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We classify the pairs (A.D) consisting of an (€.I')-color-commutative associative
algebra A with an identity element over an algebraically closed field I of charac-
teristic zero and a finite dimensional subspace D of (e.I')-color-commutative locally
finite color-derivations of A such that A is I'-graded D-simple and the eigenspaces
for elements of D are ['-graded. Such pairs are the important ingredients in con-
structing some simple Lie color algebras which are in general not finitely-graded.
As some applications, using such pairs. we construct new explicit simple Lie color
algebras of generalized Witt type. Weyl type. © 2004 American Institute of Phys-
ics. [DOI: 10.1063/1.1628837]

l. INTRODUCTION

Lie color algebras, a notion first appeared in mathematical physics.l’3’5_7’lS are generalizations
of Lie algebras and Lie superalgebras. Let us start with the definition. Let I be an algebraically
closed field of characteristic zero and let I be an additive group. A skew-symmetric bicharacter of
I is a map e:I' XI'=F*=F\{0} satisfying

e()\./L)=e(/.L,_)\)_l, eN.u+v)=e\.p)e(N.v), VYV uvel. (1.1)
It is clear that
e(A.0)=1, VAel. (1.2)

Let L=, .rL) be a ['-graded F-vector space. For a nonzero homogeneous element @, denote by
a the unique group element in I" such that a € L;. We shall call a the color of a. The F-bilinear
map [ -,-|:LXL—L is called a Lie color bracket on L if the following conditions are satisfied:

[a.b]=— e(a.b)[b.a] (skew symmetry),

[a.[b.c]]=[[a.b].c]+ e(@a.b)[b.[a.c]] (Jacobi identity),

for all homogeneous elements a.b.c € L. The algebra structure (ZL.[-,-]) is called an (eI)-Lie
color algebra or simply a Lie color algebra. If T =7/2Z and €(i.j)=(—1)".V i.j € Z/2Z. then
(e.I')-Lie color algebras are simply Lie superalgebras. For Lie color algebras, we refer the reader
to Ref. 1.

For any ['-graded F-vector space V., we denote

H(V)={all homogeneous elements in 7}.

0022-2488/2004/45(1)/525/12/$22.00 525 © 2004 American Institute of Physics
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Let A=®,.1rA, be a I'-graded associativd’-algebra with an identity element 1, i.e.,,
AVALCAy, forall h,uel’. So 1e Ag. We say thatd is graded simplef A does not have
nontrivial I'-graded ideals. If we define the bilinear prod{igt] on A by

[X,y]=xy—e(X,y)yx, Vx,yeH(A), (1.3)

then(A,[-,-]) becomes a Lie color algebra.
A Lie color ideal Uof A is al'-graded vector spadée of A such thaf . 4,U]CU. Sometimes
it is called an(e,I')-Lie ideal. Thee-center Z(.A) of A is defined as

Z.=Z(A)={xe A|[x,A]=0}.

It is easy to see thaZ . (.A) is I'-graded. We say tha#l is color-commutative(or e-color-
commutative)if Z (A)=A4, i.e.,[A,A]=0.

Let A be an(eI')-color-commutative associative algebra with an identity element 1. A non-
zerol-linear transformatiod: A— A is called ahomogeneous color-derivatiaf degree\ e I if

da)eAy,,, VYaeA,, wpel,
(1.4)
d(ab)=d(a)b+e(\,a)ad(b), VabeH(A).

For convenience, we shall often denate \ if 9 has degree\.. Clearly 9(c)=0 for all cel.
Denote Def(A) =&, .1 Der;(A), where Def(.4) is thel'-vector space spanned by all homoge-
neous color derivations of degree Similar to the Lie algebra case, it is easy to verify that
Der; (A) becomes a Lie color algebra under the Lie color bracket

[9,0'1=09" —€(3,d')3' 9, ¥ 3,0 e H(Der(A)),

wheredd’ is the composition of the operatofsandd’.
Let D=, .rD, be an(e,I')-color-commutative subspace of Dgd), i.e.,

99" =€(9,0')3'9, ¥ 9,0 e H(D). (1.5)

Recall that the associative algehrais called graded D-simpleif A has no nontrivial graded
D-stable idealé.
A linear transformatiom on a vector spac¥ is calledlocally finite if

dim(spad T™(v) | me N}) <,

for anyv e V. The transformatio is calledlocally nilpotentif for any v € V, we haveT"(v)
=0 for somene N, andT is calledsemisimpldf it acts diagonalizably orV.

