most Green Attack trees have no visible foliage
discolouration and cannot be detected during aerial surveys. The number of points with
attributes correctly estimated increases to 28.3 percent when compared to Y1+Y?2 field
values. Both Y1 and Y2 field data represent trees with visually detectable foliage
change. Omission error, or missed trees, is highest when compared with All infested
trees and lowest when compared only with Y1 trees. Commission error is lowest when
compared with All infested trees and highest when compared with Y1 trees. Overall Y1
and Y1+Y2 field attributes are more related to aerial point attribute values than are Green

Attack and All attributes.

Table 4.1. The accuracy of aerial helicopter surveys in Morice reported using a point-
based approach to accuracy assessment, and categorized by the phase of attack identified
during field monitoring.

Field Correct Omission Commission
Green Attack 362 5.9% 2569 41.8% 3220 52.4%
Y1 1399 22.7% 1198 19.5% 3554 57.8%
Y1+Y2 1738 28.3% 2111 343% 2302 37.4%
All 685 11.1% 4326 70.3% 1140 18.5%
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Continuing our assessment of aerial survey attribute accuracy, we investigate how
attribute accuracy varies \;vith infestation cluster size (Figure 4.1 A-C). Only results of
comparisons with Y1 and Y 1+Y2 data are provided, as the aerial data best represent these
attributes. Generally, the percentage of points with correct attribute values decreases as
aerial attribute values increase (Figure 4.1 - A). This is encouraging as the majority of
aerial survey attribute values are small (Figure 4.2). While it is recognized that there are
omission errors that are not detected during field surveys, based on available data
omission errors are highest when aerial attribute values are between eight and 20 (Figure
4.1 - B). Attribute values of nine, which are uncommon, are the exception to this trend.
Clusters of nine trees are likely an anomaly as attributes represent estimates and
surveyors are prone to record 10 infested trees rather than nine, as 10 1s a nétural break.
While omission error is lowest when attribute values are large, this is offset by sizeable
commission error (Figure 4.1 - C). These results suggest that when an infestation cluster
is large, surveyors are more likely to overestimate the number of attacked trees than when
clusters are small. Commission error is relatively low when the attribute value is less
than three, is considerable but steady for attribute values between three and 20, and

increases when attribute values are greater than 20.
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Figure 4.1. The percentages of aerial survey points with attributes that are correct, have
omission errors, or have commission errors. Aerial attributes are equal to the number of
trees.
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Figure 4.2. For all years, the proportion of aerial survey attributes. Aerial attributes equal
the estimated number of infested trees.

To better understand the impact of error, we partitioned the points based on
whether aerial attribute values were correct, had omission error, or had commission error.
We then shifted our analysis to tree-based comparisons to determine the number of trees
correctly estimated, underestimated, and overestimated (Table 4.2). As anticipated, tree-
based comparisons of aerial attributes and Green Attack values result in relativity few
trees (1,729) being correctly identified. When aerial data are compared to Y1+Y2
attributes, the number of correctly identified trees is highest (6,105). The percentage of
omission error is lowest when data are compared to the Y1 attributes (48.6 percent) and
highest when compared with Green Attack attributes (75.0 percent). The percentage of
commission error is lowest when comparisons are made using All attributes (59.5
percent) and highest when Y1 or Y1+Y2 field attributes are used for comparison (71.2
percent). Overall, the aerial data best relates to Y1 or Y1+Y2 field attributes. While
Y 1+Y2 comparisons have a higher proportion of correctly estimated point attributes and

lower commission error, Y1 comparisons have reduced omission error.
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Table 4.2. The accuracy of aerial helicopter surveys in Morice reported using the tree-
based approach to accuracy assessment, and categorized by phase of attack identified
during field monitoring.

Aerial Vs Field Correct Omission Commission
Aerial Field % Missed Aerial Field % False
Trees Trees  Trees Trees Trees Trees Trees
Green Attack 1729 14792 59112 75.0% 21879 6490  70.3%
Y1 4179 7518 14625 48.6% 26703 7684 71.2%
Y1+Y2 6105 13042 27620 52.8% 19253 5540 71.2%
All 3701 26115 101334 74.2% 9210 3726 59.5%

One difficulty with tree-based accuracy assessment is that the total number of
trees identified during aerial surveys stays constant, while the number of trees in each
field attribute class varies (Table 4.3) (i.e., the sum of Green Attack attributes is 67,331,
whereas the sum of Y1 attributes is 26,488). It is helpful to convert tree-based accuracy
values to the weighted proportion of field data accounted for by aerial data. Using the
values in Table 4.2, we calculated a weighted proportion of field data accounted for by

aerial data using the following equation:

sum of correct aerial attributes sum of omission aerial attributes . N
+ *(1—missed%)| 4]

sum of all aerial attributes sum of all aerial attributes

sum of commission aerial attributes o
: - % (1 - false A;)
sum of all aerial attributes

Using equation 4.1, the percentage of trees accounted for is 31 percent when aerial survey
point attributes are compared to Green Attack attributes, 41 percent when Y1 attributes
are used for comparison, 46 percent when Y 14+Y2 attributes are used for comparison, and
54 percent when All attributes are considered. This suggests that Y1+Y2 attributes have
the strongest association with the aerial survey estimates, although Y1 attributes are

similarly associated. As above, we were interested in variations between accuracy and
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aerial survey attribute size (Figure 4.3). Overall, as aerial attribute values increase,
accuracy decreases regardless of whether Y1 or Y1+Y2 attributes are used for
comparison. Notable thresholds in this trend are three and 20. When attribute values are
less than three or greater than 20, accuracy declines substantially; between three and 20,

error 1s more stable.

Table 4.3. The total number of trees in Morice associated with field attributes
categorized by the timing of mountain pine beetle attacks.

Field Attribute  L0tal Number
of Trees
Green Attack 67331
Y1 26488
Y1+Y2 39265
All 107296
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Figure 4.3. Percentage of field data accounted for by the number of trees for estimated

for each aerial survey point in Morice. Aerial attributes equal the number of trees.
Using a combination of point attribute values and field crew comments, we

investigated the cause of aerial survey attribute error. Based on this analysis it appears

that the most common cause of both commission and omission error is the

misidentification of attack phase. As previously noted, the process of lodgepole pine
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mortality 1s continuous and the rate of crown foliage discolouration depends on factors
such as tree health prior to attack. Consequently, it 1s unlikely that all trees with similar
foliage discolouration were attacked at the same time. As a result, it appears there may
be a tendency for trees surveyed in one year to be resurveyed the following year. Other
less common sources of error include misidentification of tree species, and tree mortality
caused by factors other than mountain pine beetle, such as porcupines, root rot, and blow

down.

4.4 VISUALIZING AND PRE-PROCESSING OF DATA

Point-based, aerial surveys generally produce large data sets, which can be
difficult to visualize, particularly when points have associated attributes. Although
simple cartographic methods, such as proportional symbols or colours, can be used to
indicate attribute values, they may be insufficient to allow for meaningful interpretation
of data. For example, it can be difficult to avoid symbol overlap that leads to some data

becoming obscured.

Kernel density estimators are a powerful and flexible method for visualizing point
data (Silverman, 1986; Gatrell, 1994; Bailey and Gatrell, 1995) that have advantages over
traditional cartographic tools (Figure 4.4). Instead of representing clusters of infested
trees as discrete events (points), kernel density estimators can be used to create a

continuous surface that displays the intensity of infested trees over the study area.
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Figure 4.4. Comparison of techniques for visualizing large point data sets. A) Aerial
survey points with no enhancements. B) Aerial survey point attributes represented as
proportional symbols. C) Aerial survey point attributes represented as proportional
colours. D) Aerial survey point attributes represented using a kernel density estimator
with a two kilometre search radius, quartic kernel shape, and 200 metre cell size.
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Kernel density estimators have benefits beyond improved visualization. An
important conceptual benefit is that kernel density estimat;)rs enable a continuous
representation of the data. When mountain pine beetle populations are at endemic levels
beetles are found throughout pine forests. At epidemic levels the spatially continuous
nature of mountain pine beetle populations is even more apparent, and infested trees seem
to result from spatially continuous, rather than discrete or isolated, processes. A second
benefit to kernel density estimators, which will be demonstrated in this chapter, is that it
is possible to incorporate spatial and attribute uncertainty when visualizing point patterns
with kernel density estimators. We are unaware of approaches for incorporating data
uncertainty into methods that use proportional symbol or colour mapping. Additional
technical benefits and issues associated with the use of kernel density estimators are

described below.

Conceptually, the intensity A(z) at a particular location z in a study area 4 can be

estimated by the naive kernel density estimator

the number of events in a disk centredon z
area of the disk

Az) =

A more precise estimate, ):, (z) 1s defined by

ft,(z)= ! {iiki(z——ﬂjy,}zeA 4.2

el o T

47



where z and A are defined as above, 7 is the search radius of a disk centred on z, k() is
the kernel or a probability density function that is symmetric around about the origin, z; (i

=1, ..., n), are locations of n observed events, and y; is the attribute value at z;. The term

P, (z) = _‘;k[(z - u)/ T]du is an edge correction equivalent to the volume under the scaled

kernel centred on z which lies inside of 4 (Diggle, 1985).

There are three issues that are commonly considered when working with kernel
density estimators: the type of kernel &( ), the size of the search radius 1, and edge effects.
The kernel determines how events within the search radius will be weighted. For
example, in this case we use a kernel with a quartic distribution function, which weights
events in terms of their distance from z. The quartic kernel, is more peaked, but has a
similar shape to the normal kernel, and approximates normal when 7/ 2 (Silverman,
1986). Although the kernel definition may be theoretically important, it does not have a

large impact on kernel output.

Kernel density estimators are much more sensitive to T, which controls data
smoothing. A function of kernel density estimation is that data are smoothed. Such pre-
processing can be particularly beneficial when working with large data sets, which are
typically uncertain. Smoothing is a beneficial when data are uncertain, as high values are

suppressed and low values are enhanced, and in addition the impact of spatial errors are
reduced (Silverman, 1986). For kernel density estimated surfaces, as T increases, so does
the amount of data smoothing (Kelsall and Diggle, 1995); if 1 is too large, data variability

will be lost, while if too small, data trends will not be visible. If the study area is a unit
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square, a good starting point for determining an appropriate value for T is 0.77"%, where
n is the observed number of events in the study area (Bailey and Gatrell, 1995).
However, often kernels need to be calculated for several values of T and kernel outputs
compared. We compared several kernel sizes and chose a two kilometre search radius,
optimizing tradeoffs between detail and the representation of infestation trends. The two
kilometre search radius is also large enough to be relatively robust with respect to errors

in point locations.

Kernel density estimators may also be impacted by edge effects. In this study,
edge effects do not have a significant impact, as the area we are studying is large relative
to T, so the edge correction term in equation 4.2 was not implemented. An additional
issue, which arises in software used to implement kernel density estimators, is the
definition of surface cell size. Here we use a 200 metre grid cell, which is approximately
equal to the maximum area represented by an aerial survey point. In future chapters,
kernel density estimated surfaces become the basis for spatial pattern analysis. As with
any surface-based analysis the cell size, or resolution, will impact analysis results
(Atkinson and Curran, 1997). In future research, it may be beneficial to explore the
impact of kernel density estimated surface cell size and spatial pattern analysis. While
the subjectivity involved in choosing an appropriate cell size may be problematic, using
raster representations for space-time analysis has the benefit of producing consistently

indexed spatial units that may be tracked through time.
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4.5 CORRECTING FOR UNCERTAINY WHEN VISUALIZING DATA

We have explored mountain pine beetle aerial survey data by investigating the
information content of data and presenting a technique to improve data visualization.
Recognizing the importance of these two issues, we expand the kernel density estimator
approach to incorporate data uncertainty. Since kernel density surfaces will be used to
explore annual spatial patterns of mountain pine beetle infestations, we addressed
uncertainty relative to Y1 attribute values, as these are most representative of mountain
pine beetle populations within one year. Our general approach to incorporating
uncertainty in kernel surfaces is to generate a number of possible representations of the
point data by drawing values from distributions that model spatial uncertainty and Y1
attribute values. For each representation, a kernel density surface is created and all kernel

density surfaces are averaged to produce a surface incorporating uncertainty (Figure 4.5).

Generate one realization of point locations

—— For each point location add a randomly
uniformly selected value ranging from -25 m to
+25 m to both the x and y coordinates.

field attribute vatues parameter gamma

22}

: !

£

h . . . . Estimate parameters for
= Assign a possible attribute to each point a frequency distribution
+ For each point, draw a value from the representing field

% estimated frequency distribution of - attributes. E.g. A two
[

distribution

!

<+——| Generate KDE from point realizations

:

Average 100 KDE surfaces

Figure 4.5. Summary of method for incorporating uncertainty when generating kernel
density estimated surfaces.
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The spatial error for each point, or cluster centroid, is estimated by field crews to
be within £25 metres. In order to simulate spatial error, values were drawn from a
normal distribution with a mean of zero and standard deviation of one. These values
were then scaled between +25 and added to both the x and y locations of each point.
Although the distribution of GPS error is not normally distributed, the distribution of
error in either the x- or y-axis is near normal (Leva et al., 1996 pg. 279). Spatial
uncertainty was simulated 100 times to generate 100 different spatial representations of

the point data.

Aerial survey attribute error was also simulated by drawing values from a
distribution. To determine an appropriate distribution for attribute simulation, point data
having both aerial and Y1 field attributes (6,135 points) were randomly partitioned so
that half could be used for method development and the other half for method testing. It
should be noted that 16 points with aerial or attribute values greater than 100 were
considered outliers and removed from the analysis. In order to consider uncertainty in
the next phase of analysis, the goal for this stage of analysis was to identify a distribution
useful for simulating Y1 values based on aerial survey attributes. Cursory exploration
suggested that more than one distribution would be necessary for generating realizations
of attribute. Based on natural breaks in the frequency distribution of aerial survey
attribute values, aerial survey data were split into three categories with attributes equal to:
one to five, six to 10, and greater than 10 (see Figure). We did not deal with aerial values
equal to zero as these only occur when field data are available, and therefore do not need

to be corrected.
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For each category, distributions of Y1 attributes were skewed right, having many
small values, and appeared to be of a gamma form (Figure 4.6). Maximum likelihood
estimates (MLEs) were used to estimate parameters that best fit two-parameter gamma
distributions to the frequency distribution of Y1 values in each of the three data
categories. The gamma parameters were adjusted to optimize the fit between observed

and estimated distributions (Table 4.4).

020 Aerial attributes 1 to 5 0.10 1 Aerial attributes 6 to 10
S~1.25 0.08 - S ~2.00
0.151 R~045 R ~0.30
0.06 -
0.1041]
0.04 1
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0.00 , : : 0.00 L i e - :
20 30 40 50 0 10 20 30 40 50
0.051 Aerial attributes > 10
0.04 S~1.60
R~0.10
0.03
0.02+
0.01"
0.00 -
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Figure 4.6. Frequency distributions of Y1 values for each of the aerial attribute categories. S
(shape) and R (rate) are the parameters of the 2-parameter gamma distribution fitted to the
data. The x-axis is the number of infested trees identified, for each point, during field
surveys and the y-axis is the relative frequency of data.
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Table 4.4. Two-parameter gamma distribution characteristics used for generating
realizations of aerial survey attribute values. S (shape) and R (rate) are the parameters of
the 2-parameter gamma distribution.

Aerial values S MLE R MLE S Adjusted R Adjusted

1toS 1.93 0.55 1.25 0.45
6to 10 1.99 0.27 2.00 0.30
>10 1.36 0.06 1.60 0.10

Although the gamma distribution relates meaningfully to our data, there are two
problems with using it to simulate the Y1 data. First, gamma distributions are
continuous, whereas the number of infested trees is discrete. Since a discrete gamma
distribution may be generated by binning data values (Yang, 1994), we rounded values
drawn from the gamma distribution, thus producing a finely binned distribution.
Secondly, gamma distributions do not include zeros, whereas the data do. To
accommodate this limitation, the percentages of zeros in the Y1 data were retained in the
simulations. Although these solutions may lack elegance, the alternative is to generate a
distribution based on the observed data, which would be “chunky” and requires the
assumption that the observed data represent the entire error population, rather than a

sample of possible errors.

Once the gamma distribution parameters were estimated, drawing values from
each distribution simulated point attributes. The zeros retained in each simulation were
treated as additional random draws. To assess the effectiveness of this approach,
attribute values from five simulations were averaged together and compared to the testing
data using the Kolmogorov-Smirnov test. At the 95 percent confidence level, the fit
between the simulated data set and the test data could not be rejected. Once the spatial

locations and attribute values were simulated 100 times, each data realization was
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converted to a kernel density surface and all 100 surfaces were averaged together. In
Figure 4.7 we show kernel density surfaces for 2002, the first made without correction
and the second incorporating data uncertainty. Figure 4.8 is the spatial variation in
differences between the uncorrected and corrected surfaces. While the corrected surface
has locations with both higher and lower infestation values relative to the uncorrected
surface, there is an overall reduction in values. In 2002, when data uncertainty is
incorporated the maximum number of infested trees per 200m? is 101; when uncertainty
is not considered the maximum number of infested trees is 268 per 200m®. The higher
values associated with the uncorrected surface are explained by the large commission
error that occurs when aerial survey attributes and Y1 data are compared. Figures 4.9

shows the corrected kernel density surfaces for 1995 through 2002.
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Figure 4.7. Kernel density estimated surfaces without (A) and with (B) consideration of
data uncertainty in 2002 for the Morice TSA.
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Figure 4.8. For 2002 in the Morice TSA, the difference in kernel surfaces calculated
with and without corrections.
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Figure 4.9. Corrected kernel density estimated surfaces from 1995 to 2002 for the
Morice TSA. Legend values represent the number of infested trees per 200 m*.
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Figure 4.9 (Continued). Figure 4.9. Corrected kernel density estimated surfaces from
1995 to 2002 for the Morice TSA. Legend values represent the number of infested
trees per 200 m®.
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For each pixel in a corrected kernel density estimated surface, the variance of the 100
kernel density input values, provides insight into the extent of data uncertainty at a
specific location, the lower the variance, the lower the uncertainty. Variance tends to be
highest where the aerial attribute values are the largest. By draping the corrected kernel
density estimated surfaces over variance values, we can visualize how uncertainty
changes with infestation intensity, and identify locations where confidence in data quality

is high and low (Figure 4.10).
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Figure 4.10. For the Morice TSA, from 1995 to 2002, infestation intensity (colour) is
visualized in combination with data confidence or variability (height). Darker reds
represent higher infestation values, and grey represents locations with no infestation.
Higher locations have greater variance. Variance is exaggerated to aid visualization and
increases with data height.
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Figure 4.10 (continued). For the Morice TSA from 1995 to 2002, infestation
intensity (colour) is visualized in combination with data confidence or variability
(height). Darker reds represent higher infestation values, and grey represents
locations with no infestation. Higher locations have greater variance. Variance is
exaggerated to aid visualization and increases with data height.
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4.6 SUMMARY

Monitoring efforts in the Morice TSA have generated a unique data set on
mountain pine beetle infestations. By combining field surveys with spatially and
temporally extensive aerial surveys, this data set provides a new opportunity for
exploring the spatial patterns of infestation over landscapes and through time.
Uncertainty is inherent in data sets collected over large areas or multiple time periods.
As such, understanding the nature of error and the information content of data is

beneficial.

Data collected by Morice of are of sufficient detail and accuracy to assist forest
management, and tactical planning associated with mountain pine beetle mitigation.
Attribute errors associated with aerial GPS helicopter surveys are typically small (87.2
percent of points have errors less than £10 trees). The main factor in aerial survey
accuracy is the timing of the response of crown foliage to attack by mountain pine
beetles, and attributes best represent infestations that occurred one to two years
previously. This research corroborates other investigations that have indicated aerial

survey methods are not suitable for monitoring green attack (Wulder et al., 2004).

The information content of data collected by the Morice TSA, is evidence of the
benefits of continuing to monitor mountain pine beetle infestations using a combination
of helicopter and field surveys. As most of the error seems to be associated with the
timing of a tree’s response to attack, rather than survey procedures, it is unlikely that

modifications to the aerial surveying approach will lead to major improvements in the
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data accuracy. However, there may be benefits associated with expanding or adjusting
the field program. For instance, we are unable to quantify the frequency with which
infested locations are entirely missed during aerial surveying, although we anticipate such
errors exist. One recommendation may be to undertake random field surveys in locations
throughout the Morice TSA. This may give an indication of the likelihood of infested

locations being missed during aerial surveying.

Even the most detailed and accurate data are only useful if they can be clearly
communicated. Improved communication allows data to be used more effectively in
decision making, facilitates information dissemination to the public, and enhances use by
researchers. Kernel density estimators are a simple and effective tool for visualizing
infestation data and facilitate exploration and mapping of spatial variation in infestation
magnitude. Here, kernel density estimators are more effective than simple cartographic
techniques, as surface generation removes point overlap, spreads attributes over areas,
and allows incorporation of data uncertainty. By producing a continuous representation
of the data, the kernel density estimators enable a conceptually appropriate data model

and aid analysis over many time periods.

Although the uncertainty associated with most individual survey locations is
minor, the cumulative impact of many small, but common, errors may have a
considerable effect on spatial analysis. Adjusting kernel density estimation to incorporate
uncertainty provides a new approach for dealing with uncertainty when working with

large area data sets. The technique for considering uncertainty that has been outlined in
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this chapter may be applied to other large point data sets. Methods designed to
incorporate uncertainty are essential and enable spatial investigations of a growing

number of rich, but uncertain, large area and multi-temporal data sets.
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S EXPLORING SPATIAL AND SPATIAL-TEMPORAL HOT SPOTS
IN MOUNTAIN PINE BEETLE INFESTATIONS

5.1 INTRODUCTION

The term “hot spot” is used by many disciplines and has several meanings. In
forestry, hot spots typically refer to the presence of phenomena such as fire (Fraser ez al.,
2000). In spatial analysis, the term hot spot may indicate the presence, abundance, or
lack of phenomena (Sokal et al., 1998), or an unusual spatial pattern (Ord and Getis,
2001). The hot spot definition will vary for each study; however, generally identifying
hot spots or abnormalities in spatial patterns allows locations that may be interesting or

atypical in terms of thetr spatial processes to be isolated.

Hot spots can be used to characterize and investigate spatial and spatial-temporal
variation in mountain pine beetle infestations. Some reasons for spatial variation in
infestation intensity are well understood. For example, the mountain pine beetle is
known to prefer mature trees (Safranyik et al., 1974). However, until recently, landscape
level variations in mountain pine beetle infestation intensity have not been studied, as
large area data sets were unavailable. There are many questions regarding mountain pine
beetle behaviour over large areas that may be investigated using hot spots. Detailed
definitions are provided below, however in this study hot spots are considered pixels with
the most intense infestations, and hot spot patches are groups of spatially contiguous hot

spot pixels.

The goals of this chapter are to identify and explore spatial and spatial-temporal

patterns of hot spots and hot spot patches. To meet these goals, mountain pine beetle
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infestation hot spots are delineated in each year, characterized through time, and hot spot
patches identified. The spatial-temporal relationships in hot spots and patches are
investigated and landscape characteristics underlying both hot spots and patches are

explored.

5.2 DEFINING AND IDENTIFYING HOT SPOTS AND HOT SPOT PATCHES
Hot spots are defined as individual grid cells with the most intense infestations.
For each subarea, a location in the corrected kernel density estimated surface is
considered “hot” if its value falls within the upper 10 percent of the frequency
distribution of infestation intensities. For a description of kernel density estimated
surfaces refer to Chapter 4. Kernel density estimated values represent the number of
infested trees per 200 metres squared (or the number of infested trees per pixel), and were
converted to integers prior to this analysis. The choice of the hot spot threshold was
based on a statistical standard, the 90™ percentile, and investigation of these areas
demonstrated that hot spots have different underlying characteristics than all pine

locations.

Identifying hot spots allows temporal variation in the spatial distribution of the
most intensely infested locations to be visualized. Defining hot spots as the upper 10
percent of frequency distributions has the benefit of being sensitive to the global trends in
infestation intensity. As the overall epidemic magnitude increases and decreases in
response to climate and other factors, the threshold value will also become higher or

lower, and 10 percent of the study area will always be identified as hot. Threshold values
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were generated on an annual basis for each of the subareas (Table 5.1), and were applied
to the kernel density estimated surfaces to locate hot spots in each year. These values
provide an indication of the general magnitude of infestation in each subarea through

time.

