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Abstract 

Cubed sphere is one of the main tools used to avoid pole problems those arise in the selection of spherical polar coordinates. In 
this respect, earlier we considered a recently developed cubed sphere based on coordinate mapping over the cubed surface. 
The function on the sphere was treated as an ordered set of six-tuples. In that work, we established weakly orthogonal and 
completely orthogonal spherical harmonics of the system and developed corresponding symmetric and linear relations. Also, 
we found the norm of the orthogonal spherical harmonics. In this work, we explore the Fourier representation of a spherical 
function on this coordinate system in terms of weakly orthogonal spherical harmonics. The advantages of the linear relation 
between the two sets of spherical harmonics and diagonal property of the norm of the fully orthogonal spherical harmonics 
were in cooperated for this work. We also strength our work by giving an example to demonstrate how Fourier coefficients can 
be computed to represent a given spherical function in terms of the spherical harmonics of the coordinate system. 
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Introduction 

Avoiding polar singularities, which arise when using spherical polar coordinate system, gained the attraction of computational 

weather prediction models by finite difference and finite element methods, Philips, N. A. (1957), Reisswig, C. et al (2007) and 
Ronchi, C., Iacono, R. and Paolucci, P.S. (1996) used this method in their works. Some of the latest works in this respect can 
be viewed in the following articles: Archibald, M., Evans, K.J., Drake, J. and White III, J. B. (2011), Chen, C. and Xiao, F. 
(2008), Lauritzen, P.H., Nair, R. D. and Ullrich, P. A. (2010). 

Nasir (2007) has developed a cubed sphere in this respect which has wonderful symmetric properties and defined spherical 
harmonics on it. Faham and Nasir (2012) developed and analyzed further in this respect. In this work, we establish Fourier 
series representation of a spherical function on this cubed spherical coordinate system. The work is illustrated by a simple 
example. The presentation of this paper is organized as follows: In next section, we recall some basic results from our previous 
works (Nasir (2007) and Faham and Nasir (2012)). Then, we develops the Fourier representation of a spherical function. Then, 
an illustrative example is given. Finally, we discuss the results and conclude some remarks. 
Preliminaries, Terminologies and Notations 

In this section, we brief some main results of our previous work. A cubed spherical coordinate system is defined as a six-tuple 
of local coordinate systems each is defined on the six faces of the cubed sphere and is given by  , 
where 

 (1) 

maps the two dimensional faces to the cube and    maps the cube into the 2-sphere. The parameter    
constitutes the standard radial coordinator. The unit sphere,  (i.e.  ) is denoted by . A 
spherical function  is described in the cubed spherical coordinates as a six-tuple of functions 

 (2) 

A set of solutions for the eigenvalue problem 

 (3) 

where    is a non-negative integer and the Laplace  Beltrami operator   , given by 
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 (4) 

where  , are known as the spherical harmonics. They are given by 

 (5) 

where  are given explicitly by the non-zero real or imaginary parts of 

 (6) 

where     and the subscript 2 in the summation notation indicates that the index variables increases with 
step 2,  and  are the binomial and trinomial coefficients respectively. 

Fixing this    to one of the face, say  , of the 2-sphere, a set of continuous spherical harmonics on the 2-sphere 
is obtained as a six-tuple of functions 

 (7) 

The usual inner product of two functions    is given by 

 (8) 

where    are the inner products for the functional components for one face  
 . 

The spherical harmonics  are weakly orthogonal in the sense that they are orthogonal for distinct mode  , but are not 
orthogonal among the   functions for a mode  . 

A set of completely orthogonal spherical harmonics are constructed in the form 

 
(9) 

using some existing theorems with slide modifications according to our resulting differential equations.  Here, polynomials   
, where the polynomial      is given by    and the 

polynomials   are given by , where .  A set of 

completely orthogonal spherical harmonics are then constructed very similar to the set of weakly orthogonal counter parts. 

The norm of the orthogonal spherical harmonics are evaluated as 

 
(10) 

The polynomials corresponding to weakly and completely orthogonal spherical harmonics are related by the equations 

 (11(a)) 

and 

 (11(b)) 
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with suitable grouping, we obtain the matrix form of the linear relations as 

  (12) 

where . The coefficients of the upper triangular matrices are explicitly given by 

,  ,   and  

. The matrices, therefore, are computed by obtaining only the matrix lA  and use the 

above relations to obtain other matrices. The matrix lA  can be easily computed column wise by the recurrence formula 

 (13) 

According to the regroup, we shall denote   and   Then the set of 
polynomials corresponding to the weakly orthogonal spherical harmonics are as in the table 1. The linear relation among both 
sets of weakly and completely orthogonal spherical harmonics and the inner product of completely orthogonal spherical 
harmonics can be used to evaluate the inner product of weakly orthogonal spherical harmonics. 

Spherical Fourier Series 

Fourier series techniques could be applied to a wide array of mathematical and physical problems especially those involving 
linear differential equations with constant coefficients, for which the eigensolutions are sinusoids. In this work, we focus on 
constructing Fourier series for a spherical function defined on the surface of the cubed sphere. The Fourier series of a spherical 
function   can be written in terms of the weakly orthogonal spherical harmonics as 

 (14) 

where   are row vectors of sizes    of coefficients given by 

 
(15) 

The relation between the inner products of the two sets of spherical harmonics is given in matrix form as 

 
(16) 

from which we obtain  

Table 1: Polynomial functions corresponding to weakly orthogonal spherical harmonics 

 Polynomial group 

1 
  

  

 1 

2 

  

  

  

  

3 

  

  

  

  

4 
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Also, 
Since 

 
is 

diagonal, its inverse also diagonal with the reciprocals of the diagonal entries. Thus, the inverse matrix    can be 
evaluated without inverting the matrix . Explicit expressions for the respective four blocks of  are given by 
 

 

 

 

 

 

 

 

 
                          (18) 
 
Application 

For convenience, let . Then, 
 

  (19) 

 
Now, by equation (12), the coefficients becomes 
 

 (20) 

For a simple example, let us consider  , where   is  if  ,  takes    
when    and    otherwise on the face    and  zero elsewhere.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

  

5 

  

  

  

  

Figure 1:  the function  
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Then, the inner product on the   face is 
 

 
(21) 

 
 
The Fourier coefficients are then computed using table 3. For example, when  , the function   has Fourier 
representation 
 

 
(22) 

 
Observations and Conclusion 

In this work, we established Fourier representation of a spherical function in a non-polar cubed spherical coordinate system. 
The function is represented in terms of weakly orthogonal spherical harmonics. We used this representation, as an immediate 
application, to a simple spherical function to illustrate the advantages of computations. 

 
Table 2: The computations of   up to . 

  values  values 

1 
    

    

 0  0 

2 

    

    

    

    

3 

    

    

    

    

4 

    

    

    

    

5 
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For the odd mode  s, we observed that the Fourier coefficients    and    vanish and the values of    are in the 
reverse order of the values of  . Similarly for even mode  s, we have     and    zeros and the values of    are 
in the reverse order of that of .Therefore, in both case, we just want to compute    computations although there are  

 values to be computed, here  denotes the smallest integer such that  . 

 We also observe a similar relation compared to the relations defined in equation (13).  
 The symmetric property of     and    and the fact of the same Fourier coefficients also can 
be considered for efficient computations. 
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