For a pair(A,D) of an (¢,I")-color-commutative associative algebra with an identity element
and an(eI')-color-commutative subspac® of Der(4), Passmahproved that the Lie color
algebra(including the Lie algebra caseyD=.A® D is simple if and only ifA is gradedD-simple
and AD acts faithfully on.A (except a minor case). The authors of the present pasare also
Refs. 9, 10, and 14)onstructedassociative and Liegolor algebras of Weyl typgl[ D], which is
the color commutative algebra generatedbandD (as operators oml), and proved thatd[ D]
is simple as an associative algebra océntral simpleas a Lie color algebra.e., the derived
subalgebra modulo its-center is simplejf and only if A is gradedD-simple(except a minor case
in Lie case). However, it is still a question of how to construct new explicit simple Lie color
algebras of generalized Witt type or Weyl type.

The problem of classifying all the paifgl,D) of a commutative associative algebdawith an
identity element and a finite-dimensional locally finite commutative derivation subal@ebueh
that A is D-simple(i.e., A does not havé-stable ideals), was settled in Ref(&sing the pairs
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(A,D), Xu constructed explicit simple Lie algebras of generalized Cartarttgpel of generalized
Block type®). However, this problem becomes much more complicated in color case.

In order to construct explicit new simple Lie color algebras of generalized Witt, Weyl types,
the first aim of the present paper is to give a classification of all the pdi®) of an (e,I")-color-
commutative associative algehdawith an identity element over an algebraically closed fielof
characteristic zero and a finite-dimensional subspac# (€,I")-color-commutative locally finite
color derivations of4 such that4 is I'-gradedD-simple and the eigenspaces for element® aire
I'-graded(see Theorem 2.2). Then in Sec. lll, as some applications, using the(ggiP3, we
construct explicit new simple Lie color algebr@scluding Lie superalgebrasf generalized Witt,
Weyl types(see Theorem 3.1).

Il. D-SIMPLE COLOR ALGEBRAS

In this section, we shall classify the paitd,D) of an (¢,I')-commutating associative algebra
A with an identity element 1 and a finite-dimensional subspaaef (e,I')-commutative locally
finite color derivations of4 such thatA4 is gradedD-simple and the eigenspaces for elements of
D arel'-graded.

First we would like to remark that the eigenspace of a derivation is not necedsayibded.
Since we are considerinfj-graded algebras, it is natural that we require the eigenspaces for
elements ofD arel'-graded.

We shall start with constructing explicitly such pafré,D). The motivation to construct such
pairs will become clear in the proof of Theorem 2.2 below. Actually, the proof of Theorem 2.2
leads us to the way to construct such pairs.

Set

T.={AeT|e\\)=1}, T_={\eTl|e(\\)=—-1}.

Then by(1.1),I", is a subgroup of" with index=<2. For any graded subspaBeof A, we define
Bi=@&\cr By, then3, isI'-graded. Similarly we can defirte¢_. Sincel'=1",UT _, it follows

thatB=B,®B_. By (1.5), we have
a?2=0 or ¢*=0 ifael_ or gel_. (2.1)
Form,ne Z, we denote
m_,n={m,m+1,...,n}.

To construct the paifA,D), first we construct &'-gradede-commutative field extensidiof
[ (i.e., each nonzero homogeneous element:d$ invertible). To do this, lel’°CI', be a
subgroup ofl" and letl, be a field extension of. Let e:T9XT'°— S =Eq\{0} be a 2-variable
functione:(«a,B)—¢, s such that
ea’ﬁ: E(C(,,B)eﬁya, ea'(): 1, eavlgea+31y=emﬁ+yeﬁ'7, v C(,IB,‘}/E FO. (22)

You will see that these are required by the associativity of the algebra we are going to construct.
Let k= EO[FO]zspa@O{Ea| aeI'% be al'’-gradede-commutative associative algebra ovgy

such thate,, has colorE,= a, with the multiplication
E. Eg=€npEnip, Va,Bel® (2.3)