Table 5.1. Thresholds for defining hot spots in subareas of the Morice TSA from 1995 to
2002. These values are calculated as the upper 10 percent of frequency distributions,
based on kernel density cell values that estimate the number of infested trees per 200 m”

Subarea 1995 1996 1997 1998 1999 2000 2001 2002
North 924 2120 1190 547 1136 945 1055 8.88
Middle 12.16 11.73 1070 631 7.86 7.40 10.82 10.16
South nodata 2.65 270  3.07 936 2231 17.13 14.38

Much like infestation intensity varies over space, the temporal persistence of hot
spots also varies over the landscape. While portions of the landscape host hot spots for
several years, other areas are only “hot” for a single year. To characterize temporal
variation in hot spot persistence a vector, eight binary digits in length, was generated for
each pixel (Figure 5.1). Each position in the vector represented a year and was assigned
one if the location had a hot spot in that year and zero otherwise. Locations may be hot
in as few as zero, or as many as eight years, and vectors may be characterized in a
number of ways. In this analysis we characterize hot spot persistence over the full eight
years of available data, as analysis for shorter time series (i.e., two, three, and four years)

revealed similar trends to single year hot spot investigations.
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Figure 5.1. An example of a vector used to characterize spatial-temporal hot spot
persistence. A value of one indicates a pixel was hot in a particular year, and a value of
zero indicates the pixel was not hot.

Analyzing hot spots over eight years resulted in 190 unique persistence vectors.
To reduce the number of persistence categories, vectors were classified as: 1) the number
of hot spot years; 2) the maximum number of consecutive hot spot years; 3) the first hot
spot year; and 4) the percentage of active years that were hot. Active years were defined
as the first and last year that a cell had greater than zero infested trees; in other words, the

first and last year that mountain pine beetle infestations were identified at a particular

location.

The definition of a hot spot is aspatial. Yet, as will be demonstrated in the results
section, hot locations cluster spatially. The spatial configuration indicates there is a
spatial structure associated with locations of intense mountain pine beetle attacks. To
consider the spatial characteristics of hot spots, patches are defined as groups of spatially
contiguous hot spot pixels. Spatial contiguity used for delineating patches is based on the
queen’s definition (the eight neighbour rule). Hot spot patches include single pixel hot

spots; however, of the 404 hot spot patches, 396 are composed of two or more contiguous
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pixels that are 200 square metres. To better understand the spatial nature of intense

infestation, characteristics of hot spot patches were summarized and explored.

5.3 INVESTIGATING DISPERSAL

Dispersal is one of the most important components of mountain pine beetle
behaviour. While mark recapture studies provide insight on dispersal processes over
small areas (e.g., Barclay et al., 1998) little is understood regarding dispersal over large
areas. There are three key theories on mechanisms of dispersal. The first theory suggests
that during epidemics, infestations spread progressively from centres (Safranyik et al.,
1974). Qualitative observations of infestation patterns imply that beetles move from one
susceptible host to the next, spreading short distances. A second related theory focuses
on the development of large infestations. Rather than developing from a single centre,
large infestations result from smaller infestations that coalesce (Borden, 1993). Several
small attacks merge into a single, large infestation. A third dispersal theory is that at least
a portion of the mountain pine beetle population undertakes long-range dispersal,
infesting trees at some distance from the site of emergence (Furniss and Furniss, 1972;
Hughes, 2002). As mountain pine beetles are weak fliers, long-range dispersal is
believed to be a function of wind (Safranyik ef al., 1989). Long-range dispersal may
explain how new infestations appear at some distance from previously observed attack

locations.

To better understand dispersal mechanisms over the landscape, the spatial-

temporal relationships of heavily infested locations were investigated using pixel-based
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analysis and an exploration of hot spot patches. Pixel-based analysis allows some spatial-
temporal relationships between hot ‘locations to be characterized, but is of limited utility
as the spatial structure inherent in hot locations is ignored. Therefore, hot spot patches
are also investigated to allow explicit consideration of spatial structure when

investigating intensely infested locations through time.

Pixel-based investigations of the spatial-temporal relationships in hot spot
locations are explored using the nearest Euclidean distance and direction between hot
pixels in neighbouring time periods. Some, but not all, hot spots near the study area’s
boundary are impacted by edge effects. Edge effects were minimized by restricting the

analysis to distances less than or equal to 10 kilometres.

The theory that infestations begin as small isolated infestations and over time
coalesce into larger areas of attack, was investigated by determining the number of
intersections each hot spot patch has with patches in the previous year. By correlating the
size of patches to the number of intersections in the previous year, the frequency with

which large hot spot patches are located where patches were previously is illustrated.

As will be shown in the results sections, only 4.5 percent of patches had more
than one intersection with a patch in the previous year, therefore investigation of the
spatial-temporal relationship between patches focused on scenarios with zero or one
intersections. Patches with one intersection in the previous time period were split into

four categories: 1) patches in #; that completely envelop a patch in 7, (growth) (Figure
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5.2a); 2) patches in ¢; that are completely enveloped by a patch in 7,y (shrinkage) (Figure
5.2b); 3) t; patches that partially overlap patches ifl t;.1 and grew (Figure 5.2c); and 4) ¢;
patches that partially overlap patches in #; and shrunk (Figure 5.2d). When patches
completely envelop or are enveloped by other hot spot patches, growth or reduction
occurs in all directions. However, the amount of change is not necessarily consistent in

all directions.

patch growth patch shrinkage
a b
R WW?MN\ s i iy,
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patch growth and shift patch shrinkage and shift

Figure 5.2. Categories used for investigating the spatial-temporal relationships of hot
spot patches with one intersection.
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For hot spot patches with no intersections, the minimum Euclidean distance from
a patch in the previous year was determined (Figure 5.3a). The- distance of infestation
spread, associated with patches having one or more intersections was also investigated.
In this case, the distance of spread was characterized as the maximum Euclidean distance
between leading edges in ¢, and ¢; (Figure 5.3b). In the case where a patch shrunk and
was completely enveloped by a patch in #;.; there was no leading edge. For this scenario
we determined the maximum distance a patch shrinks (Figure 5.3c). For patches that

grew or shifted, the dominant direction of spread was also determined.

The amount of overlap between hot spot patches was also investigated. For each
hot patch, the percentage of overlap with patches in the previous year (z;.;) and future
year (2;+1) was determined. As well, the percentage of overlap with infested, but not

necessarily hot, locations was characterized.
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Figure 5.3. Distance relationships between multi-temporal hot spot patches. A)
Minimum distance between patches that have no intersections between ¢; and 7.;. B)
Maximum distance of leading edge spread. C) Maximum distance of leading edge
shrink.
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5.4 THE LANDSCAPE VERSUS HOT SPOTS AND HOT SPOT PATCHES

To better understand causes of spatial and spatial-temporal variations in
infestation intensity, we explored landscape characteristics associated with hot locations.
Landscape characteristics investigated include forest age, percent pine, elevation, and
aspect. Such relationships may be helpful when determining the likelihood that a
location will be attacked in the future, when estimating the duration of attack at a

particular location, or when forecasting temporal changes in infestation magnitude.

Relationships between intensely infested locations and the landscape were
investigated using two spatial units: the hot spot pixel and the hot spot patch. Using hot
spot patches as the spatial unit, we investigated how the distribution of landscape
characteristics change with hot spot size and time. For each hot spot patch, the
distribution of a landscape characteristic is summarized using a box plot. Box plots are
partitioned by subarea and year, and enable simultaneous visualization of trends in the

central tendency (median), variability, and skewness.

Pixel-based analysis allowed comparison of the relative frequency distribution of
landscape characteristics associated with hot and non-hot locations in single and multiple
years. Pixel-based investigations are partitioned by subarea and year, and landscape
characteristics of both single year hot spots and temporal categories of hot spot

persistence were studied.
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One difficulty with pixel-based comparisons is that even small errors, in one or
both surfaces, can compound and result in inaccurate comparisons (Foody, 2002; Fuller
et al., 2003). For instance, a pixel-based comparison of two identical maps may show no
similarities if one of the maps is offset by even a single cell (Figure 5.4). To minimize
the impact of minor uncertainties on map relationships, smoothing was undertaken prior
to comparison. Converting point data to surfaces via kernel density estimation, results in
smoothed data; therefore, no further filtering was performed. Similarly, the original
DEM was provided as 50 metre grid cells and was converted to 200 metre cells. The
resampling process smoothed the grid so no additional filtering was required. Forest age
class and percent pine layers were smoothed with a 5 by 5 averaging filter. A range of
window sizes was tested (3 by 3 to 9 by 9). The results of each smoothing were visually
compared and the 5 by 5 window was chosen as it smoothed the data, while retaining

sufficient spatial detail.

Figure 5.4. The same map offset by a single cell.

For each subarea, relative frequency distributions of landscape characteristics
underlying hot spots were generated. To investigate relationships between hot spots and

the physical environment, the relative frequency distributions of landscape characteristics
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for all pine cells were compared to the relative frequency distributions for only hot spots
(in figures, relative frequency distributions for all pine cells are shown by a dotted line).
If the hot spots were randomly located on the landscape, we would expect the two
relative frequency distributions to have a similar form. Disparities in the shape of the
relative frequency distributions were the basis for exploratory investigations into
landscape properties associated with hot spots. Similar exploratory analysis was carried
out for landscape characteristics underlying categories of temporal hot spot persistence.
To interpret observed trends, we set the results within the context of current literature on

mountain pine beetle biology, most of which is undertaken at stand, or finer, scales.

While exploratory analyses demonstrate relationships between forest conditions
and hot spots, relative frequency distributions for forest age and percent pine are only
representative of mid 1990 conditions, when the forest inventory was last updated. In
reality however, relative frequency distributions of forest characteristics should change in
response to mountain pine beetle infestations, management activities, succession, and
other natural disturbances. It should also be mentioned that comparisons between hot
spots and landscape characteristics resulted in a large number of plots (eight years * three
subareas * five landscape characteristics * five representations of hot spots and hot spot
persistence = 600); therefore, only a representative subset of comparisons is provided for
visualizing trends. Figures chosen for presentation highlight the dominant trends found
when all the plots were inspected. In all scenarios, the number of hot spots in eight years
and the maximum number of consecutive hot spots, produced similar results; only

findings of the former will be presented. The landscape characteristics of locations that
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were not hot were found to be consistent through time, and therefore are only presented
once in the context of pixels where zero percent of years with active mountain pine beetle
populations are hot. Finally, it should also be mentioned that hot spot locations were

compared to slope, but trends appear random and will not be reported.

5.5 RESULTS AND DISCUSSION
5.5.1 Visualizing Single and Multiple Year Hot Spots, and Hot Spot Patches

In Figure 5.5 the spatial location of hot spots for 1995 to 2002 are shown. Due to
the definition of hot spots, the number of hot cells is always proportional to the number
of pixels in each subarea with some mountain pine beetle activity. Hot spots allow easy
visualization of the subareas that have the most mountain pine beetle activity, and within
each subarea, the locations that are most heavily infested. Initially, mountain pine beetle
activity was greatest in the North and Middle subareas; however, by 2002 the South

subarea had the majority of large infestations.
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1995 1996

Figure 5.5. The spatial location of infestation hot spots in the Morice TSA from 1995 to
2002. Brown = hot spot, beige = infested not hot, white = not infested.
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Figure 5.5 (Continued). The spatial location of infestation hot spots in the Morice TSA
from 1995 to 2002. Brown = hot spot, beige = infested not hot, white = not infested.
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Maps of the categorized persistence vectors are shown in Figure 5.6. The number
of pixels in each category are shown in Table 5.2. Using these representations we can
visualize which areas were hot for many years, when areas were initially hot, and the
percentage of active years that were hot. While most of the cells with a large number of
hot years occurred in the North and Middle subareas, where the duration of mountain
pine beetle activity has been longest, locations in the South were hot for a large
percentage of active years. Typically, both the number of hot spot years and the
maximum number of consecutive hot spot years is one or two. The percentage of active
years having hot spots is usually 25 percent or less. This suggests that temporally, hot
spots are not very persistent. Yet, 93.6 percent of hot spot pixels occur at locations where

the mountain pine beetle activity occurred in the previous year.
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Number of hot Maximum number of
spot years consecutive hot spot years

The first hot Percentage of active
spot year years that are hot
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Figure 5.6. Classifications of hot spot persistence from 1995 to 2002 in the Morice TSA. Not
hot areas (grey) had mountain pine beetle infestations, but were not considered hot spots in any
time period. White locations were never infested.
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Table 5.2. The number of pixels in each of the multi-temporal hot spot classes in Morice
TSA for 1995 to 2002.

Number of hot Max number of First hot Percentage of
spot years hot spot years year active years
n n n n

1 17890 21392 1995 5449 1-25% 20778

2 6927 7223 1996 7027 26-50% 9771

3 4695 3841 1997 6035 51-75% 3670

4 2840 1803 1998 4359 76-100% 1184

5 1444 473 1999 3315

6 968 241 2000 2596

7 518 309 2001 2869

8 121 121 2002 3753

Analysis of hot spot patches provides additional insight into the spatial nature of
intense infestations. The summary of hot spot patch characteristics is not partitioned by
subarea, as trends were similar and stronger when presented over the entire region.
Visualizing the relative frequency distribution of hot spot patch sizes shows that the
minimum hot spot size is similar in all years, and less than 10 pixels (patches of one pixel
have a size of 0.04 km?) (Figure 5.7). In contrast, the maximum patch size varies. The
largest patch sizes are in 1997 and the smallest in 1998. In 1995, 1997, 1999, 2000 and
2002 distributions are skewed towards smaller patch sizes. While some large hot spot
patches exist, particularly in 1997, the majority of patches are small. In 1996 and 2001,
distributions are skewed towards larger patch sizes. In 1998, when the infestation

magnitudes are generally low, the distribution is not skewed and patch sizes are the least

variable.
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Figure 5.7. Box plots representing annual distributions of hot spot patch sizes in Morice
and for 1995 to 2002. Median is used as the measure of central tendency.

By definition the number of hot spot pixels will increase with infestation
intensity. While there are no constraints requiring hot spot pixels to be spatially
contiguous, as the infestation intensity increases globally so does the average size of hot
spot patches (Table 5.3). However, the annual number of hot spot patches is not related
to general infestation intensities. From 1999 to 2002, the infestation increases globally
and the mean patch size becomes larger, but the number of patches declines. This
suggests that as the mountain pine beetle infestation magnitude increases, hot spot

patches become larger, rather than occurring as many isolated infestation pockets.
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Table 5.3. A summary of hot spot patch characteristics partitioned annually for the
Morice TSA. Arrows indicate changes (increasing or decreasing) in global mountain
pine beetle infestation levels between years.

1995 1996 1997 1998 1999 2000 2001 2002
mean size (km?) 532 928 872 552 602 634 795 11.24
median size (km?) 240 454 336 3.02 296 324 500 4.48
minimum size (km?) 0.04 0.04 0.04 004 008 004 004 044
maximum size (km’) 41.06 113.52 7028 80.84 54.52 6540 64.40 2427

cv of size 1.60 205 151 209 141 1.69 141 292
number of patches 41 44 55 52 65 65 55 55
number outliers 3 4 5 6 7 7 6 4

global infestation " l 1 ' t ' t

5.5.2 Investigating Dispersal

Spatial-temporal nearest neighbour distances between hot spot pixels are shown in
Figure 5.8. As there was little variability between subareas, annual distance trends are
shown for the entire study area. In all years, the modal nearest neighbour distance
between hot pixels is zero kilometres. This may suggest that hot locations are typically
intensely infested for more than one year. Most hot pixels occur within two kilometres,
and few further than four kilometres, from hot pixels in the previous year. This distance
is in line with stand scale research, which suggests that 86 to 93 percent of mountain pine

beetles disperse within three kilometres of their emergence site (Safranyik ez al., 1992).
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Figure 5.8. Relative frequency distributions of nearest neighbour distances between

hot spot pixels in ¢; and hot spot pixels in ¢} in the Morice TSA.

From 1995 to 1996, and 1998 to 1999 the distance curves are flatter than in other

years, with a larger proportion of hot pixels occurring at far distances. While 1998 had

the lowest infestation magnitude, the other years associated with flat curves were not

unusual. It is interesting that the steepest curve occurs from 2001 to 2002, which is the

time period having the largest increase in infestation levels. Although further

investigation is required these results may indicate that when the global infestation

intensity increases, there is a decrease in the distance between hot locations in

neighbouring time periods.
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For all years, the relative frequency distribution of nearest neighbour distances
between hot pixels in c;)nsecutive years are summarized in Figure 5.9. The relative
frequency distribution of distances travelled by mountain pine beetles, post emergence,
has previously been found to be approximately exponential in form, with the largest
proportion of the mountain pine beetle emerging nearby (Safranyik et al., 1992). An
exponential curve and 95 percent confidence intervals were fitted to the observed relative
frequency distribution of nearest neighbour distances. While the observed relationship is
not exponential, in some situations it appears that an exponential function is an

appropriate approximation.
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Figure 5.9. The relative frequency distribution for nearest neighbour distances
between hot pixels in #; and #;1; (points) in the Morice TSA. The solid line is a
fitted exponential distribution having a rate = }/mean. Dotted lines represent 95
percent confidence intervals for the exponential distribution fitting.
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Directional trends associated with nearest neighbour hot spot distances are
summarized in Table 5.4. We were uﬁable to identify trends through time and found a
coarse directional breakdown the most informative. The dominant direction associated
with pixel-based nearest neighbour distances between hot spots in time #; and 7,4 is
southwest. Global trends observed throughout the province of British Columbia have
tended to be south-easterly (Carroll, pers com). In the South and Middle subareas a
south-western spread may be explained by the large mountain pine beetle populations to
the east of both regions. Without local meteorological data, further interpretation of
directional trends is limited. Directions between nearest neighbour spatial-temporal hot
spots are likely impacted by a combination of factors including wind direction,
topography, and infestation magnitude in surrounding regions.

Table 5.4. Stratified by subareas in the Morice TSA, the modal directions of nearest
neighbour hot spot pixels in #; and ¢ from 1995 to 2002.

North Middle South All

NE 14% 12% 19% 14%
SE 18% 14% 10% 15%
SW 55% 61% 50% 57%
NW 13% 13% 22% 14%

The spatial configuration of intense infestations is addressed by investigating
distance and directional trends between hot spot patches. To explore the spatial-temporal
relationships between patches, we determined the number of times a patch in time #;
intersected a patch in the previous year. Forty-seven percent of patches had zero
intersections, 48 percent of patches had one intersection, and five percent of patches had
two or more intersections (Figure 4.10). The larger percentage of patches with zero

intersections shows that different trends are observed when patches, rather than pixels,
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are investigated. When hot spot pixels were considered, it was most common for hot
locations to occur where they were previously; however, hot spot patches are frequently
observed at locations free of previous infestation. Large patches have many more pixels
than small patches and thereby dominate pixel-based trends. As large patches are more
likely to result from coalescence, a high proportion of hot pixels occur where hot spots

are previously identified, and trends associated with many small patches are masked.

0 intersections 1 intersections > 2 intersections

o

o
48.3% of patches 47.3% of patches 4.5% of patches
SRR zi_] T— t

Figure 5.10. Illustration of intersection definitions used for spatial-temporal
investigations of hot spot patches.

As hot spot patch size increases, so do the number of spatial intersections with hot
patches in the previous year (Figure 5.11). The number of patches with zero, one, two,
three, and four intersections in the previous year are 191, 195, 14, three, and one
respectively. This analysis provides evidence that very large hot spot patches are
generated by coalescing hot spots. Although there are only a few polygons with greater
than two intersections, the behaviour of these observations is quite clear. Additional
information improves our confidence in the observed trend. For instance, a visual

investigation of hot spot patches through time gives the impression that hot spot patches
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coalesce (Figure 5.5). Other researchers have made similar observations during mountain
pine beetle epidemics (Borden, 1993). While coalescence seems to be occurring, these
results also indicate that this is not the dominant process, as 95.5 percent of patches have

one or fewer intersections.

number of intersections with hot spot
patches in the previous year
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hot spot patch size (km?)

Figure 5.11. For all years and subareas in the Morice TSA, the number of intersections
with hot spot patches in the previous year versus hot spot patch size.

When all years were summarized by subarea, trends in the minimum distances
between hot spot patches having no intersections were consistent between the North and
Middle subarea. The South subarea had so few patches that it was difficult to analyze
relationships. Results are a summary for all years and subareas (Figure 5.12). The modal

minimum distance between hot spot patches is 1.8 kilometres. If intense infestations
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were spreading from an attack location to the nearest suitable site, one would expect
minimum distances between patches to be near zero. However, minimum distances near
six kilometres are more common than those near zero, perhaps indicating that patches

having no intersections are occurring as a result of long-range dispersal.
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Figure 5.12. For all years and subareas in the Morice TSA, the relative
frequency distribution of minimum distances between hot spot patches having
no intersections between ¢; and 7;.;.

Directional trends associated with the minimum distance between hot spot patches
having zero intersections are shown in Table 5.5. In the North subarea most spread is
northeast, in the Middle subarea spread is primarily southeast, and in the South subarea
dominant spread directions are both northeast and southwest. Although trends are weak,

directional tendencies associated with the Middle subarea reflect global trends. In the

South subarea the dominance of westward movement may result from the large source of
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mountain pine beetle to the east of the subarea. The presence of north-easterly movement
in the North and South subareas is difficult to interpret without detailed meteorological

data.

Table 5.5. Stratified by subareas in the Morice TSA, the modal directions between
nearest hot spot patches in #,.; and ¢, for hot spots with no intersections.
North Middle South All
NE 34% 21% 29% 25%
SE 28% 44% 21% 31%
SW 20% 28% 29% 22%
NW 18% 32% 21% 22%

The relative frequency distribution for the maximum spread distances of patches
having one intersection is shown in Figure 5.13. When all patches with one intersection
are considered, the maximum leading edge spread ranges from zero to six kilometres.
Zero distances are associated with patches that have shrunk. Distances of zero could also
indicate no change in the leading edge of a hot spot patch, however in our data this
scenario never occurs. Most commonly, the maximum spread is a short distance, and the
modal distance for leading edge spread is 0.3 kilometres. This may indicate that when a
hot spot patch intersects with one patch in the previous year, infestations grow as the

mountain pine beetle spread to nearby locations.
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Figure 5.13. For all years and subareas in the Morice TSA, the relative frequency
distribution of the maximum spread of the leading edge between two periods for hot spot
patches in ¢; having one intersection in 7;.y.

The growth and shrinkage of patches with one intersection were also investigated
using four categories of spatial-temporal patch relationships (Figure 5.14). Patches in ¢
having at least some growth in all directions account for 7.9 percent of the total hot spot
patches. The relative frequency distribution for the distance of maximum spread is
shown in Figure 5.14a. The maximum leading edge spread varies from 0.3 to 4.6
kilometres. When growth occurs in all directions, the modal leading edge spread is one

kilometre. In 9.4 percent of cases hot spot patches shrink in all directions between #; and

t;.1 (Figure 5.14b). In these cases the maximum distance of patch shrinkage ranges from
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0.4 to six kilometres, and the modal distance is one kilometre. Hot spot patches that have
partial overlap and grow between ¢;.; and #; represent 14.4 percent of cases (Figure 5.14c¢).
The relative frequency distribution of growth distances ranges from 0.2 to six kilometers
and is of similar form to that of distances associated with hot spot patches that shrink in
all directions, having a modal distance equal to one kilometer. Hot spot patches with
partial overlap that shrink between #;.; and #; are the most common, occurring in 16.6
percent of cases (Figure 5.14d). In this scenario the distance of maximum spread ranges
from 0.2 kilometers to nearly four kilometres, with 0.3 kilometres being the most

common distance.
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Figure 5.14. Relative frequency distributions of spread and shrinkage for hot spot patches
in time ¢ having one intersection in time #;.; in the Morice TSA from 1995 to 2002. A)
Patches grow in all directions. B) Patches shrink in all directions. C) Patches grow, but
not in all directions. C) Patches shrink, but not in all directions.

Hot spot patches intersecting patches in the previous time period are more likely
to shrink than to grow. Spatially, most hot spot patches grow no more than three
kilometres from hot spots in the previous year. Longer distances of spread are more
commonly observed when growth occurs in all directions (Figure 5.14a). This may
indicate that when there is a directional trend to growth, the infestation spreads over

shorter distances than when there is no directional trend. When hot spot patches spread

and have a smaller spatial extent in time period ¢; than in 7,1, the maximum spread
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distance tends to be small. Larger spread distances are associated with patches that
increase in size. These trends support previous observations regarding aggregative
behaviour in the mountain pine beetle. When populations decline, mountain pine beetles
aggregate together to ensure successful attack of fewer trees (Safranyik et al., 1989).
However, more beetles may result in longer spread distances to ensure adequate food

Iresources.

