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Abstract: 
The accurate forecast of rainfall is much important as the rainfall is one of the factors which is 

bound to human beings in routine life. The prediction of rainfall on a seasonal time scale has been 

attempted by various research groups using different techniques. In the present study, a univariate 

time series seasonal autoregressive integrated moving average (SARIMA) model has been 

developed for monthly rainfall data from a period of January, 2001 to January, 2016 (181 

observations) in Katunayake region, Sri Lanka. For the model selection it was used 157 

observations while the rest 24 observations were used to validate the developed model. The Johnson 

transformation was used to transform observations in order to correct the non-normality of the 

residuals. Based on the results, the SARIMA (2,0,2) (2,0,1)12 model was found to be most suitable 

for forecasting the mean rainfall. The Akaike Information Criterion (AIC), Schwarz Information 

Criterion (SIC) and Durbin Watson statistics were used to test the validity of the developed model 

in different stages. This model is appropriate to forecast the monthly rainfall for the future months 

to assist decision and policy makers to establish priorities for water demand, storage and disaster 

management. 

 

Keywords: Akaike Information Criterion, Johnson transformation, Rainfall, SARIMA, Schwarz 

Information Criterion 

 

Introduction 
 

Sri Lanka can be considered as a tropical country as it is located near the equator. Usually 

Western and Southern region of country receives higher rainfall from May to September 

and Northern and Eastern region receives high rainfall from October to January. But 

Western and Southern region receives significantly high rainfall than the other region. 

The mean annual rainfall in Sri Lanka varies from 900mm to 5000mm. 

 

Many researchers have been made in the recent past to model and forecast rainfall using 

various time series techniques proving to be the most common (Brath et al., 2002; 

Rabenja et al., 2009; Helman, 2011; Mahsin et al., 2012). In time series analysis it is 

assumed that the series consist of a systematic pattern and random noise which usually 

makes the pattern difficult to identify. 

 

 

The purpose of this article is to identify appropriate Box-Jenkins time series model for 

forecasting monthly rainfall in Katunayake region, Sri Lanka, using the observations of 

monthly rain fall data from the period January 2001 to January 2016, representing 181 

observations. These data were obtained from the Metrological Department, Colombo. 

The first 157 observations were used for developing time series forecast model and rest 

of 24 observations were used to validate the developed model. 
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Methodology 
 

ACF and PACF 

Autocorrelation function and partial autocorrelation function are a type of graphs which 

containing correlations of different time lags. ACF and PACF can be used to identify the 

behaviour of the series whether stationary or not and to identify the number of 

components in ARMA model. The exponentially decaying spikes in ACF and PACF 

indicate the stationary series. The number of significant spikes in ACF indicate the 

number of MA terms in the model and the number of significant spikes in PACF indicate 

the number of AR terms in the model. 

 

The autocorrelation function, 

ρ̂k =
∑ (xt∙xt−k) − (n−k−1)x̅t

2n
t=k+1

∑ xt
2 − (n−k−1)x̅t

2n
t=k+1

      (2.1) 

 

The partial autocorrelation function, 

ϕk =
|ρk

∗ |

|ρk|
        (2.2) 

 

Where;   ρk = [

1 ρ1 ρ2 … ρk

ρ1 1 ρ1 … ρk−1
ρ2 ρ1 1    … ρk−2

]     (2.3) 

 

ρk
∗ = [

1 ρ1 ρ2 … ρ1

ρ1 1 ρ1 … ρ2
ρ2 ρ1 1    … ρ3

]     (2.4) 

 

Autoregressive moving average model 

If currentxt value can be expressed as a linear combination of both past p number ofxt 

values and past q number ofet values, then it is an ARMA time series model of p and q. 

This model is an addition and extension of both AR and MA models. The ARMA model 

can be identified from the number of significant spikes of autocorrelation and partial 

autocorrelation graphs. The ARMA(p,q) model can be written as, 

 

xt = α0 + α1xt−1 + ⋯ + αpxt−p + β1et−1 + ⋯ + βqet−q + et   (2.5) 

 

The characteristic equation of autoregressive moving average model can be written as, 

 

ϕp(B)xt = α0 + θq(B)et       (2.6) 

 

Where;   et~WN(0, σ2) 

 

Stationary Time Series 

Stationary time series is a stochastic process whose joint probability distribution does not 

change with the time. There are several conditions that must be satisfy for the stationarity 

of a series. They are the mean and the variance of the series should not be time dependent 

and the covariance of time series and lagged time series should depend only on the 

difference of the time. There are several methods available to transform a non-stationary 

series in to stationary time series. If the series is non-stationary due to non-constant mean, 

then the lag differencing can be used. If the series is non-stationary due to non-constant 
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variance, then the log transformation can be used. The most applicable method to stabilize 

the variance is Box-Cox transformation.  