From (2.2) it is easy to see thdt is al'-gradede-commutative field extension df.
Let

k:(kl,kz,k3,k4)EN4 SUCh thatk=k1+k2+k3+k4>0
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We also require thak,=0 if ' _=J. We shall construc which will be spanned by color
derivationsd, ,p € 1,k such that

dp is semisimple with coloap= 0, V pelk, (2.4)

dx,+p Is locally finite but not semisimple with colo?kﬁp: 0, Vp erkz, (2.5)
Ik, +k,+p IS locally nilpotent with colom_|<l+k2+p el',, V pe 1_k3 (2.6)
Je, 11y iy p 1S locally nilpotent with colomy sy, sk pel’ -, V pe 1k, (2.7

[cf. (2.21)and(2.22)]. To this end, we first need to construttwhich will be the tensor product
of two algebrasd=A;® A, [cf. (2.19)]such that4, is a “group-algebra-like” algebrgcf. (2.12)]
and A, is a “polynomial-like” algebra[cf. (2.16)].

Now we constructd; such '[ha'r(7p|A1 are nonzero semisimple operators for 1,k; +k, and
ak1+kz+P|A1 are zero operators fgre 1,ks+k, [cf. (2.4)—(2.7) and(2.21)-(2.22)]. To do this, let
G be anondegeneratadditive subgroup of¥1™¥2, j.e., G contains arl-basis of1**2, If k,
+k,=0, we takeG={0}. An element inG is usually denoted by

a=(ajp,ay,...,a) Wwith a,=0, V p>k;+Kk,. (2.8)

Let :G—TI'. be a map :a—4 satisfying

0=0, 6,p=a+b—atbel®, VabeG. (2.9)

(o

Let f(-,-):GXG—[y be a map such that
f(a,b)=e@bf(ba), f(a0=1, (2.10)

f(b,c)f(a,b+c), (2.11)

ab Patbe =7 O fapic

for a,b,ce G. Denote byA;=A(G,L,f) the (¢I')-color commutative associative algebra with
[-basis{x?| ae G} or Eq-basis{E x?| («,a) e [°X G} such thatx? has colora and

x2.x*=f(a,b)E, x2'?, Va,beG, (2.12)

a,b

and in general
Eaxg'EBXb:e(aiﬂ)ea,ﬁeaJrB,ﬂa’bf(a!b)Ea+B+Hg’bX§+b1 v awBEFO! @,DEG (213)

[cf. (2.3)]. Thee-commutativity and associativity ofl; are guaranteed by conditioi®.10) and
(2.11). o

Now we shall constructd, such thatﬁp|A2=O for pe 1,k; and ap|A2 are nonzero locally
nilpotent operators fop € k; + 1,k [cf. (2.4)-(2.7) and(2.21)-(2.22)]. To this end, Ieitklﬂ,...,tk

be k,+kz+k, variables such that eath has colort_p satisfying
t_k1+p201 t_k1+k2+qer+a t_|(1+k2+k3+rer,, (2.14)

for pe1,ky, qelks, re 1k, For convenience, we denotg=0 if p<Kk;. Denote 7={0}
><N‘2+k3><Z';4, whereZ,=7/27, i.e., J is the subset of* consisting of the following elements:

i_:(ilri21"'lik)! (215)
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with i,=0 for p<k;, andige N for ge k;+ 1,k +k,+kz, andi,=0,1 forg>k; +k,+ks [(2.1)
and(2.16)explain why we shall havi,=0,1 forq>k; +k,+Ks]. Let A,=E[ty +1,...,t] be the

e-commutative algebra of polynomials k3 +k;+k, variables with arfi-basis consisting of the
elements

; i+ i .
tlztkkl1+i---tkk, Yied, (2.16)
or ig-basis{Et'| (a,i) e °X 7} such that

k
EthEgti=e, s T] e(tp.p)r II  e(tq tp)eeE, sl Va,Bel®ijed
p=k;+1 ki<p<q<k
(2.17)
[cf. (2.3)], where we use the convention thit 0 if i ¢ 7. For convenience, we shall denote
k
ep= Il etp.pe, &= [l e(tq.tyide, Vijed pel®.  (2.18)
- p=k;+1 " ky<p<gsk -