Directional trends in spread between hot spot patches with one intersection are
shown in Table 5.6. Trends were not variable between years and a summary for all years
is shown. In the North subarea, northwest directional trends are the most common; in the
Middle subarea, the modal spread is southwest; and in the South subarea, the dominant
spread directions are southwest and southeast. While observed southerly spread reflects
either global provincial patterns or the influence of neighbouring beetle populations, a
dominant northwest spread is difficult to interpret. Northwest spread may be the result of

intense management that occurred early and continuously in the North subarea.

Table 5.6. The modal direction of leading edge spread between 7;.; and ¢; for hot spots
with one intersection stratified by Morice TSA subareas from 1995 to 2002.

North Middle South All

NE 14% 16% 0% 15%
SE 27% 27% 50% 29%

SW 27% 31% 50% 34%
NwW 31% 25% 0% 22%

Hot spot patch intersection relationships were also explored in terms of the

percentage of overlap between patches in previous and future time periods (Table 5.7).
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Only a small proportion of patches intersect completely with hot spot patches in the
previous year (Table 5.7a), yet many overlap entirely with locations having infestations
in the previous year (Table 5.7b). The number of patches that intersect completely with
infested locations in the previous year increases with the number of intersections; 80
percent of patches with no intersections and 100 percent of patches with greater than two
intersections have 100 percent overlap with infestations in the pervious year. When hot
spot patches have zero intersections, they are less often observed to intersect with patches
in the future year than patches having at least one intersection (Table 5.7c). One hundred
percent overlap with infested locations in the future year occurs for greater than 90

percent of all patches (Table 5.7d).

Table 5.7. Characteristics of hot spot patch overlap with patches and infested areas in ¢, ;
and 7+, in the Morice TSA from 1995 to 2002.
A B C D

intersections % of #; patches that % of ¢, patches that % of #; patches % of #; patches that
between #,; overlap 100% with overlap 100% with that overlap with overlap 100% with

and 1, ¢y patches t;; infestation t+; patches t.; infestations
0 0 80 40 94
1 28 96 66 91
=2 0 100 91 91

Patterns in patch overlap may indicate that patches in #;, which do not intersect
patches in #;4;, occur in locations that are sub optimal for the mountain pine beetle as they
are the least likely to have future intersections with hot patches. One explanation may be
related to the randomness of long-range dispersal. Hot spot patches occurring as a result
of long-range dispersal may develop in locations sub-optimal for the mountain pine
beetle. In these areas, intense mountain pine beetle infestations do not persist. During

long-range dispersal some mountain pine beetles may also randomly disperse to locations
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that are highly suitable, and intense infestations will persist and experience processes
associated with patches having one intersection. A more detailed view of overlap for
patches having zero and one intersections shows that while the modal overlap is 100

percent other amounts of overlap are quite uniform.

5.5.3 Hot Spots and Age

Partitioned by subarea and year, box plots are used to display the relative
frequency distributions of forest age for individual hot spot patches (Figure 5.15 to 5.18).
There were too few hot spot patches in the South to warrant patch-based analysis. Using
box plots we can investigate trends in the central tendency, variation, and skewness.
Regardless of the year or size, median patch forest age is highly variable, and typically
ranges from 50 to 200 years. In some years, variability in the forest ages associated with
each hot spot patch appears related to patch size. Small hot spot patches appear to have
lower internal variation, or more homogeneity, in terms of forest age. This trend is seen
in the North subarea for 1996, 1997, 1998, and 2001 and in the Middle subarea for 1996,
1997, 1998, 1999, 2000, and 2002. In the North and to a lesser degree in the Middle
subarea, long lower tails are more common than long upper tails; however, it is difficult

to link trends in the skewness, to patch size or time.

In general, the forest age composition of hot spot patches remains relatively
similar over time and is independent of patch size. The same overall trends were
observed when percentage pine, elevation, and aspect were considered. Due to the large

number of box plots (404 patches * 4 landscape characteristics = 1616 box plots), box
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plots associated with percentage pine, elevation, and aspect are not shown. Large patches
appear to be bigger versions of small patches. This may indicate that the occurrence of
hot spot patches is more related to the mountain pine beetle population than to landscape
characteristics. For instance, microclimates and neighbouring mountain pine beetle

populations may influence local population levels.
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Relationships between intense infestations and the landscape were more clear
when analysis was undertaken using hot spot pixels, rather than hot spot patches.
Relative frequency distributions of landscape characteristics were composed from pixels
associated with hot spots, and compared to relative frequency distributions generated
from all pine pixels. When comparing the relative frequency distributions of pine age
associated with single year hot spot pixels to the age relative frequency distributions for
all pine locations, departures between distributions vary with each subarea (Figure 5.19).
However, common trends emerge. In all subareas, few hot spot pixels are associated
with forests less than 100 years old. Once the infestation is well established, hot spot
pixels are located where the oldest trees occur in abundance (North 140 to 180 years;
Middle 140 years; South greater than 180 years). In the North and South subareas,
younger trees are infested over time and eventually the relative frequency distribution of
forest age associated with hot spots becomes similar to the relative frequency distribution
for all pine. One difference between the North and South subareas is the temporal scale
with which the hot spot relative frequency distributions become similar to distributions
for all pine. In the North, the hot spot relative frequency distribution of forest age
changes over several years and likely reflects small, localized mountain pine beetle
infestations and intensive management. In contrast, infestations in the South subarea are
more intense and the relative frequency distribution of forest age associated with hot
spots changes more quickly. In the Middle subarea the relative frequency distributions of

forest age associated with hot spots do not change through time.
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Figure 5.19. Relative frequency distributions of forest age for hot spot pixels (solid line)
and all pine pixels (dotted line) in the Morice TSA.

Turning our attention to hot spot persistence, as the number of hot spot years

increase, there is a greater difference between the relative frequency distribution of forest

age associated with hot spots and age relative frequency distributions representing all

pine (Figure 5.20). As seen in comparisons with single year hot spots, the forest age

associated with persistent hot spots in each subarea differs. However, the more years a

pixel is classified as hot, the more likely it is to be associated with the most mature,

abundant age classes. Temporal persistence is greatest for hot spots that occur where the

forest age is 180 years in the North, 140 years in the Middle, and 220 to 240 years in the

South subarea.
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Figure 5.20. Partitioned by the number of years a pixel is a hot spot, the relative
frequency distributions of forest age for hot spot pixels (solid line) in the Morice TSA.
For comparison, the forest age relative frequency distributions for all pine pixels are also
provided (dotted line).

Forest age relative frequency distributions associated with the first year a pixel is
a hot spot are seen in Figure 5.21. Trends are similar to those found through comparisons
with hot spots in single years. Essentially, over time, high intensity infestations shift
from older to younger trees. In the South subarea, where the infestation is the most
intense, hot spots are associated with younger forest conditions sooner than in other

subareas.
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Figure 5.21. Partitioned by the first year a pixel is a hot spot, the relative frequency
distributions of forest age for hot spot pixels (solid line) in the Morice TSA. For
comparison, the forest age relative frequency distributions for all pine pixels are also
provided (dotted line).

The number of years a pixel is found to be a hot spot is influenced by the length
of time beetles were active in an area. To account for this influence, the proportion of
active years that are hot spots were classified as zero, one to 25 percent, 26 to 50 percent,
51 to 75 percent, and greater than 75 percent. Similar to trends seen for persistence
vectors categorized by the number of hot years, the lower the proportion of hot spot
years, the greater the similarity between the hot spot relative frequency and distributions
of forest age for all pine locations (Figure 5.22). Pixels that are never hot have an age

relative frequency distribution similar to the distribution of all pine; this trend is the same

through time and between subareas. The higher the proportion of hot spot years, the
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larger the proportion of pixels that are associated with mature forest ages. It is interesting

that pixels having hot spots for greater than 75 percent of active years are primarily

associated with the mature trees, as well as trees 20 years younger. For instance, in the

North, infestations are associated with trees 160 to 180 years, in the Middle 120 to 140

years, and in the South 220 to 240 years.
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Figure 5.22. Partitioned by the percentage of active years a pixel is a hot spot, the
relative frequency distributions of forest age for hot spot pixels (solid line) in the Morice
TSA. For comparison, the forest age relative frequency distributions for all pine pixels
are also provided (dotted line).
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Repeatedly, hot spots occur most commonly in forests older than 100 years. This
is consistent with published findings that mountain pine beetle prefer mature trees
(Safraynik et al., 1974). At the landscape level, the intensity and duration of mountain
pine beetle infestations is greatest when trees are mature. These results are in line with
mountain pine beetle population dynamic studies, which demonstrate that at a more local
scale, pine mortality is the highest in mature stands, due to higher beetle magnitude and

longer duration of beetle infestations (Safranyik et al., 1999).

Visualization of temporal variations in forest age relative frequency distributions
associated with hot spots, are related to initial forest conditions and the magnitude of the
infestations. In all subareas, through time the mountain pine beetle infests younger trees
and the relative frequency distribution of forest age associated with hot spots becomes
more similar to the relative frequency distribution for all pine; in other words, the
location of high magnitude infestations become more random over time. This can be
explained by research that suggests that mountain pine beetle epidemics initiate in mature
trees, but once the infestation is established the beetles will randomly attack younger
trees (Safranyik et al, 1974; Mitchell and Priesler, 1991). Large numbers of successfully
brooded mountain pine beetles result in an ability to infest a range of hosts that are
typically considered unsuitable. When infestations are very intense, as in the Southern
subarea, changes to the relative frequency distribution of forest age associated with hot
spots occur quickly. Forest age relative frequency distributions associated with less
intense (but still epidemic) infestations that are heavily managed (North subarea) appear

to change more slowly, and little change is found when lower magnitude infestations
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receive modest treatment (Middle subarea). It should be mentioned that compared to

endemic levels of attack, all subareas have large rates of mountain pine beetle infestation.

5.5.4. Hot Spots and Percent Pine

Investigation of the percent pine relative frequency distributions associated with
hot pixels also revealed interesting trends. In the North, single year hot spot pixels are
most frequently associated with 30 to 40 percent pine and in the mid 1990s, it was
uncommon for hot spots to be located in pixels with more than 60 percent pine (Figure
5.23). The Middle subarea also shows little change through time in the percent pine
relative frequency distributions associated with hot pixels, and cells with 60 to 80 percent
pine are most frequently associated with hot spots. In the South, once the infestation
established, hot spots occur in pixels where pine percent is 40 to 70, but by 2002 the
relative frequency distribution of percentage pine associated with hot spots is nearly the
same as the percent pine relative frequency distribution for all pine cells.
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Figure 5.23. Relative frequency distributions of percent pine for hot spot pixels (solid
line) and all pine pixels (dotted line) in the Morice TSA.
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Typically, when the number of hot spot years are few, the relative frequency
distributions for percent pine associated with hot spots are similar to the relative
frequency distributions for all pine locations (Figure 5.24). As the number of hot spot
years increase, pixels are more likely to have percent pine values associated with cells hot

for a single year (North 30 to 40 percent, Middle 60 to 80 percent, and South 40 to 70

percent).
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Figure 5.24. Partitioned by the number of years a pixel is a hot spot, the relative
frequency distributions of percent pine for hot spot pixels (solid line) in the Morice TSA.
For comparison, the percent pine relative frequency distributions for all pine pixels are
also provided (dotted line).

The relationship between the percentage of years a pixel is a hot spot and percent
pine, indicates that pixels hot for the longest time periods are often associated with higher
percent pine cells (Figure 5.25). In the North subarea, the dominant percent pine
associated with pixels where hot spots are persistent for less than 75 percent of years is

30 to 40 percent, however this increases to between 40 and 50 percent when a pixel is hot

in greater than 75 percent of active years. In the Middle subarea, the dominant percent
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pine is consistently 60 to 80 percent. Yet, when hot for greater than 75 percent of active

years, a larger portion of hot spots occur in high percent pine pixels. In the South this

trend is also noted. While hot spots usually occur where percent pine falls between 40

and 70, pixels hot for greater than 75 percent of active years most often have 70 to 80

percent pine. As with age, pixels that are never hot have a similar percent pine relative

frequency distribution to all pine cells.
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Figure 5.25. Partitioned by the percentage of active years a pixel is a hot spot, the relative
frequency distributions of percent pine for hot spot pixels (solid line) in the Morice TSA.
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also provided (dotted line).
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The mountain pine beetle is observed to initially infest low to moderate percent
pine pixels. This is counter to stand scale observations that mountain pine beetles
typically infested pure stands (Safranyik et al., 1974). In part, the preference for medium
percent pine stands may be partly explained by the inverse relationship between forest
age and percent pine (Figure 5.26). The highest percent pine locations typically host
younger trees and mature trees are found where percent pine is low to moderate (30 to 80
percent). The preference for low to moderate percent pine pixels may also indicate that,
at a landscape scale, pine trees experience more stress and greater susceptibility when
they grow in marginal conditions that result in lower percentages of pine. It is interesting
to note that while low to moderate percent pine areas appear to be preferred sites for
mountain pine beetles initially, infestations persist longer in locations where the
percentage pine is higher. Perhaps pixels with higher percentages of pine, have an
increased number of stems available for infestation and the smaller trees at these

locations may slow the infestation as fewer beetles emerge (Safranyik ez al., 1974).
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Figure 5.26. Average percent pine versus forest age by subarea in the Morice TSA.
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5.5.5 Hot Spots and Elevation

Elevations at which hot pixels were detected may also provide insight into
mountain pine beetle preferences. In the North subarea relative frequency distributions
of elevation associated with single year hot spots, deviate from the relative frequency
distribution for all pine at a single elevation class (Figure 5.27). In 1995 and 1996, 900
metre elevations were most frequently associated with hot spots. In 1999 and 2000 the
dominant elevation was 1000 metres, and in 2001 this changed to 700 metres. In other
years, strong preferences are not clear. In the Middle subarea hot spots are typically
associated with pixels having elevations of 800 metres, and this does not change with
time. Similarly, in the South subarea 900 metres is always the preferred elevation for hot
spots, and elevations greater than 1,000 metres are under represented in comparison to
the relative frequency distribution of elevation for all pine pixels. Over time, the relative
frequency distribution of elevations associated with hot spots becomes more similar to

the relative frequency distribution for all pine cells.
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Figure 5.27. Relative frequency distributions of elevation for hot spot pixels (solid line)
and all pine pixels (dotted line) in the Morice TSA.

As with other landscape characteristics, relative frequency distributions of
elevations associated with hot spots are most similar to the relative frequency
distributions for all pine when the number of hot spot years is few (Figure 5.28). As the
number of hot spot years increase so do deviations from the elevation relative frequency
distributions for all pine pixels. The dominant elevations associated with hot spots are:
900 to 1,000 metres in the North subarea, 800 metres in the Middle subarea, and 900

metres i the South subarea.
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Figure 5.28. Partitioned by the number of years a pixel is a hot spot, the relative
frequency distributions of elevation for hot spot pixels (solid line) in the Morice TSA.
For comparison, the elevation relative frequency distributions for all pine pixels are also
provided (dotted line).

Comparisons between the percentage of hot spot years versus elevation,
demonstrates that in the North, as the proportion of hot spot years increases, the
proportion of pixels with elevations between 900 and 1000 metres also rises (Figure
5.29). In the Middle and South subareas, once the percentage of hot spot years is greater
than 25 percent, relative frequency distributions of elevations assoctated with hot spots
have a consistent shape. The most prevalent elevations associated with hot spots are 800
metres in the Middle subarea and 900 metres in the North subarea. Although similar to
the relative frequency distribution for elevations associated with all pine cells in the
North and South subareas, locations that are never hot spots tend to occur slightly more

often in low elevations.

115



proportion of data

0.8

0.4

04 08 0.0
-

0.0

26

0.8

04

0.0

51-75% of active years are hot spots

04 08

0.0

7

2]

08

04

0.0

-25% of active years are hot spots

North

0% of active years are hot spots

500 700 900 1100 1300 1500

500 700 900 1100 1300 1500

500 700 900 1100 1300 1800

500 700 900 1100 1300 1500

1300 1500

-50% of active years are hot spots

100% of active years are hot spots

0.8

04

0.0

04 08

0.0

08

04

0.0

-
Q

Middle South
0% of active years are hot spots 0% of active years are hot spots
a
3
/\M ° /\‘\...
500 700 900 1100 1300 1500 500 700 900 1100 1300 1500
25% of active years are hot spots 1-25% of active years are hot spots
o
------ o

500 700 800 1100 1300 1500

26-50% of active years are hot spots

500 700 900 1100 1300 1500

26-50% of active years are hot spots

0.4 0.8

0.0

500 700 906 1100 1300 1500

51-75% of active years are hot spots

500 700 200 1100 1300 1800

51-75% of active years are hot spots

el @

o <

= <

[=] o

2 e R

(=1 (=1

500 700 800 1100 1300 1500 500 700 200 1100 1300 1500
76-100% of active years are hot spots  76-100% of active years are hot spots

@ ©

o o

A R

(=1 o -~

o al Naeeeel o Sas-

(=] [=]

500 700 900 1100 1300 1500

elevation (metres)

500 700 800 1100 1300 1500

Figure 5.29. Partitioned by the percentage of active years a pixel is a hot spot, the relative
frequency distributions of elevation for hot spot pixels (solid line) in the Morice TSA.
For comparison, the elevation relative frequency distributions for all pine pixels are also
provided (dotted line).

Elevations associated with hot spots are constrained by the range of elevations

suitable for pine growth, which in Morice is 600 to 1400 metres. While elevations

associated with hot spots change through time, hot spots primarily occur at elevations

ranging from 800 to 1000 metres. In Morice, this may indicate that mitigation and

treatment will be most effective if applied within this range. In past research,

associations between elevation and mountain pine beetle infestations are typically linked
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to climate (Amman, 1973; Safranyik et al., 1974). Cool temperatures, related to
elevations greater than 1900 métres (near the Grand Teton National Park) have been
shown to delay mountain pine beetle development and increase mortality (Amman,
1973). In the more northern location of Morice, the mountain pine beetle is limited to

lower elevations, and the majority of intense infestations occur below 1000 metres.

5.5.6 Hot Spots and Aspect

For exploration of aspects associated with hot spots, only results for the South
subarea are shown, as in the North and Middle subarea aspect distributions were always
similar to the distributions for all pine cells. Hot spots are most commonly located on
south facing slopes (Figure 5.30). The dominance of south facing slopes decreases
through time, and by 2002 the relative frequency distribution of aspects associated with

hot spots approximates the relative frequency distribution for all pine pixels.
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Figure 5.30. For the South subarea circular plots showing aspects (degrees) for hot spot
pixels and all pine pixels in the Morice TSA.
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Relationships between aspect and the number of hot spot years or the initial hot
spot year are more difficult to interpret. In the North and Middle subareas, deviations
from the relative frequency distributions of aspect for all pine pixels are few and
inconsistent. In the South subarea there are more deviations (Figure 5.31). Pixels that
are hot for one and two years are most commonly associated with south-westerly slopes.

Pixels hot for longer, three and four years, are increasingly found on south facing slopes.
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The relative frequency distributions of aspect generated for pixels categorized by
the percentage of hot spot years are inconsistent between study areas; yet, within subéreas
temporal trends emerge (Figure 5.32). In all subareas, pixels that are never hot have
aspect relative frequency distributions that approximate the aspect distribution for all pine
cells. In the North, pixels having hot spots in greater than 75 percent of active years are
typically associated with western slopes. In the Middle subarea, east and south-eastern
slopes are most commonly associated with cells hot for greater than 75 percent of active
years. In the South, the largest deviation from the relative frequency distribution
generated from all pine pixels occurs when cells are hot for 51 to 75 percent of years. In

this case south facing slopes are dominant.

At a stand scale, south and west facing slopes have been shown to be important
for outbreak initialization (Safraynik ez al., 1974), and newly emergent beetles prefer spot
sources of light (Safranyik et al., 1989). At a landscape scale, west and south facing
slopes appear favourable in locations where the mountain pine beetle are intense for a
number of years. The relationship between aspect and mountain pine beetle infestations
is most clear during the initiation of a widespread infestation in the South subarea, during

which southern slopes appear preferentially infested.
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5.6 SUMMARY

In part, due to the technical limitations of large area data collection, past studies
of mountain pine beetle dispersal have focused on stand or finer spatial scales. Hot pixels
and patches can be used to explore the spatial-temporal interactions of intense mountain
pine beetle infestations at a landscape level. Identifying and visualizing hot spots
provides a mechanism for exploring spatial and spatial-temporal variation in locations
that are intensely attacked. Hot pixels tend to cluster spatially, even though the definition
of a hot spot used in this research is aspatial. Therefore, spatial-temporal analysis was

undertaken on both hot spot pixels and hot spot patches.

While there are many possible definitions for hot spots, using the 90" percentile
of infestation intensity has several benefits. For instance, this definition identifies
infested pixels associated with landscape characteristics that are different from general
characteristics found for all pine locations. A second benefit of defining hot spots using
the 90™ percentile of infestation intensity is that a practical amount of area for mountain
pine beetle management within a TSA, is identified. Over large areas, and under
epidemic conditions, treating greater than ten percent of an infestation is likely
impractical. The hot spot definition used in this research is helpful for understanding
epidemic mountain pine beetle populations within the context of applied management.
While the definition of hot spot used for this analysis proved useful for spatial-temporal
analysis, all relationships identified are tied to hot spot delineation. In future work, the

impact of alternate definitions of hot spots should be examined.
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Pixel-based analysis indicates that intense infestations persist in a 200 by 200
metre pixel for a number of years. The observed patterns also suggest that intense
infestations typically occur within two to four kilometres of the previous year’s hot spots
and dispersal distance are approximately exponential in form. Pixel-based analyses differ
from patch analyses, as trends associated with a few large patches dominate pixel-based

results.

Hot spots are useful for investigating dispersal. Exploratory analyses of hot spot
patches suggest the presence of three processes of dispersal: coalescence, short-range
dispersal (spreading), and long-range dispersal. When hot spot patches are very large
there is evidence that infestations result from hot spot coalescence. However,
coalescence is observed in only 4.5 percent of hot spot patches. More commonly, hot
spot patches intersect with one patch in the previous time period (47 percent of patches).
For such patches, the modal distance of maximum leading edge spread is near zero (0.3
metres), suggesting that dispersal 1s a result of beetles spreading short distances, as they
move from one suitable location to the next. The remainder of hot spot patches occur
where no patches were previously (48 percent of patches). In these cases, the modal
minimum distance between patches is 1.8 kilometres and distances of six kilometres are
more common than those near zero. Further minimum distances between patches suggest

that long-range processes may be operating.

From the perspective of large area mountain pine beetle modelling, it is

interesting that 53 percent of hot patches overlap with one or more patches in the
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previous year, while 47 percent of hot patches are found at some distance (most
commonly 1.8 kilometres) from the most intense infestations of the previous year. This
gives some indication as to why temporal modelling of mountain pine beetle infestations
can be complex. Intense infestations occur at distances that are both near and far from

hot spot patches in the previous year.

Hot spot patches with one intersection are more likely to shrink than to grow. For
patches that do expand, spread occurs over longer distances when growth is in all
directions. The more intersections a patch has, the more likely it is to overlap future
patches. This may indicate that well-established infestation sites are more likely to
persist than those having no intersections and resulting from long-range dispersal. The
random component of wind driven long-range dispersal results in mountain pine beetles
infesting both optimal and sub-optimal locations. When beetles infest a sub-optimal

location, resources are inadequate to sustain long-term high intensity infestations.

The finding that hot spot patches having no intersections with patches in the
previous time period, are less likely to be intensely infested in the future than those with
intersections, may have management implications. Mountain pine beetle mitigation
activities may be best directed towards established hot spot patches (i.e. those having
pervious intersections), as beetle populations in other hot spot patches are more likely to

decline naturally.
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Investigation of landscape characteristics suggests that patch characteristics are
relatively consistent regardless of size or time. However, pixel-based analyses
demonstrate that landscape scale relationships between mountain pine beetle infestations
and the physical environment change through time and impact the duration of intense
infestations. Temporal variability in relationships between hot spots and the physical
environment may indicate increasing randomness in mountain pine beetle host selection
over the duration of an infestation; it may also be indicative of a reduction in host

availability over an epidemic cycle.

Typically, the shape of relative frequency distributions for landscape
characteristics associated with hot spot pixels deviate from the relative frequency
distributions of all pine locations. Departures between the relative frequency
distributions seem to be impacted by initial landscape conditions and infestation
magnitude. Usually, pixels identified as hot earlier, or for longer periods of time, have
relative frequency distributions that are the most different from those associated with all
pine pixels. Relationships between hot spot pixels and age characteristics show that high
intensity mountain pine beetle infestations tend to occur earliest and persist the longest in
mature forests. As well, hot spots initially occur in mature forests, but over time they

shift to younger trees.