 

There are several tests such as Augmented Dickey Fuller (ADF) test and Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) test that can be used to check whether the series is 

stationary or not. 

 

Autoregressive iIntegrated moving average model 

The generalization of ARMA model can be identified as ARIMA model. The ARIMA 

model can be used in the presence of non-stationary series. If current dxt value can be 

expressed as a linear combination of both past p number of dxt values and past q number 

ofet values where dxt is 1st or 2nd order difference of xt due to non-stationary, then it is 

an autoregressive integrated moving average time series model of p, d and q.  

The ARIMA(p,d,q) model can be expressed as, 

dxt = α0 + α1dxt−1 + ⋯ + αpdxt−p + β1et−1 + ⋯ + βqet−q + et  (2.7) 

 

The characteristic equation of ARIMA model can be expressed as, 

ϕp(B)∇dxt = α0 + θq(B)et      (2.8) 

 

 

Seasonal Autoregressive Integrated Moving Average Model 

The data series which contains seasonal component has to be modelled as a Seasonal 

ARIMA model in order to fit a Box-Jenkins model. Seasonal ARIMA model is a 

combination of non-seasonal ARIMA model and seasonal ARIMA model. If the data 

series differenced into two parts such as seasonally adjusted component and seasonal 

component due to the existence of seasonality, then the ARIMA model used in both 

components can be identified as SARIMA model. The SARIMA model denoted by 

SARIMA(p,d,q)(P,D,Q)s, where first bracket and second bracket denote the seasonally 

adjusted and seasonal factor series respectively. The SARIMA model can be written as; 

 

dxt = α0 + α1dxt−1 + ⋯ + αpdxt−p + β1Dxt−1s + ⋯ + βPDxt−Ps + γ1et−1 + ⋯ +

γqet−q + δ1et−1s + ⋯ + δQet−Qs + et     (2.9) 

 

The characteristic equation of SARIMA model can be expressed as, 

ϕp(B) ∙ ΦP(B(S)) ∙ (1 − B)d ∙ (1 − B(S))
D

xt = α0 + θq(B) ∙ ΘQ(B(S)) ∙ et (2.10)

   

 

Results and Discussion 
 

Preliminary Analysis 

The Preliminary analysis was done for the complete data set which was from 2001 

January to 2016 January.  The Descriptive measures are shown in Table 1. 
 

Table 1: Descriptive measures of rainfall data. 

Variable Mean SD Minimum Maximum 

Values 169.8 146.9 0.0 790.1 

 

According to the table 1 the minimum and the maximum rainfall received for the 

Katunayake region from 2001 to 2016 were 0.0mm and 790.1mm respectively. The mean 
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rainfall received for the period was 169.8mm and the standard deviation for the rainfall 

was 146.9.The time series plot and the seasonal graph and were obtained.  
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Figure 1: Time series plot of the rainfall data 

From the Figure 1 it can be seen that the data set is highly fluctuating and there is no 

visible trend. 

 

121110987654321

200

100

0

-100

121110987654321

15

10

5

0

121110987654321

750

500

250

0

121110987654321

500

250

0

Seasonal Analysis for Rainfall Data
Additive Model

Seasonal Indices

Percent Variation by Season

Original Data by Season

Residuals by Season

 
Figure 2: Seasonal graph of the rainfall data 

 

From the seasonal indices graph in figure 2 it can be seen that there exist a seasonality. 

Some outliers of the observations can be seen in figure 2.The descriptive measures of 

monthly wise observations were obtained and given in table 2. 
 

Table 2: Descriptive measures of monthly wise data. 

Month Mean SD Minimum Maximum 

January 51.5 44.1 2.0 122.9 

February 66.3 53.7 0.0 153.9 

March 138.7 106.7 1.7 397.8 

April 223.5 100.8 58.1 389.0 

May 243.2 169.9 24.3 680.1 

June 158.4 53.9 57.5 254.6 

July 77.2 46.4 13.1 163.0 

August 99.6 90.4 3.4 317.7 

September 159.4 85.1 61.1 340.4 

October 388.3 194.2 164.6 790.1 
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November 287.6 189.2 92.7 652.6 

December 152.2 99.1 9.1 436.3 

 

According to the table 2 the maximum and the minimum rainfall received for the 

Katunayake region were in October and January respectively. 

 

ARIMA (Box-Jenkins) Modelling 

The Box-Jenkins modelling was done with 157 data which was 2001 January to 2014 

January. Rest 24 observations were kept for measuring the accuracy of the forecasted 

model which was from 2014 February to 2016 January. 

The data series was checked for the seasonality by using Kruskal Wallis test and the 

seasonality was extracted by using Census X-12 seasonal adjustment method and the line 

chart of both seasonally adjusted and seasonal factor series were obtained. 