Definition 2.1:We defineA= A(k,G,E,f) to be the €I')-commutative associative algebra
with the identity element % E,=x° which is the tensor product of algebrab=A4;® pA,,
having Eq-basis

EXP=E %!, V(a,a,i)el®XGXJ, (2.19)
with the multiplication

Eaxe‘i'i . EBXD'JZ Ei_’ﬁea’ﬁfi_ %l'le(ayﬂ)ea+ﬁ’eg,bf(a’ b)Ea+B+ aa,bxa+b’l+1’ (220)

for a,el'° a,beG, i,jeJ[cf. (2.3),(2.13),(2.17), and(2.18)].
ForaeF* pelk we denote

P
arp=(0,...,0,30,...,0 e F¥.

Forpe 1,k we define the linear transformatioa§,r9tp,r9§ on A such that they have CO|0ft_p [in
particular, they have color 0 fp<k;+k,, cf. (2.14)], and

ap=a;+atp, (2.21)

p—1
T EXM)=aEx®, o (B =e(d,at @) [ e(d o) nipEnt i, (2.22)

for (a,a,i) e'°XGX 7. Clearly, dp =0 if p>ky+k, by (2.8), anddq=0 if q=<k; by (2.15).
Then dy,d; Gy, are e-derivations of A for pe 1,k. We call 5 a grading operator(or degree
operator),atp adown-grading operator, andpza; +‘9tp amixed operatoif both p’; and atp are
nonzero. Then

D=span{d, | pe 1k (2.23)

is a finite-dimensional subspace eCommutative locally finite color derivations of such that
the eigenspaces for elementsfareI'-graded.

Theorem 2.2: Let A=Z%,.rA, be anecommutative associative graded algebra with an
identity element over an algebraically closed fi€ldf characteristic zero and |&=% ,_rD, be
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a finite-dimensional'-gradedl'-subspace ot-commutative locally finite color-derivations ot
such that the eigenspaces for element®afrel’-graded. Them is gradedD-simple if and only
if A is isomorphic to the algebra of the fori(k,G,E,f) defined in(2.19)and(2.20), andD is
of the form(2.21)-(2.23).
Proof: “ <:" Let 7 be al'-gradedD-stable nonzero ideal ofi= A(k,G,E,f). By (2.21)and
(2.22), we see that
\ {0},

is the set of the common eigenvectors Bf We also see that if a homogeneous elemént
e H(D) has a nonzero eigenvalue, theéa Dy. ThusX,.,.rD, acts locally nilpotently orf.
Since D, is commutative[cf. (1.2) and (1.5)], and D, commutes with>,.,.rD,, and
Zo+aerD, is color-commutative, by linear algebrdmust contain a common eigenvectorZof
ThusE x2e T for some ,a) eI'°XG. Then

U  rEx?

(a,a)erxG

1=e’} f(-2.28) ME_x 3 (Ex¥ el

[cf. (2.13)]. HenceZ= A. This proves thaid is gradedD-simple.
“ =" Supposed e H(D) has a nonzero eigenvalae= ' such thatu, e H(.A) is a correspond-

ing eigenvector. Then we haw{u,)=au,, and sod+u,=U, by (1.4). Thusd=0. In other
words, we have

deH(D), 3#0= 4 acts locally nilpotent on A. (2.24)

Sincelf" is algebraically closed anf is a finite-dimensional subspace etommutative locally
finite color derivations of4, from linear algebra, we have

A= P A(a),

aeD*
whereD* is the dual space db, and
A(a)={ue A| (d—a(d))™(u)=0 for deH(D) and somene N},
for ae D* [note thata(9)=0 if 9#0 by (2.24)]. Denote
G={aeD" | A(a)#0}.