While we anticipated hot spots would be associated with pixels that have the

highest percentages of pine, results indicate that they are typically found in cells with low

to moderate percentages of pine (30 to 80 percent pine). However, hot spots have the
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longest temporal duration when percent pine is high. This suggests that conditions most
favourable for infestation establishment are different than those required for maximum

infestation duration.

By restricting lodgepole pine growth, elevation limits the location of mountain
pine beetle infestations. In Morice, hot spot pixels typically have elevations between 800
and 1000 metres. It is at these elevations that mountain pine beetle treatments and

silivicultural efforts are likely to have the most impact.

Finally, when an area hosts a high magnitude infestation for several years, south
and west facing slopes appear to be preferred by mountain pine beetles. Such slopes also
have an important role in the initialization of outbreaks in new locations. During the

latter phase of an epidemic, aspects associated with warmer conditions are less essential.

Relationships between intense infestations and the landscape provide a starting
point for further investigations into characteristics that enable the development of
epidemic populations, and the conditions that support such populations over long time
periods. It is interesting that landscape scale, pixel-based relationships between mountain
pine beetle infestations and the physical environment appear similar to those observed at
finer scales. While further research is needed, these results might suggest that spatial
processes observed at finer scales could be useful for modelling coarser, landscape level
processes. In future work it may be beneficial to take a multivariate approach to

investigating the relationship between hot spots and landscape characteristics as physical
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factors, such as forest age and percentage of pine, are interrelated. Another important
consideration in future studies is the impact of the spatial structure of the landscape on
spatial and spatial-temporal patterns of hot spots. For instance, knowing the impact of
landscape pattern on the distances between hot spot patches could add further insights

into processes of dispersal.
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6 EXPLORING SPATIAL-TEMPORAL CHANGE IN MOUNTAIN
PINE BEETLE INFESTATIONS

6.1 INTRODUCTION

In spatial analysis the term “change” has several meanings. Change may occur
through space or both space and time, and can be either gradual or abrupt (e.g., Gong and
- Xu, 2003). As well, change may refer to the creation and/or disappearance of events
(e.g., Sadahiro and Umemura, 2001) or the relative differences in high and low attribute
values (e.g,. Anselin, 1995). Like hot spots, change may be used as a mechanism for
characterizing variations in spatial patterns and by detecting change it is possible to
investigate processes. For instance, large changes in spatial patterns may suggest
dynamic process(es), while locations with little or no change reveal processes more static

in nature (Barbujani et al., 1989; Sokal et al., 1998).

Investigating change for the purpose of understanding spatial processes requires a
definition of meaningful change. From the perspective of spatial processes, it is likely
that some changes in spatial pattern are inconsequential. For instance, if a forested area
was digitally imaged on two consecutive days (assuming that all imaging parameters
were held constant), many differences in digital values would occur. In the absence of a
catastrophic event or harvesting, differences would not provide meaningful information
regarding forest processes. This example highlights the importance of considering the
nature of processes, and the research question, when defining change. While the amount
of change is often important, the type of change (e.g., normal/abnormal) should also be

considered when generating a change definition (Oden ef al., 1996; Rogerson, 2002).
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The change definition may also be impacted by practical considerations such as data

uncertainty and representation.

Few descriptions are available to guide development of a definition of meaningful
change in mountain pine beetle populations. Although population dynamics, or change in
populations through time, are considered important, most studies on the topic do not
define meaningful change (e.g., Safranyik ez al., 1999). Research typically focuses on
the continuous temporal response of mountain pine beetle populations, indicated by pine
mortality, to variables such as forest age, climate, and treatment of mountain pine beetles
(Safranyik et al., 1999). One exception is a stand scale study by Cole (1981), which uses
variation in infestation intensity to define pre-epidemic, epidemic, and post-epidemic
mountain pine beetle populations. Pre- and post-epidemic conditions are defined as zero
to 10 percent annual tree mortality of susceptible trees in an area, whereas epidemic

conditions are defined by 10 to 45 percent annual tree mortality.

In this chapter our goal is to explore spatial-temporal change in mountain pine
beetle populations. Meeting this goal requires consideration of several objectives. First,
we consider an appropriate definition of change and select a suitable method for change
detection and visualization. Secondly, we explore multi-temporal representations of
spatial change through time. Thirdly, we investigate temporal trends in change. Finally,

locations of change are compared with underlying landscape characteristics.
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6.2 DEFINING AND VISUALIZING CHANGE BETWEEN TWO YEARS
Spatiél-temporal change in mountain pine beetle infestation magnitude can occur
in a variety of ways. Over a landscape, infestation magnitude may significantly increase
and decrease, only decrease significantly, only increase significantly, or have no
significant change. Change is likely a response to climate, management, forest
conditions, and is dependent on the state of the mountain pine beetle population. As with
many forest processes, the amount and nature of change in infestation magnitude is likely
to vary throughout a forest. To adequately reflect the nature of mountain pine beetle
processes, a method for detection must allow all possible change scenarios to be
identified, including no change, and should assess local variations or heterogeneity in

change over space.

In spatial analysis, the definition of change is inextricably linked to the process
under investigation, data representation, and the change detection method. Data in this
study are modelled as a continuous surface and are represented by a raster grid with cell
values equal to estimates of infestation density (see Chapter 4 for descriptions of kernel
density estimated surfaces). Most methods for detecting change m raster data were
developed for use with remotely sensed imagery. The effectiveness of common remote
sensing change detection methods, such as image differencing and ratioing, has been
widely demonstrated (Gong and Xu, 2003). However, application of such methods hinge
on the user’s ability to identify meaningful change. Typically, meaningful change is
determined by applying thresholds, such as two standard deviations, to a frequency

distribution of change. Although such methods could be applied to the mountain pine
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beetle infestation surfaces, the utility of these methods for detecting change in mountain
pine beetle attack levels is limited, as they do not allow for the possibility that no change

has occurred.

A method designed specifically for use with kernel density estimated surfaces is
well suited to this application, as it allows all types of change in mountain pine beetle
populations to be detected (Bowman and Azzalini, 1997 pg 112-117). While positive and
negative change may be detected, the presence of no change is also a possibility. This
method is essentially a square root variance stabilizing transformation of the difference
between two kernel density estimated surfaces. The main benefit of this technique 1s that
the difference between the square root kernel density estimates is measured, at any point,

in terms of pooled standard deviations by applying

o
, tse.,

A, is the kernel density estimate at given location in a year, and 4, is the kernel density

change, ,

estimate at the same location in the following year. se, and se, ,, are standard errors in

the first and second year, respectively (Bowman and Azzalini, 1997).

The standard error is a measure of the variance of the kernel function. Kernel
density variance is dependent on the shape or curvature of the kernel, the search radius,
and the total sample size. For traditional kernel density estimators, these parameters are

invariable over space. Therefore, the standard error is constant and defined as
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se= >
dnt

where k(z) 1s the Gaussian kernel with mean of zero and a standard deviation of J2

(Bowman and Azzalini, 1997).

For this study, change is identified when change,, is greater than two or less than
negative two. Calculating change,, does not produce an exact measure of statistically

significant change. As suggested by their name, kernel density estimators produce
estimates and the standard error or variance can be thought of as a confidence envelope
around that value. Therefore, significant change is also estimated and most appropriately
considered exploratory, rather than confirmatory, analysis (Bowman and Azzalini, 1997

pg 116; Fotheringham et al., 2002 pg 205).

The kernel used for this study is quartic. The main benefit of the quartic kernel,
relative to the normal kernel, is the increased speed of calculations (Silverman, 1986).
The quartic kernel has about half the width, or half the standard deviation, of the normal
kernel (Silverman, 1986). Therefore, a normal kernel with radius 7/ 2 will produce
approximately the same results as a quartic kernel with radius 7. In this study the quartic

standard error was approximated using equation 6.2, with a standard deviation equal

to+/1.
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Two variations of equation 6.2 were explored for detecting change. The variable
n can be defined as the number of points or the sum of ;[he attribute values. Choice of
definition of n is primarily conceptual. If the points are considered unique entities, then n
should be defined as the number of points. However, if points are clusters of phenomena,
it may be better to define » as the sum of the attribute values. This requires consideration
of whether mountain pine beetle point data represent infestation entities or clusters of
smaller entities (infested trees). In this study, » may be conceptualized as either the
number of points or the sum of point attributes. While points represent clusters of trees
infested by the mountain pine beetle, the attributes represent individual trees. Therefore,
change was calculated using both definitions of n. Operationally, the larger the value of
n, the smaller the standard error and the more change detected. A more conservative

estimate of change is obtained when » is defined by the number of points.

6.3 REPRESENTING AND VISUALIZING SPATIAL CHANGE IN MULTIPLE
TIME PERIODS

Change between two years provides a short-term view of mountain pine beetle
processes. A longer-term perspective may be gained by investigating temporal patterns
in spatial-temporal change. Exploring the temporal pattern of change may provide
insights for prediction and modelling. For this analysis, multi-temporal change was
represented as the number of positive or negative changes between the two kernel density

estimated surfaces, over the eight year period for which data were available.

It is worth mentioning additional efforts made to represent the temporal pattern of

change. Vectors of change were investigated as a mechanism to explore temporal
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patterns of change. For each cell in the kernel density surfaces, a vector was generated
representing changes that occurred over an eight year period. Vector-s of change were
categorized based on persistence of change (e.g., the number of consecutive increases)
and directional shifts in the change (e.g., positive change followed by negative change).
Categories of change were compared to infestation levels in order to determine if a
relationship between these variables existed. Unfortunately, change vectors did not relate
meaningfully to temporal variation in mountain pine beetle infestation magnitude.

However, the concept may have utility for other applications.

6.4 INVESTIGATING TEMPORAL TRENDS IN CHANGE

To better understand patterns of change in mountain pine beetle infestations,
spatial-temporal relationships of change were explored using both pixels and patches of
change. Patches of change are defined as spatially contiguous positive change pixels or
spatially contiguous negative change pixels. Spatial contiguity is determined using the

queen’s definition.

Pixel-based analysis was used to determine if change occurring between two
years was useful for predicting future change in a pixel. For cells with positive and
negative change, we determined the proportion of pixels having positive, negative, or no
change in the next time period. Spatial-temporal interactions between change pixels were
also explored. The nearest Euclidean distances, and associated directions, between
change pixels in consecutive years were determined. Restricting analysis to locations

within 10 kilometres of a given pixel served to control edge effects.
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Further insights into change trends were gained from spatial-temporal a;nalysis of
change patches. Temporal variation in patch characteristics, including patch size, the
number of patches, the average patch size, and variability in patch sizes were
investigated. Change patch properties were also compared with the total number of
change pixels, in order to determine if temporal variation in patch characteristics could be

associated with global levels of change.

Spatial-temporal patterns in change patches were also investigated by exploring
intersections between patches of change in two change periods. Intersections between
positive-positive patches, negative-negative patches, positive-negative patches, and
negative-positive patches were considered. The sizes of patches with and without
intersections were assessed using a z-test (Burt and Barber, 1996) and coefficients of
variations compared. Differences in patch shape were determined using the simple

index:

_ 44

SPZ

6.3

where 4 and P are polygon area and perimeter, respectively. S ranges from zero to one.
A patch is circular when S equals one and becomes more elongated as S approaches zero

(Bogaert et al., 2000).

When patches had no intersections, the minimum Euclidean distance, and
associated direction, between patches in consecutive time periods was explored. Only

positive-negative patches had a substantial number of intersections and for these the
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maximum distance of leading edge spread (see Figure 5.3b for defintion) and percentage

of patch area overlap was also characterized.

6.5 EXPLORING CHANGE AND THE UNDERLYING LANDSCAPE

To investigate the relationship between changes in mountain pine beetle
infestations and the landscape, relative frequency distributions of forest age, percentage
pine, elevation, and aspect were generated for pixels having significant change. The
procedure for this investigation is the same as discussed in Chapter 5 when the landscape
underlying hot spot locations was investigated. Essentially, for each of the three subareas
relative frequency distributions of landscape characteristics underlying change locations

were compared to the relative frequency distribution generated for all pine cells.

Relationships between change and landscape characteristics are presented using a
sample of relative frequency distributions selected to aid the visualization of general
trends. As less than one percent of pixels had more than two significant positive or
negative changes, investigations of landscape characteristics focused on cells with one or
two significant positive or negative changes. Landscape associations with pixels that
never experienced significant change were also investigated, but are not presented as the
associated relative frequency distributions were consistently the same as the relative

frequency distributions for all pine cells.
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6.6 RESULTS AND DISCUSSION
6.6.1 Visualizing Change

Pixels identified as having statistically significant change in kernel density
estimated surfaces are shown in Figures 6.1 through 6.7. When # in the standard error
calculation (equation 6.2) is defined as the sum of the points, the amount of meaningful
change detected is quite small (Table 6.1). A less conservative definition of change is
obtained when 7 is equal to the sum of point attributes (Table 6.2). Confidence in this
representation of change is reinforced by general trends observed in Morice from 1995 to
2002. Initially, the infestation was largest in the North and Middle subareas. Cool
temperatures in 1998 lead to an overall decline in mountain pine beetle populations. In
1999, large infestations occurred in the South subarea and the mountain pine beetle

population grew exponentially in 2002.

Table 6.1. The percentage area in the Morice TSA that changed when » equals the
number of points. Columns represent change periods.
9596 9697 9798 9899 9900 0001 0102
positive 0.54 0.19 0.08 0.02 004 0.03 1.05
negative 0.00 043 006 006 001 0.00 0.12
no change 99.46 99.38 99.86 99.92 99.96 99.97 98.83

Table 6.2. The percentage of the study area that changed annually when » equals the sum
of attribute values. Columns represent change periods.
9596 9697 9798 9899 9900 0001 0102
positive 4.95 209 029 095 087 050 523
negative 0.25 246 241 029 037 1.07 214
nochange 94.80 9546 97.30 98.76 98.76 98.42 92.63

138



n = number of points n =), attributes

- no change
Bl positive
Il negative

Figure 6.1. Change in infestation magnitude from 1995 to 1996 in the Morice TSA.
n = number of points n =Y. attributes

no change
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Figure 6.2. Change in infestation magnitude from 1996 to 1997 in the Morice TSA.
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Figure 6.3. Change in infestation magnitude from 1997 to 1998 in the Morice TSA.
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Figure 6.4. Change in infestation magnitude from 1998 to 1999 in the Morice TSA.
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Figure 6.5. Change in infestation magnitude from 1999 to 2000 in the Morice TSA.
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Figure 6.6. Change in infestation magnitude from 2000 to 2001 in the Morice TSA.
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Figure 6.7. Change in infestation magnitude from 2001 to 2002 in the Morice TSA.

Multi-temporal change is represented in Figure 6.8. The maximum number of
years that a location has positive change is three, and the maximum number of negative
changes is four. There are nearly twice as many positive change pixels as there are
negative change pixels (Table 6.3.). Of pixels with change, 57 percent of pixels have
only positive change, 18 percent have only negative change, and 25 percent have both
positive and negative change. As Figures 6.1 to 6.7 show, the North and Middle subareas
have more pixels with both positive and negative change than the South (subarea
boundaries are shown in Chapter 3). In the South subarea, the infestation is younger and

negative changes should be anticipated in the future.

Only 7.9 percent of pixels with change have more than one significant positive

change and only 1.0 percent of pixels have positive change in two consecutive years. Six
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percent of pixels have more than one significant negative change, and 1.2 percent of
pixels have two consecutive years of negative change. No pixels have greater than two

consecutive years of positive or negative change.

significant significant
positive changes negative changes
1995 - 2002

1995 -2002

Figure 6.8. In the Morice TSA, the number of significant positive or negative changes in
infestation intensity that occurred between 1995 and 2002.

Table 6.3. The number of pixels having significant change in one or more years between
1995 and 2002 in the Morice TSA.

number of years having positive change negative change

significant changes pixels pixels
1 47598 23582
2 4851 3308
3 225 451
4 0 22
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6.6.2 Pixel-Based Temporal Investigation of Change

The temporal sequence of change at a given location suggests patterns in states of
change through time. Sequences of change over three years can be seen in Tables 6.4 and
6.5. Based on the definition of change applied in this study, significant positive change
was typically followed by no significant change (annual average = 77.12%) and
sometimes by negative change (annual average = 21.82%). Positive change followed by
negative change may be the result of harvesting treatments used for mountain pine beetle
management. Intensely infested locations that experience a sudden decline in attack
levels have likely been exposed to harvesting as, typically, untreated mountain pine
beetle populations will gradually increase and decrease with time (Carroll, pers com). A
significant negative change in mountain pine beetle populations was typically followed
by no significant change (annual average = 87.99 %) and sometimes by positive change
(10.10%). The tendency for negative change to be followed by no significant change
may suggest that a large decline in population signals a reduced ability to support
mountain pine beetle activity. However, negative change followed by positive change
may result when treatment or local climate conditions reduce the mountain pine beetle
population. The remaining forests are still susceptible and future increases in attack
magnitude are possible. Rarely is positive change followed by positive change (annual
average = 1.06%) or negative change followed by negative change (annual average =

1.93%), suggesting little temporal persistence of any type of change.
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Table 6.4. In the year following a positive change, the percentage of pixels that have
negative change, no change, or positive change in the Morice TSA. . Columns represent
change periods.

positive change 95-97 96-98 97-99  98-00 99-01 00-02 all

followed by
negative 28.92 17.82 14.73 NA 1722 3041 21.82
no change 70.90 8128  85.27 NA 81.16 67.01 77.12
positive 0.18 0.91 0.00 NA 1.62 2.58 1.06

Table 6.5. In the year following a negative change, the percentage of pixels that have
negative change, no change, or positive change in the Morice TSA. Columns represent
change periods.

negative change 95-97 96-98 97-99  98-00 99-01 00-02 all

followed by
negative 0.00 8.13 0.00 0.00 0.00 3.45 1.93
no change 83.68 91.19 100.00 9825 91.76 6297 87.98
positive 16.32  0.68 0.00 1.75 824 3358 10.10

Nearest neighbour distances between change pixels in consecutive years vary
depending on the type of change (Figure 6.9). Relative frequency distributions of nearest
neighbour distances are approximately uniform, except between positive and negative
change pixels. The dominance of zero distances, confirms earlier observations that pixels
with positive change often have negative change in the following year. Nearest
neighbour distances of zero are uncommon between positive-positive and negative-
negative changes (indicating little temporal persistence of change) and distances of two to

four kilometres are more common.
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Figure 6.9. Nearest neighbour distance between change pixels in ¢; and #;+;, and change
pixels in t;4; and #;+,. Values are summarized over all years and subareas.

The directions between nearest neighbouring change pixels, in consecutive time
periods, are difficult to interpret (Tables 6.6). Between positive change locations, there is
a trend whereby change in 7,;; occurs to the northeast of change in #,. Negative pixels in
t+1 are found either south-east or north-west of negative pixels in ¢, Nearest neighbour
distances between negative change pixels in one year and positive change pixels in the
next, or vice versa, (positive change in #;and negative change in #;+|) have a tendency to
occur in a north-western direction. Northern directional trends are counter to what we
might expect, as globally mountain pine beetle infestations in British Columbia appear to

be moving in a south-easterly direction (Carroll, pers com). In the absence of
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meteorological information, it is difficult to understand why these directional trends are

occurring. However, it does suggest that local factors are influential.

Table 6.6. Directional trends between change pixels in # and ¢, and change pixels in
t;+1 and t;, in the Morice TSA from 1995 to 2002..

Pos to Pos Neg to Neg Neg to Pos Pos to Neg

NE 34% 21% 26% 26%
SE 18% 31% 18% 20%
SwW 19% 17% 24% 19%
NW 30% 31% 32% 35%

6.6.3 Patch-Based Temporal Investigation of Change

Annual variability in the characteristics of positive and negative patches of
change demonstrate how the spatial pattern of positive and negative change varies
through time (Tables 6.7 and 6.8; Figure 6.10 and Figure 6.11). The number of positive
change patches ranges from five to 68; similarly, the number of negative change patches
ranges from six to 65. When change is positive, the mean patch size tends to be larger
and more variable than the mean size of negative change patches, however the minimum
size of patches is similar. Relationships between the number and size of patches are
unclear, yet larger mean patch sizes are associated with higher coefficients of variation.
Mean patch size does not appear related to the global infestation levels. The median size
of negative change patches may be related to population decline, as the largest patches
occur from 1996 to 1997 and from 1997 to 1998 when infestation levels decrease
generally. As well, the number of negative change patches seems to be highest in years
when infestations decline globally (1996 to 1997 and 1997 to 1998) or in years with a

large amount of mountain pine beetle activity (2001 to 2002).
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Table 6.7. Characteristics of positive change patches in the Morice TSA from 1995 to
2002. Columns represent change periods.

Positive Change 9596 9697 9798 9899 9900 0001 0102
mean size (km2) 1096 4.64 869 457 436 372 13.36
median size (km2) 292 180 252 200 316 324 256

minimum size (km2) 004 004 020 016 004 0.04 0.04
maximum size (km2) 24248 47.56 34.56 20.48 36.44 10.12 352.72
cv of size 298 1.75 168 120 152 068 3.55
number of patches 68 65 1 29 42 59
T 11

5 3
global infestation ' l l t

Table 6.8. Characteristics of negative change patches in the Morice TSA from 1995 to
2002. Columns represent change periods.

Negative Change 9596 9697 9798 9899 9900 0001 0102
mean size (km2) 306 576 7.06 722 294 115 492
median size (km?2) 068 234 236 1.74 176 056 1.76
minimum size (km2) 0.16 0.04 0.04 0.75 0.08 0.04 0.04
maximum size (km2) 1292 59.20 55.84 34.16 11.56 6.40 53.08
cv of size 1.53 191 156 1.84 1.12 127 171
number of patches 62 51 34 65

7 6 19
global infestation ' 1 .l ' ' ' t
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Figure 6.10. Distributions of positive change patch sizes for different change pertods in
the Moirce TSA.
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Figure 6.11. Distributions for negative change patch sizes for different change periods in
the Moirce TSA.
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Differences in the size of positive and negative change patches may indicate that
positive change processes operate at a coarser spatial scale than negative change
processes. Generally positive change in infestation growth seems driven by broader scale
trend than negative change, which seems to result from more local processes. The main
processes that lead to a sudden decline in mountain pine beetle populations are either
climatic events or management activities. While climatic events played a role in
population reduction during 1997 and 1998, most localized population decline is likely
related to treatment. Due to practical constraints, treatment efforts tend to occur at a finer
spatial scale than the spread of epidemic mountain pine beetle populations, perhaps

explaining why negative change patches tend to be smaller.

Change patch characteristics appear associated with the global amount of change
in the study area. Generally, as the number of positive or negative change pixels increase
globally, the number, size, and variability in patch size also increases (Figure 6.12).

These trends are stronger for positive change than for negative change.
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Figure 6.12. Relationships between change patch characteristics and the number of
change pixels. Figures are a summary of trends for all years and subareas in Morice TSA.
(cv = coefficient of variation)

Positive-Positive Patches

Analysis of the spatial-temporal relationships between positive patches of change
revealed that only 6.8 percent of positive patches in ¢; intersect with positive patches in #;.

;. Positive patches that intersect positive patches in the previous time period are smaller
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than those that do not intersect positive patches; average sizes are 6.58 and 7.23 square
kilometres respectively. Using a z-test to assess statistical difference in mean size we
must accept the null hypothesis of similarity between sizes regardless of the presence of
intersections (o0 = 0.05). Positive patches with positive patch intersections also have less
variance than those without positive patch intersection; the coefficient of variation is 1.73
for patches with intersections and 3.68 for patches without intersection. A z-test (o=
0.05) allowed us to reject the null hypothesis that the average shapes of positive patches
with (average S = 0.58) and without positive patch intersections in #;; (average S = 0.55)

were similar.