 
Table 3: Kruskal Wallis test 

 

Kruskal Wallis Statistic Degrees of freedom Probability value 

73.9850 11 0.000 

 
Table4: Moving Seasonality test 

 

 Sum of Sq. Degrees of 

freedom 

Mean Square F-Value 

Between 104254.8080 12 8687.9006 1.042 

Error 1100726.2624 132 8338.8353  

 

According to the Kruskal Wallis test it indicated that there exist a significant seasonality 

and the moving seasonality test indicated that there is no any moving seasonality exist. 
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Figure 3: Time series plot of seasonally adjusted series 
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Figure 4: Time series plot of seasonal factor series 

The seasonally adjusted series does not indicate any trend or any other pattern. The data 

series fluctuating around the mean.The seasonal factor series indicates a seasonality. It 

shows an increasing pattern over the years.Then the ACF and PACF of Seasonally 

adjusted and seasonally facture series were obtained. 
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Figure 5: ACF plot of seasonally adjusted series 

 

ACF of seasonally adjusted series does not indicate any significant spikes. 
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Figure 6: PACF plot of seasonally adjusted series 

 

PACF of seasonally adjusted series does not indicate any significant spikes. 
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Figure 7: ACF plot of seasonal factor series 

The ACF of Seasonal factor series indicates some significant spikes which shows a 

seasonal pattern. Therefore there are seasonal moving average terms in the model. 
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Figure 8: PACF plot of seasonal factor series 

 

The PACF of Seasonal factor series indicates some significant spikes. Therefore there are 

seasonal autoregressive terms in the model. 

 

The model selection criterion was conducted to select the best model from tentative 

models. The log likelihood, AIC, SIC and DW values used to select the best model. The 

minimum values of log likelihood, AIC, SIC and the DW value close to 2 indicated the 

best model. Therefore from the table 5 the SARIMA(0,0,0)(0,0,2)12 was selected as the 

best model. 

 
Table 5: Parameter estimation 

Model Log 

likelihood 

AIC SIC DW 

SARIMA(0,0,0)(0,0,0) -945.8934 12.0623 12.0818 1.4545 

SARIMA(0,0,0)(0,0,1) -937.2729 11.9780 12.0364 1.9625 

SARIMA(0,0,0)(0,0,2) -919.9508 11.7700 11.8479 1.5404 

SARIMA(0,0,0)(1,0,0) -940.0465 12.0133 12.0717 1.7828 

SARIMA(0,0,0)(1,0,1) -928.4793 11.8787 11.9565 1.2948 

SARIMA(0,0,0)(1,0,2) -912.2277 11.6844 11.7817 1.8027 
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Therefore the fitted SARIMA model is, 

yt = 164.84 − 0.4071 et−12 − 0.0648 et−24 + et 

 

Model Diagnostics 

Then the model diagnostics was conducted for the fitted model. The normal probability 

plot for the residuals were obtained. 

 

The normal probability plot indicates that the residuals are highly not normally 

distributed. The residuals of the fitted SARIMA model was not-normally due to the high 

not-normality of the data. Therefore the data should be transformed.  
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Figure .9: Normal probability plot of the data 

 

Johnson Transformation 

Therefore the data transformed by using Johnson transformation. The function used for 

the Johnson transformation wasln(xt + 62.7918) ∗ 1.81931 − 9.57815. The Box-Cox 

transformation cannot be used in this analysis due to existence of non-positive data.  
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Figure 10: Johnson transformation of the data 

 

These normalized transformed data has used for further analysis. 
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ARIMA (Box-Jenkins) Modelling 

The seasonality of the data series was checked by using Kruskal Wallis test and F test. 

The moving seasonality was checked by using moving seasonality test. 

 
Table 6: Kruskal Wallis test 

Kruskal Wallis Statistic Deg. of free. Prob. 

79.8947 11 0.000 

 
Table 7: Moving Seasonality test 

 Sum of Sq. Deg. of free. Mean Square F-Value 

Between 2.5728 12 0.214397 0.704 

Error 40.1742 132 0.304350  

The Kruskal-Wallis test has confirmed the existence of significant seasonality in 99% 

confidence level (P=0.000). The moving seasonality test confirmed that there is no 

evidence for the moving seasonality in 95% confidence level. Therefore the seasonality 

of the data has been extracted by using Census X-12 seasonal adjustment method. The 

line chart of the seasonally adjusted series and seasonal factor series were obtained to 

identify the behaviour of the both series. 
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Figure 11: Time series plot of seasonally adjusted series 

The seasonally adjusted series does not indicate any trend or unusual fluctuation around 

the mean.  
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Figure 12: Time series plot of seasonal factor series 
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The seasonal factor series indicate that there is a seasonality in the data series. 

The stationarity of the both series has checked by using ADF unit root test. The unit root 

test for the seasonally adjusted series (P=0.0000) and seasonal factor series (P=0.0000) 

has confirmed the both series were stationary in 95% confidence level. 