By (2.24), G can be viewed as a subset Bf by the restrictiona»abo. For anyaeG,n
e, we define

A(@)W={ue Al (d;—a(dy))--*(dps1—a(dns1))(U)=0, Vdy, - ,dyise H(D)}.
(2.25)

Then

A(a)= U A@™, VaeG.
0

n=

A nonzero vector ind(a)(© is called aroot vectorwith roota. For any homogeneous root vector
ue A(a)®, clearly Au is aI'-gradedD-stable ideal of4. Thus.Au= A. In particularpu=1 for
somev € A. So any homogeneous root vector is invertible. For a root vectdd (A(a)(?)) with
aeG and anyde H(D), we have
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0=a(1)=a(uu" H=a(u)u 1+ e(g,m)ud(u"H=a(d)uu 1+ e(a,u)ud(ub)
e(a,mud(u™t) if 9#0,
N a(d)+ua(u™l) if =0,
because(d) =0 if #0 by (2.24). This implies
au H=—-a(gu,
by (2.24). Hence
—aeG, V aeG.
For anyxe H(A(a)®),ye H(A(b)(?), andde H(D), we have
_ 0 if 9+0,
a(xy)=a(x)y + €(d,x)xd(y) = (@(@)+b(a)xy it F=0.
Hence
A(@)@- Ab)PC A(a+b)®, V abeG.
Considering the invertibility of root vectors, we have
A@) - Ab)P=Aa+b)®, V abeG.
In particular, we obtain
at+beG, V abeG.
Thus by(2.27)and(2.28),G is an additive subgroup dd*. Set
=4(0)(.
Thenk is al'-graded field extension df such thatl, is a field extension of. We set

={ael'| E,#{0}}.

531

(2.26)

(2.27)

(2.28)

(2.29)

Clearly,I'° is a subgroup of andI'°CT", by (2.1). For anya e I'°, chooseE =1 if =0, and
E.cE)\0} if @#0. Then{E, | aeI'°} forms ank,-basis off.. Thus we havé2.3) such that the

coefficiente,, 5 satisfies(2.2) by color commutativity and associativity.

First assume that(0) # k. Sincea(d) =0 for any homogeneous derivatigrnwith 9#0, for
ue A(a)™, v e A(b)™ anddy,...,dys e 1€ H(D), by induction onm+n+1, we can write

(dy—(a+b)(dy) - (dmsn+1—(8+D)(dmins1))(Uv),
as a linear combination of the forms
(di,—a(d; ))---(d; —a(d; ))(u)-(d;, —a(d;j ) --(dj_—a(d; ))(v),
where

r+s=m+n+1, {iq,... 0 ,j1,---jsg=1{L, ... m+tn+1}.

(2.30)

(2.31)

By definition (2.25), we obtain tha{2.31) is zero, and so i$2.30). It follows thatuv € A(a

+b)(M*M Thus
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A@™- AD)MCA(a+D)™ ™,V abeG, mneN. (2.32)
In particular(since homogeneous root vectors are inverjible
EA(@) M= A(a)M=A(a)@A40)™, V acG, meN (2.33)

[cf. (2.29)]. Hence eacl(a)(™ is a vector space over the graded figld=or anyv € A(0)M), we
haveD(v)CE and

D(v)=0 < vel. (2.34)
Set
H=ED, H={deH|a(A0)D)={0}}, ky=dim;H,. (2.35)

Expression(2.34) implies that.4(0)*)/E is isomorphic to a subspace of the space HOMLE)
over[£. By linear algebra, there exist subsets

{010,020 AFCH(D),  {tiv1,tigray B CHAO)D), (2.36)

for somek e N, such that

k

AO)WP=E+ X Ety, dp(t)=0pq, Y P.deki+1k (2.37)
I=k+1
Set
k
H2= E ]Eap.
p=k;+1

Then we have

H:H1®H2.

For convenience, denote

tizt'kklgi---t‘kk for i=(ix 1. i) €N,

wheref =k—k;. By (2.1) then

t!=0if i,>2 with t,e'_ for somepek;+1k

and
tti= ] ety tp)aetitl, v ijeN’,
ki+1sp<g=sk -
Furthermore, by2.37), we can deduce by induction on the Ie}d_éizz';:klﬂip that
tte A(0)ID, ayth= I e, ty) aipti b, (2.38)
ki<g<p

forie N pek,;+1k Set



J. Math. Phys., Vol. 45, No. 1, January 2004 Classification of derivation-simple color algebras 533
A(0)= >, EticA(0). (2.39)
ient