Additional analysis focused on those positive patches having no positive patch
intersections in the previous year, as this was the most typical scenario for positive
patches. In most years, the relative frequency distribution of the minimum distance
between positive patches appears uniform; an example is shown for positive change
patches from 1998 to 2000 (Figure 6.13). Non-uniform trends in the minimum distance
between non-intersecting positive patches are observed from 1995 to 1997 and from 2000
to 2002 (Figure 6.14 and 6.15). These trends may result from the large amounts of
positive change that occur in the North from 1995 to 1996 and in the South between 2001
and 2002. Random or uniform patterns are more common if the amount of change in all
years is sparse. When the relative frequency distributions of minimum distances between
positive change patches are non-uniform, the modal minimum distance is near two

kilometres.
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Figure 6.13. The relative frequency distribution of minimum distances between positive
change patches in 1998-1999 and 1999-2000 in the Morice TSA. Positive patches from
1999 to 2000 have no intersections with positive patches from 1998 to 1999.
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Figure 6.14. The relative frequency distribution of minimum distances between positive
change patches in 1995-1996 and 1996-1997 in the Morice TSA. Positive patches from
1996 to 1997 have no intersections with positive patches from 1995 to 1996.
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Figure 6.15. The relative frequency distribution of minimum distances between positive
change patches in 2000-2001 and 2001-2002 in the Morice TSA. Positive patches from
2001 to 2002 have no intersections with positive patches from 2000 to 2001.

When positive patches in #; do not intersect with positive patches in 4.} and
distance trends are non-uniform, directional trends associated with the minimum distance
between positive patches are uniform, (Table 6.9). The most common direction from
1995 to 1997 was southerly. From 2000 to 2002 north-easterly directions dominated,
perhaps indicating the influence of the large mountain pine beetle population to the
south-east.

Table 6.9. Examples of directional trends in the minimum distances between positive

change patches having no intersections with positive change patches in the previous year
in the Morice TSA. Columns represent change periods.

9596 to 9697 0001 to 0102

NE 17.65% 48.48%
SE 29.41% 12.12%
SW 33.33% 24.24%
NW 19.61% 15.15%
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Negative-Negative Patches

Spatial-temporal investigations (iemonstrate that only in 5.1 percent of cases do
negative patches in #; intersect with negative patches in #;,;. Negative patches that
intersect negative patches in the previous year are larger than those that do not, with
respective mean patch sizes equalling 22.37 and 4.26 square kilometres. A t-test enabled
us to reject the null hypothesis that patches with and without intersections are similar in
size (0. = 0.05). The coefficient of variation for patch sizes is 0.67 when negative patches
intersect negative patches in the previous year and 5.86 for negative patches with no ¢,
negative patch intersections. Also, negative patches having no negative patch
intersections are more circular (average S = 0.56) than negative patches with negative
patch intersections (average S = 0.36), and a #-test allows us to reject the null hypothesis

that average shape indices are similar (o = 0.05).

As with positive patches, the relative frequency distribution of minimum
distances between negative patches, when negative patches do not have intersections with
negative patches in the previous year, tends to be approximately uniform. This may be
related to the fact that few years have large amounts of negative change. A typical
relative frequency distribution of minimum distances between negative patches, when ¢;
negative patches have no intersections with negative patches in #;, is represented using
data from 1995 to 1997 (Figure 6.16). Exceptions to the uniform trend occur from 1996
to 1998 and from 2000 to 2002 when there is at least one year having a substantial
amount of negative change (Figure 6.17 and Figure 6.18). In these cases an abundance of

negative change is found from 1996 to 1997, 1997 to 1998, and 2001 to 2002. From
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1996 to 1998, the modal minimum distance between patches is two kilometres and from
2000 to 2002 the modal minimum distance between patches is 3.5 kilometres.
Directional trends are uniform except from 1996 to 1998, where south-westerly directions

are most common between negative patches (Table 6.10).
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Figure 6.16. The relative frequency distribution of minimum distances between negative
change patches in 1995-1996 and 1996-1997 in the Morice TSA. Negative patches from
1996 to 1997 have no intersections with negative patches from 1995 to 1996.

156



0.127

e

[}

®
1

proportion of patches
©
R

0.00 T T T 7
>0 2 4 6 8

distance km
Figure 6.17. The relative frequency distribution of minimum distances between negative

change patches in 1996-1997 and 1997-1998 in the Morice TSA. Negative patches from
1997 to 1998 have no intersections with negative patches from 1996 to 1997.
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Figure 6.18. The relative frequency distribution of minimum distances between negative
change patches in 2000-2001 and 2001-2002 in the Morice TSA. Negative patches from
2001 to 2002 have no intersections with negative patches from 2000 to 2001.
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Table 6.10. Directional trends in the minimum distances between negative change
patches having no intersections with negative change patches in the previous year in the
Morice TSA. Columns represent change periods.

9697 to 9798
NE 9.38%
SE 15.63%
SW 46.88%

NW 28.13%

Negative-Positive Patches

Only 8.7 percent of positive patches in ¢; had intersections with negative patches
in ¢;;. Although on average positive patches in #; with no negative patch intersections in
1.1 were larger than those that did not intersect negative patches in 7,5 (7.41 versus 5.81
square kilometres). A null hypothesis of similarity in patch sizes could not be rejected
using a t-test (o0 = 0.05). Positive patches with no negative patch intersections had more
size variability (coefficient of variation = 3.69) than positive patches with negative patch
intersections (coefficient of variation = 0.85). The average shape index for positive
patches was 0.55 regardless of intersections with negative patches in the previous year.
In all years, when positive patches have no intersections with negative patches in the
previous year, the relative frequency distributions of the minimum distance and direction
between negative patches in #;.; and positive patches in ¢; are approximately uniform. An

example of a uniform distance distribution is shown for 1999 to 2001 (Figure 6.19).
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Figure 6.19. The relative frequency distribution of minimum distances between negative
change patches in 1999-2000 and positive change patches in 2000-2001 in the Morice
TSA. Positive change patches in 2000-2001 have no intersections with negative patches
from 1999-2000.

Although it is uncommon that positive patches in #; intersect negative patches in #;.
1, it 1s perhaps surprising that this scenario ever occurs. There are two possible scenarios
that may explain why a location having a significant decrease in infestation magnitude,
may have an increase in the future. The first is related to climate. If the decline in
mountain pine beetle activity is the result of local climatic factors, the forest at that
location is still susceptible. Therefore, under favourable climatic conditions the
population may increase again. Secondly, if the decrease in mountain pine beetle

population levels is related to a treatment that does not remove all the trees, neighbouring

populations may infest the remaining trees in future years.
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Positive-Negative Patches

The most common type of intersection occurs between positive patches in #.; and
negative patches in #;. Thirty-seven percent of negative patches in ¢ intersect with
positive patches in #;.;. The average size of negative patches that have no intersections
with positive patches in #;; is larger than the average size of patches that do intersect
positive patches in ;) (3.08 and 8.75 square kilometres, respectively). Comparison of
means using a 7-test resulted in a rejection of the null hypothesis that patches with and
without positive patch intersections are similar in size (¢r = 0.05). The coefficient of
variation for patch size did not vary substantially and was 1.60 for negative patches with
positive patch intersections and 1.48 for those without. The average shape index is 0.51
for negative patches with no positive patch intersections and 0.58 for negative patches
with positive patch intersections. A r-test leads us to reject the null hypothesis that the

average shape indices were similar (o = 0.05).

As 37 percent of negative patches in f; intersect with positive patches in #.;, the
percentage of overlap was investigated. The relative frequency distribution of percentage
areal overlap is shown in Figure 6.20, and the modal areal overlap is 100 percent. This
may indicate that, in most cases, patches of significant negative change are the result of

harvesting or other treatment methods that affect all trees in an infestation cluster.
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Figure 6.20. Percent overlap for positive patches in 7.; that intersect negative patches in ¢
in the Morice TSA from 1995 to 2002.

For negative patches in #; having no intersections with positive patches in 7, ;, the
relative frequency distribution of minimum distances to positive patches in #;.; was
typically uniform. For instance, the relative frequency distribution of minimum distances
between positive patches from 1999 to 2000 and negative patches from 2000 to 2001 can
be seen in Figure 6.21. An exception occurs between positive change patches found from
1996 to 1997 and negative change located from 1997 to 1998 (Figure 6.22). In these
years, four kilometres is the modal minimum distance from positive to negative patches

and the modal directional between patches is north-east (Table 6.11).
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Figure 6.21. The relative frequency distribution of minimum distances between positive
patches in 1999-2000 and negative change patches in 2000-2001 in the Morice TSA.
Negative change patches in 2000-2001 have no intersections with positive patches from
1999-2000.
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Figure 6.22. The relative frequency distribution of minimum distances between positive
patches in 1996-1997and negative change patches in 1997-1998 in the Morice TSA.
Negative change patches in 1997-1998 have no intersections with positive patches from
1996-1997
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Table 6.11. Directional trends in the minimum distances between negative change patches
having no intersections with positive change patches in the previous year in the Morice -
TSA.

9697 to 9798
NE 28.13%
SE 18.75%
SW 21.88%
NW 31.25%

Most change patches in #; are unlikely to intersect patches with the same type of
change in the previous year. When a considerable area undergoes a particular type of
change, either positive or negative, distance relationships associated with that type of
change (either positive-positive or negative-negative) are non-random and the modal
minimum distance between change patches is near two kilometres. When positive or
negative change is limited, the minimum distance relationships between change patches

of a similar type in #;.; and ¢ are random.

Patches having positive change in #; rarely intersect with patches of negative
change in 7.;. Relationships in the minimum distance between negative change in 7., and
positive change in #; appear random. This trend is perhaps expected as locations with
significant negative change likely had high levels of infestation in the past and are less

apt to have large infestations in the following year.

The most common intersection occurs between negative change #; and positive

change in 7;.;. When negative patches intersect patches of positive change in the previous

year, the areal overlap is often 100 percent. Negative patches that intersect positive
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patches in the previous year are on average less than half the size of negative patches
having no intersection with positive patches in the previous year. Such a trend may
indicate that negative patches that intersect positive patches in the previous time period
result from treatment. The average size of negative patches (three square kilometres)
could indicate the spatial scale of treatment. For negative patches having no
intersections, minimum distances from positive change patches in #,.; typically exhibit a

random relationship.

6.6.4 Change and Age

Relative frequency distributions of forest age were generated for pixels having
one and two years of positive or negative change (Figure 6.23). Typically, locations with
two significant changes, regardless of whether the change 1s positive or negative, are
more often associated with older forests than locations with less change. In the North
subarea, change is most frequently associated with forests that are 180 years old; in the
Middle subarea, change is most associated with trees 120 to 160 years; and in the South
subarea, trees 180 years or older are most often associated with change. Different trends
in the Middle subarea likely reflect the larger proportion of trees that are 120 to 140 years

old.
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Figure 6.23. Partitioned by Morice TSA subareas, relative frequency distributions of
forest age associated with change pixels (solid line) and all pine pixels (dotted line).
Change is categorized as occurring once or twice between 1995 and 2002.
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6.6.5 Change and Pine

"fhe percentage of pine associated with change pixels does not appear to vary over
time (Figure 6.24). However, locations with two changes have relative frequency
distributions more different from the distribution of all pine than locations with only one
significant change. Generally, there is a preference for changes, both positive and
negative, to occur in cells with 30 percent pine in the North subareas, between 70 and 90
percent pine in the Middle subarea, and between 30 and 70 percent pine in the South
subarea. It is unclear why the Middle subarea had change in stands with higher
percentages of pine than in other areas. One possible explanation is that although the
North and Middle subareas had similar levels of infestation, the Middle had relatively
little management. Although further investigation is required, this may indicate that
management in the North successfully reduced the impact of the mountain pine beetle in

high percentage pine areas.
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Figure 6.24. Partitioned by Morice TSA subareas, relative frequency distributions of

percent pine associated with change pixels (solid line) and all pine pixels (dotted line).
Change is categorized as occurring once or twice between 1995 and 2002.
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6.6.6 Change and Elevation

Relative frequency dism'buﬁons of elevation generated from pixels with two
significant changes differ more from relative frequency distributions of elevations
associated with all pine pixels than cells associated with only one change (Figure 6.25).
In the North, increased change is associated with elevations of 700 metres; the
relationship with negative change is similar, yet weaker. A stronger trend is apparent in
the Middle subarea, with elevations of 800 metres being most commonly associated with
change pixels. In the South, elevations of 900 metres are most associated with positive
change cells, and elevations of 800 and 900 metres are associated with negative change
pixels. As latitude increases, significant change is spatially constrained to lower

elevations. This trend may indicate the impact of climate on change.
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Figure 6.25. Partitioned by the Morice TSA subareas, relative frequency distributions of

elevation associated with change pixels (solid line) and all pine pixels (dotted line).
Change is categorized as occurring once or twice between 1995 and 2002.
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6.6.7 Change and Aspect

Relative frequency distributions of aspects associated With change pixels are
shown in Figure 6.26. In the North subarea, the relationship between change and aspect
is unclear. In the Middle subarea western aspects were associated with locations that
have two positive changes, but there does not appear to be a strong relationship with
negative change. In the South subareas, southern slopes were most associated with
change. When change is positive, the preference of southern slopes was strongest when
two changes occur. Trends in the south are likely related to infestation initialization,

which has been shown to occur preferentially on southern slopes (Safranyik ez al., 1974).
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Figure 6.26. Partitioned by Morice TSA subareas, circular plots showing aspects
associated with change pixels and all pine pixels. Change is categorized as occurring
once or twice between 1995 and 2002.
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6.7 SUMMARY

All trends associated with spatial-temporal change are linked to the definition of
meaningful change in a mountain pine beetle population. We have defined meaningful
change using the differences in kernel density estimated surfaces representing the
magnitude of mountain pine beetle infestations. This approach provides a mechanism for
detecting significant positive and negative change, as well as no significant change,
which is also sensitive to spatial heterogeneity. Visualizing locations of significant
change provides confidence that the change definition is appropriate, as the amount and
locations of change reflect general observations; the North and Middle subareas were

infested first and the South subarea impacted later.

We found that significant change of either a positive or negative type is never
common with less than six percent of the landscape, and often much less, being impacted
at any time. Neither type of change is consistently more common and there is
considerable variation in the levels of both over time, reflecting global trends in the
infestation. Similarly, while there are no obvious trends in the relative magnitudes of the
numbers and sizes of positive and negative patches of change, both of these

characteristics are related to changes in global levels of infestation.

Analysis of spatial-temporal relationships of change demonstrates that as the
global level of infestation increases, more patches of positive and negative change are
observed rather than existing patches growing larger. This interpretation is also

consistent with the finding that, whether positive or negative, change patches rarely
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intersect with patches of the same change type in the previous change period. Thus, it
appears that significant change does not persist for long at any given location, nor is

continuous spatial diffusion of a given type of change over time the norm.

Our results suggest that it would be difficult to predict where new change patches
will occur since the distances between change patches that do not intersect with those of
the same kind in the previous time period only exhibit non-random trends when at least
one time period has an abundance of the change type being investigated. When there is
considerable change of a particular type (either positive or negative), the modal minimum
distance between change patches of the same type is near two kilometres suggesting that

change moves to nearby locations.

Positive change patches in 7 rarely intersect negative change patches in 7.; and
distance relationships between non-intersecting patches of these types are random. This
suggests that, spatially, large decreases in mountain pine beetle populations are rarely
followed by a sudden increase in levels. This finding is expected, as locations with
significant negative change likely had high levels of infestation in the past and are less

likely to have large infestations in the following year.

The strongest spatial coincidence occurs for negative change patches in ¢; and
positive changes patches in #;.;. Thirty-seven percent of negative change patches overlap
with positive change patches in the previous time period with overlaps of 100 percent

being common. One possible explanation for the complete overlap is that the decrease in

173



infestation magnitude is the result of some form of treatment. If this is correct, the mean
negative change patch size of three squared kilometres, which is less than half that of

patches without intersections, may indicate the spatial scale for effective treatment.

Locations of change are difficult to interpret in terms of mountain pine beetle
biology, as few change studies have been carried out at any spatial scale. Both types of
change occur most frequently in locations where the forest is mature. Positive change
occurs first and most commonly in older, and likely more susceptible, stands. Negative
change, in contrast, occurs initially in younger stands and through time becomes more
associated with older stands. Although trends differ between subareas, change occurs
most frequently at locations with 30 and 80 percent pine. Elevations associated with
significant change in infestation magnitude typically range from 700 metres to 900
metres, and decrease with increasing elevation. Finally, it appears that western or
southern aspects are most associated with locations of change, particularly in the early

stages of infestation.
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7 RELATING HOT SPOTS AND CHANGE IN MOUNTAIN PINE
BEETLE INFESTIONS

7.1 INTRODUCTION

Thus far, the spatial and spatial-temporal patterns of landscape level pine
mortality during a mountain pine beetle epidemic have been investigated using hot spots
and change. Identifying hot spots allows exploration of the most intensely infested
locations on the landscape, whereas change detection provides a mechanism for studying
areas where mountain pine beetle infestations increase or decrease with statistical

significance.

The goal of this chapter is to investigate the correspondence between hot spots
and change. There are several benefits to using multiple approaches for spatial pattern
analysis. For instance, each method for characterizing spatial pattern summarizes
information differently, thus providing the analyst with unique perspectives to aid
interpretation. As well, particularly when working with large area data sets, results may
be influenced by data uncertainty and the exploratory nature of many spatial analysis
methods. When similar trends are obtained from different spatial analysis approaches,

users may have more confidence in results.

7.2 INVESTIGATING SPATIAL-TEMPORAL RELATIONSHIPS

In this chapter, relationships between change and hot spot pixels and patches were
explored in a number of ways. All comparisons are made between change from #; and 7+,
and hot spots in 7. In the first analysis, spatial-temporal relationships were visualized

by mapping change patches and hot spot patches. Secondly, a pixel-based analysis was
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used to determine the rate at which change and hot spot pixels overlap. A third, patch-
based analysis, explored the rate of intersection between change and hot spot patches.
For patches with intersections, the percentage of areal overlap was characterized.
Finally, for patches without intersections, the minimum distances and directions between

patches were investigated.

7.3 RESULTS AND DISCUSSION
7.3.1 Visualizing Spatial-Temporal Relationships

Viéualizations of hot spot patch and change patch intersections are seen in Figures
7.1 to 7.7. Hot spots correspond more often with positive change than with negative
change. This is not surprising as the definitions of both hot spots and positive change
focus on abundance in mountain pine beetle infestations. By definition, hot spots always
cover 10 percent of the infested area, whereas the amount of change varies annually.
Consequently, in years with little change, for instance positive change from 1997 to 1998,

the maximum possible correspondence between the two types of pattern is limited.
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Figure 7.2. 1997 hot spot patches and 1996 to 1997 change patches in the Morice TSA.
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Figure 7.3. 1998 hot spot patches and 1997 to 1998 change patches in the Morice TSA.
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Figure 7.4. 1999 hot spot patches and 1998 to 1999 change patches in the Morice TSA.
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Figure 7.6. 2001 hot spot patches and 2000 to 2001 change patches in the Morice TSA.
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Figure 7.7. 2002 hot spot patches and 2001 to 2002 change patches in the Morice TSA.

7.3.2 Pixel-Based Investigations

A pixel-based analysis of change and hot spots was used to investigate the rate of
correspondence between change pixels and hot spots. On an annual basis, the number of
positive change pixels, hot spot pixels, and pixels that are both hot and have positive
change are listed in Table 7.1. Annual percentages of hot spot pixels that overlap with

positive change, and vice versa, are also provided.

In the two change periods with the largest numbers of positive change pixels
(2001 to 2002, 1995 to 1996), the greatest numbers of pixels that have both positive
change and are hot are observed, but the percentages of change pixels that are hot are

relatively low. These same years have the largest percentages of hot spot pixels that have
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positive change. In the time period with the smallest number of positive change pixels,
1997 to 1998, the percentage of ﬁositive change pixels that are hot is the highest, and the
percentage of hot pixels also having positive change is the lowest. When the number of
hot spot pixels is the highest (2001 to 2002) the percentage of hot spot pixels that have
positive change is also the highest. Similarly, when the number of hot spot pixels is the
lowest (1997 to 1998) the percentage of hot pixels that have positive change is the lowest.

Table 7.1. Partitioned by periods of change, the number of positive change pixels,
hot pixels, and pixels that have both positive change and are hot in the Morice TSA.

change positive hot spot  positive & heot positive hot spots

t;itot; tiv1 spot ;.7 change overlapping

overlapping positive

hot spot change
(o) (%)
1995t0 1996 18566 10373 4847 26.11 46.73
1996 to 1997 7830 12345 2323 29.67 18.82
1997 t0 1998 1086 7761 1070 98.53 13.79
1998 to 1999 3569 9783 2408 67.47 24.61
1999 t0 2000 3270 9806 1435 43.88 14.63
2000 to 2001 4032 10924 2377 58.95 21.76
2001 t0 2002 19622 15456 7529 38.37 48.71

Overall, there are significant positive relationships between the number of
positive change pixels and the number of hot spot pixels and between the number of
positive pixels and the number of pixels that are both positive and hot (Kendall’s Tau =
0.715, p = 0.024 in both cases). However, the relationship between hot spot pixels and
the number of pixels that are both positive and hot is not significant (Kendall’s Tau =

0.429, p = 0.177).

The annual number of negative change pixels, hot spots, and pixels that have both

negative change and are hot, are listed in Table 7.2. Percentages of negative change
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pixels that are hot, and hot pixels that have negative change are also shown. Compared to
positive change, there are fewer negative change i)ixels over the entire time period. The
number of hot spot pixels also having negative change is lower and the percentages of
overlaps are smaller. The number of pixels that are categorized as being both hot and
having negative change seems influenced by the total number of negative change pixels.
For instance, three of the four time periods with the fewest negative change pixels also
have the lowest numbers of pixels that are both hot and have negative change. When the
number of negative change pixels is the highest (1996 to 1997), the number of pixels in
both categories is largest, and the percentages of both negative change and hot pixels
having overlaps are the highest. When the number of hot spot pixels is largest (2002) the

second largest number of pixels in both categories is observed.

Table 7.2. Partitioned by years of change, the number of negative change pixels, hot
pixels, and pixels that have both negative change and are hot in the Morice TSA.

change negative hot spot negative & hot negative hot spots
tito ty tivg spot £;1; change overlapping
overlapping negative
hot spot change
1995t0 1996 956 10373 0 0.00 0.00
1996 to 1997 9224 12345 1151 12.48 9.32
1997 to 1998 9052 7761 344 3.80 4.43
1998 to 1999 1083 9783 7 0.01 0.00
1999 to 2000 1396 9806 148 10.60 1.51
2000 to 2001 1885 10924 6 0.00 0.00
2001 t0 2002 8043 15456 487 6.05 3.15

Overall, relationships between negative pixels and hot spot pixels differ from
those observed between positive pixels and hot spot pixels. There is no significant

relationship between the number negative and hot spot pixels (Kedall’s Tau = 0.238, p =
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0.453) or between hot spot pixels and those that are both negative and hot (Kedall’s Tau
=0.652, p = 0.143). There is, however, a significant positive relationship between the
number of negative pixels and pixels that are both negative and hot (Kedall’s Tau =

0.7142, p = 0.024).

7.3.3 Patch-Based Investigations

The annual numbers of hot spot patches, positive change patches, and negative
change patches are shown in Table 7.3. Percentages of intersections, also reported on an
annual basis, are listed in Table 7.4. The percentages of hot spot patches that intersect
positive patches range from 12 to 64 percent. Intersections with negative hot spot patches
range from 0 to 25 percent. The higher percentage of hot spot patches having
intersections with positive change patches is likely related to the definitions of spatial
patterns. Both hot spots and positive change focus on patterns of infestation abundance.
The cause of annual variability in the percentages of hot spot patches that intersect with
change patches is unclear. Unlike pixel-based correlation analysis, there were no
significant relationships found, using Kendall’s test, between the number of hot spot

patches, positive patches, and negative patches.
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Table 7.3. Partitioned by years of change, the number of change and hot spot patches in
the Morice TSA.

hot spot  positive negative

change patchesin  change  change

1; to 1 tir1 patches  patches
1995 to 1996 44 68 7
1996 to 1997 55 65 62
1997 to 1998 52 5 51
1998 to 1999 65 31 6
1999 to 2000 65 29 19
2000 to 2001 55 42 34
2001 to 2002 55 59 65

Table 7.4. Partitioned by years of change, the percentage of patches with intersections in
the Morice TSA.

hot spot patches  hot spot patches positive patches negative patches

change . . . . . . : .
10 iy Igtgrsectmg mtgrsectmg ntersecting mtersecting
positive patches negative patches hot spots hot spots

1995 to 1996 63.64 0.00 30.88 0.00
1996 to 1997 32.73 25.45 27.69 20.97
1997 to 1998 11.54 11.54 100.00 9.80
1998 to 1999 32.31 0.00 74.19 16.67
1999 to 2000 21.54 7.69 48.28 31.58
2000 to 2001 40.00 3.64 57.14 5.88
2001 to 2002 38.18 16.36 35.59 12.31

Annually, the percentages of positive change patches that intersect hot spot
patches range from 28 to 100 percent; whereas, the percentage of negative change
patches that intersect hot spot patches range from 0 to 32 percent. In the time period with
the fewest positive patches (1997 to 1998), one hundred percent of positive patches
intersect hot spots. As well, the lowest percentages of intersections are associated with
the two time periods having the largest number of positive change patches (1995 to 1996
and 1996 to 1997). Overall, there is a significant inverse relationship between the

number of positive change patches and the percentage of positive patches intersecting hot
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spot patches (Kendall’s Tau = -0.715, p=0.024). No trend is apparent between the
number of negative patches and the percentage of negative patches with hot spot

intersections (Kendall’s Tau = 0.215, p=0.559).