The ACF and PACF were obtained to identify the number of AR and MA terms in both 

series. 
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Figure 13: ACF plot of seasonally adjusted series 

The ACF of seasonally adjusted series indicate one significant spike near the 25th lag.  
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Figure 14: PACF plot of seasonally adjusted series 

The PACF of seasonally adjusted series indicate two significant spikes. But both spikes 

lies near 10th and 25th lags.  
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Figure .15: ACF plot of seasonal factor series 



“Enriching the Novel Scientific Research for the Development of the Nation” 

 

92 

 

 

The ACF of seasonal factor series indicate a series of significant lags. The lags shows a 

seasonal pattern.The PACF of seasonal factor series indicate a series of significant lags. 

The model selection criterion was used to identify the best model.Table 8 used to identify 

the number of components for the seasonally adjusted series and seasonal factor series. 

Log likelihood, AIC, SIC and DW values used for the model selection. The best nine 

models were shown in table 8. 
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Figure 16: PACF plot of seasonal factor series 

 
Table 8: Parameter estimation. 

 

Model Log 

likelihood 

AIC SIC DW 

SARIMA(2,0,2)(0,0,1) -191.7861 2.5323 2.6685 1.9752 

SARIMA(2,0,2)(0,0,2) -190.0252 2.5226 2.6783 2.0235 

SARIMA(2,0,2)(1,0,0) -191.7170 2.5314 2.6676 2.0055 

SARIMA(2,0,2)(1,0,1) -191.1549 2.5370 2.6927 1.7300 

SARIMA(2,0,2)(1,0,2) -188.8333 2.520 2.6953 1.9863 

SARIMA(2,0,2)(2,0,0) -190.3678 2.5269 2.6827 1.9517 

SARIMA(2,0,2)(2,0,1) -188.7238 2.5187 2.5899 1.9790 

SARIMA(2,0,2)(2,0,2) -188.3957 2.5273 2.7219 1.9670 

 

The best model for the data series can be considered as SARIMA(2,0,2)(2,0,1)12. 
 

Table 9: Parameter estimation of SARIMA(2,0,2)(2,0,1)12 

 

Variable Coefficient Standard Error t-Statistics P-Value 

C 0.009582 0.076230 0.125702 0.9001 

AR(1) -0.603442 0.233899 -2.579885 0.0109 

AR(2) 0.201462 0.097446 2.067414 0.0404 

SAR(1) 1.000690 0.005433 184.1849 0.0000 

SAR(2) -0.999698 0.002538 -393.9135 0.0000 

MA(1) -1.018013 12.46394 -0.081677 0.9350 

MA(2) 0.999921 24.48220 0.040843 0.9675 

SMA(1) 0.699974 0.220714 3.171407 0.0018 
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Model Diagnostics 

The residual plot, the normal probability plot and the histogram of residuals were 

obtained to check the behaviour of the residuals of the fitted model.Table 8 used to 

identify the number of components for the seasonally adjusted series and seasonal factor 

series. Log likelihood, AIC, SIC and DW values used for the model selection. The best 

nine models were shown in table 8. 
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Figure 17: Time series plot of residual 

 

The residuals plot indicated that there is no high deviations and any pattern of residuals. 

The maximum and minimum deviations of residuals lies between positive and negative 

two. 
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Figure 18: Normal probability plot of residuals 

To confirm there was no any serial correlation, the residual ACF and residual PACF were 

obtained. 
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Figure 19: ACF plot of residual 

The residual autocorrelation function does not indicated any significant spikes. Therefore 

there is no any residual serial correlation. 
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Figure 20: PACF plot of residual 

 

The residual partial autocorrelation function does not indicated any significant spikes. 

Therefore there is no any residual serial correlation.The ARCH LM test was conducted 

to observe the heteroscedasticity of the model. According to the test there was no 

heteroscedasticity in 95% confidence level (P=0.3781). 

 

Forecasting and Validating the Fitted Model 

From 2014 February to 2016 January 24 values were forecasted by using the fitted model 

to check the prediction accuracy of the model.  
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Figure 21: Plot of observed rainfall and predicted rainfall 

 

The forecasted and observed rainfall observations are not much deviated from each other. 

The t-test showed that there was no significant difference between predicted and observed 

rainfall in 95% confidence level (P=0.368).  

 

Conclusion 
Time series analysis is an important technique in modelling and forecasting rainfall data. 

In this study we used Seasonal ARIMA model to forecast monthly rainfall obtained 

rainfalldata Katunayake region.  

The best fitting model for the rainfall was identified as SARIMA(2,0,2)(2,0,1)12. Model 

diagnostic checking presented that developed model should have significant result. 

Therefore, this model could help to determine possible future strategy in the respective 

field for the Katunayake region. 
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