Then A(0) forms a subalgebra ofd. We want to prove that4(0)=.4(0). By (2.37),
A0)PCA0). Suppose A(0)™CA) for some EmeN. By (2.25),
A(A(0)MF Dy A(0)™c 4(0) for anyde H. Thus, ford 1€ H(H) andue H(A(0)™), we
may assume that

I ra(W)= 2, cith (2.40)
wherec; e H(E) andc;=0 for all but a finite number of. If gklﬂe I' ., then we set

Up= 2 Cie(dh+1,6) Higeat 1) M ke H(A(0)), (2.41)

ieN

and we obtain

I +1(U) =g +1(U1). (2.42)
If 1T, then by(2.1), Je,+1=0, we must have

i 1=0 if ¢;#0, (2.43)

otherwise if(2.43) does not hold, then b§2.38)and(2.40) we would hava?ﬁlﬂ(u)aéo, leading
to a contradiction to the fact thaﬁlH: 0. Thus we can still choosg, as in(2.41)to give (2.42).

Similarly, sinced ,»(u—u;) e A(0)™CA(0), there existai, e H(A(0)) such that
Ik, +2(U=U1) =y 1 2(Up). (2.44)

Assume thaqu:Ei_ENecl’ti-, wherec{ e H(E). Since is color commutative, by2.42) and
(2.44), we have

_ _ >y - >y eari i—1r oq1-1
0= dy, +1k, +2(U2) = Ee Ci €( Ik, +1F Iy +2,C ) (ke +2, Tk +1) Kt L pali ottt T2,
ieN

Thusikl+1ikl+2=0 if ¢/ #0. Hence we can re-choosg e H(A(0)) such that
I, +1(U2) =0,  di, +2(U—U1) = +2(Up).

Similarly, we can findu,,...,u, € H(A(0)) such that
p —
07k1+p( u_qzl uq) =0, 5kl+1(up):‘9kl+2(up):' ":U"k1+pfl(up):0: V pe2f,
by induction onp. Thus we have

€
akl+p<u—qu uq)=0, V pell. (2.45)

For anyd,d’ e H(H;), using(2.35)and(2.39) we deduce
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¢
&a’(u— 21 up) e d(A0)™)+4'(A0)™)Cd(A(0)+3d'(A0))={0}.  (2.46)
=

Now (2.45) and (2.46) show thatu—3;_,u, e A(0)™). Thus by(2.35),

14
a(u—}‘,l up)zo, YV deH(H,). (2.47)
“=

Then(2.45),(2.47) and the definition2.25) show that
¢
u— > u,e A0)O=E.
p=1

Thusu e A(0). This proves
A(0)=4(0).

The caseA(0)=E can be viewed as in the general ca«$@)=,~4(0) with €=0.

We re-choosed, t,, pe 1,k as follows: Choose a homogeneoEsbasis{ﬁl,...,akl} of
DNH,, and set,=0 forpe 1_k1 thend, are semi-simple derivations o by (2.33)and(2.35).
Let ¢, be the dimension of the maximal locally nilpotekitsubspace ofD. Clearly €,<€=k
—k;. Letky=£€—€;. Now we choose .,+1,...,dx to be homogeneous locally nilpotent deri-
vations of D such that the firsk; derivations have colors ifi ;. and the lask, derivations have
colors inT'_ for somekg,k, with k3+k,=€;. Extend{d, | pe 1k Uk;+k,+1K toahomo-
geneousfk‘-basis{apl pe 1k} of D. By the choices o#,, then there exists, e A(0) for each
p € k, + 1,k satisfying(2.36) and (2.37).

For anyae G, we identify

a < (a(dy),....ad,+k,)) etk

ThenG is a nondegenerate subgroupl¥t <2 (otherwise, there existge Ekflk%‘ap such that
a(d)=0 for all ae G and sod is locally nilpotent, which contradicts the maximality 6f).
Taking homogeneous root vectoe A (¥ (a), by (2.26)and(2.32), we have

ulA(a)C.A0), uA0)CAa).
Hence
uA(0)=A(a). (2.48)
In particular,
A(a)®=Eu (2.49)
is one-dimensional oveli. Choose
x°=1, 0#x2ec A(a)® for 0O+aeG,

such thatx? is homogeneous with color denoted &y Sincex? is invertible, we havéaeT .