For patches with intersections, the amount of areal overlap was explored. Hot
spot patches that intersect positive change had areal overlaps ranging from near 0 to 100
percent (Figure 7.8). However, in all years, the majority of patches have areal overlaps
of greater than 50 percent. While hot spots that intersect with negative patches tend to
have smaller areal overlaps, and the majority are less than 50 percent, in some years

maximum overlaps are as high as 100 percent (Figure 7.9).
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Figure. 7.8. Distributions of hot spot patch (¢;1)) areal overlap with positive change
patches (#to #+1) in the Morice TSA. Data are partitioned by hot spot year.
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Figure. 7.9. Distributions of hot spot patch (1)) areal overlap with negative change
patches (;to #+)) in the Morice TSA. Data are partitioned by hot spot year, and there is
no data in 1996.

When change patches intersect hot spots, the percentage of change patch areal
overlap was also computed. When a large portion of positive change patches intersect
with hot spot patches, the percentages of areal overlap were high, with the majority of
individual patches having areal overlaps of greater than 90 percent (Figure 7.10). In
years with low percentages of intersections, areal overlaps range from zero to 100

percent. Except from 1995 to 1996, the period with the highest number of positive

patches, the majority of individual patches have areal overlaps greater than 50 percent.
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Figure. 7.10. Distributions of positive change patch (7;to ;1) areal overlap with hot spot
patches (#:+1) in the Morice TSA. Data are partitioned by years of change.

When negative patches intersect with hot spot patches, the amount of areal
overlap ranges from near zero to 100 percent, except in years with two or fewer

intersecting patches (Figure 7.11). In all years, the majority of individual patches have

areal overlaps of less than 50 percent.
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Figure. 7.11. Distributions of negative change patch (¢, to ¢;;) areal overlap with hot spot
patches (7;+;) in Morice TSA. ). Data are partitioned by years of change

For change and hot spot patches having no intersecttons, the minimum distances
between patches were explored. In Figure 7.12 relative frequency distributions of the
minimum distances between hot spot patches and positive change patches, and hot spot
patches and negative change patches are shown. Relative frequency distributions are
generated from minimum distances between hot spot patches and change patches as well
as change patches and hot spot patches. Only minimum distances of 10 kilometres or less

are included in the histograms.

The modal mintmum distance between hot spots and positive change patches is

3.2 kilometres, beyond which the number of observations decreases with distance. The

relative frequency of observations increases slightly near six and nine kilometres. The
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modal minimum distance between non-intersecting hot spot and negative change patches
is two kilometres. The relative frequency of minimum distances declines with distance to

four kilometres and then is near uniform.

0.5
- Hot spot patches vs.
positive patches
0.4
______ Hot spot patches vs.
negative patches
0.3 7

proportion of data

distance km

Figure 7.12. Minimum distances between hot spot patches (7:+) and change patches (¢; to
t+1) in the Morice TSA from 1995 to 2002.

Minimum distances associated with positive patches and hot spots are typically
longer than minimum distances associated with negative change and hot spot patches. It
is interesting that non-intersecting positive change and hot patches are typically not
located nearby. The shorter modal minimum distances between negative change and hot
patches may indicate that associations between hot spots and negative change patches are

more localized.
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The directions between patches that do not have intersections are shown in Table
7.5. Regardless of the comparison, directions between patches are near uniform. This
suggests little directionality in the spatial relationships between change and hot spot

patches that do not intersect.

Table 7.5. Directions between hot spot patches (#;+1) and change patches (#;to #;+;) that do
not intersect in the Morice TSA from 1995 to 2002.

positive change negative change  hot spots to hot spots to
to hot spots to hot spots  positive change negative change
NE 25.37% 30.05% 23.57% 23.04%
SE 26.87% 22.40% 21.02% 24.51%
SwW 21.64% 19.13% 27.39% 31.37%
NW 26.12% 28.42% 28.03% 21.08%
7.4 SUMMARY

There is better correspondence between hot spots and positive change than
between hot spots and negative change. A larger number of corresponding pixels are
observed in time periods with the most positive change or hot spot pixels. The largest
percentage of positive change pixels that are also hot is observed when the number of
positive change pixels is lowest. Yet, the highest percentage of hot pixels having positive
change is found when the number of hot pixels is largest. Associations between negative
change and hot spot pixels seem regulated, at least in part, by the number of negative

change pixels.

Larger numbers of hot spot and positive change patches have intersections than

hot spots and negative change patches. Temporal variations are difficult to interpret;
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however, the largest percentage of positive patches intersecting hot spot patches is
observed when patches are few. The two time periods having the most positive patches

also have the lowest percentages of positive patches with intersections.

The majority of hot spot patches that intersect positive patches have areal overlaps
of greater than 50 percent, whereas hot spot patches that intersect negative patches have
lower areal overlaps and most are less than 40 percent. Similarly, positive patches that
intersect with hot spots have larger areal overlaps than do negative patches. Overall, hot
spots and positive changes have more correspondence than hot spots and negative
changes. Minimum distance trends between non-intersecting patches may provide
evidence of long-range dispersal between locations of mountain pine beetle abundance

and are supported by stand scale observations of beetle dispersal within three kilometres.

The lack of correspondence between hot spots and negative change indicates that
once mountain pine beetle populations are large, a decline in numbers of beetles is most
likely to take more than one year. Infestation rates associated with hot spots do not
typically decline significantly between two years. In contrast, the development of intense
infestations or hot spots is often associated with significant increases in infestation rates
over two years. In general, the temporal scale of population growth is finer than

population decline.

While associations between positive change and hot spots were anticipated, any

relationship between negative change patches and hot spots was somewhat unexpected.
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One explanation for the correspondence may be that negative change locations indicate
the f)resence of an active and dynamic mountain pine beetle population. In some cases,
negative change locations may be the source of beetles for hot spots. If negative change
is occurring as the result of treatment or host depletion, populations may move to nearby
locations. This may explain why the areal overlap between negative patches and hot spot
patches tends to be smaller, and minimum distance between non-intersecting patches

shorter, than between positive change and hot spot patches.

Further investigations into the link between hot spots that correspond with
negative change and treatment would provide useful information on the efficacy of
management approaches. As well, in future research it would be helpful to explore how
definitions of positive change, negative change, and hot spots impact the results found in
this chapter. Finally, in this investigation we have only explored the change between ¢;
and #;+; and hot spots in 7;+;. Approximately 35 percent of hot spot patches in 7+, are
associated with change patches (z; to #,41). It would be interesting to determine if other
hot spot patches are associated with positive changes that occur in an earlier time period.
Such an investigation would provide further evidence on the temporal development of hot

spot patches.
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8 MODELLING FOREST RISK OVER LARGE AREAS

8.1 INTRODUCTION

A common strategy for exploratory analysis of spatial patterns is to evaluate
characteristics of an empirical pattern relative to those expected from the realization of a
null/hypothesized model (Getis and Boots, 1978; O’Sullivan and Unwin, 2003). As the
properties of the model are known, this procedure may be used diagnostically to explore
the empirical pattern. More formally, one or more test statistics may be computed from
the empirical pattern and the probability of these occurring under the null model

evaluated.

One means of evaluating a test statistic is to use a permutation test in which the
test statistic is computed for the original data and then the observed data are permuted
and the test statistic computed for each permutation (Conner and Simberloff, 1986;
Edgington, 1995). Collectively, the empirical test statistic and those generated from the
permutations provide a reference distribution for evaluating the empirical test statistic.
The probability (or significance) of the empirical test statistic is equal to the proportion of
permutations that have test statistic values greater than or equal to the empirical test
statistic. When the data are permuted randomly, we refer to this as a randomization test

(Fortin and Jacquez, 2000).
For spatial data, complete randomization is equivalent to assigning the data values

at random to locations within the study region, that is, the data values are located

uniformly and independently over the entire study region. However, there are situations
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where complete randomization is inappropriate, as either or both of the assumptions of
uniformity and independence are iﬁpossible (e.g., Legendre and Fortin, 1989; Stine and
Hunsaker, 2001). For example, environmental heterogeneity may lead to clustering of
events or interaction between events may lead to spatial dependence. In these
circumstances, using complete randomization would typically reduce the significance of
the test statistic (Legendre and Fortin, 1989; Legendre et al., 2002). For example,
mountain pine beetle infestations do not occur uniformly across a landscape, rather they
cluster in locations with mature pine (Safranyik ef a/., 1974). In such cases, complete
randomization may be conditioned using a priori knowledge of the study region or

phenomena under investigation.

There are several ways to condition a randomization. Of interest for this research
are randomizations conditioned on a priori knowledge of where events are likely to have
higher occurrences. This approach has been used most extensively in epidemiology
where randomizations are conditioned on the population at risk (Besag and Newell, 1991;
Kulldorf et al., 2003). Similar examples are found in ecology where the statistical
significance of the spatial pattern of an animal is tested using randomizations restricted

by habitat (Davis et al., 2000).

For spatial patterns, the test statistic may be one which summarizes the entire data
set (global) or one which is computed for every data site (local) (Fotheringham and
Brunsdon, 1999). Local statistics are particularly useful for identifying differences,

rather than similarities, in spatial data via mappable measures (Fotheringham, 1997;
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Boots, 2002). Using local methods, we can undertake exploratory, diagnostic

imvestigations of spatial variation in probabilities of the empirical test statistic.

The goal for this chapter is to assess the utility of applying a stand scale mountain
pine beetle model of forest risk (defined below) to large areas. We do this by evaluating
local statistics calculated for the observed data on infestations, using a randomization
conditioned on forest risk. As described below, our investigations are undertaken using a
raster format, making it possible to generate a local test statistic and to evaluate its
likelihood for each pixel. Those pixels where the test statistics have low probabilities
indicate locations where the test value is unlikely under the null model. Pixels with
unlikely values are investigated diagnostically, enabling exploratory analysis of the

observed data.

By investigating characteristics of the landscape at locations where the observed
data differs substantially from a random expectation conditioned on the forest risk model,
we are able to suggest modifications to stand scale models when applied to a landscape
during an epidemic. To meet this goal, objectives include: modifying the forest risk
model to aid operationalization in Morice; detecting and visualizing pixels with expected
and unexpected values in each year; visualizing expected and unexpected infestation
magnitudes in multiple time periods; and exploring landscape characteristics underlying

locations with expected and unexpected values.
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8.2 FOREST RISK MODEL

Forest risk is typically a description of the likelihood of a ﬁountain pine beetle
outbreak, tree mortality, or stand loss during a specific time period (Bentz et al., 1993,
Shore et al., 2000). Here we assess the effectiveness of the Shore and Safranyik risk
model, as in Western Canada it is the primary model used for forest management. This
model also has the benefit of incorporating most of the current knowledge on the

biological behaviour of the mountain pine beetle.

The Shore and Safranyik risk model, which from here on will be referred to
simply as the risk model, is defined as the short-term expectation, or probability, of tree
mortality in a stand as a result of infestations (Shore and Safranyik, 1992). In this
definition, mortality is quantified by loss in stand volume (rather than individual trees).
The probabilistic representation of stand loss provides an effective approach to

comparing output to observed data via conditional randomizations.

Another benefit of the risk model, when making comparisons with observed data,
is the time scale. Many models related to mountain pine beetle infestation behaviour are
designed to assess multi-temporal impacts of various management strategies (Fall et al.,
2002), underlying landscapes (Hughes, 2002), or beetle populations (Logan ef al., 1998).
For instance, given a landscape, beetle conditions, and several different management
scenarios, variations in the impact of forest management over 10 years can be estimated
(Fall et al., 2002). The risk model is designed for a different purpose and is a short-term

expectation of the likelihood of infestation based on landscape and beetle conditions in a
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single year. While “short-term” is not explicitly defined, in our experience risk appears
most related to mountain pine beetle infestations occurring in the following year.. Risk is
the probability that locations will be infested at a known point in time. When data are
available for multiple consecutive years, risk generated using data in time # can be used
to conditionally randomize data in #;;;. For conditioning a randomization, risk provides a
more direct representation of the likelihood of attack than models that are developed for

longer time series.

All models of mountain pine beetle behaviour have uncertainty related to
parameters and attribution. However, when models are designed to assess mountain pine
beetle behaviour over several time periods, more process-based inputs are typically
required. For example, variables related to the complex pheromone ecology of the
mountain pine beetle are used in several models (Powell et al., 1998; Fall et al., 2002,
Hughes, 2002). Although process studies and models are helpful for investigating
mountain pine beetle behaviour, many processes are still poorly understood (Hughes,
2002). Relative to pheromone ecology models, variables associated with the risk model
are fairly well documented. While recognizing that the forest risk model has limitations,
the relatively straightforward input variables are a benefit when interpreting the

relationship between stand and landscape level mountain pine beetle behaviour.
8.2.1 Stand Susceptibility

Forest risk is considered a function of two components, stand susceptibility and

beetle pressure. Stand susceptibly reflects the inherent characteristics of a stand that
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affect the probability of volume loss if attacked by mountain pine beetle (Shore and
Safranyik, 1992). In this context, a stand is defined as a homogenous aggregate of trees.
Stand susceptibility (S) ranges from zero to 100 and is calculated as

8.1
S =PADL

where: P is the percentage of susceptible pine basal area, 4 is a pine age factor, D is stand
density, and L is a location factor. Each variable used in the calculation of stand

susceptibility incorporates a factor important for mountain pine beetle host selection.

The percentage of susceptible pine basal area (P) is designed to consider tree dbh

and stand composition. P is calculated as

P (average basal area/ha of pine =15 cm dbh) 100 82
(averagebasal area/ha of allspecies > 7.5cm dbh)

In equation 8.2, the 15 centimetre dbh threshold reflects mountain pine beetle preferences
for mature trees (Hopping and Beal, 1948). Under epidemic conditions smaller trees may
be attacked, but fewer beetles will emerge than were required to attack the tree and

volume loss will be low (Safranyik et al., 1974). The lower threshold of 7.5 centimetres

is a practical limitation, as smaller trees are not typically included in forest inventories.

Forest age relates directly to a pine tree’s ability to resist a mountain pine beetle
attack. Older trees, which are less able to resist attack, are more susceptible to the
mountain pine beetle. In Shore and Safranyik’s initial publication on the forest risk
model (1992), the age factor (ranging from zero to one) was determined using a lookup

table with three values (Table 8.1). The age factor and therefore, susceptibility values,
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were limited to discrete categories. In reality, forest age and susceptibility will vary
continuously over a landscape. Therefore, equations were developed based on these
tables to provide a continuous forest age factor and representation of susceptibility

(Wulder et al., 2004; Riel, pers com) (Table 8.2).

Table 8.1. Discrete age factor look up table for the forest susceptibility model.

Average pine age (years) Age factor
< 60 0.1
61 to 80 0.6
> 81 1.0

Table 8.2. Continuous age factor equations for the forest susceptibility model.

Average pine age (vears) Age factor calculation
< 40 0
>40-< 80 0.1 + (0.1((age — 40) / 10) %)
>80-< 120 1
> 120 - 400 1 — (0.05(age — 120) / 20)

The relationship between tree mortality and stand density reflects factors such as
tree vigour and the microclimate (wind, light, and temperature). The highest pine
mortality occurs when stand density is between 250 and 2500 stems per hectare. In the
original discrete version of forest susceptibility, stand density is converted to a density
factor ranging from zero to one using Table 8.3. A more continuous density factor can
also be generated using equations found in Table 8.4 (Wulder et al., 2004; Riel, pers

com).
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Table 8.3. Discrete stand density factor look up table for the forest susceptibility model.

Stand density (stems per ha

of trees > 7.5 cm dbh) Density factor

< 250 0.1
251 to 750 0.5

751 to 1,500 1
1,501 to 2,000 0.5
2,001 to 2,500 0.5
> 2501 0.1

Table 8.4. Continuous stand density equations for the forest susceptibility model.
Stand density (stems per ha

of trees > 7.5 cm dbh) Stand density calculation
< 650 0.0824(density / 250)°
> 650 - <750 1 —(0.7(3 - (density / 250))°
=750 - <1500 1
> 1500 1/(0.9 + (0.1exp (0.4796((density / 250) - 6))))

The location factor is an indicator of climate and is based on latitude, longitude,
and elevation in British Columbia. In locations where the latitude, longitude, and
elevation suggest that the temperatures are colder, the value of L 1s lower. Warmer
climates are associated with higher values of L. To determine L, first calculate a
parameter (Y) as,

Y =(24.4 Longitude) - (121.9 Latitude) - (Elevation (m)) + (4545.11). 8.3

Using ¥, the discrete location factor can be acquired from Table 8.5 or a continuous

factor generated using equations from Table 8.6.
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Table 8.5. Discrete location factor look up table for the forest susceptibility model.

Y Location factor
>0 1.0
0 to -500 0.7
< -501 0.3

Table 8.6. Continuous location factor equations for the forest susceptibility model.
Y Location factor calculation
>0 1
<0 1/(0.9 + (0.1exp (-0.8(Y / 250))))

8.2.2 Beetle Pressure

The second component of forest risk is beetle pressure (B), which is defined as the
magnitude of a beetle population that might affect a stand. Beetle pressure is related to
both the number and proximity of infested trees. In the initial forest risk model, beetle
pressure was determined using two lookup tables. The first table is used to determine the
size of the infestation based on the number of attacked trees within a stand and the
number of trees within three kilometres (Table 8.7). The second table uses the infestation
size (determined in Table 8.7) and the proximity of the nearest infestation to determine
beetle pressure from a look up table with values ranging from zero to one (Table 8.8).
More recently, a semi-continuous version of beetle pressure can be calculated using

equations in Table 8.9.
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Table 8.7. Mountain pine beetle infestation size used for generating beetle pressure.

Number of infested

X Number of infested trees inside the stand
trees outside stand

within 3 km
<10 10-100 > 100
<900 Small Medium Large
900 to 9,000 Medium Medium Large
> 9,000 Large Large Large

Table 8.8. Discrete beetle pressure look up table for the forest risk model.

Relative size Distance to nearest infestation (km)
of infestation
imstand  0-1 1-2 2-3 3-4 >4
Small 0.5 0.5 0.4 0.3 0.1 0.06
Medium 0.8 0.7 0.6 0.4 0.2 0.08
Large 1.0 0.9 0.7 0.5 0.2 0.10

Table 8.9. Continuous beetle pressure equations for the forest risk model.

BP category Beetle Pressure Calculation
None 0
Small 0.582 - (0.123(nnd/1000))
Intermediate 0.803 - (0.163(nnd/1000))
Large 1.003 - (0.209(nnd/1000))

nnd = nearest neighbour distance; bp = beetle pressure

8.2.3 Forest Risk
While susceptibility is a probabilistic measure of forest loss, without information
on the beetle population, it provides only a long-term representation of infestation

likelihood. Beetle pressure, which represents the state of the current mountain pine
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beetle population, is necessary for characterizing short-term conditions. Forest risk

ranges from zero to one and 1s calculated as,

Risk = 2.74(8772.7187°07"5 } (B>7$2.718 %}, 8.4

8.3 CALCULATING FOREST RISK

Model adjustments were required to make the forest risk model operational in
Morice. While some modifications were helpful for adapting the model to our purposes,
others were required due to limited data availability. Modifications to the forest risk
model include: converting spatial units from irregular polygons to grid cells, modifying
input variables for calculating susceptibility, assigning susceptibility to locations with
missing data, varying susceptibility through time, and smoothing susceptibility. Each

modification will be discussed below.

8.3.1 Spatial Units

The forest risk model was developed for use with forest stands or inventory
polygons, which are the most common management and data collection unit. When input
data are collected for stands, this spatial unit works well and there is no utility in using a
finer grained unit. While the input data for forest susceptibility in Morice are represented
as stands, the mountain pine beetle data allow beetle pressure to be represented at finer
than stand scale. Forest inventory polygons in Morice have an average size of 168,000

square metres (standard deviation = 291,460), but points representing an infestation
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cluster represent a maximum area of 31,400 square metres (circle with a 100 metre

radius).

From a spatial analysis perspective, beetle pressure generated for forest stands
produces avoidable uncertainty. Polygons are variable in size and shape and the rate of
infestation varies depending on the size of forest inventory polygons. As well, additional
uncertainty is associated with the number of infested trees within three kilometres when
irregular polygons are used. To avoid compounding uncertainty and to retain spatial
detail, forest risk was computed using 200 metre grid cells, which approximate the

maximum grain of mountain pine beetle GPS point data.

To compute forest susceptibility for a raster surface, polygons with input variables
were converted to grids prior to calculating forest susceptibility. Representing beetle
pressure using grid cells was more complex. Infestation size (Table 8.7), used for
determining beetle pressure, is generated using stand specific thresholds. On average,
stands are four times the size of the grid cells; therefore, the lookup table for infestation
size was modified as seen in Table 8.10 (Shore, pers com). Beetle pressure was then
calculated using the semi-continuous equations provided in Table 8.9. It may be worth
mentioning that prior to computing beetle pressure variables, points representing
mountain pine beetle infestations were converted to grids. This was done by overlaying
the points with a 200 metre grid and assigning cells that contained points the sum of the
point attribute values. Each pixel in the grid was also assigned the number of infested

trees within three kilometres and the distance to the nearest infestation.
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Table 8.10. Grid-based mountain pine beetle infestation size used for generating beetle
pressure.

Number of infested Number of infested trees inside the pixel
trees optside pixels &
within 3 km <25 2.5-25 > 25
(<0.625/ha)  (0.625-6.250/ha) (> 6.250/ha)
<900 Small Medium Large
900 to 9,000 Medium Medium Large
> 9,000 Large Large Large

8.3.2 Input Variables for Susceptibility

As with many locations in British Columbia, the primary data source available for
Morice is the provincial forest inventory data. The forest inventory does not have basal
area or density information, requiring a modification to the input parameters used for
modelling forest susceptibility. The Cariboo Forest Region suggested a modified version
of the forest risk model, where dbh is used as a surrogate for density and percentage of
pine in a stand replaces basal area (Howes, 1995; Wulder et al., 2004). While we
recognize that these modifications may weaken the model, stand density and basal area
information are rarely available and adjustments to the input parameters are typically

required to make the risk model operational at a broad scale

To operationalize the susceptibility portion of the risk model for Morice, the total
proportion of pine in each polygon was calculated using the sum of all species fields and
values ranging from zero to one. Diameter at breast height was converted to a dbh factor
based on thresholds used in the Cariboo Forest Region report (Table 8.11). Out of 38,383

pine stands, 36,280 have dbh recorded, and 2,103 did not. When dbh was not present, as
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in the Cariboo Forest Region report, age was used as a surrogate for dbh (Table 8.12).

The age and location factors were calculated using the continuous equations.

Table 8.11. Diameter at breast height factor used as a surrogate variable for density when
calculating forest susceptibility.

dbh (cm) dbh factor
< 20 0.1
>20and < 22.5 0.6
>22.5and < 25 0.8
> 25 1

Table 8.12. Age-based diameter at breast height factor.

age (years) dbh factor
<60 0.1
> 60 and < 80 0.8
> 80 1

8.3.3 Susceptibility and No Data

In Morice, 6.7 percent of the area is considered “not sufficiently restocked” and
no species information or other characteristics are provided. Not sufficiently restocked
polygons are typically those that are not being managed for commercial use at the time of
the inventory. In many cases such locations have been left to regenerate naturally;
although species and age details are not recorded, trees are often present at these
locations. According to the mountain pine beetle GPS data, infestations, and therefore
mature pine, exist in 872 of the 2,675 polygons labelled not sufficiently restocked. This
represents an area of 994 kilometres squared, approximately three percent of the study
area. Although the mountain pine beetle data are not error free, the presence of mountain
pine beetle in not sufficiently restocked polygons provides supplementary information

useful for locating pine.
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If a not sufficiently restocked forest inventory polygon had one or more mountain
pine beetle infestati(;n clusters, all cells associated with that polygon were assigned a
susceptibility value. Forest inventory polygons are homogenous units; therefore, if pine
was found at a location within a polygon, the entire area likely had some pine. With
limited information we are only able to develop a crude adjustment to not sufficiently
restocked locations, although a relatively small portion of the study area (approximately
three percent) is impacted. While infestation magnitude and susceptibility levels were
found to be non-proportional, the mean susceptibility for the entire study area is 40 and
the majority of susceptibility values range from 20 to 60. As such, pixels associated with
not sufficiently restocked polygons that contain one or more mountain pine beetle points

were assigned a susceptibility of 40.

8.3.4 Varying Susceptibility Through Time

In this study, forest risk is generated for eight years (1995 to 2002). Yet forest
inventory data, which are the primary data source for susceptibility modelling, are only
updated periodically (Leckie and Gillis, 1995). In Morice, the inventory data were last
updated in the mid 1990s and as a result the forest inventory data best reflect 1995
conditions. An effort was made to consider temporal variations in forest conditions.
Local experts suggested that from 1995 to 2002, the key forest activities impacting

susceptibility were mountain pine beetle infestations and harvesting.

The only available data with a temporal component were the mountain pine beetle

data. Although these data were not helpful for identifying subtle changes to
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susceptibility, they were useful for locating abrupt changes. Change in untreated
mountain pine beetle infestations WillAIiker be continuous over time. In contrast,
harvesting results in abrupt change. If the mountain pine beetle infestation level
increases over time to a maximum and the following year declines dramatically, it likely
indicates that the area has been harvested (Carroll, pers com). By determining an
appropriate adjustment to susceptibility at these locations, we can account for some of the
temporal variation i forest conditions. While recognizing that this approach has
limitations, we find it useful for addressing changes in susceptibility at locations that

have a high likelihood of harvesting.

To identify grid cells needing adjustments to forest susceptibility values, we first
determined the year of maximum infestation (maxyr) based on the corrected kernel

density surfaces. Then we apply the following rule,

if(4,,..0.121 ,thenreduce susceptibility in maxyr,, . 8.5

maxyr O 1 = Ainaxyr,
For example, if the infestation magnitude of a pixel is the highest in 1995 and in
1996 the infestation level declines by at least 90 percent, the 1996 susceptibility value is
reduced. Initially, we investigated the correlation between the percentage decline in
infestation levels from yrmax to yrmax.;, and the mean infestation magnitude in yrmax.,
however relationships were found to be non-proportional. To determine the validity of
the 90 percent cut off, mean infestation levels in yrmax., were calculated for pixels
where infestation magnitudes declined by at least 90 percent and less than 90 percent
between yrmax and yrmax.; (Table 8.13). Using a Kolmogorov-Smirnov test, in every

year the null hypothesis of distribution similarity was rejected (0=0.05). In other words,
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areas that experience a large decline in attack magnitude, following the year of maximum

infestation, are less intensely attacked in the following year.

Table 8.13. The relationship between maxyr and maxyr;; decline and the maxyry,
infestation magnitude by year for the Morice TSA.
decline
between maxyr
and maxyr.; 1997 mean 1998 mean 1999 mean 2000 mean 2001 mean 2002 mean all mean
290% 0.24 0.24 0.62 0.13 0.24 0.15 0.37
<90% 3.35 1.69 2.65 2.73 3.04 3.85 2.95

maxyr 1995 maxyr 1996 maxyr 1997 maxyr 1998 maxyr 1999 maxyr 2000 maxyr all

When mean values for all years were combined, the maxyr,, average infestation
magnitude for cells declining by at least 90 percent was 0.37 trees per 200 metres
squared. For all other locations the infestation size was 2.95 trees per 200 metres
squared. These calculations indicate that the average magnitude in maxyr is 87.5 percent
lower when the infestation magnitude declines by at least 90 percent between maxyr and
maxyr:;. As such, the susceptibility of pixels identified using the rule in equation 7.5

was reduced by 87.5 percent.

8.3.5 Smoothing Susceptibility

Even after all the above corrections were made, only 81 percent of the mountain
pine beetle points (for all years) were located in cells where susceptibility values were
greater than zero. By smoothing the susceptibility with a three by three averaging filter,
97 percent of the mountain pine beetle points were associated with susceptibility values
greater than zero. Understanding that all the analysis is impacted by data uncertainty, and
that we are interested in relative rather than absolute values for conditioning

randomization, smoothed susceptibility surfaces were used for calculating risk.
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8.3.6 Assessing Modifications to Susceptibility

To assess the appropriateness of modifications to suscepti.bility, randomizations
for 2002 (described below) were conditioned on risk surfaces with modified and
unmodifted susceptibility. This allowed investigation of which susceptibility surface best
represented observed conditions when combined with beetle pressure. While
randomizations were undertaken for all years, only 2002 data were used to investigate
modifications made to the susceptibility model, as 2002 is the year most impacted by the

alterations.

8.4 CONDITIONAL RANDOMIZATION

An overview of the randomization procedure is provided below (Figure 8.1). To
implement the randomization, observed data and forest risk surfaces were used as input
and an appropriate randomization algorithm chosen. The randomization algorithm and
test statistics were selected based on the data, an understating of mountain pine beetle
behaviour, and the null model. Here a kernel density estimate, used to determine the
intensity of mountain pine beetle infestations at a particular location (for details see
Chapter 4), was selected as the test statistic. Ninety-nine random realizations of the
observed data were produced and kernel density surfaces created. For each cell, a
reference distribution was generated from the kernel density estimated values, computed
from the random realizations of the observed data. Statistical significance of the
observed kernel density estimated values was determined through comparisons with the

reference distribution.
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Figure 8.1. An overview of the conditional randomization method.

8.4.1 Randomization Inputs

Annual forest risk and mountain pine beetle data were used as input for
conditional randomization. The mountain pine beetle data were points with attributes
equal to the number of infested trees. Attribute uncertainty was incorporated into point
data prior to conditional randomization. For each point, 99 realizations of the attribute

value were generated by drawing values from a distribution that modelled the attribute
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uncertainty. The 99 values were then averaged together to generate point attributes that

incorporated uncertainty.

8.4.2 Algorithm Selection

During the development of an ecologically appropriate randomization approach,
four randomization algorithms were explored (Table 8.14). Algorithms can be
categorized into theoretical approaches based on whether the randomizations involve
individually infested trees or infestation clusters. Each algorithm reflects a different way
of conceptualizing the data and mountain pine beetle processes, and allows testing of a

different null model.

All algorithms are described below, as they inform the development of the
algorithm ultimately used for this work (the fourth algorithm). With the generation of
each algorithm we add more conditions, moving away from traditional randomization and
towards an ecologically appropriate model. The algorithm development process is
important, as the understating of mountain pine beetle behaviour over a landscape is in its
infancy and large area research often requires an exploratory approach. By investigating
several algorithms we are able to comment on the connection between stand level

mountain pine beetle behaviour and landscape level patterns of infestation.
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Table 8.14. An overview of four algorithms explored for conditional randomization.

Algorithm Approach  Allocation Characteristics Advantages Disadvantages
1 Individual Inhomogeneous planar Considers Unrealistic in terms of
Tree Poisson process in which the  infestation clusters MPB processes;

2 Individual

Tree &
Cluster
3 Cluster
4 Cluster

intensity of infested trees is
proportional to risk

Inhomogeneous planar
Poisson process in which the
presence of infestation
clusters is proportional to risk
and infestation size grows
proportional to risk

Inhomogeneous planar
Poisson process in which the
presence of infestation
clusters is proportional to risk

Inhomogeneous planar
Poisson process in which the
presence and size of
infestation clusters is
proportional to risk

as individual trees

Constders
infestation
occurrence and
size proportional
to risk

Retains attribute
distributions of
observed data

Retains attribute
distributions of
observed data;

realistic in terms of

MPB behaviour

attribute distributions
of observed data are
not reproduced

Attribute distributions
of observed data are
not reproduced; does
not adequately reflect
MPB processes

Infestation size is not
considered

Using an individual tree approach to randomization, we conceptualize the

infestation data as single trees on the landscape; whereas using the cluster approach we

consider points to represent groups of infested trees. In the first algorithm, which uses

the individual tree approach, we determine the total number of infested trees from the

observed data and randomly assign individual trees to the landscape using the condition

of forest risk. It is possible for more than one tree to be allocated to each pixel and the

allocation of each tree is independent of other tree locations. In other words, infested

trees are allocated by an inhomogeneous planar Poisson process in which the intensity of

infested trees is proportional to risk. The most likely source of difficulty with this

algorithm is that it ignores the stand-level aggregative processes associated with

mountain pine beetles. Mountain pine beetles do not independently select trees to infest;
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processes of aggregation and dispersion are required to allow successful infestation, and
trees near current infestations have a greater likelihood of attack. Results from exploring
randomization algorithms may indicate that aggregative mountain pine beetle behaviour,

which has been observed within stands, is expressed at a landscape scale.

A second algorithm combines the individual tree and cluster approaches by first
assigning the observed number of clusters, where each cluster has a minimum size of one
infested tree, and then assigning the remaining observed trees (total numbers of trees —
number of clusters) to the cluster sites. For both clusters and trees, the assignment is
random conditioned by forest risk. This algorithm assumes that mountain pine beetles
first select locations according to an inhomogeneous planar Poisson process, in which the
occurrence of an infestation cluster is proportional to risk, and then grow the infestation
to a size that is also proportional to risk. If this algorithm accurately modelled mountain
pine beetle processes, the distribution of cluster sizes produced by the allocation should
be similar to that of the observed data. Several variations of this algorithm were
unsuccessfully tested in an effort to replicate the observed cluster size distribution. It
appears that more process information is required before an individual tree approach to
randomization will be meaningful. Since the goal of this paper is not to model mountain
pine beetle behaviour, but rather to evaluate the performance of a stand level model for
representing forest conditions over larger areas, we leave exploration of the process(es)

that generate the empirical cluster distribution for another time.
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The third and fourth algorithms are based on clusters and retain the observed
distribution of cluster sizes. The third algorithm randomly assigns clusters to locations
conditioned on forest risk, without considering the size of the cluster. This is equivalent
to an inhomogeneous planar Poisson process in which the cluster occurrence is
proportional to risk, but the cluster size is independent of risk. Such a scenario is
improbable as risk reflects the likelihood of loss in stand volume, emphasizing both the

presence and magnitude of mountain pine beetle infestations.

The fourth algorithm assigns clusters to locations based on the inhomogeneous planar
Poisson process where both cluster occurrence and size are proportional to risk. To
achieve this, the clusters are divided into » ordered groups (gi, ..., g, ..., &) on the basis
of size. Similarly, the locations are divided into » ordered groups (r1, ..., 7, ..., ) on the
basis of magnitude of risk. Then the clusters in group g; are randomly assigned to
locations in the corresponding group r;. While this algorithm has a stochastic component,
it generally forces the largest clusters to be in the highest risk locations. Any number of
groups could be used and class breaks can be determined in several different ways. The
more partitions, the less stochastic the algorithm becomes. In this study, » was set equal
to three. Algorithm four reflects stand-scale biological theory on the mountain pine
beetle, which suggests that higher risk areas are likely to have more and larger clusters
than areas with less risk (Shore and Safranyik, 1992). Additionally, it has the benefit of
retaining the empirical distribution of cluster sizes. Therefore, algorithm four was

selected for operationalizing the conditional randomizations.
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8.4.3 Generating a Test Distribution and Assessing Significance

Data for each year were randomized, conditional to the risk model generated for
the previous year. For example, the risk surface generated using 1995 data were used to
condition randomizations in 1996, as such, the 1995 data could not be randomized. Each
realization of the conditionally randomized points was converted to a kernel density
estimated surface. Examples of kernel surfaces, generated by randomizing 2002 data
conditionally on the 2001 risk surface are shown in Figure 8.2. Ninety-nine
randomizations and associated kernel density estimated surfaces were generated to
compute a reference distribution for each cell. Using 99 randomizations, the smallest
critical value that could be used for statistical testing was 0.01. Observed values were
obtained from the corrected kernel density surfaces (described in Chapter 4), and
statistical significance of observed data from 1996 to 2002 determined. If the observed
value was greater or less than the 99 random values from the randomization, the observed

value was considered significant.
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Infested trees
per 200m?

>0

Figure 8.2. Four realizations of the kernel density estimated surfaces generated from
randomizations of the 2002 data, conditional to 2001 forest risk in the Morice TSA.

A distinction was made between locations where the spatial pattern of infestation

was statistically unexpected due to high observed values (high-unexpected) and those

where the spatial pattern was statistically unexpected due to low observed values (low-
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unexpected). Identifying low-unexpected values was problematic in locations where
therehwere no observed data. Cells with no data were always significantly low, yet at
such locations it is possible that the random kernel values generated were always very
small (i.e., 0.0001). When no data are observed, many low-unexpected locations are
likely meaningless, therefore only cells with observed values greater than zero were
considered significantly low and meaningful. The drawback of this approach is that some
meaningful low-unexpected areas may be lost; however, the benefit is the increased

confidence that areas identified are of consequence.

The local nature of the test statistics allows the spatial variation in high- and low-
unexpected locations to be mapped and visualized. Visualization was carried out for both
single and multiple years. Due to the lack of low-unexpected areas, resulting from the
exclusion of locations with no observed data, the multi-temporal analysis focused on
high-unexpected locations. Spatial-temporal representations of randomization results are
provided for each cell using the number of years with high-unexpected observed values

and the percentage of active years that have high-unexpected values.

8.5 EXPLORING EXPECTED AND UNEXPECTED LOCATIONS WITH THE
UNDERLYING LANDSCAPE

The landscape characteristics underlying locations of statistically expected and
unexpected observed patterns were investigated as in the previous chapters (see Chapter 5
for details of methods). For each subarea, the relative frequency distributions for pine
age, percent pine, elevation, and aspect underlying expected and unexpected locations

were investigated and compared to the relative frequency distributions for all pine cells.

218



Comparisons were made for expected and unexpected locations identified in single and
multiple time periods. This procedure allows investigation of landscape conditions
associated with locations that are adequately and inadequately represented by the forest
risk model when applied to a large area, and provides a mechanism for identifying

adjustments that may improve landscape level modelling.

Owing to the large number of relative frequency distributions used to assess
relationships between randomization results and the landscape, only a sample of
distributions, representative of general trends, is presented. Due to the limited number of
pixels having low-unexpected infestation magnitudes in multiple years, investigation of
landscape characteristics associated with low-unexpected locations are presented for
single years. Only results for percent pine and elevation are shown, as all relative
frequency distributions associated with forest age and aspect, for low-unexpected
locations, were similar to the distributions for all pine. For high-unexpected locations,
results are shown for all landscape characteristics. Multi-temporal trends associated with
the landscape characteristics of high-unexpected locations were similar regardless of the
representation used (i.e., the number of high-unexpected years versus the percentage of
active years that are high-unexpected). As such, multi-temporal relationships between
landscape characteristics and high-unexpected locations are demonstrated for a single
multi-temporal representation. Relative frequency distributions of aspects associated
with high-unexpected locations in multiple time periods did not deviate from aspect

frequency distributions for all pine are not presented.
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8.6 RESULTS AND DISCUSSION
8.6.1 Forest Risk |

Using the modifications outlined above, susceptibility surfaces were generated for
each year. However, only the susceptibility surface for 1995 is shown (Figure 8.3), as
differences between years are minor and difficult to visualize. Susceptibility values
range from zero to 100, with zero only occurring in locations without pine or where pine
is less than 40 years old. Forest risk surfaces calculated for 1995 through 2001 are shown
in Figure 8.4. The probability of forest risk ranges from zero to 100. For risk to equal
zero, susceptibility must also be zero. As temporal changes to susceptibility are subtle,
annual variations in risk are primarily the result of changes in beetle location. This can
be demonstrated by comparing Figure 8.4 with Figure 4.9, where kernel density

estimators are used to visualize infestation intensity.
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Susceptibility
>0

Figure 8.3. 1995 forest susceptibility to mountain pine beetle infestations in the Morice
TSA.
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Risk

Figure 8.4. The probability of forest risk calculated for 1995 to 2001 in the Morice TSA.
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Figure 8.4. (continued) The probability of forest risk calculated for 1995 to 2001 in the
Morice TSA.
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Prior to reporting results of the conditional randomization, we demonstrate the
impacts of modifying susceptibility when calculating risk. Unexpected locations in 2002,
detected using randomizations conditioned on forest risk with and without modifications
to susceptibility, can be seen in Figure 8.5. When susceptibility was not modified,
38,296 pixels had values that were statistically high-unexpected and 43,319 locations
were low-unexpected (Table 8.15). The same comparison made using forest risk
generated from modified susceptibility, resulted in fewer unexpected locations; 33,636
pixels were high-unexpected and 41,328 were low-unexpected. Most unexpected
locations were the same in both methods (31,327 high-unexpected and 33,955 low-
unexpected). However, the increased number of unexpected locations, associated with
unmodified susceptibility, suggests that the alterations allow risk to more realistically

represent forest conditions.
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Figure 8.5. Comparison of 2002 randomizations conditioned on forest risk with modified
and unmodified susceptibility in the Morice TSA.

Table 8.15. The number of unexpected pixels in 2002 when susceptibility is modified
versus when susceptibly is not modified in the Morice TSA.

number of high- number of low-
Method . .
unexpected pixels unexpected pixels

susceptibility modified 33,636 41,328

susceptibility not modified 38,296 43,319
susceptibility modified only 2,309 7,373
susceptibility not modified only 6,969 9,364
both 31,327 33,955
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8.6.2 Visualizing Expected and Unexpected Locations

For 1996 to 2002, locations identified as high-unexpected or low-unexpected can
be seen in Figures 8.6 to 8.12. Generally, more locations are found to be significantly
high than low. There are two possible explanations for this. The first is that under
epidemic mountain pine beetle conditions the risk model is more likely to under estimate,
rather than over estimate, risk. Alternately, these results may suggest that restricting the
identification of significantly low areas to locations with observed data is too

conservative.

Observed > Random

no forest risk

Observed < Random
|__—| no observed data

0

Figure 8.6. Conditional randomization results for 1996 in the Morice TSA. Black
represents statistically significant locations.
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Figure 8.7. Conditional randomization results for 1997 in the Morice TSA. Black
represents statistically significant locations.

Observed > Random ¢ Observed < Random
l__—l no observed data

no forest risk

Figure 8.8. Conditional randomization results for 1998 in the Morice TSA. Black
represents statistically significant locations.
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Figure 8.9. Conditional randomization results for 1999 in the Morice TSA. Black
represents statistically significant locations.

Observed > Random

no forest risk

Observed < Random .

no observed data

HEEE ]
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Figure 8.10. Conditional randomization results for 2000 in the Morice TSA. Black
represents statistically significant locations.
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Figure 8.11. Conditional randomization results for 2001 in the Morice TSA. Black
represents statistically significant locations.

Observed > Random v
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Figure 8.12. Conditional randomization results for 2002 in the Morice TSA. Black
represents statistically significant locations.
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Unexpected locations, whether high or low, cluster spatially. As with other
spatial patterns (hot spots and change) groups of spatially continuous high- or low-
unexpected locations clump together as patches. Consistency in the spatial configuration
of unexpected locations from year to year provides assurance that unexpected spatial

patterns are identified consistently over all time periods.

High-unexpected areas usually occur where the infestation is most active. For
example, high-unexpected areas occur in the North and Middle subareas in the mid
1990s, but by 2002 the majority of high-unexpected pixels are found in the South
subarea. This reflects trends in the intensity of mountain pine beetle activity in Morice.
High magnitude infestations initially occur in the North and Middle subareas, but by
2002 the mountain pine beetle population was largest in the South. The spatial patterns
of low-unexpected locations are less clear and typically occur at the periphery of the

active areas.

The two multi-temporal representations of high-unexpected mountain pine beetle
infestations are shown in Figure 8.13. Differences in these representations are clearest in
the South subarea. Here, the number of high-unexpected years are typically few, yet a
large percentage of active years are high-unexpected. In the Middle and North subareas,
several locations that are high-unexpected for many years are also high-unexpected in a
large percentage of active years. At pixels having many years with high-unexpected
observed values, risk may be underemphasized, regardless of the annual variability in

mountain pine beetle populations and forest conditions.
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Figure 8.13. Multi-temporal representation of high-unexpected locations in the Morice
TSA from 1995 to 2002. Non-pine areas are white.
8.6.3 Expected and Unexpected Locations and Age

The relative frequency distribution of forest age associated with high-unexpected
mountain pine beetle populations becomes more similar to the distributions for all pine,
as infestations age (Figure 8.14). Most commonly, the forest age of pixels with high-
unexpected infestation magnitude is 180 years in the North subarea, 140 years in the
Middle subarea, and older than 180 years in the South subarea. The reason for the unique
trend in the Middle subarea is unclear, but may be related to the lower proportion of trees

that are 180 years old in this area.
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Figure 8.14. Partitioned by Morice TSA subareas, relative frequency distributions of
forest age for high-unexpected pixels (solid line) and all pine pixels (dotted line).

Comparisons between the percentage of high-unexpected years that were active
and forest age, show that relative frequency distributions become more different from the
distributions associated with all pine as the number of high-unexpected years increase up
to 75 percent (Figure 8.15). For high-unexpected pixels, identified in both single and
multiple years, age relative frequency distributions are always similar to distributions for
all pine pixels. Relationships vary spatially for cells with high-unexpected intensity in
greater than 75 percent of active years. In the North subarea, the relative frequency
distribution is similar to the age distribution for all pine. In the Middle subarea, the£e was
a sharp increase in the number of locations associated with forests 80 years old, while in
the South subarea the distribution became similar to the relative frequency distribution

for all pine pixels except more pixels were found in age classes greater than 220 years.
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Figure §.15. Partitioned by Morice TSA subareas and the percentage of active years that
are high-unexpected, the relative frequency distributions of forest age for high-
unexpected pixels (solid line). For comparison, the forest age relative frequency
distributions for all pine pixels are also provided (dotted line).

Under epidemic conditions these results may suggest that the forest risk model
under predicts risk for some forest age classes relative to others. It appears, that at a
landscape scale, relationships between forest age and risk vary over the infestation
lifecycle. The difference in the trends found for pixels that have high-unexpected

infestation intensity for greater than 75 percent of active years, versus those high-

unexpected for fewer years, may also indicate that the duration of risk and the occurrence
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of risk in a single year are related to separate factors. For example, in the Middle subarea
during the 1990s, forest risk may be higher than calculated for forests 140 years old (see
Figure 8.14). Yet, higher than expected infestations repeatedly occur in younger stands

approximately 80 year old (see Figure 8.15).

8.6.4 Expected and Unexpected Locations and Percent Pine

The percentage of pine associated with high-unexpected locations varies
markedly for each subarea (Figure 8.16). In the North subarea, locations with high-
unexpected values tend to be associated with low percent pine pixels (30%), in the
Middle subarea they are more associated with high percent pine pixels (60 to 70%), and
in the South subarea moderate percent pine pixels (30 to 50%) dominant. In the Middle
and South subareas, as the infestation ages the relative frequency distributions of high-
unexpected areas become more similar to the relative frequency distributions of percent

pine for all pine pixels.

North Middle South
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Figure 8.16. Partitioned by Morice TSA subareas, relative frequency distributions of
percent pine for high-unexpected pixels (solid line) and all pine pixels (dotted line).
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The relationship between the percentage of active years that are high-unexpected
and pine has comparable trends to those seen for age (Figure 8.17). Relative frequency
distributions associated with pixels having a greater percentage of high-unexpected years
are more different from the relative frequency distributions for all pine pixels. In the
Middle and South subareas, unexpected trends exist when greater than 75 percent of
active years are high-unexpected. In the Middle subarea, cells with 60 percent pine
dominate the distribution, and in the South subarea there is a sharp increase in the number
of pixels associated with 10 percent pine. While variability in subarea trends makes
commenting on the relationship between high-unexpected locations and pine difficult, it

seems that risk is over emphasized for locations of high percent pine.
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Figure 8.17. Partitioned by Morice TSA subareas and the percentage of active years that
are high-unexpected, the relative frequency distributions of percent pine for high-
unexpected -pixels (solid line). For comparison, the percent pine relative frequency
distributions for all pine pixels are also provided (dotted line).