Then we have a mab satisfying(2.9). By (2.32)and (2.49), we haveg2.12) with f(a,b) satis-
fying (2.10)and (2.11) by color commutativity and associativity. B2.48), we obtain

A=A©40)=AOg A(0),
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where A©=@,_cA(a)® is isomorphic to the algebral; defined in(2.12) and (2.13), and
A(0)=(0) is isomorphic to the algebrd, defined in(2.16)and(2.17). Therefore, the algebra
A is isomorphic to the algebral(k,G,E,f) defined in(2.19) and (2.20), andD is of the form
(2.23). This completes the proof of Theorem 2.2. O

[lI. CONSTRUCTING SIMPLE LIE COLOR ALGEBRAS FROM D-SIMPLE COLOR
ALGEBRAS

In this section, as applications, we shall construct some explicit simple Lie color algebras
using the pairg.A,D) given in the last section. For simplicity, we assume that the gair®) in
(2.19)and (2.23) satisfies

{ue A| D(u)=0}=F.

This is equivalent to thal,=I" andI'°={0}. So the map:G—TI'., in (2.9)is a group homo-
morphism andl, ,=0 for all a,b € G. In this case, noting thdt is algebraically closed, we prove
that we can choose suitable ba$i€|ac G} such that the coefficient(a,b) determined by
(2.12), which satisfie$2.10) and(2.11), has the following form:

f(a,b)=€(@,b)¥? V abeG, (3.1)

where the right-hand side is a fixed square root such(thab)and(2.11) hold.

Let G’ be a maximal subgroup @ such tha?, ae G’ can be chosen so thé.1) holds for
a,beG’. Supposez’' #G. Letce G\G’ and setG"=G' +7c. If G'NZc={0}, we choose any
x¢#0, and sek®ke=¢(a,8)  K2x3. (x¢) for a+ kce G”. If G'NZ+{0}, thenG'NZc="7d for
somed=mc, m>1. In this case, sincé is algebraically closed, we can choose such that
(x9)M=x9, and setx®*k¢ as above. In any case, the coefficidifa,b) determined by(2.12)
satisfieq3.1)for a,be G”. ButG’ #G"DG’. This contradicts the maximality &'. This proves
(3.1).

Let F[D] be the(e,I')-commutative associative algebra with basis

{o#=07" 0% | m=(p1,... 101) € M},
where M =Ntk ks Z';“'. For convenience, we deno#=0 if u¢ M. Denote
W=W(k,G)= Az D=spafx®'d,| (a,i) e GX J,pe 1K},
W=W(k,G)=ARF[D]=spafx®d*| (a,i,u) e GX TX M.

Then as spaces, we haVéC ). By regarding)V as operators o4, VW becomes d'-graded
associative algebra whose multiplication is the composition of operators.WHiesms an(e,I)-
Lie color algebra under the bracket.3). We callVV a Lie color algebra of (generalized) Weyl
type. ClearlyF is the center o#V. Let W= WIF and letWW=[W, V] the derived algebra ofV.
Obviously,W forms an(e,I')-Lie color subalgebra oV, called aLie color algebra of (general-
ized) Witt type. Using results in Refs. 4 and 11, we obtain the following.

Theorem 3.1: The Lie color algebras’V and W are simple ifk;+ky+ks>0 or k,>1.
Furthermore, W= if k,+k,+ks>0 or otherwise,/W=W+TFt"3, wheren and \ are the
largest elements respectively ihand in M. O

Note that in cas&=k,=1, W=0 andW= I't;0, are not simple. Ik=k,>1, then we obtain
finite dimensional simple Lie color algebra_}ii andW of dimensions 2"—2 andn2". In particu-
lar, if I'=7,,€(i,j)=(—1)",i,j € Z,, we obtain the finite dimensional simple Lie superalgebras
W=H(2n) andW=W(n) (see Ref. 2).



536 J. Math. Phys., Vol. 45, No. 1, January 2004 Su, Zhao, and Zhu

Using the pai(4,D), one might construct other simple Lie color algebras, for example, other
series of Lie color algebras of Cartan type.
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