Low-unexpected pixels have a more consistent relationship with percent pine than

high-unexpected pixels (Figure 8.18). Typically low-unexpected locations are associated

with pixels having the highest percentages of pine (greater than 60 percent). It is

interesting that in the North and Middle subareas, forest age distributions associated with
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pixels having low-unexpected values are most similar to the distributions for all pine in

the early years of the infestation.
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Figure 8.18. Partitioned by Morice TSA subareas, relative frequency distributions of
percent pine for low-unexpected pixels (solid line) and all pine pixels (dotted line).
8.6.5 Expected and Unexpected Locations and Elevation

When high-unexpected locations are compared to elevation, a larger percentage of
cells is associated with lower elevations than are distributions for all pine locations
(Figure 8.19). In the North subarea, there is no dominant elevation consistently related to
high-unexpected locations. However, in 2002, there is an abundance of high-unexpected
pixels associated with 700 metres. In the Middle subarea, elevations of 800 metres
consistently have a strong association with high-unexpected locations, while in the South

subarea elevations of 800 to 900 metres prevail.
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Figure 8.19. Partitioned by Morice TSA subareas, relative frequency distributions of
elevation for high-unexpected pixels (solid line) and all pine pixels (dotted line).

The relative frequency distributions for elevations associated with the percentage
of active years that are high-unexpected are seen in Figure 8.20. Locations with
mountain pine beetle magnitudes that are never unexpected are less frequently found at
800 and 900 metres than anticipated based on the distributions for all pine locations. The
South subarea also shows that elevations of 800 metres are the most likely to have
unexpected patterns in all years. As the percentage of active years having high-
unexpected spatial patterns increase, more pixels are associated with elevations of 700 to
800 metres in the North, 800 metres is the Middle, and 900 metres in the South subareas.
In all subareas, trends change for pixels where greater than 75 percent of active years are
high-unexpected; in the North pixels at 700 and 1000 metres are prevalent, in the Middle
elevations of 900 and 1000 metres dominant, and in the South elevations greater than
1100 metres are the most common. Generally, this suggests that when pixels are often

high-unexpected, elevations are high. There also seems to be a trend whereby pixels with

238



high-unexpected values are associated with lower elevations as latitudes become more

northerly. While additional data on climate is necessary to further investigate elevation

trends, it appears a relationship exists between elevation and climate over different

latitudes. As latitudes increase, temperatures warm enough to support large mountain

pine beetle populations are limited to lower elevations.
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Figure 8.20. Partitioned by Morice TSA subareas and the percentage of active years that
are high-unexpected, the relative frequency distributions of elevation for high-unexpected
pixels (solid line). For comparison, the elevation relative frequency distributions for all
pine pixels are also provided (dotted line).
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The relative frequency distribution of elevation associated with low-unexpected
pixels have interesting trends in the South, where they are dominated by elevétions
ranging from 800 to 900 metres (Figure 8.21). Both high- and low-unexpected locations
in the South subarea are associated with similar elevations. Throughout this thesis,
analyses of elevation trends have been difficult to interpret and this is no exception.

However, it seems that generally risk is under predicted for lower, likely warmer,

elevations.
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Figure 8.21. Partitioned by Morice TSA subareas, relative frequency distributions of
elevation for low-unexpected pixels (solid line) and all pine pixels (dotted line).

8.6.6 Expected and Unexpected Locations and Aspect

Only the South subarea shows meaningful relationships with aspect (Figure 8.22).
In general, south facing slopes are more related to high-unexpected cells and through
time, the relative frequency distribution associated with high-unexpected areas becomes
more similar to the relative frequency distribution for all pine pixels. Results may
indicate that aspect, which is currently not a risk model parameter, is an important

consideration during the initial stages of a mountain pine beetle epidemic.

240



o 1 o

Figure 8.22. For the South subarea of the Morice TSA, relative frequency distributions of
aspect (degrees) for pixels with high-unexpected values and all pine pixels.

241



8.7 SUMMARY

The forest risk model used in this study incorporates much of the current
knowledge regarding mountain pine beetle behaviour. While developed at a stand level,
forest risk has potential for application to large areas. Forest risk is the probability of loss
in stand volume due to infestation, and is not meant to predict the exact location of
mountain pine beetle infestations. Therefore, direct comparisons between the level of
risk and the observed infestation magnitude is insufficient for investigating the utility of

applying forest risk models to large areas.

Taking advantage of the probabilistic output and time scale associated with forest
risk, we conditioned randomizations of observed data on forest risk to investigate
variations in the suitability of the model over large areas. Generating the forest risk
model for our purposes required a number of modifications, some of which may be useful
in other contexts. For instance, converting the spatial unit of the risk model from forest
inventory polygons to raster grid cells, allows increased precision to the beetle pressure
component of the model. Although temporal modifications to susceptibility are coarse,
they appear useful for identifying key locations of reduced susceptibility and improve the

fit between model output and observed data.

Four randomization algorithms were investigated. A cluster-based algorithm that
allocated data using an inhomogeneous planar Poisson process, in which the presence and
size of infestation clusters are randomly assigned in proportion to risk, is the most

appropriate of those examined. This algorithm has the benefit of retaining the attribute
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distribution of the empirical data whilst providing a realistic representation of mountain
pine beetle processes. Exploring additional algorithms indicates that infestation of
individual trees is not independent; rather, the aggregative processes associated with

stand scale mountain pine beetle behaviour are expressed at a landscape level.

Spatial dependence is inherently incorporated through the conditioning of
randomization on the risk model. However, a limitation of all the randomization
approaches is that they do not explicitly consider spatial dependence of the empirical
data. Explicit consideration of spatial dependence may have additional benefits and
characterizing the spatial dependence of infestations will provide further insights into
mountain pine beetle spatial processes. Generally, an adequate method for considering
the spatial structure of observed data during randomization is lacking and further research

in this area would benefit a wide range of spatial randomization investigations.

Conditional randomizations allow identification of cells where observed
infestation magnitudes were both high-unexpected and low-unexpected. High-
unexpected locations were found more often than low-unexpected locations. The
abundance of high-unexpected locations may suggest that risk tends to be under predicted
where mountain pine beetle populations are at epidemic levels. The presence of few low-
unexpected locations may alternately be an artifact of restricting such findings to pixels

with data.
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Visualizing high-unexpected pixels in many time periods provides evidence of
space-time variability in the effectiveness of risk modelling over large areas. In some
cells the observed infestation is always higher than values generated from randomizations
conditioned on forest risk and in other cells this is never the case. This may suggest that
the primary difficulty in applying stand level models to landscapes is the variability
associated with large areas. The abundance of high-unexpected locations may also relate
to the atypical nature of the current mountain pine beetle population in British Columbia.
The forest susceptibility, beetle pressure, and forest risk models were all developed for
incipient and epidemic mountain pine beetle populations. While conditions in the early
and mid 1990s could be considered epidemic, by 1999 the infestation had become a
pandemic. Therefore, we need to be cautious when interpreting results, particularly

those that are derived from observations made after 1999,

Visualization demonstrates that, rather than being dispersed over the landscape,
unexpected pixels cluster spatially. Since this characteristic is consistent over space and
time, it may indicate that there is a systematic component to landscape level mountain

pine beetle processes that is not accounted for by the forest risk model.

Exploring the relationship between unexpected pixels and landscape
characteristics reinforces the view that there is spatial and temporal variability in the
forest risk model’s ability to represent forest conditions. Trends between unexpected
locations and landscape characteristics are inconsistent between subareas and change

with the duration of infestations. At a stand level, forest age is considered a well-
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understood component of mountain pine beetle behaviour. At a landscape scale, the
relationship between forest age and risk of attack by epidemic mountain pine beetle

populations seems to be regulated by local factors and shows substantial variability.

While the percentage of pine is not the preferred attribute for implementing forest
risk, the nature of available data necessitates in its use. Although the percentages of pine
most commonly associated with unexpected observed patterns are variable between
subareas, it appears that risk may be overemphasized for pixels with a high percentage of
pine. High-unexpected cells are most often associated with low percentages of pine and

low-unexpected pixels occur where percentages of pine are greater.

For each subarea, the observed infestations are typically higher than expected at
low elevations and lower than expected at high elevations. Warmer temperatures at low

elevations result in greater susceptibility to mountain pine beetle populations.

While the susceptibility and risk models are developed using a stand level
understanding of beetle behaviour, the location factor, which considers the impact of
temperature, is generalized for the province of British Columbia. The location factor is
perhaps best suited for coarse grained analysis of large areas, and would also likely
perform well for fine grained analysis of small areas, when the impacts of climate are
fairly homogenous. Model results are best interpreted relative to one another and the
impact of climate over small areas will be small. Performance of the climate factor will

likely be inadequate when analysis is fine grained and the spatial extent of the study area

245



large. In such cases, the heterogeneity within the study area will be substantial and the

detail of the location factor insufficient.

Aspect, which is not included in the model, may be an important factor in some
mountain pine beetle infestation scenarios. Particularly during the initial phase of
infestation, southern slopes appear to be at higher risk than other locations. Associations
with aspect, draw attention to the importance of climate conditions on mountain pine
beetle populations. Although investigations of wind and temperature are typically limited

by the lack of available data, it is likely that such factors are influential.

Exploratory investigation of the associations between unexpected spatial patterns
and the landscape are an important fist step to optimizing the representation of landscape
scale risk. These initial analyses have indicated that associations between mountain pine
beetle and landscape characteristics change through time, and formal quantification of
this relationship would have utility. Such analysis should consider if the driver behind
temporal variability in how mountain pine beetle utilize the landscape is related to host
depletion. As landscape characteristics are dependent, multivariate analysis may also be
useful. Finally, future work on the impact of spatial grain and extent on the expression of
mountain pine beetle spatial processes will a better understanding of the impact of

applying stand level processes to large areas.
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9 CONCLUSIONS

British Columbia is currently experiencing the largest mountain pine beetle |
epidemic on recorded. With over seven million hectares of forest affected (Westfall,
2004) the impact has already been substantial. The spatial extent of the current epidemic
has highlighted the importance of understanding large area mountain pine beetle
behaviour. As well, over the last decade, there has been a growing awareness of the need
to consider spatial aspects of ecological phenomena and the physical environment.
Recognizing the benefit of an improved understanding of both spatial and large-area
mountain pine beetle behaviour, the goal of this research is to explore landscape scale
spatial and spatial-temporal patterns of lodgepole pine mortality caused by epidemic

mountain pine beetle populations.

Monitoring programs, combined with technological advancements in data
collection and storage, have generated unique large area and multi-temporal data sets.
The Morice TSA has collected point data on mountain pine beetle infestations, via GPS
helicopter surveys from 1995 to 2002, for a 1.5 million hectare area. Such data provide
an unprecedented opportunity to explore the spatial and spatial-temporal patterns of

mountain pine beetle infestations over large areas.

A spatial understanding of phenomena often begins with exploratory analysis. As
knowledge of large area spatial mountain pine beetle dynamics is in its infancy, much of
the research in this thesis takes on an exploratory nature. By characterizing spatial and

spatial-temporal patterns observed in large area mountain pine beetle infestations many
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of the results presented become the starting point for hypothesis-based investigations.

Research results also provide new information to decision makers and will benefit efforts

to model mountain pine beetle spatial processes through time.

In this section we summarize results from seven key research areas including:

1.

2.

Aerial survey accuracy,

Kernel density estimation,

Landscape characteristics associated with hot spots,
Dispersal,

Spatial-temporal patterns of change in infestation rates,
Conditional randomization, and

Forest risk modelling.

For each research area, we outline key findings, implications for mountain pine beetle

management and research, and suggest directions and topics of future research. This

material i1s summarized in Table 9.1.
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Table 9.1. Summary of the key research areas, findings, implications, and future research

directions.

Research
Area Key Findings

Implications

Future Research

Aerial survey Most survey points have
accuracy
errors £ 10 trees).

Aerial data best represent
infestations that occurred one
to two years previously.

The main source of error is
related to the timing of crown
foliage discolouration.

Aerial survey data quality

but errors should be
considered when
undertaking spatial
analysis.

As found in other studies,
aerial surveys are
inappropriate for detecting
green attack.
Modifications to aerial
surveying procedures are
unlikely to improve
monitoring. Field

programs are important for

ensuring quality data
collection.

Randomly selecting the

small attribute errors (87% of is suitable for management, locations of some field sites

will enable assessment of
infested areas missed during
areal surveys.

Kernel density Using kernel density

Visualization using kernel

estimation estimators to visualize point  density estimators
data on mountain pine beetle improves communication
infestations improves data  of large area point data.
representation.
It is possible to incorporate  Methods for dealing with  Using kernel density estimators
uncertainty when visualizing uncertainty will enable and Monte Carlo simulations
large uncertain point data spatial analysis of existing the impact of incorporating
sets. large area and multi- uncertainty into other data sets
temporal data sets. should be investigated.
Kernel density estimators can In future work the impact of
be a beneficial pre-processing kernel density estimator cell
step when analysing point size (spatial resolution) on
data through space and time. spatial analysis should be
explored.
Landscape Hot spots, defined using a Alternate definitions of hot
characteristics threshold of the 90th spots should be explored.

and hot spets  percentile of infestation
intensity, have unique
underlying landscape
characteristics when
compared to all pine
locations.

Relationships between
landscape characteristics and
hot spots change through
time.

Strategies for mountain
pine beetle management
and model attribution
should vary over the
infestation cycle.
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the temporal variability of
associations between hot pots
and landscape characteristics
are related to host depletion.



Associations between hot Multivariate analysis may be

spots and landscape beneficial for dealing with
characteristics show that relationships between landscape
conditions leading to characteristics.

infestation development are
not the same as conditions
that support infestations with
a long duration.

Dispersal Three types of dispersal are Models of spread should  Are the spatial and spatial-
observed at a landscape scale: include both short- and temporal patterns observed for
coalescence, short-range long-range dispersal. hot spots and hot spot patches
dispersal, and long-range different than those expected
dispersal. under a random scenario?

Investigate spatial-temporal

relationships in hot spot patches

through muitiple time periods.
Hot spots patches that result Focus treatment efforts on Are the spatial and spatial-
from short-range dispersal  patches that intersect with temporal patterns observed for

persist longer than those patches in the previous hot spots and hot spot patches
resulting from long-range year, as populations in influenced by the underlying
dispersal. patches without landscape characteristics?

intersections are more
likely to decline naturally.

Spatial- Change is not persistent Investigate alternate definitions
temporal through time and spatial- of change.

patterns of temporal relationships of Are the spatial and spatial-
change in change are often random. temporal patterns observed for
infestation change different than what
rates would be expected under a

random scenario?
When compared to mountain The typical size of negative Are the spatial and spatial-

pine beetle population change patches (3km?), temporal patterns observed for
growth, population decline  likely represents the size of change influenced by the
seems to be slower and more effective treatment. underlying landscape
localized. characteristics?
Conditional  Randomization algorithms It is important to consider Characterize the nature of
randomization based on mountain pine the characteristics of the  spatial dependence in mountain
beetle stand behaviour are  phenomenon being studied pine beetle infestation clusters
currently the most suitable ~ when undertaking and develop a randomization
approach to landscape scale randomization. approach that considers spatial
randomizations. dependence.
Aggregative behaviour When detailed information Investigate the relationship
observed at a stand scale is  on large area mountain between spatial dependence in

expressed at landscape levels. pine beetle behaviour is  risk model output and spatial
unavailable, stand-level dependence in mountain pine
trends are an appropriate  beetle data.
starting point.

Forest risk Adjustments are appropriate Generate a more detailted Undertake similar

modelling when applying a stand-scale location factor and consider investigations in areas with
model of forest risk to large incorporating parameters  other physical and beetle
areas. such as aspect. population conditions
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Associations between the Temporally vary . Quantify relationships that
level of risk and landscape  relationships between risk, will enable temporal adjustment

characteristics change over  and forest age or of model attributes.
the duration of the infestation percentage of pine.
cycle.

9.1 AERIAL SURVEY ACCURACY

Point-based GPS aerial surveys are used to monitor mountain pine beetle
infestations in the Morice TSA. The Morice data collection program is unique as aerial
surveys are complemented with a ﬁeld data collection program. This combination of data
enables exploration of the information content and uncertainty associated with aerial
surveys. As commonly found with aerial survey data, these data best represent
infestations that occurred one to two years previously. The data have sufficient spatial
detail for tactical planning of insect mitigation and harvesting, as eighty-seven percent of
points have attribute errors of less than or equal to & 10 trees. The main source of error in
the aerial survey data is related to the timing of crown foliage discolouration, and as such
it is unlikely that modifications to the survey techniques will lead to improvements in
data accuracy. This research corroborates other investigations, which indicate that aerial
surveying us not a suitable approach for monitoring current attack, and demonstrates that
field surveying, such as the program in Morice, is essential to ensure accurate data
collection. While the quality and richness of this data collection program is unique, one
recommendation would be to randomly select some field locations in order to allow a

more thorough assessment of errors of omission.
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9.2 KERNEL DENSITY ESTIMATAION

Kernel density estimation provides va flexible approach for modelling point data
on the number of trees infested by mountain pine beetles. The application of kernel
density estimators to data on mountain pine beetle infestations is novel and has both
practical and conceptual benefits. Using kernel density estimation, we are able to
incorporate data uncertainty, improve visualization, and represent infestation patterns
using a continuous data model. As well, kernel density estimation can be a valuable pre-
processing tool for smoothing data and generating consistent spatial indexing for multi-

temporal investigations.

The method demonstrated here, for incorporating data uncertainty when
visualizing spatial pattern, is applicable to other large area point data sets. Techniques
for considering data uncertainty are important as small errors can have a significant
cumulative impact on spatial analysis of large areas and multiple time periods. As
technology for data collection and storage improves, the availability of large area and
multi-temporal data sets will increase. Although these data are typically collected as part
of monitoring programs, they offer new potential for spatial analysis. However, optimal

use of such data requires the development of techniques for dealing with uncertainty.
All spatial analyses of raster surfaces are affected by cell size. As implementation

of kernel density estimators requires output values be stored in pixels, issues related to

impact of resolution should be investigated. For instance, it would be valuable to explore
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how the composition and spatial configuration of hot spot and change locations is

impacted when the resolution of kernel density estimated surfaces is modified.

9.3 LANDSCAPE CHARACTERISTICS ASSOCIATED WITH HOT SPOTS
Landscape characteristics associated with hot spots and hot patches vary through
space and over time. Initially, intense infestations occur in locations having forest
conditions considered favourable, at a stand scale, for the mountain pine beetle. Over
time, locations having less favourable characteristics become associated with abundant
mountain pine beetle populations. As well, characteristics associated with locations
having intense infestations initially are different from those associated with temporally
persistent high attack levels. For instance, locations with mature trees are infested first,

but locations with younger forests are infested intensely for longer periods of time.

Relationships between hot locations and landscape characteristics demonstrate the
importance of mountain pine beetle management strategies that fluctuate through time.
Similarly, spatial-temporal modelling of mountain pine beetle behaviour needs to
incorporate variability that occurs over the course of an infestation. The landscape
characteristics favourable to the mountain pine beetle at the beginning and end of an

epidemic differ.
Defining hot spots using a threshold of the 90™ percentile of infestation intensity,

identifies pixels associated with landscape characteristics that are different from general

characteristics found for all pine locations. This definition has utility as it focuses
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investigations on a practical amount of area for mountain pine beetle management within
a district or TSA. However, all spatial analysis of hot spots is inﬂuencéd by the hot spot
definition. As there are many possible definitions of hot spots, future work should
consider how other hot spot definitions impact the spatial location of hot spots and the

associations between hot spots and the landscape.

In this analysis, due to limitations of the data, the distribution of pine
characteristics was constant, even though pine was depleted by mountain pine beetle
infestations. Temporal trends are likely associated, at least in part, by the depletion of
host. It would be helpful to quantify the impact of host depletion on temporal trends. As
well, interpretation of relationships between hot spots and landscape characteristics may
be complicated by dependence in environmental factors. Future analysis of landscape

characteristics may profit from a multivariate approach.

9.4 DISPERSAL

Three types of mountain pine beetle dispersal seem to occur at a landscape scale.
When infestation hot spot patches are very large, evidence suggests they result from hot
spot coalescence, or the merging of intense infestations. While an important process,
coalescence 1s relatively uncommon, and more frequent forms of dispersal include short-
range and long-range transport. Short-range dispersal is observed in hot spot patches that
overlap in neighbouring years, suggesting that the mountain pine beetle move from one
susceptible host to the next. Long-range dispersal accounts for hot spot patches occurring

where none were previously.
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The observed processes of dispersal indicate why mountain pine beetle spread can
be difficult to model. Approximately 52 percent of spread occurs from short-range
dispersal or coalescence, and 48 percent results from long-range dispersals. Intense
infestations may occur both near to and far from hot spot patches in the previous time
period. Temporal models of mountain pine beetle spread need to include both short- and
long-range dispersal. Evidence of long-range dispersal reinforces the importance of
characterizing the susceptibility of regions based on forest conditions. During epidemic
conditions, susceptible forests are at risk even if mountain pine beetles are not observed

nearby.

Hot spot patches developing from short-range dispersal persist longer than those
that develop from long-range dispersal. In other words, hot spot patches intersecting hot
patches in the previous time period are more likely to be hot in the future than patches
with no intersections. Therefore, when tactical planning for mountain pine beetle
mitigation, efforts should focus on hot spot patches that have intersections with patches in
the previous years as populations at these locations are unlikely to decline quickly

without treatment.

There are several extensions of this work that would be useful to further our
understanding of dispersal. Firstly, while trends in the spatial and spatial-temporal
relationship of hot spot patches provide evidence of various dispersal processes, it is
unclear if the patterns identified are different than would be expected under a random

scenario. Secondly, the impact of the underlying environmental and forest conditions is
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unknown. It is possible that the distances between patches are influenced by
heterogeneity in landscape conditions. Finally, in this analysis temporal investigations
were limited to two years. Studying interactions between hot spot over more time

periods could have additional benefits.

9.5 SPATIAL-TEMPORAL PATTERNS OF CHANGE IN INFESTATION RATES
Temporal patterns in locations with statistically significant positive and negative
change in infestation levels are related to the definition of change. At a given location,
positive change is rarely followed by further positive change, and two consecutive years
of negative change are also uncommon. Typically, significant change is followed by
insignificant change, or positive change is followed by negative change. In other words,

temporally significant change is not persistent.

Positive change between two time periods is more common than negative change.
As well, negative change patches tend to be smaller than positive change patches. This
indicates that during an epidemic, population growth occurs more quickly than
population decline, as between two years population growth is more commonly detected.
As well, the smaller patches of negative change suggest that population decline results
from more localized processes than population growth. When significant negative
change is detected between two years it is likely the result of treatment, and the typical
size of negative change patches, three square kilometres, may be indicative of the

effective scale of treatment.
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Future work on change could focus on alternate definitions of change. As with
hot spot patch analysis, it would also be interesting to examine how patterns in change
patches differ from a random expectation. Also, the impact of the spatial structure of the

underlying landscape should be examined.

9.6 CONDITIONAL RANDOIMZATION

Randomization methods are powerful tools for exploratory and confirmatory
spatial investigations. Often pure randomizations are inappropriate for ecological
investigations and conditional approaches should be applied. For mountain pine beetle
investigations, conditional randomization algorithms based on a stand-scale
understanding of beetle behaviour are currently the most suitable approach to landscape
scale randomizations. Many of the findings from this thesis indicate that there are
similarities between stand and landscape scale mountain pine beetle behaviours. While
we should not assume that all processes are alike, it appears that the current
understanding of stand scale processes is a reasonable starting point for investigations at

a landscape level.

Using randomization algorithms that considered pine trees to be infested
independently, conditional to forest risk, we were unable to reproduce attribute
distributions of the empirical data. This suggests that aggregative processes observed at a
stand scale are expressed a landscape-level. Further investigation of the nature of spatial
dependence in empirical mountain pine beetle data would be helpful to further understand

the landscape level expression of aggregative behaviour and other spatial processes. As
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well, a method that incorporates spatial dependence of observed data when performing

randomizations would be beneficial for numerous spatial randomizations studies.

9.7 FOREST RISK MODELLING

The probabilistic nature of the forest risk model enables conditional
randomization to be used for the exploration of mountain pine beetle infestation intensity.
Diagnostic investigation of locations that are unexpected based on a random model
conditioned on forest risk, suggest modifications to the forest risk model when applied to
a landscape with an epidemic mountain pine beetle population. Overall, conditions found
favourable by the mountain pine beetle vary over space and through time. Therefore, the
forest risk model may be improved by varying the weight of parameters over space and
throughout the infestation cycle. As well, additional variables, particularly factors
associated with climate, may allow better model performance under some conditions.
For instance, it may be appropriate to consider aspect during the early stages of

infestation.

Guidance for future work is provided by exploratory investigations into the
application of the forest risk model to a landscape. Similar investigations should be
undertaken in other landscapes and for different mountain pine beetle conditions. More
research will be required to determine precisely how to best modify the model. For
instance, while we have demonstrated that relationships between forest age and risk will
vary over time, supplementary examinations are required to determine how to modify the

model.
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